JP2007046872A - Compressor oil equalization device and refrigerator - Google Patents

Compressor oil equalization device and refrigerator Download PDF

Info

Publication number
JP2007046872A
JP2007046872A JP2005234058A JP2005234058A JP2007046872A JP 2007046872 A JP2007046872 A JP 2007046872A JP 2005234058 A JP2005234058 A JP 2005234058A JP 2005234058 A JP2005234058 A JP 2005234058A JP 2007046872 A JP2007046872 A JP 2007046872A
Authority
JP
Japan
Prior art keywords
compressor
oil
gas
liquid separation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005234058A
Other languages
Japanese (ja)
Other versions
JP4464333B2 (en
Inventor
Michiyoshi Kusaka
道美 日下
Takashi Kaneko
孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2005234058A priority Critical patent/JP4464333B2/en
Priority to KR1020050102005A priority patent/KR101270536B1/en
Priority to CNB2005101320031A priority patent/CN100501269C/en
Publication of JP2007046872A publication Critical patent/JP2007046872A/en
Application granted granted Critical
Publication of JP4464333B2 publication Critical patent/JP4464333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and surely secure an appropriate quantity of oil for each compressor when a plurality of compressors are connected in parallel with one another. <P>SOLUTION: In an outdoor unit 2 of this refrigerator 1, the first, second and third compressors 10, 11 and 12 are connected in parallel with one another. A first compressor oil equalization device 31 is connected to the first compressor 10. The first compressor oil equalization device 31 includes a connection tube 32 connected to a pressure vessel of the first compressor 10, a gas-liquid separation means 33, an oil return tube 34 for running a liquid flowing out from the gas-liquid separation means 33, and an oil equalization tube 36 for mainly running gas flowing out from the gas-liquid separation means 33. The oil return tube 34 is connected to a suction branch tube 23A of the first compressor 10, and the oil equalization tube 36 joins to oil return tubes 38 and 39 of second and third compressor oil equalization devices 41 and 51 and is thereafter connected to a suction pipe 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の圧縮機の間で冷凍機油を均等にする圧縮機均油装置、圧縮機均油装置を有する冷凍機に関する。   The present invention relates to a compressor oil leveling device that equalizes refrigerating machine oil among a plurality of compressors, and a refrigerator having a compressor oil leveling device.

冷凍機などにおいて、複数の圧縮機を用いて冷媒を循環させる場合には、各圧縮機の間で冷凍機油が不均一になって特定の圧縮機の冷凍機油が不足することがある。このような不均一状態を解消するために、従来の冷凍機では、圧縮機の間の冷凍機油をバランスさせる装置が取り付けられることがある。この種の装置には、一方の圧縮機の高圧容器にオイルバランス管を接続し、このオイルバランス管を減圧器を介して他方の圧縮機の吸入配管に接続したものがある(例えば、特許文献1参照)。冷凍機を運転する際には、圧縮機を1台のみ運転したときには、一定時間運転したらオイルバランス管で接続された2台の圧縮機を所定時間の間、同時運転させるように制御する。その結果、余分な冷凍機油を有する圧縮機の圧力容器から、冷凍機油が不足する圧縮機の圧力容器に冷凍機油が戻されて、2台の圧縮機の間の冷凍機油のアンバランスが解消される。
特許第3197768号公報
When a refrigerant is circulated using a plurality of compressors in a refrigerator or the like, the refrigeration oil is not uniform among the compressors, and the refrigeration oil for a specific compressor may be insufficient. In order to eliminate such a non-uniform state, a conventional refrigerator may be equipped with a device for balancing the refrigerator oil between the compressors. In this type of apparatus, there is an apparatus in which an oil balance pipe is connected to a high-pressure vessel of one compressor, and this oil balance pipe is connected to a suction pipe of the other compressor via a decompressor (for example, Patent Documents). 1). When operating the refrigerator, when only one compressor is operated, the two compressors connected by the oil balance pipe are controlled to operate simultaneously for a predetermined time after operating for a certain period of time. As a result, the refrigerating machine oil is returned from the pressure vessel of the compressor having excess refrigerating machine oil to the pressure vessel of the compressor having a shortage of refrigerating machine oil, and the unbalance of the refrigerating machine oil between the two compressors is eliminated. The
Japanese Patent No. 3197768

しかしながら、圧縮機を1台運転しているときに、オイルバランス管が接続された高さよりも冷凍機油の油面が低くなると、高圧容器内に飛散する冷凍機油のオイルミストがオイルバランス管を通って他方の圧縮機に移動し、一方の圧縮機の油面低下がさらに進行するという問題があった。また、油面のバランスを保つために一定時間の間、2つの圧縮機を同時運転させなければならないため、複雑な制御が必要になるという問題があった。さらに、3台以上の圧縮機を並列に接続した場合には、油面が低下している圧縮機を特定することが困難であり、全ての圧縮機について必要な油面高さを確保することが困難であった。
この発明は、このような事情に鑑みてなされたものであり、複数の圧縮機を並列接続した場合に、各圧縮機の適正油量を簡単に、かつ確実に確保できるようにすることを主な目的とする。
However, if the oil level of the refrigerating machine oil becomes lower than the height to which the oil balance pipe is connected when one compressor is operating, the oil mist of the refrigerating machine oil scattered in the high-pressure vessel passes through the oil balance pipe. Therefore, there was a problem that the oil level of one compressor further decreased. In addition, there is a problem that complicated control is required because the two compressors must be operated simultaneously for a certain period of time in order to maintain the oil level balance. Furthermore, when three or more compressors are connected in parallel, it is difficult to identify the compressor whose oil level is lowered, and the required oil level height must be secured for all the compressors. It was difficult.
The present invention has been made in view of such circumstances, and is intended to easily and reliably ensure an appropriate amount of oil for each compressor when a plurality of compressors are connected in parallel. With a purpose.

上記の課題を解決する本発明の請求項1に係る発明は、並列に接続された複数の圧縮機の間で冷凍機油を均等に保つ圧縮機均油装置であって、気液分離手段を有し、前記気液分離手段の流入端を1つの前記圧縮機の高圧容器に接続し、前記気液分離手段の流出端のうち、主に液体を流出する第一流出端をその圧縮機のみに吸入させる冷媒が通流する吸入配管に接続し、主に気体を流出する第二流出端を他の前記圧縮機に吸入させる冷媒が通流する吸入配管に接続したことを特徴とする圧縮機均油装置とした。
この圧縮機均油装置では、気液分離手段が接続された圧縮機において、気液分離手段の流入端に接続される配管の接続高さよりも、その圧縮機の冷凍機油の油面が高い場合には、冷凍機油が気液分離手段に流入して、複数の圧縮機に分配される。これに対して、その圧縮機の冷凍機油の油面が、配管が接続されている位置よりも低い場合には、冷凍機油のミストが混入した冷媒が気液分離手段に流入し、冷凍機油のミストが気液分離手段で冷媒から分離されて元の圧縮機に戻される。
The invention according to claim 1 of the present invention for solving the above-mentioned problems is a compressor oil leveling device that keeps refrigeration oil even among a plurality of compressors connected in parallel, and has gas-liquid separation means. The inflow end of the gas-liquid separation means is connected to a high-pressure vessel of one of the compressors, and the first outflow end for mainly flowing out the liquid out of the outflow ends of the gas-liquid separation means is only the compressor. The compressor is characterized in that it is connected to a suction pipe through which a refrigerant to be sucked flows, and a second outflow end from which mainly gas flows out is connected to a suction pipe through which other refrigerant to be sucked into the other compressor flows. The oil device was used.
In this compressor oil leveling device, in the compressor to which the gas-liquid separation means is connected, when the oil level of the compressor refrigerating machine oil is higher than the connection height of the pipe connected to the inflow end of the gas-liquid separation means The refrigeration oil flows into the gas-liquid separation means and is distributed to the plurality of compressors. On the other hand, when the oil level of the compressor refrigerating machine oil is lower than the position where the pipe is connected, the refrigerant mixed with refrigerating machine oil mist flows into the gas-liquid separation means, and the refrigerating machine oil The mist is separated from the refrigerant by the gas-liquid separation means and returned to the original compressor.

本発明によれば、冷媒中に混入した冷凍機油のミストが気液分離手段に流入したときには、冷凍機油のミストが気液分離手段で冷媒から分離されて元の圧縮機に回収されるので、圧縮機の冷凍機油の量を所定量に維持することができる。しかも、従来のような特別な運転制御をしなくても複数の圧縮機の冷凍機油の量を所定量に維持することができる。したがって、簡単な構成で安定した運転を実現することができる。   According to the present invention, when the mist of the refrigerating machine oil mixed in the refrigerant flows into the gas-liquid separating means, the refrigerating machine oil mist is separated from the refrigerant by the gas-liquid separating means and recovered to the original compressor. The amount of refrigeration oil in the compressor can be maintained at a predetermined amount. Moreover, the amount of refrigerating machine oil of the plurality of compressors can be maintained at a predetermined amount without performing special operation control as in the prior art. Therefore, stable operation can be realized with a simple configuration.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に本実施の形態に係る冷凍機の構成を示す。冷凍機1は、室外機2から延びるガス管3及び液管4に複数の室内機5を並列に接続することで構成されている。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration of a refrigerator according to the present embodiment. The refrigerator 1 is configured by connecting a plurality of indoor units 5 in parallel to a gas pipe 3 and a liquid pipe 4 extending from the outdoor unit 2.

室外機2は、第一圧縮機10と、第二圧縮機11と、第三圧縮機12とを有している。第一、第二、第三圧縮機10のそれぞれの吐出口には、吐出配管14が接続されており、吐出配管14は1つに合流した後に、油分離器15を介して四方弁16の第一のポート16Aに接続されている。四方弁16は、4つのポートを有し、第一のポート16Aと第二のポート16Bとを接続したときには、第三のポート16Cと第四のポート16Dが接続され、第一のポート16Aと第三のポート16Cを接続したときには、第二のポート16Bと第四のポート16Dが接続されるように切替可能になっている。四方弁16の第二のポート16Bは、室外熱交換器17を介して液管4が接続されている。液管4は、室外機2内の管路中に室外側減圧装置18が設けられている。さらに、液管4は、弁19によって室外機2内の管路と、室外機2外に延びる管路とが分離可能になっている。液管4の室外機2外に延びる管路は、さらに3つの分岐管4Aに分岐しており、これら分岐管4Aは3つの室内機5内に一本ずつ導かれて、各室内機5の室内側減圧装置20にそれぞれ接続されている。   The outdoor unit 2 includes a first compressor 10, a second compressor 11, and a third compressor 12. A discharge pipe 14 is connected to each discharge port of the first, second, and third compressors 10, and after the discharge pipe 14 merges into one, the four-way valve 16 is connected via an oil separator 15. It is connected to the first port 16A. The four-way valve 16 has four ports. When the first port 16A and the second port 16B are connected, the third port 16C and the fourth port 16D are connected, and the first port 16A and When the third port 16C is connected, the second port 16B and the fourth port 16D can be switched. The liquid pipe 4 is connected to the second port 16 </ b> B of the four-way valve 16 via the outdoor heat exchanger 17. The liquid pipe 4 is provided with an outdoor decompression device 18 in a pipe line in the outdoor unit 2. Further, in the liquid pipe 4, a pipe line in the outdoor unit 2 and a pipe line extending outside the outdoor unit 2 can be separated by a valve 19. The pipe line extending outside the outdoor unit 2 of the liquid pipe 4 is further branched into three branch pipes 4A. These branch pipes 4A are guided one by one into the three indoor units 5, and each of the indoor units 5 Each is connected to the indoor decompression device 20.

室内機5は、室内側減圧装置20と、室内熱交換器21とが直列に接続されており、室内熱交換器21にガス管3の分岐管3Aが接続されている。なお、室内機5の数は、3つに限定されない。   In the indoor unit 5, an indoor decompression device 20 and an indoor heat exchanger 21 are connected in series, and the branch pipe 3 </ b> A of the gas pipe 3 is connected to the indoor heat exchanger 21. The number of indoor units 5 is not limited to three.

ガス管3は、各室内機5から合流した後に、室外機2内に導かれており、弁22によって室外機2外に延びる管路と、室外機2内の管路とが分離可能になっている。ガス管3は、室外機2内で四方弁16の第三のポート16Cに接続されている。そして、四方弁16の第四のポート16Dには、吸入配管23が接続されている。吸入配管23は、熱交換後に圧縮機10,11,12に吸入させる冷媒を通流させる配管で、油分離器15からの油戻し管24が合流した後に、各圧縮機10,11,12ごとに3つの吸入分岐管23Aに分岐している。なお、油戻し管24には、その管路中にキャピラリチューブなどの減圧手段26が設けられている。   The gas pipe 3 is led into the outdoor unit 2 after merging from each indoor unit 5, so that the pipe extending outside the outdoor unit 2 and the pipe in the outdoor unit 2 can be separated by the valve 22. ing. The gas pipe 3 is connected to the third port 16 </ b> C of the four-way valve 16 in the outdoor unit 2. A suction pipe 23 is connected to the fourth port 16D of the four-way valve 16. The suction pipe 23 is a pipe through which the refrigerant sucked into the compressors 10, 11, 12 flows after heat exchange. After the oil return pipe 24 from the oil separator 15 is joined, each of the compressors 10, 11, 12 is connected. Are branched into three suction branch pipes 23A. The oil return pipe 24 is provided with a decompression means 26 such as a capillary tube in the pipeline.

吸入配管23の各吸入分岐管23Aは、第一、第二、第三圧縮機10,11,12の高圧容器27に接続されている。つまり、各吸入分岐管23Aには、対応する1つの圧縮機10,11,12に吸入される冷媒のみが通流することになる。第一、第二、第三圧縮機10,11,12は、それぞれの高圧容器27内に所定量の冷凍機油が収容されている。さらに、第一圧縮機10には、第一圧縮機均油装置31が接続されている。同様に、第二圧縮機11、第三圧縮機12には、第二、第三圧縮機均油装置41,51がそれぞれ接続されている。   Each suction branch pipe 23 </ b> A of the suction pipe 23 is connected to the high-pressure vessel 27 of the first, second, and third compressors 10, 11, and 12. That is, only the refrigerant sucked into the corresponding one of the compressors 10, 11, and 12 flows through each intake branch pipe 23A. The first, second, and third compressors 10, 11, and 12 each store a predetermined amount of refrigerating machine oil in each high-pressure vessel 27. Further, a first compressor oil leveling device 31 is connected to the first compressor 10. Similarly, second and third compressor oil equalizing devices 41 and 51 are connected to the second compressor 11 and the third compressor 12, respectively.

第一圧縮機均油装置31は、高圧容器27の底部から所定の高さに接続された接続管32を有している。この接続管32は、気液分離手段33の流入端に接続されている。気液分離手段33は、例えば、遠心力を利用して気液が混合した流体を気体と液体とに分離するように構成されている。気液分離手段33において、主に液体が流出される第一流出端には、油戻し管34が接続されている。油戻し管34は、その管路中に第一流量制御手段であるキャピラリチューブ35が設けられた後に、第一圧縮機10に吸入される冷媒のみが通流する第一圧縮機10の吸入分岐管23Aに接続されている。一方、気液分離手段33において、主に気体が流出される第二流出端には、均油管36が接続されている。均油管36は、その管路中に第二流量調整手段であるキャピラリチューブ37が設けられ、他の均油管38,39と合流した後に、吸入分岐管23Aに分岐する前で、第一の圧縮機10に吸入させる冷媒及び他の圧縮機11,12に吸入させる冷媒が通流する吸入配管23に接続されている。   The first compressor oil leveling device 31 has a connecting pipe 32 connected to a predetermined height from the bottom of the high-pressure vessel 27. This connection pipe 32 is connected to the inflow end of the gas-liquid separation means 33. The gas-liquid separation means 33 is configured to separate a fluid mixed with gas and liquid into gas and liquid using, for example, centrifugal force. In the gas-liquid separation means 33, an oil return pipe 34 is connected to a first outflow end from which liquid mainly flows out. The oil return pipe 34 is provided with a capillary tube 35 serving as a first flow rate control means in its pipeline, and then the intake branch of the first compressor 10 through which only the refrigerant drawn into the first compressor 10 flows. It is connected to the tube 23A. On the other hand, in the gas-liquid separation means 33, an oil equalizing pipe 36 is connected to a second outflow end from which mainly gas flows out. The oil equalizing pipe 36 is provided with a capillary tube 37 serving as a second flow rate adjusting means in the pipe line, and after joining the other oil equalizing pipes 38 and 39, before branching to the suction branch pipe 23A, the first compression is performed. The refrigerant to be sucked into the machine 10 and the refrigerant to be sucked into the other compressors 11 and 12 are connected to a suction pipe 23.

なお、2つのキャピラリチューブ35、37は、室内、室外熱交換器17,21を通るメインの回路を流れる冷媒の流量に対して、第一圧縮機均油装置31を流れる流量が所定の割合以下になるように流路抵抗が設定されている。また、キャピラリチューブ35とキャピラリチューブ37とは、第一圧縮機10に戻される流量と、3つの圧縮機10,11,12に割り振る流量とを制御して第一圧縮機10の油面が所定のレベルに保持されるように予め設定されている。   In the two capillary tubes 35 and 37, the flow rate flowing through the first compressor oil equalizing device 31 is less than a predetermined ratio with respect to the flow rate of the refrigerant flowing through the main circuit passing through the indoor and outdoor heat exchangers 17 and 21. The channel resistance is set so that The capillary tube 35 and the capillary tube 37 control the flow rate returned to the first compressor 10 and the flow rate allocated to the three compressors 10, 11, 12, and the oil level of the first compressor 10 is predetermined. It is set in advance so as to be maintained at the level.

同様に、第二圧縮機11には、第二圧縮機均油装置41が接続されている。第二圧縮機均油装置41は、第二圧縮機11の高圧容器27の底部から所定の高さ接続された接続管42を有し、この接続管32は気液分離手段43の流入端に接続されている。気液分離手段43の第一流出端には、油戻し管44が接続されており、油戻し管44はキャピラリチューブ45(第一流量調整手段)を介して第二圧縮機11に吸入される冷媒のみが通流する第二圧縮機11の吸入分岐管23Aに接続されている。気液分離手段43の第二流出端には、均油管38が接続されており、均油管38はキャピラリチューブ45(第一流量調整手段)が設けられた後に、他の均油管36,39と合流しつつ、吸入分岐管23Aに分岐する前で、第二の圧縮機11に吸入させる冷媒及び他の圧縮機10,12に吸入させる冷媒が通流する吸入配管23に接続されている。   Similarly, a second compressor oil leveling device 41 is connected to the second compressor 11. The second compressor oil leveling device 41 has a connection pipe 42 connected to a predetermined height from the bottom of the high pressure vessel 27 of the second compressor 11, and the connection pipe 32 is connected to the inflow end of the gas-liquid separation means 43. It is connected. An oil return pipe 44 is connected to the first outflow end of the gas-liquid separation means 43, and the oil return pipe 44 is sucked into the second compressor 11 via a capillary tube 45 (first flow rate adjusting means). It is connected to the suction branch pipe 23A of the second compressor 11 through which only the refrigerant flows. An oil leveling pipe 38 is connected to the second outflow end of the gas-liquid separation means 43. The oil leveling pipe 38 is provided with a capillary tube 45 (first flow rate adjusting means), and then connected to the other oil leveling pipes 36 and 39. Before being branched into the suction branch pipe 23A, the refrigerant is sucked into the second compressor 11 and connected to the suction pipe 23 through which the refrigerant sucked into the other compressors 10 and 12 flows.

さらに、第三圧縮機12には、第三圧縮機均油装置51が接続されている。第三圧縮機均油装置51は、第三圧縮機12の高圧容器27の底部から所定の高さ接続された接続管52を有し、この接続管52は気液分離手段53の流入端に接続されている。気液分離手段53の第一流出端には、油戻し管54が接続されており、油戻し管54はキャピラリチューブ55(第一流量調整手段)を介して第三圧縮機12に吸入される冷媒のみが通流する第三圧縮機12の吸入分岐管23Aに接続されている。気液分離手段53の第二流出端には、均油管39が接続されており、均油管39はキャピラリチューブ57(第二流量調整手段)が設けられた後に、他の均油管36,38と合流しつつ吸入分岐管23Aに分岐する前で、第三の圧縮機12に吸入させる冷媒及び他の圧縮機10,11に吸入させる冷媒が通流する吸入配管23に接続されている。なお、第二、第三圧縮機均油装置41,52の各構成要素は、第一圧縮機均油装置31と同じ構成になっている。しかしながら、第一、第二、第三圧縮機10,11,12の容量などが大きく異なる場合には、容積の大きさに応じて変化させても良い。   Further, a third compressor oil leveling device 51 is connected to the third compressor 12. The third compressor oil leveling device 51 has a connection pipe 52 connected to a predetermined height from the bottom of the high pressure vessel 27 of the third compressor 12, and this connection pipe 52 is connected to the inflow end of the gas-liquid separation means 53. It is connected. An oil return pipe 54 is connected to the first outflow end of the gas-liquid separation means 53, and the oil return pipe 54 is sucked into the third compressor 12 via a capillary tube 55 (first flow rate adjustment means). It is connected to the suction branch pipe 23A of the third compressor 12 through which only the refrigerant flows. An oil leveling pipe 39 is connected to the second outflow end of the gas-liquid separation means 53. The oil leveling pipe 39 is provided with a capillary tube 57 (second flow rate adjusting means), and then connected to the other oil leveling pipes 36 and 38. Before branching to the suction branch pipe 23A while joining, it is connected to a suction pipe 23 through which the refrigerant sucked into the third compressor 12 and the refrigerant sucked into the other compressors 10 and 11 flow. Each component of the second and third compressor oil leveling apparatuses 41 and 52 has the same configuration as that of the first compressor oil leveling apparatus 31. However, when the capacities of the first, second, and third compressors 10, 11, and 12 differ greatly, they may be changed according to the volume.

ここで、気液分離手段33,43,53の容積は、第一、第二、第三圧縮機10,11,12の必要最低油量に対して所定の容積以下になっている。さらに具体的には、図2に示す気液分離手段容積範囲R1の間になっている。この実施の形態において、気液分離手段容積範囲R1の下限値は、冷凍機油の5%に相当する容積であった。また、気液分離手段容積範囲R1の上限値は、冷凍機油の20%に相当する容積であった。気液分離手段33,43,53の容積が下限値を下回ると液体と気体の分離性能が落ちるので好ましくない。また、気液分離手段33,43,53の容積が上限値を下回ると、気液分離手段33,43,53に余剰な冷凍機油が滞溜し、第一、第二、第三圧縮機10,11,12の運転に必要な冷凍機油が足りなくなるので好ましくない。   Here, the volume of the gas-liquid separation means 33, 43, 53 is less than a predetermined volume with respect to the minimum required oil amount of the first, second, and third compressors 10, 11, 12. More specifically, it is between the gas-liquid separation means volume range R1 shown in FIG. In this embodiment, the lower limit value of the gas-liquid separation means volume range R1 was a volume corresponding to 5% of the refrigerating machine oil. Further, the upper limit value of the gas-liquid separation means volume range R1 was a volume corresponding to 20% of the refrigerating machine oil. If the volume of the gas-liquid separation means 33, 43, 53 is less than the lower limit value, the liquid / gas separation performance deteriorates, which is not preferable. Further, if the volume of the gas-liquid separation means 33, 43, 53 falls below the upper limit value, excess refrigeration oil stagnates in the gas-liquid separation means 33, 43, 53, and the first, second, and third compressors 10 , 11 and 12 are not preferable because the refrigerating machine oil necessary for the operation is insufficient.

次に、この実施の形態の作用について説明する。
まず、冷凍機1で冷房運転をするときには、四方弁16を切り替えて第一のポート16Aと第二のポート16Bを接続し、第三のポート16Cと第四のポート16Dを接続する。第一、第二、第三圧縮機10,11,12から吐出される高圧のガス冷媒は、油分離器15でガス冷媒中に混入した冷凍機油を分離した後に、四方弁16から室外熱交換器17に導かれる。室外熱交換器17では、熱交換によってガス冷媒が液化して液冷媒が形成される。液冷媒は、室外側減圧装置18で減圧された後に、運転中の室内機5に導かれる。室内機5内で、液冷媒は、室内側減圧装置20でさらに減圧させられた後に室内熱交換器21に流入する。室内熱交換器21では、熱交換によって低圧の液冷媒が気化して低圧のガス冷媒が形成され、この際の気化熱で室内が冷房される。低圧のガス冷媒は、室内熱交換器21からガス管3を通って、室外機2に回収される。室外機2内では、四方弁16から吸入配管23に導かれ、吸入分岐管23Aから第一、第二、第三圧縮機10,11,12に吸入される。そして、再び加圧されて吐出配管14に吐出される。
Next, the operation of this embodiment will be described.
First, when performing cooling operation with the refrigerator 1, the four-way valve 16 is switched to connect the first port 16A and the second port 16B, and the third port 16C and the fourth port 16D are connected. The high-pressure gas refrigerant discharged from the first, second, and third compressors 10, 11, and 12 separates refrigeration oil mixed in the gas refrigerant by the oil separator 15, and then outdoor heat exchange from the four-way valve 16. Guided to vessel 17. In the outdoor heat exchanger 17, the gas refrigerant is liquefied by heat exchange to form a liquid refrigerant. The liquid refrigerant is depressurized by the outdoor decompression device 18 and then guided to the indoor unit 5 in operation. In the indoor unit 5, the liquid refrigerant is further depressurized by the indoor decompression device 20 and then flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the low-pressure liquid refrigerant is vaporized by heat exchange to form a low-pressure gas refrigerant, and the room is cooled by the heat of vaporization at this time. The low-pressure gas refrigerant is recovered from the indoor heat exchanger 21 through the gas pipe 3 to the outdoor unit 2. In the outdoor unit 2, the four-way valve 16 leads to the suction pipe 23, and the suction branch pipe 23A sucks the first, second, and third compressors 10, 11, and 12. Then, it is pressurized again and discharged to the discharge pipe 14.

冷凍機1で暖房運転をするときには、四方弁16を切り替えて第一のポート16Aと第三のポート16Cを接続し、第二のポート16Bと第四のポート16Dを接続する。第一、第二、第三圧縮機10,11,12から吐出される高圧のガス冷媒は、四方弁16からガス管3を通って、運転中の室内機5の室内熱交換器21に導かれる。室内熱交換器21では、ガス冷媒が液化して液冷媒が形成され、このときの凝縮熱で室内が暖房される。液冷媒は、室内熱交換器21から液管4を通って減圧されつつ室外機2に回収され、室外熱交換器17で熱交換によって低圧のガス冷媒になる。ガス冷媒は、四方弁16から吸入配管23を通って、第一、第二、第三圧縮機10,11,12に吸入される。そして、再び加圧されて吐出配管14に吐出される。   When the refrigerator 1 performs heating operation, the four-way valve 16 is switched to connect the first port 16A and the third port 16C, and the second port 16B and the fourth port 16D are connected. The high-pressure gas refrigerant discharged from the first, second, and third compressors 10, 11, 12 is led from the four-way valve 16 through the gas pipe 3 to the indoor heat exchanger 21 of the operating indoor unit 5. It is burned. In the indoor heat exchanger 21, the gas refrigerant is liquefied to form a liquid refrigerant, and the room is heated by the condensation heat at this time. The liquid refrigerant is recovered from the indoor heat exchanger 21 through the liquid pipe 4 while being reduced in pressure to the outdoor unit 2, and becomes a low-pressure gas refrigerant by heat exchange in the outdoor heat exchanger 17. The gas refrigerant is sucked into the first, second and third compressors 10, 11 and 12 from the four-way valve 16 through the suction pipe 23. Then, it is pressurized again and discharged to the discharge pipe 14.

このようにして、冷凍機1が運転する間、第一、第二、第三圧縮機均油装置31,41,51が第一、第二、第三圧縮機10,11,12のそれぞれの冷凍機油が均等化されるように作用する。例えば、図3に示すように、第一圧縮機10の高圧容器27内の冷凍機油が多くなって、その油面が接続管32の接続位置よりも高い位置にある場合には、冷凍機油のみが接続管32から気液分離手段33の流入端33Aに流入する。その結果、気液分離手段33は、冷凍機油で満たされ、油戻し管34及び均油管36のそれぞれに冷凍機油が流出する。油戻し管34に流出した冷凍機油は、元の圧縮機である第一圧縮機10のみに戻るが、均油管36に流れた冷凍機油は、吸入配管23を通って第一、第二、第三圧縮機10,11,12に還流される。これによって、第一圧縮機10から流出した冷凍機油が第二、第二圧縮機11,12にも流入するので、第一圧縮機10の冷凍機油が徐々に減少し、冷凍機油が相対的に少ない圧縮機(例えば、第二、第三圧縮機11,12)の冷凍機油が増加し、第一、第二、第三圧縮機10,11,12の冷凍機油の量が均等化される。   In this way, while the refrigerator 1 is operating, the first, second, and third compressor oil leveling devices 31, 41, and 51 are respectively connected to the first, second, and third compressors 10, 11, and 12, respectively. It acts to equalize the refrigerating machine oil. For example, as shown in FIG. 3, when the amount of refrigeration oil in the high-pressure vessel 27 of the first compressor 10 increases and the oil level is higher than the connection position of the connection pipe 32, only the refrigeration oil is present. Flows into the inflow end 33 </ b> A of the gas-liquid separation means 33 from the connection pipe 32. As a result, the gas-liquid separation means 33 is filled with the refrigerating machine oil, and the refrigerating machine oil flows into the oil return pipe 34 and the oil equalizing pipe 36, respectively. The refrigerating machine oil that has flowed out to the oil return pipe 34 returns only to the first compressor 10 that is the original compressor, but the refrigerating machine oil that has flowed to the oil equalizing pipe 36 passes through the suction pipe 23 for the first, second, and second. It is refluxed to the three compressors 10, 11 and 12. As a result, the refrigerating machine oil flowing out from the first compressor 10 also flows into the second and second compressors 11 and 12, so that the refrigerating machine oil of the first compressor 10 gradually decreases and the refrigerating machine oil becomes relatively Refrigerating machine oil in a small number of compressors (for example, the second and third compressors 11 and 12) increases, and the amount of refrigerating machine oil in the first, second, and third compressors 10, 11, and 12 is equalized.

また、例えば、図4に示すように、第一圧縮機10の高圧容器27内の冷凍機油が少なくなって、その油面が接続管32の接続位置よりも低い位置にある場合には、ガス冷媒と、ガス冷媒中に混入した冷凍機油のオイルミストとが接続管32を通って気液分離手段33に流入する。気液分離手段33は、オイルミストと、ガス冷媒とを分離する。そして、ガス冷媒を第二流出端33Cから均油管36に流出させ、オイルミストを第一流出端33Bから油戻し管34に流出させる。このオイルミストは、油戻し管34を通って吸入分岐管23Aから元の圧縮機である第一圧縮機10に戻される。したがって、第一圧縮機10中でガス冷媒に混入していた冷凍機油が、第一圧縮機均油装置31を介して第一圧縮機10自身に回収される。これによって、第一圧縮機10からの冷凍機油の流出を阻止し、高圧容器27内の油面の低下が防止される。   Further, for example, as shown in FIG. 4, when the refrigeration oil in the high-pressure vessel 27 of the first compressor 10 decreases and the oil level is lower than the connection position of the connection pipe 32, the gas The refrigerant and the oil mist of refrigerating machine oil mixed in the gas refrigerant flow into the gas-liquid separation means 33 through the connection pipe 32. The gas-liquid separation means 33 separates the oil mist and the gas refrigerant. Then, the gas refrigerant flows out from the second outflow end 33C to the oil equalizing pipe 36, and the oil mist flows out from the first outflow end 33B to the oil return pipe 34. The oil mist passes through the oil return pipe 34 and is returned from the suction branch pipe 23A to the first compressor 10 which is the original compressor. Therefore, the refrigeration oil mixed in the gas refrigerant in the first compressor 10 is recovered by the first compressor 10 itself via the first compressor oil leveling device 31. Thereby, the outflow of the refrigeration oil from the first compressor 10 is prevented, and the oil level in the high-pressure vessel 27 is prevented from being lowered.

さらに、この場合、第一圧縮機10の冷凍機油の量が少ないことから、他の圧縮機(例えば、第二圧縮機11)の冷凍機油の量が多くなっている。第二圧縮機11の冷凍機油の量が多い場合には、第二圧縮機均油装置41によって第二圧縮機11の冷凍機油が第一圧縮機10に分配されるので、結果的に第一圧縮機10の冷凍機油の量が増加し、第一、第二、第三圧縮機10,11,12の冷凍機油の量が均等化される。このようにして、第一、第二、第三圧縮機均油装置31,41,51が機能することで、冷凍機1が通常運転を実施している間に、第一、第二、第三圧縮機10,11,12の油面の均等化が図られる。なお、運転を休止している圧縮機がある場合でも第一、第二、第三圧縮機均油装置31,41,51は機能するので、油面の均等化が図れる。   Furthermore, in this case, since the amount of the refrigerating machine oil of the first compressor 10 is small, the amount of the refrigerating machine oil of the other compressor (for example, the second compressor 11) is large. When the amount of the refrigerating machine oil of the second compressor 11 is large, the refrigerating machine oil of the second compressor 11 is distributed to the first compressor 10 by the second compressor oil leveling device 41. The amount of refrigerating machine oil in the compressor 10 increases, and the amount of refrigerating machine oil in the first, second, and third compressors 10, 11, and 12 is equalized. Thus, while the 1st, 2nd, 3rd compressor oil equalization apparatus 31,41,51 functions, while the refrigerator 1 is implementing normal operation, the 1st, 2nd, 2nd The oil levels of the three compressors 10, 11, 12 are equalized. In addition, even if there is a compressor that has stopped operating, the first, second, and third compressor oil leveling devices 31, 41, and 51 function, so that the oil level can be equalized.

この実施の形態によれば、冷凍機油の液面が高圧容器27の接続管32の高さを以上のときには、冷凍機油の余剰分を全ての圧縮機10,11,12に自動的に割り振ることができるので、油面を一定に保つことができる。また、冷凍機油の液面が高圧容器27の接続管32の高さより下がったときでも、冷凍機油のオイルミストが第一、第二、第三圧縮機均油装置31,41,51を通じて他の圧縮機10,11,12に流出することはないので、冷凍機油の油面の減少を防止することができる。
そして、通常の冷房運転又は暖房運転をするだけで均油制御が自動的に行われるようになるので、従来のような運転制御や、流路の切替作業が不要になる。したがって、装置構成が簡単になると共に、連続して安定した運転が可能になるので、室内の快適性が向上する。
また、油戻し管32,42,52と、均油管36,38,39とにキャピラリチューブ35,37,45,47,55,57を設けたので、各管路ごとに流量が制御され、冷凍機の運転を安定的に行いつつ、全ての圧縮機10,11,12の適正油量を保持することができ、信頼性が向上する。
According to this embodiment, when the level of the refrigerating machine oil exceeds the height of the connection pipe 32 of the high-pressure vessel 27, the surplus refrigerating machine oil is automatically allocated to all the compressors 10, 11, 12. Can maintain the oil level constant. Even when the liquid level of the refrigerating machine oil falls below the height of the connection pipe 32 of the high-pressure vessel 27, the oil mist of the refrigerating machine oil passes through the first, second, and third compressor oil leveling devices 31, 41, and 51. Since it does not flow out to the compressors 10, 11, 12, it is possible to prevent the oil level of the refrigerating machine oil from decreasing.
And since oil equalization control is automatically performed only by performing normal cooling operation or heating operation, conventional operation control and flow path switching work become unnecessary. Therefore, the apparatus configuration is simplified, and continuous and stable operation is possible, thereby improving indoor comfort.
Further, since the capillary tubes 35, 37, 45, 47, 55, 57 are provided in the oil return pipes 32, 42, 52 and the oil leveling pipes 36, 38, 39, the flow rate is controlled for each pipe line, and the refrigeration is performed. The oil quantity of all the compressors 10, 11 and 12 can be maintained while stably operating the machine, and the reliability is improved.

なお、本発明は、前記の実施の形態に限定されずに広く応用することが可能である。
例えば、図5に示すように、第一、第二圧縮機10,11及び第一、第二圧縮機均油装置31,41を有する冷凍機としても良い。第一圧縮機均油装置31の均油管36は、第二圧縮機11に吸入される冷媒のみが通流する吸入分岐管23Aに接続され、第二圧縮機均油装置41の均油管38は、第一圧縮機10に吸入される冷媒のみが通流する吸入分岐管23Aに接続される。この場合の作用及び効果は、前記の実施の形態と同じである。また、4組以上の圧縮機及び圧縮機均油装置を有する冷凍機であっても同様の作用及び効果が得られる。
図1に示す均油管36,38,39は、一度合流した後に分岐し、それぞれの吸入分岐管23Aに接続しても良い。
気液分離手段33,43,53の容量は、その冷凍機によって最適な容積を選択することが可能であり、圧縮機の運転に必要な最低油量以下であれば、前記した気液分離手段容積範囲R1以外でも良い。
第一、第二流量調整手段は、キャピラリチューブ35,37,45,47,55,57の代わりに、膨張弁や、開閉弁、その他の減圧手段であっても良い。さらに、油戻し管34,44,54や、均油管36,38,39を流れる流量が多い場合でも冷凍機1を安定して運転できる場合には、流量調整手段を設けなくも良い。また、油戻し管34,44,54又は均油管36,38,39の一方のみに流量調整手段を設けても良い。
Note that the present invention can be widely applied without being limited to the above-described embodiment.
For example, as shown in FIG. 5, it is good also as a refrigerator which has the 1st, 2nd compressors 10 and 11, and the 1st and 2nd compressor oil equalizing apparatuses 31 and 41. As shown in FIG. The oil equalizing pipe 36 of the first compressor oil equalizing apparatus 31 is connected to the suction branch pipe 23A through which only the refrigerant sucked into the second compressor 11 flows, and the oil equalizing pipe 38 of the second compressor oil equalizing apparatus 41 is The refrigerant is connected to a suction branch pipe 23A through which only the refrigerant sucked into the first compressor 10 flows. The operations and effects in this case are the same as those in the above embodiment. Moreover, the same operation and effect can be obtained even with a refrigerator having four or more sets of compressors and a compressor oil equalizing device.
The oil equalizing pipes 36, 38, and 39 shown in FIG. 1 may be branched after joining once and connected to the respective suction branch pipes 23A.
As for the capacity of the gas-liquid separation means 33, 43, 53, it is possible to select an optimum volume depending on the refrigerator, and the gas-liquid separation means described above if it is less than the minimum oil amount required for the operation of the compressor. It may be outside the volume range R1.
Instead of the capillary tubes 35, 37, 45, 47, 55, 57, the first and second flow rate adjusting means may be expansion valves, on-off valves, or other pressure reducing means. Furthermore, if the refrigerator 1 can be stably operated even when the flow rate through the oil return pipes 34, 44, 54 and the oil leveling pipes 36, 38, 39 is large, the flow rate adjusting means may not be provided. Further, the flow rate adjusting means may be provided only in one of the oil return pipes 34, 44, 54 or the oil equalizing pipes 36, 38, 39.

本発明の実施の形態に係る冷凍機の構成図である。It is a lineblock diagram of the refrigerator concerning an embodiment of the invention. 気液分離手段の容積の範囲を示すグラフである。It is a graph which shows the range of the volume of a gas-liquid separation means. 圧縮機均油装置の作用を説明する図である。It is a figure explaining the effect | action of a compressor oil equalizing apparatus. 圧縮機均油装置の作用を説明する図である。It is a figure explaining the effect | action of a compressor oil equalizing apparatus. 2台の圧縮機を有する場合の圧縮機均油装置の構成を示す図である。It is a figure which shows the structure of the compressor oil equalizing apparatus in the case of having two compressors.

符号の説明Explanation of symbols

1 冷凍機
10 第一圧縮機
11 第二圧縮機
12 第三圧縮機
17 室外熱交換器
21 室内熱交換器
23 吸入配管
27 高圧容器
31 第一圧縮機均油装置
33,43,53 気液分離手段
33A 流入端
33B 第一流出端
33C 第二流出端
35,45,55 キャピラリチューブ(第一流量調整手段)
37,47,57 キャピラリチューブ(第二流量調整手段)
41 第二圧縮機均油装置
51 第三圧縮機均油装置

DESCRIPTION OF SYMBOLS 1 Refrigerator 10 1st compressor 11 2nd compressor 12 3rd compressor 17 Outdoor heat exchanger 21 Indoor heat exchanger 23 Intake pipe 27 High pressure vessel 31 1st compressor oil equalizing apparatus 33, 43, 53 Gas-liquid separation Means 33A Inflow end 33B First outflow end 33C Second outflow end 35, 45, 55 Capillary tube (first flow rate adjusting means)
37, 47, 57 Capillary tube (second flow rate adjusting means)
41 Second compressor oil leveling device 51 Third compressor oil leveling device

Claims (6)

並列に接続された複数の圧縮機の間で冷凍機油を均等に保つ圧縮機均油装置であって、
気液分離手段を有し、前記気液分離手段の流入端を1つの前記圧縮機の高圧容器に接続し、前記気液分離手段の流出端のうち、主に液体を流出する第一流出端をその圧縮機のみに吸入させる冷媒が通流する吸入配管に接続し、主に気体を流出する第二流出端を他の前記圧縮機に吸入させる冷媒が通流する吸入配管に接続したことを特徴とする圧縮機均油装置。
A compressor oil leveling device that keeps refrigeration oil evenly among a plurality of compressors connected in parallel,
A first outflow end that mainly has a liquid out of the outflow ends of the gas-liquid separation means, comprising gas-liquid separation means, wherein the inflow end of the gas-liquid separation means is connected to a high-pressure vessel of the one compressor; Is connected to a suction pipe through which a refrigerant sucked only by the compressor flows, and the second outflow end from which mainly the gas flows out is connected to a suction pipe through which the refrigerant sucked by the other compressor flows. Compressor oil leveling equipment.
複数の前記圧縮機に向けて分岐する前の吸入配管に前記第二流出端を接続したことを特徴とする請求項1に記載の圧縮機均油装置。   2. The compressor oil leveling apparatus according to claim 1, wherein the second outflow end is connected to a suction pipe before branching toward the plurality of compressors. 前記気液分離手段の前記第一流出端から流出する流体の流量を調整する第一流量調整手段と、前記気液分離手段の第二流出端から流出する流体の流量を調整する第二流量調整手段とを有することを特徴とする請求項1又は請求項2に記載の圧縮機均油装置。   First flow rate adjusting means for adjusting the flow rate of fluid flowing out from the first outflow end of the gas-liquid separation means, and second flow rate adjustment for adjusting the flow rate of fluid flowing out from the second outflow end of the gas-liquid separation means The compressor oil leveling device according to claim 1 or 2, further comprising: means. 前記気液分離手段の容積は、前記圧縮機に必要とされる冷凍機油の最低油量を基準として所定の容積以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の圧縮機均油装置。   The volume of the gas-liquid separation means is not more than a predetermined volume based on the minimum oil amount of refrigerating machine oil required for the compressor, according to any one of claims 1 to 3. The compressor oil leveling device. 前記気液分離手段の容積は、前記圧縮機の冷凍機油の5%〜20%の範囲内に相当する量であることを特徴とする請求項4に記載の圧縮機均油装置。   5. The compressor oil leveling device according to claim 4, wherein the volume of the gas-liquid separation unit is an amount corresponding to a range of 5% to 20% of the refrigerating machine oil of the compressor. 請求項1から請求項5のいずれか一項に記載の圧縮機均油装置が接続された複数の前記圧縮機と、熱交換器とを含んで構成される冷凍機。

A refrigerator comprising a plurality of the compressors to which the compressor oil equalizing device according to any one of claims 1 to 5 is connected, and a heat exchanger.

JP2005234058A 2005-08-12 2005-08-12 Compressor oil leveling device and refrigerator Expired - Fee Related JP4464333B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005234058A JP4464333B2 (en) 2005-08-12 2005-08-12 Compressor oil leveling device and refrigerator
KR1020050102005A KR101270536B1 (en) 2005-08-12 2005-10-27 Compressor Distributing Apparatus And Refrigerator
CNB2005101320031A CN100501269C (en) 2005-08-12 2005-12-16 Oil balancing device for compressor and freezing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234058A JP4464333B2 (en) 2005-08-12 2005-08-12 Compressor oil leveling device and refrigerator

Publications (2)

Publication Number Publication Date
JP2007046872A true JP2007046872A (en) 2007-02-22
JP4464333B2 JP4464333B2 (en) 2010-05-19

Family

ID=37721502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234058A Expired - Fee Related JP4464333B2 (en) 2005-08-12 2005-08-12 Compressor oil leveling device and refrigerator

Country Status (3)

Country Link
JP (1) JP4464333B2 (en)
KR (1) KR101270536B1 (en)
CN (1) CN100501269C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650479A (en) * 2011-02-23 2012-08-29 珠海格力电器股份有限公司 Multiple connected air-conditioning unit and oil circuit system thereof
CN116067044A (en) * 2021-11-01 2023-05-05 广东美的暖通设备有限公司 Compressor assembly, air conditioner outdoor unit and air conditioning system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109337A (en) * 1992-09-28 1994-04-19 Mitsubishi Heavy Ind Ltd Refrigerant circuit for air-conditioning machine
US5673570A (en) * 1994-06-29 1997-10-07 Daikin Industries, Ltd. Oil equalizing operation control device for air conditioner
JP3478959B2 (en) * 1997-12-03 2003-12-15 株式会社 日立インダストリイズ Turbo refrigerator
CN1097711C (en) * 1999-07-13 2003-01-01 清华同方股份有限公司 Oil-balancing self-control device for multiple refrigeration compressors
CN2447696Y (en) * 2000-10-17 2001-09-12 江苏春兰电器有限公司 Double-compressor oil-level balancing device
JP4108957B2 (en) 2001-10-19 2008-06-25 東芝キヤリア株式会社 Refrigeration equipment
JP4325751B2 (en) * 2003-03-25 2009-09-02 東芝キヤリア株式会社 Refrigeration cycle equipment
JP4173784B2 (en) * 2003-08-29 2008-10-29 三星電子株式会社 Multi-compressor oil leveling system
JP4129921B2 (en) * 2003-12-25 2008-08-06 三星電子株式会社 Oil equalization method for multiple compressors

Also Published As

Publication number Publication date
CN1912495A (en) 2007-02-14
KR20070019512A (en) 2007-02-15
CN100501269C (en) 2009-06-17
KR101270536B1 (en) 2013-06-03
JP4464333B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
KR102344058B1 (en) An air conditioning system and a method for controlling the same
JP4752765B2 (en) Air conditioner
KR101480546B1 (en) Air conditioner
KR20080080857A (en) Air conditioner and control method for the same
KR20090068136A (en) Air conditioner
JP2008196762A (en) Flow divider, heat exchanger unit and refrigerating device
JP4726845B2 (en) Refrigeration air conditioner
US9689589B2 (en) Refrigeration apparatus
JPWO2004076945A1 (en) Refrigeration cycle equipment
JP4116030B2 (en) Compressor oil leveling device and refrigerator
JP2009228976A (en) Refrigerating cycle device
JP4464333B2 (en) Compressor oil leveling device and refrigerator
JP4130676B2 (en) Compressor oil leveling device and refrigerator
JP4113221B2 (en) Compressor oil leveling device and refrigerator
JP2017150706A (en) Freezer
JP5568132B2 (en) Refrigeration cycle equipment
JP2002277077A (en) Air conditioner
JP2000146324A (en) Refrigerating machine
JP2010203733A (en) Air conditioning device
JP2004301461A (en) Air conditioner
JP2002147876A (en) Air conditioner
KR100819583B1 (en) Accumulator structure of air conditioner
JP2000146323A (en) Air conditioner
JP2017110820A (en) Air conditioning device
JP2005345016A (en) Air conditioner, and operation method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees