JP2007048097A - Monitoring system and monitoring method in plant or the like - Google Patents

Monitoring system and monitoring method in plant or the like Download PDF

Info

Publication number
JP2007048097A
JP2007048097A JP2005232645A JP2005232645A JP2007048097A JP 2007048097 A JP2007048097 A JP 2007048097A JP 2005232645 A JP2005232645 A JP 2005232645A JP 2005232645 A JP2005232645 A JP 2005232645A JP 2007048097 A JP2007048097 A JP 2007048097A
Authority
JP
Japan
Prior art keywords
value
sound
chaos
chaos information
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005232645A
Other languages
Japanese (ja)
Other versions
JP4713272B2 (en
Inventor
Tetsuji Tani
哲次 谷
Toru Nagaseko
透 長迫
Tadashi Iokido
正 五百旗頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RES INST OF APPLIC TECHNOLOGIE
Research Institute Of Application Technologies For Chaos & Complex Systems Co Ltd
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
RES INST OF APPLIC TECHNOLOGIE
Research Institute Of Application Technologies For Chaos & Complex Systems Co Ltd
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RES INST OF APPLIC TECHNOLOGIE, Research Institute Of Application Technologies For Chaos & Complex Systems Co Ltd, Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical RES INST OF APPLIC TECHNOLOGIE
Priority to JP2005232645A priority Critical patent/JP4713272B2/en
Publication of JP2007048097A publication Critical patent/JP2007048097A/en
Application granted granted Critical
Publication of JP4713272B2 publication Critical patent/JP4713272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring system capable of detecting occurrence of an abnormal state of a device or the like at an early stage from a change in sound in the site in a plant or the like. <P>SOLUTION: The monitoring system includes: a sound detecting part 11 for detecting sound in the field; a sound processing part 12 for obtaining sound data of N<SB>1</SB>times from input sound; a chaos information processing calculation processing part 13 for preparing an attractor on the basis of the sound data, calculating orbit parallel measurement about k data vectors among data vectors constituting the attractor and calculating the distribution of the orbit parallel measurement; a chaos information standard processing part 14 for calculating the average value and kurtosis of the orbit parallel measurement from the distribution of the orbit parallel measurement and calculating a chaos information standard value from the ratio of the both; a criterion value preparation processing part 16 for preparing a criterion value to be reference for detecting leakage sound on the basis of the obtained chaos information standard value; and a leakage sound detection determining part 17 for determining presence/no presence of leakage sound from the criterion value and the chaos information standard value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工場等の現場において、現場内の音響の変化から各種装置の異常の有無を判断する監視システム及び監視方法に関する。   The present invention relates to a monitoring system and a monitoring method for determining the presence / absence of abnormality of various devices from a change in sound in a site at a site such as a factory.

製油所や化学工場,発電所,ゴミ焼却場その他の施設(以下、工場等という)における装置や設備(以下装置等と記載する)においては、装置等の異常を早期に発見し、早期に対処することが重要である。
そのため、これら装置等の異常を早期に発見するためのシステムや方法が種々提案されている(例えば、特許文献1,2参照)。
しかしながら、上記文献に記載のシステムや方法では、多種多様な装置等が複雑に混在する現場内において装置等の数や種類に応じて検出装置を設けなければならず、コスト高となるばかりでなく、検出装置の故障や予期しない異常の発生時には検出できないこともあり、必ずしも完全とは言えないのが現状である。
In equipment and equipment (hereinafter referred to as equipment) in refineries, chemical factories, power plants, garbage incinerators and other facilities (hereinafter referred to as factories), abnormalities in the equipment etc. are discovered early and dealt with promptly. It is important to.
For this reason, various systems and methods for early detection of abnormalities in these devices have been proposed (see, for example, Patent Documents 1 and 2).
However, in the system and method described in the above document, it is necessary to provide detection devices according to the number and type of devices in a site where a variety of devices are complicatedly mixed. However, the current situation is that the detection device may not be completely detected because it may not be detected when a failure or unexpected abnormality occurs.

特開2003−51894号公報JP 2003-51894 A 特開2003−134261号公報JP 2003-134261 A

ところで、熟練したオペレータは、自分が担当する現場内の装置等の異常を、装置等の運転音の微妙な変化から察知することができる。そのため、熟練オペレータの勘や経験により、異常を早期に発見することが可能である。
しかしながら、このような熟練オペレータは、合理化に伴う自動化にともなって減少する傾向にあり、熟練オペレータの勘や経験を生かしたシステムの開発が望まれている。
By the way, a skilled operator can detect an abnormality of a device in the field where he / she is in charge from a subtle change in operation sound of the device. Therefore, it is possible to detect an abnormality at an early stage based on the intuition and experience of a skilled operator.
However, such skilled operators tend to decrease with automation accompanying rationalization, and development of a system that makes use of the intuition and experience of skilled operators is desired.

この発明は、このような要求に応えるべくなされたもので、現場内の音響の変化から、装置等の異常の発生を早期に検出することのできる監視システム及び監視方法の提供を目的とする。   The present invention has been made to meet such a demand, and an object of the present invention is to provide a monitoring system and a monitoring method capable of detecting the occurrence of an abnormality in an apparatus or the like at an early stage from a change in sound in the field.

本発明の発明者が鋭意研究を行った結果、現場内で得た音響データの時系列グラフからアトラクタを求め、このアトラクタに特開平10−134034号公報等で公知の「軌道平行測度」の概念を適用し、さらに、この軌道平行測度の分布状態を、本発明の発明者が創案した「カオス情報規範値」で表すことにより、暗騒音と漏洩音の区別を明確にできることに想到した。   As a result of intensive research by the inventors of the present invention, an attractor is obtained from a time-series graph of acoustic data obtained in the field, and the concept of “orbit parallel measure” known in Japanese Patent Laid-Open No. 10-134034 is known for this attractor. Furthermore, the present inventors have conceived that the distinction between background noise and leaked sound can be clarified by expressing the distribution state of the orbital parallel measure by the “chaos information normative value” created by the inventor of the present invention.

具体的に、本発明の監視システムは、請求項1に記載するように、工場等の現場において、検出された音響から異常の発生の有無を判断する監視システムであって、現場内の音響を検出する音響検出部と、この音響検出部から入力された音響を一定の時間間隔ごとに処理し、N(Nは1より大きい自然数)回分の時系列音響データを得る音響処理部と、この時系列音響データに基づいてアトラクタを作成し、このアトラクタを構成するデータベクトルの中から抽出したk個(kは1より大きい自然数)のデータベクトルの各々について軌道平行測度を求め、この軌道平行測度の分布を求めるカオス情報処理計算処理部と、このカオス情報処理計算処理部で得られた前記軌道平行測度の分布から、前記軌道平行測度の平均値及び尖度を求め、前記平均値と前記尖度との比からカオス情報規範値を求めるカオス情報規範処理部と、このカオス情報規範処理部によって得られたカオス情報規範値に基づき、漏洩音検出のための基準となる判定基準値を作成する判定基準値作成処理部と、この判定基準値作成処理部で作成された判定基準値と、前記カオス情報規範処理部によって得られたカオス情報規範値とから、漏洩音の有無を判断する漏洩音検出判定部と、前記漏洩音検出判定部が異常と判断したときに警報を出力する警報出力部とを有する構成としてある。 Specifically, as described in claim 1, the monitoring system of the present invention is a monitoring system that determines whether or not an abnormality has occurred from the detected sound at a site such as a factory. A sound detection unit to detect, a sound processing unit that processes the sound input from the sound detection unit at regular time intervals, and obtains time series sound data for N 1 (N 1 is a natural number greater than 1 ) times; An attractor is created based on the time-series acoustic data, and a trajectory parallel measure is obtained for each of k data vectors (k is a natural number greater than 1) extracted from the data vectors constituting the attractor. The average value and kurtosis of the trajectory parallel measure are obtained from the chaos information processing calculation processing unit for obtaining the distribution of the measure and the distribution of the trajectory parallel measure obtained by the chaos information processing calculation processing unit. A chaos information norm processing unit for obtaining a chaos information norm value from a ratio of the average value and the kurtosis, and a reference for detecting leaked sound based on the chaos information norm value obtained by the chaos information norm processing unit; From the judgment reference value creation processing unit for creating the judgment reference value, the judgment reference value created by the judgment reference value creation processing unit, and the chaos information norm value obtained by the chaos information norm processing unit, a leaked sound A leakage sound detection determination unit that determines the presence or absence of noise and an alarm output unit that outputs an alarm when the leakage sound detection determination unit determines that there is an abnormality.

この構成によれば、N回分の時系列音響データからアトラクタを求め、このアトラクタを構成するデータベクトルから抽出したk個のデータベクトルについて軌道平行測度を求める。そして、得られた軌道平行測度の分布から、その平均値と尖度を求め、その比からカオス情報規範値を求める。
ここで、軌道平行測度の平均値は、値が小さいほど規則性があることを意味し、尖度は、値が大きいほど局部空間の構造が類似していることを意味する。
そこで、両者の比を求めることで、時系列音響データの構造の解析が容易になり、暗騒音と漏洩音の区別をしやすくなる。
According to this configuration, determine the attractor from the time series sound data of N 1 times, we obtain a trajectory parallel measure for k data vectors extracted from the data vectors constituting the attractor. And the average value and kurtosis are calculated | required from distribution of the obtained orbit parallel measure, and chaos information normative value is calculated | required from the ratio.
Here, the average value of the orbital parallel measure means that there is regularity as the value is small, and the kurtosis means that the structure of the local space is similar as the value is large.
Therefore, by determining the ratio between the two, it becomes easy to analyze the structure of the time-series acoustic data, and to easily distinguish between background noise and leaked sound.

この場合、請求項2に記載するように、前記判定基準値作成処理部では、カオス情報規範処理部による処理をN(Nは1より大きい自然数)回繰り返して求めたN個の前記カオス情報規範値から最大値,最小値及び標準偏差を求め、前記最大値,最小値及び標準偏差に基づいて判定基準値の上限と下限を求めるようにしてもよい。
また、請求項3に記載するように、漏洩音検出判定部では、カオス情報規範処理部による処理をN(Nは1より大きい自然数)回繰り返して求めたN個の前記カオス情報規範値から平均値を求め、この平均値と前記判定基準値とを比較して漏洩音の有無を判断するようにしてもよい。
なお、誤報を抑制するために、請求項4に記載するように、前記警報出力部は、前記漏洩音検出判定部による異常判定が予め設定された回数連続して繰り返されたときに、警報を出力するようにするとよい。
In this case, as described in claim 2, the determination reference value creation processing unit repeats the process by the chaos information norm processing unit N 2 (N 2 is a natural number greater than 1) times and obtains the N 2 pieces The maximum value, the minimum value, and the standard deviation may be obtained from the chaos information standard value, and the upper limit and the lower limit of the determination reference value may be obtained based on the maximum value, the minimum value, and the standard deviation.
According to a third aspect of the present invention, the leakage sound detection determination unit repeats the processing by the chaos information norm processing unit N 3 (N 3 is a natural number greater than 1) times, and obtains N 3 chaos information norms. An average value may be obtained from the values, and the average value may be compared with the determination reference value to determine the presence or absence of leakage sound.
In order to suppress false alarms, as described in claim 4, the alarm output unit issues an alarm when the abnormality determination by the leakage sound detection determination unit is repeated continuously for a preset number of times. It is good to output.

本発明の監視方法は、請求項5に記載するように、工場等の現場において、検出された音響から異常の発生の有無を判断する監視方法であって、現場内で検出した音響を一定の時間間隔ごとに処理し、N(Nは1より大きい自然数)回分の時系列音響データを得るステップと、この時系列音響データに基づいてアトラクタを作成するステップと、このアトラクタを構成するデータベクトルの中からk個のデータベクトルを抽出し、これらk個のデータベクトルについて軌道平行測度及びその分布を求めるステップと、前記軌道平行測度の分布から、前記軌道平行測度の平均値及び尖度を求め、前記平均値と前記尖度との比であるカオス情報規範値を求めるステップと、前記カオス情報規範値に基づき、漏洩音検出のための基準となる判定基準値を作成するステップと、前記判定基準値と前記カオス情報規範値とから、漏洩音の有無を判断するステップと、前記漏洩音が有ると判断したときに警報を出力するステップとを有する方法である。 The monitoring method of the present invention is a monitoring method for judging whether or not an abnormality has occurred from the detected sound at a site such as a factory, as described in claim 5, wherein the sound detected in the site is fixed. Processing for each time interval, obtaining N 1 (N 1 is a natural number greater than 1 ) times of time series acoustic data, creating an attractor based on this time series acoustic data, and data constituting this attractor K data vectors are extracted from the vectors, the trajectory parallel measure and its distribution are obtained for these k data vectors, and the average value and kurtosis of the trajectory parallel measure are calculated from the distribution of the trajectory parallel measures. Determining a chaos information normative value that is a ratio of the average value and the kurtosis; and determining a reference for detecting leaked sound based on the chaos information normative value. A method comprising: creating a reference value; determining whether there is a leaked sound from the determination reference value and the chaos information normative value; and outputting an alarm when it is determined that the leaked sound exists It is.

前記判定基準値は、請求項6に記載するように、前記判定基準値を作成するステップでは、カオス情報規範値を求める処理をN(Nは1より大きい自然数)回繰り返し、これにより得られたN個の前記カオス情報規範値から最大値,最小値及び標準偏差を求め、前記最大値,最小値及び標準偏差に基づいて判定基準値の上限と下限とを求めるようにするとよい。
また、請求項7に記載するように、前記漏洩音の有無を判断するステップでは、カオス情報規範処理値を求める処理をN(Nは1より大きい自然数)回繰り返し、これにより得られたN個の前記カオス情報規範値から平均値を求め、この平均値と前記判定基準値とを比較して漏洩音の有無を判断するようにしてもよい。
In the step of creating the determination reference value, the determination reference value is obtained by repeating the process of obtaining a chaos information standard value N 2 (N 2 is a natural number greater than 1) times. The maximum value, the minimum value, and the standard deviation may be obtained from the N 2 chaos information standard values obtained, and the upper limit and the lower limit of the determination reference value may be obtained based on the maximum value, the minimum value, and the standard deviation.
Further, as described in claim 7, in the step of determining the presence or absence of the leakage sound, the process of obtaining chaotic information normative processed value N 3 (N 3 is greater than 1 natural number) repeated times, obtained by this An average value may be obtained from N three chaos information normative values, and the average value may be compared with the determination reference value to determine the presence or absence of leakage sound.

本発明によれば、カオス情報規範値は、音響の大小にかかわらず漏洩音を検出することができるという特徴があるので、工場等の現場内の音響の変化から、機器や装置、設備の異常の発生を早期に発見することが可能になる。   According to the present invention, the chaos information normative value is characterized by the ability to detect leaked sound regardless of the magnitude of the sound. It becomes possible to detect the occurrence of the problem at an early stage.

本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
図1は、本発明の監視システムの一実施形態にかかり、その構成を説明するブロック図である。
本発明の監視システム1は、現場内の音響を集める集音マイク11と、この集音マイク11により集音された音響を一定時間間隔で処理する音響処理部12と、この音響処理部12によって得られた時系列の音響データ(時系列音響データ)を、カオスアトラクタ理論により処理し、時系列音響データについてのアトラクタを作成するカオス情報計算処理部13と、このカオスアトラクタ情報計算処理部13で得られたアトラクタの軌道平行測度を求め、得られた軌道平行速度の分布からカオス情報規範(Chaos Information Criteria、以下CICと略称する)値を求めるCIC処理部14と、基準値作成指示があったときに、漏洩音の検出モードを判定基準値の作成モードに切り替えるモード切替部15と、基準値作成指示があったときに、CIC処理部14によって得られたCIC値に基づいて判定基準値を作成する判定基準値作成処理部16と、この判定基準値作成処理部16で作成された判定基準値とCIC値とを比較し、漏洩音の有無を判断する漏洩音検出判定部17と、この漏洩音検出判定部17によって漏洩音が発生していると判断されたときに、アラーム報知を出力する警報出力部18とを有している。
Preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram illustrating a configuration according to an embodiment of the monitoring system of the present invention.
The monitoring system 1 according to the present invention includes a sound collecting microphone 11 that collects sound in the field, a sound processing unit 12 that processes sound collected by the sound collecting microphone 11 at regular time intervals, and a sound processing unit 12. The obtained time-series acoustic data (time-series acoustic data) is processed by the chaotic attractor theory, and the chaotic information calculation processing section 13 for creating an attractor for the time-series acoustic data, and the chaotic attractor information calculation processing section 13 There was a CIC processing unit 14 for obtaining a trajectory parallel measure of the obtained attractor, obtaining a Chaos Information Criteria (hereinafter abbreviated as CIC) value from the obtained orbit parallel velocity distribution, and a reference value creation instruction. In some cases, the mode switching unit 15 that switches the leaked sound detection mode to the determination reference value creation mode, and the CIC The determination reference value creation processing unit 16 that creates a determination reference value based on the CIC value obtained by the processing unit 14, and the determination reference value created by the determination reference value creation processing unit 16 and the CIC value are compared. A leak sound detection determination unit 17 that determines the presence or absence of a leak sound, and an alarm output unit 18 that outputs an alarm notification when the leak sound detection determination unit 17 determines that a leak sound has occurred. ing.

図2は、上記構成の監視システムの作用を説明するフローチャートである。
音響マイクから集音された音響(ステップS1)は、音響処理部12において一定の時間間隔でN回繰り返し処理され、N回分の時系列音響データが作成される(ステップS2,S3)。なお、この際、必要に応じてフィルタリング処理を行ってもよい。
一定時間間隔で集音された音響データの一例を図3及び図4示す。図3及び図4において、(a),(b),(c)は一定時間ごとに繰り返して集音したNn-1回目,N回目,Nn+1回目(nは1より大きい自然数)の音響データを示すグラフで、縦軸がゲイン、横軸が時間である。また、図3は暗騒音の音響データを、図4は、漏洩音の音響データを示している。
FIG. 2 is a flowchart for explaining the operation of the monitoring system configured as described above.
Sound is collected from the acoustic microphone (step S1) is treated repeatedly N 1 times at predetermined time intervals in the acoustic processing unit 12, the time series sound data of N 1 times is created (step S2, S3). At this time, a filtering process may be performed as necessary.
An example of acoustic data collected at regular time intervals is shown in FIGS. 3 and 4, (a), (b), and (c) are the N n-1 th, N n th, N n + 1 th times (n is a natural number greater than 1) collected repeatedly at regular intervals. ), The vertical axis represents gain, and the horizontal axis represents time. 3 shows background acoustic data, and FIG. 4 shows leaked sound data.

図3及び図4に示す暗騒音の音響データと漏洩音の音響データとの間には規則性がなく、このままでは暗騒音と漏洩音とを区別するのはきわめて困難である。
なお、ランダム信号状のデータを分析する手法としてよく知られているパワースペクトルを用いる方法もあるが、暗騒音と漏洩音のパワースペクトルはその形状が似ているため、やはり区別は困難である。
そこで、本発明では、N回の音響処理で得られた時系列音響データを、カオス情報計算処理部13にてカオスアトラクタ理論により処理し、得られたアトラクタからk個(kは1より大きい自然数)の軌道平行測度を求めて(ステップS4)、このk個の軌道平行測度を、CIC処理部14にてカオス情報規範(CIC)なる概念を用いて処理するようにしている(ステップS5)。
以下、処理の手順を説明する。
There is no regularity between the sound data of the background noise and the sound data of the leaked sound shown in FIGS. 3 and 4, and it is very difficult to distinguish between the background noise and the leaked sound as it is.
Although there is a method using a power spectrum that is well known as a method for analyzing random signal-like data, the power spectra of the background noise and the leaked sound are similar in shape, and are still difficult to distinguish.
Therefore, in the present invention, time-series acoustic data obtained by N one- time acoustic processing is processed by the chaos information calculation processing unit 13 according to the chaos attractor theory, and k pieces (k is larger than 1) from the obtained attractors. A natural number) orbit parallel measure is obtained (step S4), and the k orbit parallel measures are processed by the CIC processing unit 14 using the concept of chaos information norm (CIC) (step S5). .
The processing procedure will be described below.

[アトラクタの構築]
カオス情報処理計算処理部13は、例えば、特開2002−73587号公報(「カオス解析装置」)や特開2000−292392号公報(「ガス測定装置及びガス測定方法」)等の文献に記載されている周知の手法により、アトラクタを構築する。
アトラクタの構築に当たっては、時系列信号x(t)(tは時刻)から、時間遅れτずつ異なるM個の時点の信号値の組{x(t)、x(t+τ)、x(t+2τ)、…、x(t+(M−1)τ)}を作り、これを2次元空間(相空間)にプロットすることによりアトラクタを構築する。
[Building attractors]
The chaos information processing calculation processing unit 13 is described in documents such as Japanese Patent Application Laid-Open No. 2002-73587 (“chaos analysis device”) and Japanese Patent Application Laid-Open No. 2000-292392 (“gas measurement device and gas measurement method”). The attractor is constructed by a well-known technique.
In constructing the attractor, a set of signal values of M time points different from the time series signal x (t) (t is time) by time delay τ {x (t), x (t + τ), x (t + 2τ), ..., x (t + (M-1) τ)} is created, and this is plotted in a two-dimensional space (phase space) to construct an attractor.

このようにして構築されたアトラクタは、2次元相空間における対象信号の時系列的な軌道(トラジェクトリ)である。アトラクタの各点は、時刻tにより特定され、2次元空間中にM個の成分(すなわちx(t+kτ)(k=0,1,2,…,M−1))で表される位置座標を占める。
上記手順で構築した現場内での暗騒音及び漏洩音のアトラクタの一例を図5及び図6に示す。なお、図5及び図6において、(a),(b),(c)はそれぞれ異なる時間帯における三つのアトラクタを示している。
The attractor thus constructed is a time-series trajectory (trajectory) of the target signal in the two-dimensional phase space. Each point of the attractor is specified by time t, and the position coordinates represented by M components (that is, x (t + kτ) (k = 0, 1, 2,..., M−1)) are represented in the two-dimensional space. Occupy.
FIG. 5 and FIG. 6 show an example of the background noise and leakage sound attractor constructed in the above procedure. 5 and 6, (a), (b), and (c) show three attractors in different time zones.

[軌道平行測度を求める]
次に、アトラクタを構成するデータベクトルを乱数によりk個選択し、k個のデータベクトルの軌道平行測度を求める。
ここで、軌道平行測度は、アトラクタ上の部分空間における隣接した軌道の平行の度合いを示す指標である。
選択されたk個のデータベクトルのうちの一つについて軌道平行測度を求める手順を、図7を参照しながら説明する。
[Determine orbit parallel measure]
Next, k data vectors constituting the attractor are selected by random numbers, and a trajectory parallel measure of the k data vectors is obtained.
Here, the trajectory parallel measure is an index indicating the degree of parallelism of adjacent trajectories in the partial space on the attractor.
The procedure for obtaining the trajectory parallel measure for one of the selected k data vectors will be described with reference to FIG.

まず、アトラクタを構成する軌道上の任意のベクトルXiを選び、ユークリッド距離においてXiに近いm個の近傍ベクトルXj (j=1,2,3,....,m)を選択し,データベクトルXiと近傍ベクトルXjの軌道に対するそれぞれの正接単位ベクトルTiとTjを導出する。単位接ベクトルTi,Tjの導出は選択した点Xiとその前後の点の3点を通る超円Sを想定し、以下の手順で近似的に導出する。
(1)XiとXi-1における法線ベクトル,XiとXi+1における法線ベクトルを求める。
(2)これら二つの法線ベクトルの交点Oiを求める(図7参照)。
(3)XiとOiとの相関ベクトルLiを求める(図7参照)。
(4)相関ベクトルLiに直交する単位接ベクトルTiを求める(図7参照)。
(5)同様にして、Xj-1,Xj,Xj+1から交点Ojを求め、XjとOjとから相関ベクトルLj及びこれに直交する単位接ベクトルTjを求める(図7参照)。なお、||Ti||=||Tj||=1である。
こうして求められた単位接ベクトルTiを基準としたときに、近傍ベクトルの単位接ベクトル等の方向のばらつきを以下の式により求める。
First, select an arbitrary vector Xi on the orbit that constitutes the attractor, select m neighborhood vectors Xj (j = 1,2,3, ..., m) close to Xi in the Euclidean distance, Respective tangent unit vectors Ti and Tj with respect to the trajectories of Xi and the neighborhood vector Xj are derived. Unit tangent vector Ti, derivation of Tj is assumed ultra circle S i passing through three points of a point selected Xi and points before and after, to approximately derived by the following procedure.
(1) Obtain normal vectors at Xi and Xi-1, and normal vectors at Xi and Xi + 1.
(2) Find the intersection Oi of these two normal vectors (see FIG. 7).
(3) A correlation vector Li between Xi and Oi is obtained (see FIG. 7).
(4) A unit tangent vector Ti orthogonal to the correlation vector Li is obtained (see FIG. 7).
(5) Similarly, an intersection Oj is obtained from Xj-1, Xj, and Xj + 1, and a correlation vector Lj and a unit tangent vector Tj orthogonal thereto are obtained from Xj and Oj (see FIG. 7). Note that || Ti || = || Tj || = 1.
When the unit tangent vector Ti thus obtained is used as a reference, the variation in the direction of the unit tangent vector of the neighborhood vector is obtained by the following equation.

Figure 2007048097
Figure 2007048097

ここで、
γi:局所空間における平行度
m:近傍ベクトル数
Ti:抽出したデータベクトルXiの単位接ベクトル
Tj:近傍ベクトルXjの単位接ベクトル
この処理をアトラクタ全体からランダムにk個サンプリングした局所空間について行い、近接ベクトルの平行度の平均を求める。近接ベクトルが全く平行であれば軌道平行測度(TPM)は0で、直行すれば0.5となる。
また、軌道平行測度(TPM)をΓで表すとすると、サンプル数をkとして、Γとkとの間には
here,
γ i : parallelism in local space m: number of neighboring vectors Ti: unit tangent vector of extracted data vector Xi Tj: unit tangent vector of neighboring vector Xj This processing is performed on a local space randomly sampled from the entire attractor, Find the average parallelism of proximity vectors. The trajectory parallel measure (TPM) is 0 if the proximity vectors are completely parallel, and 0.5 if orthogonal.
If the orbital parallel measure (TPM) is represented by Γ, the number of samples is k, and between Γ and k

Figure 2007048097
Figure 2007048097

の関係が成立する。
このようにして得られた軌道平行測度Γについて、次に、平均値(TPMsvg)、中央値(TPMmed)、尖度(TPMkur)を求める。そして、これをN回繰り返す。
TPMsvg及びTPMmedは値が小さいほど規則性があり、TPMkurは値が大きいほど値が集中していることを示す。すなわち、TPMkurの値が大きいほど局部空間の構造が類似していることを意味する。
そこで、漏洩音検出には、以下の式で示すカオス情報規範(CIC)を用いる。
The relationship is established.
Next, the average value (TPM svg ), median value (TPM med ), and kurtosis (TPM ku ) are obtained for the trajectory parallel measure Γ thus obtained. This is repeated N 2 times.
TPM svg and TPM med indicate regularity as the value is small, and TPM ku indicates that the value is concentrated as the value is large. That is, the larger the value of TPM ku, the more similar the structure of the local space.
Therefore, the chaos information norm (CIC) expressed by the following equation is used for leaking sound detection.

Figure 2007048097
Figure 2007048097

CICは、値が大きいほど規則性が高く、フラクタル性(自己相似性)が強いことを示す。
標本数k=1000個、N=4回繰り返したときの平均値(TPMsvg)、尖度(TPMkur)及びカオス情報規範(CIC)値の一例を以下の表に示す。

Figure 2007048097
Figure 2007048097
この表からわかるように、暗騒音のCIC値は漏洩音のCIC値よりも大きく、規則的かつ類似的であるのがわかる。
そこで、この実施形態では、暗騒音と漏洩音のCIC値の違いに着目し、この値の違いから漏洩音の有無を判断するようにしている。すなわち、現場内の時系列音響データから得られたCIC値を基に判定基準値を作成し、この判定基準値と実測から得られたCIC値とを比較することで、漏洩音の有無を判断するようにしているわけである。 CIC indicates that the larger the value, the higher the regularity and the stronger the fractal property (self-similarity).
An example of the average value (TPM svg ), kurtosis (TPM kur ) and chaos information norm (CIC) value when the number of samples k = 1000 and N 2 = 4 times is shown in the following table.
Figure 2007048097
Figure 2007048097
As can be seen from this table, the CIC value of background noise is larger than the CIC value of leaked sound, and is found to be regular and similar.
Therefore, in this embodiment, attention is paid to the difference in the CIC value between the background noise and the leaked sound, and the presence or absence of the leaked sound is determined from the difference in this value. That is, a judgment reference value is created based on the CIC value obtained from the time-series acoustic data in the field, and the presence or absence of leaking sound is judged by comparing this judgment reference value with the CIC value obtained from actual measurement. That is why.

[判定基準値の作成]
判定基準値は、定期的に、又はオペレータの指示により適宜に作成する(ステップS6)。判定基準値を作成する際には、モード切替部14が「基準値作成モード」に切り替えられる。判定基準値作成処理部16における判定基準値の作成(ステップS7)は、以下の手順で行われる。
判定基準値を求めるにあたり、カオス情報規範計算処理部13により作成された暗騒音のCIC値の最大値(CICmax)、最小値(CICmin)及び標準偏差(CICsd)を求める。そして、以下の式を用いて、判定基準値の最大値(CICrefmax)、と最小値(CICrefmin)を求める。
CICrefmax=CICmax+α・CICsd
CICrefmin=CICmin+β・CICsd
ここで、αは判定基準最大値感度係数、βは判定基準最小値感度係数で、実験や経験から最適なものを選択する。
[Create judgment criteria]
The determination reference value is created regularly or appropriately according to an instruction from the operator (step S6). When the determination reference value is created, the mode switching unit 14 is switched to the “reference value creation mode”. Creation of the judgment reference value (step S7) in the judgment reference value creation processing unit 16 is performed in the following procedure.
In obtaining the determination reference value, the maximum value (CIC max ), the minimum value (CIC min ), and the standard deviation (CIC sd ) of the CIC value of the background noise created by the chaos information norm calculation processing unit 13 are obtained. Then, the maximum value (CICref max ) and the minimum value (CICref min ) of the determination reference value are obtained using the following equations.
CICref max = CIC max + α · CIC sd
CICref min = CIC min + β · CIC sd
Here, α is a determination criterion maximum value sensitivity coefficient, β is a determination criterion minimum value sensitivity coefficient, and an optimal one is selected from experiments and experience.

上記の式を用いて、先の表1の場合におけるCICmax、CICmin
CICsd、CICrefmax及びCICrefminの計算結果を以下の表に示す。
なお、α=2.0、β=2.0である。

Figure 2007048097
Using the above formula, CIC max , CIC min in the case of Table 1 above,
The calculation results of CIC sd , CICref max and CICref min are shown in the following table.
Note that α = 2.0 and β = 2.0.
Figure 2007048097

[漏洩音の有無の検出]
上記の手順で判定基準値を作成した後、モード切替部14を通常の「監視モード」に戻して、工場等の現場内の監視を行う。
この監視モードでは、上記と同様の手順でCIC値を求め、N回繰り返したときのCIC値の平均値CICavgを計算する。
そして、漏洩音検出判定部17において、CICavgと判定基準値の最大値(CICrefmax)及び最小値(CICrefmin)とを比較し(ステップS8)、CICavgがこの最大値と最小値の範囲内に含まれているか否かが判断される(ステップS9)。そして、範囲外である場合には、異常が発生したと判断して警報出力部18から警報が報知される(ステップS10)。
この場合、誤報を防ぐために、警報出力部18において範囲外との判定が連続して予め設定した回数(例えば3回)繰り返されたか否かを判断し、この回数を超えたときに警報を出力するようにするとよい。
[Detection of leakage sound]
After the determination reference value is created by the above procedure, the mode switching unit 14 is returned to the normal “monitoring mode” and monitoring in the field such as a factory is performed.
In this monitoring mode, the CIC value is obtained by the same procedure as described above, and the average value CIC avg of the CIC value when N 3 times is repeated is calculated.
The leakage sound detection determination unit 17 compares CIC avg with the maximum value (CICref max ) and minimum value (CICref min ) of the determination reference value (step S8), and CIC avg is within the range between the maximum value and the minimum value. It is judged whether it is included in (step S9). If it is out of the range, it is determined that an abnormality has occurred, and an alarm is notified from the alarm output unit 18 (step S10).
In this case, in order to prevent false alarms, the alarm output unit 18 determines whether or not the determination of out of range has been continuously repeated a preset number of times (for example, three times), and outputs an alarm when this number is exceeded. It is good to do.

本発明の好適な実施形態について説明したが、本発明は上記の実施形態により何ら限定されるものではない。
例えば、上記の説明ではCIC=TPMkur/TPMsvgとして定義したが、この逆数、すなわち、TPMsvg/TPMkurをCICとして定義することも可能である。
Although preferred embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments.
For example, in the above description, CIC = TPM ku / TPM svg is defined, but the reciprocal, that is, TPM svg / TPM ku can be defined as CIC.

本発明は、製油所等の常圧蒸留塔や精密蒸留塔、流動接触分留装置、石油化学工場のエチレン装置分解炉などのプラントの他、発電所やゴミ焼却場のような施設などのあらゆる現場の監視に適用が可能である。   The present invention can be applied to any kind of plant such as an atmospheric distillation tower such as a refinery, a precision distillation tower, a fluidized catalytic fractionator, an ethylene unit cracking furnace of a petrochemical factory, and a facility such as a power plant or a garbage incinerator. Applicable for on-site monitoring.

本発明の監視システムの一実施形態にかかり、その構成を説明するブロック図である。It is a block diagram explaining the structure concerning one Embodiment of the monitoring system of this invention. 図1の監視システムの作用を説明するフローチャートである。It is a flowchart explaining the effect | action of the monitoring system of FIG. 暗騒音の音響データの一例を示すグラフである。It is a graph which shows an example of the acoustic data of background noise. 漏洩音の音響データの一例を示すグラフである。It is a graph which shows an example of the acoustic data of leakage sound. 現場内での暗騒音のアトラクタの一例を示すグラフである。It is a graph which shows an example of the attractor of the background noise in the field. 現場内での漏洩音のアトラクタの一例を示すグラフである。It is a graph which shows an example of the attractor of the leaking sound in the field. 軌道平行測度を求める手順を説明する図である。It is a figure explaining the procedure which calculates | requires an orbit parallel measure.

符号の説明Explanation of symbols

1 監視システム
11 集音マイク
12 音響処理部
13 カオス情報処理部
14 CIC処理部
15 モード切替部
16 判定基準値作成処理部
17 漏洩音検出判定部
18 警報出力部
DESCRIPTION OF SYMBOLS 1 Monitoring system 11 Sound collecting microphone 12 Acoustic processing part 13 Chaos information processing part 14 CIC processing part 15 Mode switching part 16 Judgment reference value creation processing part 17 Leakage sound detection judgment part 18 Alarm output part

Claims (7)

工場等の現場において、検出された音響から異常の発生の有無を判断する監視システムであって、
現場内の音響を検出する音響検出部と、
この音響検出部から入力された音響を一定の時間間隔ごとに処理し、N(Nは1より大きい自然数)回分の時系列音響データを得る音響処理部と、
この時系列音響データに基づいてアトラクタを作成し、このアトラクタを構成するデータベクトルの中から抽出したk個(kは1より大きい自然数)のデータベクトルの各々について軌道平行測度を求め、この軌道平行測度の分布を求めるカオス情報処理計算処理部と、
このカオス情報処理計算処理部で得られた前記軌道平行測度の分布から、前記軌道平行測度の平均値及び尖度を求め、前記平均値と前記尖度との比からカオス情報規範値を求めるカオス情報規範処理部と、
このカオス情報規範処理部によって得られたカオス情報規範値に基づき、漏洩音検出のための基準となる判定基準値を作成する判定基準値作成処理部と、
この判定基準値作成処理部で作成された判定基準値と、前記カオス情報規範処理部によって得られたカオス情報規範値とから、漏洩音の有無を判断する漏洩音検出判定部と、
前記漏洩音検出判定部が異常と判断したときに警報を出力する警報出力部と、
を有することを特徴とする工場等における監視システム。
It is a monitoring system that judges the presence or absence of an abnormality from the detected sound at a site such as a factory,
An acoustic detection unit for detecting acoustics in the field;
An acoustic processing unit that processes the sound input from the acoustic detection unit at regular time intervals to obtain time-series acoustic data for N 1 (N 1 is a natural number greater than 1 ) times;
An attractor is created based on the time-series acoustic data, and a trajectory parallel measure is obtained for each of k data vectors (k is a natural number greater than 1) extracted from the data vectors constituting the attractor. A chaos information processing processor that calculates the distribution of measures;
From the distribution of the orbital parallel measure obtained by the chaos information processing calculation processing unit, an average value and a kurtosis of the orbital parallel measure are obtained, and a chaos information normative value is obtained from a ratio between the average value and the kurtosis. An information norm processing department;
Based on the chaos information norm value obtained by this chaos information norm processing unit, a determination criterion value creation processing unit that creates a criterion value that serves as a reference for leakage sound detection;
From the determination reference value created by this determination reference value creation processing unit and the chaos information norm value obtained by the chaos information norm processing unit, a leaked sound detection determination unit that determines the presence or absence of leaked sound,
An alarm output unit that outputs an alarm when the leakage sound detection determination unit determines that there is an abnormality, and
A monitoring system in a factory or the like, characterized by comprising:
前記判定基準値作成処理部では、カオス情報規範処理部による処理をN(Nは1より大きい自然数)回繰り返して求めたN個の前記カオス情報規範値から最大値,最小値及び標準偏差を求め、前記最大値,最小値及び標準偏差に基づいて判定基準値の上限と下限を求めることを特徴とする請求項1に記載の工場等における監視システム。 Wherein in the determination reference value creation unit, the maximum value processing by chaos information normative processor N 2 (N 2 is greater than 1 natural number) from times repeated N 2 pieces of the chaotic information normative value obtained, the minimum value and the standard The monitoring system in a factory or the like according to claim 1, wherein a deviation is obtained, and an upper limit and a lower limit of a determination reference value are obtained based on the maximum value, the minimum value, and the standard deviation. 漏洩音検出判定部では、カオス情報規範処理部による処理をN(Nは1より大きい自然数)回繰り返して求めたN個の前記カオス情報規範値から平均値を求め、この平均値と前記判定基準値とを比較して漏洩音の有無を判断することを特徴とする請求項1又は2に記載の工場等における監視システム。 In the leaked sound detection determination unit, an average value is obtained from N 3 chaos information norm values obtained by repeating the processing by the chaos information norm processing unit N 3 (N 3 is a natural number greater than 1) times, and this average value and The monitoring system in a factory or the like according to claim 1 or 2, wherein the presence or absence of leakage sound is determined by comparing with the determination reference value. 前記警報出力部は、前記漏洩音検出判定部による異常判定が予め設定された回数連続して繰り返されたときに、警報を出力することを特徴とする請求項1〜3のいずれかに記載の工場等における監視システム。   4. The alarm output unit according to claim 1, wherein the alarm output unit outputs an alarm when abnormality determination by the leakage sound detection determination unit is repeated continuously for a preset number of times. 5. Monitoring system in factories. 工場等の現場において、検出された音響から異常の発生の有無を判断する監視方法であって、
現場内で検出した音響を一定の時間間隔ごとに処理し、N(Nは1より大きい自然数)回分の時系列音響データを得るステップと、
この時系列音響データに基づいてアトラクタを作成するステップと、
このアトラクタを構成するデータベクトルの中からk個のデータベクトルを抽出し、これらk個のデータベクトルについて軌道平行測度及びその分布を求めるステップと、
前記軌道平行測度の分布から、前記軌道平行測度の平均値及び尖度を求め、前記平均値と前記尖度との比であるカオス情報規範値を求めるステップと、
前記カオス情報規範値に基づき、漏洩音検出のための基準となる判定基準値を作成するステップと、
前記判定基準値と前記カオス情報規範値とから、漏洩音の有無を判断するステップと、
前記漏洩音が有ると判断したときに警報を出力するステップと、
を有することを特徴とする工場等における監視方法。
It is a monitoring method for judging whether or not an abnormality has occurred from the detected sound at a site such as a factory,
Processing sound detected in the field at regular time intervals to obtain time series sound data for N 1 (N 1 is a natural number greater than 1 ) times;
Creating an attractor based on the time-series acoustic data;
Extracting k data vectors from the data vectors constituting the attractor, obtaining an orbital parallel measure and a distribution thereof for the k data vectors;
From the distribution of the trajectory parallel measure, obtaining an average value and kurtosis of the trajectory parallel measure, obtaining a chaos information norm value that is a ratio of the average value and the kurtosis;
Based on the chaos information norm value, creating a criterion value that serves as a reference for leaked sound detection;
Determining the presence or absence of leaked sound from the criterion value and the chaos information norm value;
Outputting an alarm when it is determined that the leakage sound is present;
A monitoring method in a factory or the like characterized by comprising:
前記判定基準値を作成するステップでは、カオス情報規範値を求める処理をN(Nは1より大きい自然数)回繰り返し、これにより得られたN個の前記カオス情報規範値から最大値,最小値及び標準偏差を求め、前記最大値,最小値及び標準偏差に基づいて判定基準値の上限と下限とを求めることを特徴とする請求項5に記載の工場等における監視方法。 In the step of creating the determination reference value, the process of obtaining the chaos information norm value is repeated N 2 (N 2 is a natural number greater than 1) times, and the maximum value is obtained from the N 2 chaos information norm values obtained thereby. 6. A monitoring method in a factory or the like according to claim 5, wherein a minimum value and a standard deviation are obtained, and an upper limit and a lower limit of a determination reference value are obtained based on the maximum value, the minimum value, and the standard deviation. 前記漏洩音の有無を判断するステップでは、カオス情報規範処理値を求める処理をN(Nは1より大きい自然数)回繰り返し、これにより得られたN個の前記カオス情報規範値から平均値を求め、この平均値と前記判定基準値とを比較して漏洩音の有無を判断することを特徴とする請求項5又は6に記載の工場等における監視方法。 In the step of determining the presence or absence of the leaking sound, the process of obtaining the chaos information norm processing value is repeated N 3 (N 3 is a natural number greater than 1) times, and an average is obtained from the N 3 chaotic information norm values obtained thereby. 7. A monitoring method in a factory or the like according to claim 5 or 6, wherein a value is obtained and the average value is compared with the determination reference value to determine the presence or absence of leaking sound.
JP2005232645A 2005-08-10 2005-08-10 Monitoring system and monitoring method in factories, etc. Active JP4713272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232645A JP4713272B2 (en) 2005-08-10 2005-08-10 Monitoring system and monitoring method in factories, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232645A JP4713272B2 (en) 2005-08-10 2005-08-10 Monitoring system and monitoring method in factories, etc.

Publications (2)

Publication Number Publication Date
JP2007048097A true JP2007048097A (en) 2007-02-22
JP4713272B2 JP4713272B2 (en) 2011-06-29

Family

ID=37850861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232645A Active JP4713272B2 (en) 2005-08-10 2005-08-10 Monitoring system and monitoring method in factories, etc.

Country Status (1)

Country Link
JP (1) JP4713272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290549A (en) * 2007-05-23 2008-12-04 West Japan Railway Co Abnormality detection system for crossing gate
JP2009245228A (en) * 2008-03-31 2009-10-22 Yamatake Corp Abnormality detecting method and abnormality detection device
JP2013211002A (en) * 2012-03-02 2013-10-10 Meidensha Corp Abnormality monitoring apparatus of time series data, abnormality monitoring method, and abnormality monitoring program
JP2014170270A (en) * 2013-03-01 2014-09-18 Meidensha Corp Analysis device and analysis method for time series data
JP2015533246A (en) * 2012-10-01 2015-11-19 インディアン インスティテュート オブ テクノロジー マドラスIndian Institute Of Technology Madras System and method for pre-determining the occurrence of vibration instability that is likely to occur in practical devices
JP2017037679A (en) * 2016-11-21 2017-02-16 株式会社明電舎 Abnormality monitoring device for time series data, abnormality monitoring method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004367A (en) * 2003-06-10 2005-01-06 Idemitsu Kosan Co Ltd Driving operation supporting system in plant or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004367A (en) * 2003-06-10 2005-01-06 Idemitsu Kosan Co Ltd Driving operation supporting system in plant or the like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290549A (en) * 2007-05-23 2008-12-04 West Japan Railway Co Abnormality detection system for crossing gate
JP2009245228A (en) * 2008-03-31 2009-10-22 Yamatake Corp Abnormality detecting method and abnormality detection device
JP2013211002A (en) * 2012-03-02 2013-10-10 Meidensha Corp Abnormality monitoring apparatus of time series data, abnormality monitoring method, and abnormality monitoring program
JP2015533246A (en) * 2012-10-01 2015-11-19 インディアン インスティテュート オブ テクノロジー マドラスIndian Institute Of Technology Madras System and method for pre-determining the occurrence of vibration instability that is likely to occur in practical devices
JP2014170270A (en) * 2013-03-01 2014-09-18 Meidensha Corp Analysis device and analysis method for time series data
JP2017037679A (en) * 2016-11-21 2017-02-16 株式会社明電舎 Abnormality monitoring device for time series data, abnormality monitoring method, and program

Also Published As

Publication number Publication date
JP4713272B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4713272B2 (en) Monitoring system and monitoring method in factories, etc.
Bauer et al. Finding the direction of disturbance propagation in a chemical process using transfer entropy
Harrou et al. PLS-based EWMA fault detection strategy for process monitoring
CN111898691B (en) River burst water pollution early warning and tracing method, system, terminal and medium
JP6777069B2 (en) Information processing equipment, information processing methods, and programs
JP5958456B2 (en) PLANT CONTROL SYSTEM, CONTROL DEVICE, MANAGEMENT DEVICE, AND PLANT INFORMATION PROCESSING METHOD
KR100990845B1 (en) Plasma abnormal discharge diagnosis method, plasma abnormal discharge diagnosis system, and computer-readable recording medium having computer program thereon
EP2180304A1 (en) Pressure relief valve monitoring
Kaced et al. Designing alarm system using modified generalized delay-timer
JP6398383B2 (en) Abnormality diagnosis device
Folmer et al. Detection of temporal dependencies in alarm time series of industrial plants
JP5538955B2 (en) Method and system for predicting apparatus abnormality in semiconductor manufacturing
Sheriff et al. Process monitoring using PCA-based GLR methods: A comparative study
Lavrova et al. Wavelet-analysis of network traffic time-series for detection of attacks on digital production infrastructure
Noursadeghi et al. Reduced-order distributed fault diagnosis for large-scale nonlinear stochastic systems
Al-Dabbagh et al. Sounding off on industrial alarm systems
Jha et al. Classification of two-phase flow patterns by ultrasonic sensing
JPWO2019181572A1 (en) Anomaly monitoring equipment, anomaly monitoring methods, programs, controls and plants
Nikolaevich et al. Investigation of the influence of the preliminary digital filtering method on the accuracy of signal prediction in anomaly detection systems in industrial automatic control systems (IACS)
US11080613B1 (en) Process monitoring based on large-scale combination of time series data
JPWO2015151267A1 (en) Plant accident operation support equipment
Livi et al. On the long-term correlations and multifractal properties of electric arc furnace time series
Bauer et al. Measuring cause and effect between process variables
Sheriff et al. Fault detection of single and interval valued data using statistical process monitoring techniques
JP2011203048A (en) Apparatus and method of locating sound source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

R150 Certificate of patent or registration of utility model

Ref document number: 4713272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250