JP2007046101A - HARD alpha-BRASS, AND MANUFACTURING METHOD OF THE HARD alpha-BRASS - Google Patents

HARD alpha-BRASS, AND MANUFACTURING METHOD OF THE HARD alpha-BRASS Download PDF

Info

Publication number
JP2007046101A
JP2007046101A JP2005231121A JP2005231121A JP2007046101A JP 2007046101 A JP2007046101 A JP 2007046101A JP 2005231121 A JP2005231121 A JP 2005231121A JP 2005231121 A JP2005231121 A JP 2005231121A JP 2007046101 A JP2007046101 A JP 2007046101A
Authority
JP
Japan
Prior art keywords
brass
hard
manufacturing
crystal grain
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005231121A
Other languages
Japanese (ja)
Other versions
JP5032011B2 (en
Inventor
Hiroshi Yamaguchi
洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005231121A priority Critical patent/JP5032011B2/en
Publication of JP2007046101A publication Critical patent/JP2007046101A/en
Application granted granted Critical
Publication of JP5032011B2 publication Critical patent/JP5032011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard α-brass material having strength equal to that of H materials regulated in JIS C2600 etc. and also having superior formability and excellent stress corrosion cracking resistance. <P>SOLUTION: As the α-brass by which the above objects can be attained, e.g. hard α-brass having the following characteristics is adopted: 451 to 519 MPa tensile strength; formability of ≥8.5 Erichsen value; stress corrosion cracking resistance of ≥6 hours time to rupture by stress corrosion cracking. As the manufacturing method of the hard α-brass, e.g. a manufacturing method in which an α-brass sheet of arbitrary grain size is cold rolled at ≥83% draft and then subjected to recrystallization annealing is adopted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本件発明は、硬質α黄銅及びその硬質α黄銅の製造方法に関する。より具体的には、JIS C2600、JIS C2680、JIS C2720に規定するH材と組成が同一範囲にあり、同等の引張り強さを備えるが、特に成形加工性及び耐応力腐食割れ性に優れた硬質α黄銅材及びその製造方法に関する。   The present invention relates to hard α brass and a method for producing the hard α brass. More specifically, the H material specified in JIS C2600, JIS C2680, and JIS C2720 is in the same range and has the same tensile strength, but particularly hard with excellent molding processability and stress corrosion cracking resistance. It is related with alpha brass material and its manufacturing method.

従来から、JIS C2600、JIS C2680、JIS C2720に規定するH材(以下、単に「H材」と称することがある。)は、機械的強度が比較的高く、導電率も比較的良好で、しかも安価であることから、端子、コネクター等の電子部品、機構部品として広く使用されてきた。   Conventionally, the H material specified in JIS C2600, JIS C2680, and JIS C2720 (hereinafter sometimes simply referred to as “H material”) has relatively high mechanical strength, relatively high electrical conductivity, and Since it is inexpensive, it has been widely used as electronic parts such as terminals and connectors, and mechanical parts.

ところが、上述の市場を流通する一般的なH材は、部品に加工する際に、180度密着曲げ加工、バーリング加工、張り出し加工、プレスによる深く細かい突起形成等の強加工を加えようとしても、その機械的強度の高さ、結晶特性等に起因して、成形加工性が不足する傾向がある。そのため、より成型加工性の優れた素材を適用しようとすると、多少引張り強さに欠けるとしても、より伸び率に優れ材質を選択することになる。これは機械的強度の質別を落とすという意味でもあり、質別を落とすということは、材料力学的観点から見て、製品の肉厚を増やす等の設計変更に繋がり、部品重量の増加、トータル的材料コストの上昇等を招くこともあり不利となる。また、黄銅材の場合、耐応力腐食割れ性に劣るという欠点を不可避的に備えているため、その使用環境によっては材質を丹銅に変更することも頻繁に行われる。   However, when the general H material distributed in the above-mentioned market is processed into a part, even if it is going to add strong processing such as 180 degree adhesion bending processing, burring processing, overhang processing, deep fine projection formation by press, Due to the high mechanical strength, crystal characteristics, etc., there is a tendency for the moldability to be insufficient. Therefore, when trying to apply a material with more excellent moldability, a material with a higher elongation rate is selected even if the tensile strength is somewhat lacking. This also means that the mechanical strength is reduced, and reducing the quality leads to design changes such as increasing the thickness of the product from the viewpoint of material mechanics. This may be disadvantageous because it may increase the cost of the material. Moreover, in the case of a brass material, since the fault that it is inferior to stress corrosion cracking resistance is inevitably provided, depending on the use environment, changing a material into a brass is often performed.

当該H材の、一般的な製造プロセスを考えるに、鋳造、熱間圧延、面削、冷間圧延、連続焼鈍、冷間圧延の後、結晶粒径を抑えた連続焼鈍、15%〜25%の調質圧延によって製造される。そして、圧延加工と熱処理との間又は後に、脱脂、酸洗、矯正、切断、メッキ等の種々の付加的工程が設けられるものである。そして、非特許文献1に開示の内容から推察できるように、当該H材レベルの引張り強さを得ようとすると、圧延加工プロセス等の塑性加工手段による加工硬化を利用する方法が採用され、所望の強度を得るのである。   Considering the general manufacturing process of the H material, after casting, hot rolling, chamfering, cold rolling, continuous annealing, cold rolling, continuous annealing with reduced crystal grain size, 15% to 25% Manufactured by temper rolling. Various additional steps such as degreasing, pickling, straightening, cutting, and plating are provided between or after the rolling process and the heat treatment. And, as can be inferred from the content disclosed in Non-Patent Document 1, when trying to obtain the tensile strength at the H material level, a method utilizing work hardening by plastic working means such as a rolling process is adopted, which is desired. Strength.

また、特許文献1には、結晶粒の微細な黄銅を製造する方法が開示されている。ところが、この特許文献1に開示の製造方法では、大きな加工率による圧延加工を多段階で繰り返し行う必要がある。従って、肉厚の薄い製品を得ようとする場合には応用可能な技術である。一方、比較的厚い製品を得ようとする場合には、強加工条件での圧延加工プロセスを複数回にわたって適用することは困難な場合がある。また、特許文献1に開示の内容では、最終的に行う焼鈍に関する記述はあるが、その前の焼鈍条件の制御も重要であるが、何ら開示はない。   Patent Document 1 discloses a method for producing brass having fine crystal grains. However, in the manufacturing method disclosed in Patent Document 1, it is necessary to repeatedly perform rolling with a large processing rate in multiple stages. Therefore, this technique can be applied to obtain a thin product. On the other hand, when trying to obtain a relatively thick product, it may be difficult to apply the rolling process under strong processing conditions multiple times. Further, in the contents disclosed in Patent Document 1, although there is a description regarding the annealing to be finally performed, control of the annealing conditions before that is also important, but there is no disclosure.

硬質黄銅材を、焼鈍上がり材として使用するという技術的思想は、殆ど検討されてこなかった。このような該焼鈍材をそのまま使用する思想を生まなかったという現状は、圧延を行う中間材としての微細結晶粒を持った焼鈍材に関しては、当業者間において製造ノウハウとして取り扱われ秘匿されていたり、製造方法の一部に関してのみの情報しか相互に知り得なかったことが原因とも考えられるが、これだけが理由だけでない。市場にH材相当品として黄銅材を流通させるには、単にJIS規格に記載された機械的物性をクリアすればよいとして、強度を合わせることのみを追求するのでは不足であり、成型加工性等の他の特性において従来の黄銅材にない特徴が出せない限り、新製品として市場で広く受け入れられるだけの市場性に欠けるという理由が自ずと生じていた。   The technical idea of using a hard brass material as an annealed material has hardly been studied. The present situation that the idea of using such an annealed material as it is did not give rise to the fact that an annealed material having fine crystal grains as an intermediate material to be rolled is handled and concealed as a manufacturing know-how among those skilled in the art. The reason is that only information about only a part of the manufacturing method could be obtained from each other, but this is not the only reason. In order to distribute brass materials as equivalent to H materials in the market, it is not enough to pursue only the matching of strength, simply by clearing the mechanical properties described in the JIS standard, molding processability, etc. As long as other characteristics that are not found in conventional brass materials cannot be produced, there was a reason that the product was not marketable enough to be widely accepted in the market as a new product.

特開2004−292875号公報JP 2004-292875 A 伸銅品データブック、日本伸銅協会、第18頁Copper Products Data Book, Japan Brass Association, page 18

以上のような現状を鑑みるに、JIS C2600、JIS C2680、JIS C2720に規定するH材と同等の強度を備え、且つ、上述の180度密着曲げ加工、バーリング加工、張り出し加工、プレスによる深く細かい突起形成等の強加工における高い加工信頼性を備える良好な成形加工性を備える黄銅材料が要望されるのは当然である。   In view of the current situation as described above, it has the same strength as the H material specified in JIS C2600, JIS C2680, and JIS C2720, and has the 180-degree contact bending process, the burring process, the overhang process, and the deep and fine protrusions by pressing. Naturally, there is a demand for a brass material having good forming workability with high processing reliability in strong processing such as forming.

しかも、同時に黄銅でありながら丹銅と同程度の耐応力腐食割れ性を備えるものであれば、その使用範囲が急激に拡大することになり、市場の受ける技術的発展は極めて大きなものとなる。   Moreover, if it is brass and has the same level of stress corrosion cracking resistance as that of the brass, its use range will be expanded rapidly, and the technical development received by the market will be extremely large.

更に、上記特許文献1に開示の技術と異なり、薄物部品等に限定せず、厚物部品にも適用しやすく、且つ、従来の製造設備を使用して可能な限り少ない工程で微細結晶を備える強化黄銅とする事が出来れば、安価で、高品質の強化黄銅製品を市場に供給できることになる。   Furthermore, unlike the technique disclosed in Patent Document 1, the present invention is not limited to thin parts, but can be easily applied to thick parts, and includes fine crystals in as few steps as possible using conventional manufacturing equipment. If it can be made reinforced brass, it will be possible to supply low-cost, high-quality reinforced brass products to the market.

以上のことから、本件発明は、JIS C2600、JIS C2680、JIS C2720に規定するH材と同等の強度を備え、同時に、上述の強加工条件に耐え得る良好な成形加工性及び良好な耐応力腐食割れ性を備える硬質α黄銅材及びその製造方法等を提供することを目的とする。   From the above, the present invention has the same strength as the H material specified in JIS C2600, JIS C2680, and JIS C2720, and at the same time, good molding processability and good stress corrosion resistance that can withstand the above-mentioned strong processing conditions. It aims at providing the hard alpha brass material provided with a crackability, its manufacturing method, etc.

そこで、上述の目的を達成するため、後述する製造方法を用いることにより、初めて得られる硬質α黄銅を採用したのである。   Therefore, in order to achieve the above-described object, hard α brass obtained for the first time by employing a manufacturing method described later is employed.

本件発明に係る硬質α黄銅: 本件発明に係る硬質α黄銅は、銅71.5重量%〜62.0重量%と不可避不純物とを除き残部が亜鉛とからなるα黄銅において、引張り強さが451MPa〜519MPaであり、エリクセン値が8.5以上という成形加工性を備え、且つ、応力腐食割れ破断時間が6時間以上の耐応力腐食割れ性能を備えたことを特徴としたものである。 Hard α brass according to the present invention: The hard α brass according to the present invention is an α brass composed of 71.5 wt% to 62.0 wt% of copper and unavoidable impurities and the balance consisting of zinc, and has a tensile strength of 451 MPa. It is characterized by having a stress-corrosion-cracking performance with a stress-corrosion-breaking time of 6 hours or more, and having a forming processability of -519 MPa, an Erichsen value of 8.5 or more.

そして、上述の硬質α黄銅は、平均結晶粒径が1μm〜2μmであることが好ましい。   And it is preferable that the above-mentioned hard alpha brass has an average crystal grain diameter of 1 micrometer-2 micrometers.

硬質α黄銅の製造方法: 本件発明に係る硬質α黄銅の製造方法は、大別して3つの製造方法として分類することが可能である。以下、第1製造方法〜第3製造方法として分類する。 Manufacturing method of hard α brass: The manufacturing method of the hard α brass according to the present invention can be broadly classified into three manufacturing methods. Hereinafter, it classifies as the 1st manufacturing method-the 3rd manufacturing method.

第1製造方法は、任意の粒径のα黄銅板材を、83%以上の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。   The first production method is a production method of hard α brass characterized by performing a recrystallization annealing treatment after cold rolling an α brass plate material having an arbitrary particle size at a processing rate of 83% or more.

第2製造方法は、平均結晶粒径を1μm〜2μmに調整したα黄銅板材を、20%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。   The second production method is characterized in that a hard brass is characterized in that an α brass plate material having an average crystal grain size adjusted to 1 μm to 2 μm is cold-rolled at a processing rate of 20% to 82% and then subjected to a recrystallization annealing treatment. It is a manufacturing method of alpha brass.

第3製造方法は、平均結晶粒径を3μm〜6μmに調整したα黄銅板材を、70%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。   The third production method is characterized in that a hard brass is characterized in that an α brass plate whose average crystal grain size is adjusted to 3 μm to 6 μm is cold-rolled at a processing rate of 70% to 82%, and then recrystallized and annealed. It is a manufacturing method of alpha brass.

本件発明に係る硬質α黄銅は、JIS C2600、JIS C2680、JIS C2720に規定するH材と同等の強度を備え、同時に、上述の強加工条件に耐え得る良好な成形加工性及び丹銅と同等の良好な耐応力腐食割れ性を備えるものとなる。   The hard α brass according to the present invention has the same strength as the H material specified in JIS C2600, JIS C2680, and JIS C2720, and at the same time has good moldability that can withstand the above-mentioned strong working conditions and is equivalent to the brass. It will have good stress corrosion cracking resistance.

しかも、この本件発明にかかる硬質α黄銅は、薄肉化してJIS C2600、JIS C2680、JIS C2720のいずれかに規定の1/2H材相当の材料が使用されている用途への使用が可能となる。   In addition, the hard α brass according to the present invention can be used in applications where a material equivalent to a 1 / 2H material defined in any one of JIS C2600, JIS C2680, and JIS C2720 is used after being thinned.

また、本件発明に係る硬質α黄銅の製造は、上述の第1製造方法〜第3製造方法のいずれの場合においても、最終的には再結晶焼鈍を加え、焼鈍上がり材として本件発明に係る硬質α黄銅を製造する点に特徴を有する。このような製造方法によれば、冷間圧延加工前の結晶粒径に応じて、所定の加工率での冷間圧延加工を施す点、及び、その後所望の結晶粒径となるように再結晶焼鈍を行う点のみが厳密な制御を必要とすることになり、制御ポイントが少なく、短い工程と出来るため、本件発明に係る硬質α黄銅を安価且つ効率よく生産することが可能となる。   In addition, in the case of any of the first to third manufacturing methods described above, the hard α brass according to the present invention is finally subjected to recrystallization annealing, and the hard according to the present invention as an annealed material. It is characterized in that α brass is produced. According to such a manufacturing method, depending on the crystal grain size before the cold rolling process, the recrystallization is performed so that the cold rolling process is performed at a predetermined processing rate and then the desired crystal grain size is obtained. Only the points to be annealed require strict control, and since there are few control points and the process can be short, the hard α brass according to the present invention can be produced inexpensively and efficiently.

以下、本件発明に係る硬質α黄銅及びその硬質α黄銅の製造方法に関する形態並びに実施例に関して説明する。   Hereinafter, the form regarding the hard alpha brass which concerns on this invention, the manufacturing method of the hard alpha brass, and an Example are demonstrated.

硬質α黄銅の形態: 本件発明に係る硬質α黄銅は、銅71.5重量%〜62.0重量%と不可避不純物とを除き残部が亜鉛とからなるα黄銅において、引張り強さが451MPa〜519MPaであり、エリクセン値が8.5以上という成形加工性を備え、且つ、応力腐食割れ破断時間が6時間以上の耐応力腐食割れ性能を備えたことを特徴としたものである。 Form of hard α brass: The hard α brass according to the present invention is an α brass composed of 71.5 wt% to 62.0 wt% of copper and unavoidable impurities and the balance consisting of zinc, and has a tensile strength of 451 MPa to 519 MPa. It is characterized in that it has molding workability with an Erichsen value of 8.5 or more, and has stress corrosion cracking resistance with a stress corrosion cracking break time of 6 hours or more.

ここで硬質α黄銅の組成は、銅71.5重量%〜62.0重量%と不可避不純物とを除き残部が亜鉛とからなる。即ち、当業者であれば、容易に理解できるが、JIS C2600、JIS C2680、JIS C2720の組成の範囲にある。従って、この組成のみに着目する限り、何ら技術的特徴は持ち得ない。   Here, the composition of the hard α brass is composed of zinc except for 71.5 wt% to 62.0 wt% of copper and unavoidable impurities. That is, those skilled in the art can easily understand, but it is within the range of the composition of JIS C2600, JIS C2680, and JIS C2720. Therefore, as long as attention is paid only to this composition, it cannot have any technical characteristics.

即ち、本件発明に係る硬質α黄銅の持つ物性的特徴としては、引張り強さ、成形加工性、耐応力腐食割れ性の各特性が同時に良好な範囲にあるという点にある。最初に、「引張り強さ」に関して述べるが、引張り強さが451MPa〜519MPaという範囲は、JIS C2600、JIS C2680、JIS C2720に規定するH材の引張り強さの範囲と同等の強度を備えることを意味している。当該引張り強さが、450MPa未満ではJIS規格に定める1/2H材相当のレベルでもあり、強度的に不足となるからである。一方、当該引張り強さが、520MPaを超えるものになると、JIS規格に定めるEH材相当の物性を備えるものともなり、成形加工性の劣化が顕著となる。   That is, the physical characteristics of the hard α brass according to the present invention are that the properties of tensile strength, molding processability, and stress corrosion cracking resistance are simultaneously in a favorable range. First, the “tensile strength” will be described. The tensile strength in the range of 451 MPa to 519 MPa has the same strength as the tensile strength range of the H material specified in JIS C2600, JIS C2680, and JIS C2720. I mean. This is because if the tensile strength is less than 450 MPa, it is a level equivalent to a 1 / 2H material defined in the JIS standard, and the strength is insufficient. On the other hand, when the tensile strength exceeds 520 MPa, the material has physical properties equivalent to the EH material defined in JIS standards, and the deterioration of the molding processability becomes remarkable.

そして、本件発明に係る硬質α黄銅の成形加工性に関しては、「エリクセン値」を主に採用する。そして、このエリクセン値が8.5以上であることが良好な成形加工性を備える基準としている。エリクセン値の測定に関しては、試料の板厚による影響(板厚依存性)が小さく、信頼性の高い相対評価と言える。エリクセン値を用いた成形加工性の評価において、エリクセン値が10以上の場合には軽い深絞り加工が可能と判断される。そして、9以上であれば、180度密着曲げが可能と判断される。そして、本件発明で言う、強加工(厳しい加工)とは、部分的に厚部位を備える素材に180度密着曲げ加工を施す、材料厚みに関係なくバーリング加工や張り出し加工を施す、プレスで深く細かい突起を作る等を言うのであり、これらの強加工時に必要な成形加工性を備えると判断するためには、少なくとも8.5以上のエリクセン値が必要であると判断出来る。   And, regarding the moldability of the hard α brass according to the present invention, “Ericsen value” is mainly adopted. And this Erichsen value is 8.5 or more is a standard with good moldability. Regarding the measurement of Erichsen value, the influence (plate thickness dependence) due to the thickness of the sample is small, and it can be said that the evaluation is highly reliable. In the evaluation of the formability using the Eriksen value, if the Eriksen value is 10 or more, it is determined that light deep drawing can be performed. And if it is 9 or more, it will be judged that 180 degree | times contact | adherence bending is possible. In the present invention, strong processing (severe processing) means that the material partially having a thick portion is subjected to 180-degree adhesion bending processing, burring processing or overhang processing is performed regardless of the material thickness, and the press is deeply fine. For example, it is possible to determine that an Erichsen value of at least 8.5 or more is necessary in order to determine that the moldability required for such strong processing is provided.

更に、成形加工性の一つの判断基準として、「180度密着曲げ試験」を簡易的に採用することも可能である。ここで、良好な成形加工性を備えると判断するためには、180度密着曲げ試験を行っても全くクラックの発生しない程度の品質が要求される。従って、成形加工性の判断基準は、180度密着曲げ試験を行った場合にクラック発生が起こるか否かである。ここで言う180度密着曲げ試験とは、当業者であれば、容易に理解できる試験であるため、ここでの詳細な説明は省略し、実施例中で実験に用いた方法を記載するに止める。   Furthermore, it is possible to simply adopt the “180-degree adhesion bending test” as one criterion for forming processability. Here, in order to determine that the moldability is good, a quality that does not cause any cracks is required even when the 180-degree contact bending test is performed. Therefore, the criterion for forming processability is whether or not cracking occurs when a 180-degree contact bending test is performed. The 180-degree close contact bending test mentioned here is a test that can be easily understood by those skilled in the art, and therefore detailed description thereof will be omitted, and only the method used for the experiment in the examples will be described. .

更に、耐応力腐食割れ性に関して説明する。本件発明において、耐応力腐食割れ性の評価試験は、図2に示すような小型の引張試験片形状に加工したサンプル1を縦型に保持する。そして、図2から理解できるように、適当なサイズのビニール等のプラスチック袋2を用意し、当該プラスチック袋2の底部にはサンプル1を通すことのできる挿入開口部3を設けておく。そして、図2に示すように、当該プラスチック袋2の底部の挿入開口部3にサンプル1を通す。その状態、プラスチック袋2の上部開口部及び挿入開口部3を、着脱部材7(輪ゴム等)を用いてサンプル1の胴体部4に固定する。このとき、プラスチック袋2の下部には一定の弛みを持たせ、図2(c)に示したように、プラスチック袋2の弛み部分に、18wt%濃度のアンモニア水5を適量入れ、サンプル1とアンモニア水とが直接接触しない状態とする。次に、サンプル1の下部に所定の分銅6をつるし、破断までの時間を経時カウンターで測定する。このときの測定で得られる破断時間は、一定の範囲でバラツクが、複数回の計測を行ったり、荷重を変えたりして妥当な数値として求める。この方法において、付加する静応力を50MPaとした場合の耐応力腐食割れ性の判断基準となる破断時間は、一般の一種黄銅で1時間、85/15丹銅で6〜20時間、90/10丹銅で60時間程度である。そこで、応力腐食割れ性の優れたと表現するときは、破断時間が6時間以上の場合とした。   Furthermore, stress corrosion cracking resistance will be described. In the present invention, in the stress corrosion cracking resistance evaluation test, the sample 1 processed into a small tensile test piece shape as shown in FIG. Then, as can be understood from FIG. 2, a plastic bag 2 of an appropriate size such as vinyl is prepared, and an insertion opening 3 through which the sample 1 can be passed is provided at the bottom of the plastic bag 2. Then, as shown in FIG. 2, the sample 1 is passed through the insertion opening 3 at the bottom of the plastic bag 2. In this state, the upper opening portion and the insertion opening portion 3 of the plastic bag 2 are fixed to the body portion 4 of the sample 1 by using a detachable member 7 (such as a rubber band). At this time, a certain amount of slack is given to the lower part of the plastic bag 2, and an appropriate amount of 18 wt% ammonia water 5 is put into the slack part of the plastic bag 2 as shown in FIG. Make sure that ammonia water is not in direct contact. Next, a predetermined weight 6 is hung on the lower part of the sample 1, and the time until breakage is measured with a time-lapse counter. The rupture time obtained by the measurement at this time is obtained as an appropriate numerical value by performing measurement a plurality of times or changing the load within a certain range. In this method, when the applied static stress is set to 50 MPa, the rupture time as a criterion for the stress corrosion cracking resistance is 1 hour for a general kind of brass, 6 to 20 hours for 85/15 brass, 90/10 It is about 60 hours with a red lead. Therefore, when expressing that the stress corrosion cracking property is excellent, the fracture time is 6 hours or more.

金属材料の場合、上述のような機械的物性等は、その結晶特性により定まるのが殆どである。特に、上記成形加工性を向上させるには、一般的に焼鈍温度を高くするなどして結晶粒径を大きくして高いエリクセン値を得たり、同じ結晶粒径の焼鈍材に対する調質圧延率を低くして高いエリクセン値を得る方法が採用される。これに対して、本件発明者等は、微細結晶粒を備えた黄銅材の物性を種々研究する中で、微細結晶粒を持った黄銅は、結晶粒径を大きくしなくとも高い成形加工性を備えることに想到した。もとより、結晶粒を微細化した素材は、高い強度を持つものとなることは公知である。しかしながら、高い強度と良好な成形加工性とを同時に成立させる方法に関しては、明らかにされてこなかった。即ち、高い強度と良好な成形加工性とを同時に成立させた硬質α黄銅とするためには、所定の引張り強さと成形加工性とが両立できるようにするためには、上記引張り強さを備えることを前提として、平均結晶粒径が3μm以下とすることが望ましいのである。また、後述する製造方法を採用することで、本発明に係る大部分の硬質α黄銅は、1μm〜2μmの範囲の平均結晶粒径を安定的に備えることが可能である。   In the case of a metal material, the mechanical properties and the like as described above are mostly determined by their crystal characteristics. In particular, in order to improve the moldability, the crystal grain size is generally increased by increasing the annealing temperature to obtain a high Erichsen value, or the temper rolling ratio for an annealed material having the same crystal grain size is increased. A method of obtaining a high Erichsen value by lowering is adopted. In contrast, the inventors of the present invention have been studying various physical properties of brass materials having fine crystal grains, and brass having fine crystal grains has a high formability without increasing the crystal grain size. I came up with the idea. Of course, it is known that a material with fine crystal grains has high strength. However, a method for simultaneously achieving high strength and good moldability has not been clarified. That is, in order to obtain a hard α brass that simultaneously establishes high strength and good moldability, the above-described tensile strength is provided in order to achieve both predetermined tensile strength and moldability. Therefore, it is desirable that the average crystal grain size is 3 μm or less. In addition, most of the hard α brass according to the present invention can be stably provided with an average crystal grain size in the range of 1 μm to 2 μm by employing the manufacturing method described later.

以上に述べてきた本件発明にかかる硬質α黄銅は、電子部品や機構部品に好適に使用される。   The hard α brass according to the present invention described above is suitably used for electronic parts and mechanical parts.

硬質α黄銅の製造方法の形態: 上述のように本件発明に係る硬質α黄銅の製造方法は、第1製造方法〜第3製造方法として分類できる。従って、これらに分類して、以下に説明する。最初に明記しておくが、以下に述べる第1製造方法〜第3製造方法として記載する条件の中で冷間圧延して得られる以外の板材を用いると、その後の再結晶条件をいかに調整しても混粒となってしまい、所望の結晶粒径を得ることが出来ない。これに対し、第1製造方法〜第3製造方法に規定する条件を満足すれば、実質的に1回乃至2回の圧延焼鈍工程で、従来に無い高い成形加工性と耐応力腐食割れ性とH材並の強度を備える硬質α黄銅の製造が出来る。 Form of Manufacturing Method of Hard α Brass: As described above, the manufacturing method of the hard α brass according to the present invention can be classified as a first manufacturing method to a third manufacturing method. Therefore, it classify | categorizes into these and demonstrates below. First, it should be clearly noted that if a plate material other than those obtained by cold rolling is used in the conditions described as the first to third manufacturing methods described below, the subsequent recrystallization conditions can be adjusted. However, it becomes a mixed grain, and a desired crystal grain size cannot be obtained. On the other hand, if the conditions specified in the first manufacturing method to the third manufacturing method are satisfied, the high forming workability and the stress corrosion cracking resistance that are not conventionally obtained in the rolling annealing process once or twice. Hard α brass with the same strength as H material can be manufactured.

第1製造方法は、任意の粒径のα黄銅板材を、83%以上の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。ここで言う、「任意の粒径のα黄銅板材」とは、一般的に行われる連続鋳造、熱間圧延の後の熱間圧延材の場合を含む概念として記載しており、特段の結晶粒径の限定は要さないとの意で記載している。   The first production method is a production method of hard α brass characterized by performing a recrystallization annealing treatment after cold rolling an α brass plate material having an arbitrary particle size at a processing rate of 83% or more. Here, "alpha brass plate material of any particle size" is described as a concept including the case of a hot rolled material after continuous casting and hot rolling that are generally performed, and special crystal grains It is stated that it is not necessary to limit the diameter.

そして、任意の粒径の板材の場合、83%以上の加工率で冷間圧延を施す。即ち、どのような粒径であっても、83%以上の加工率で冷間圧延を施せば、強加工によって1μm前後のサブグレインを結晶内に導入することができ、且つ、均一な組織として得られる。そして、このサブグレインの存在により、微細な再結晶状態を得ることが出来るようになる。例えば、実験室的に熱間圧延を施し0.1mm〜0.2mmの平均結晶粒径を備える板材、又は製造現場の熱間上がりの動的再結晶をした平均結晶粒径25μmの板材でも、83%以上の加工率で強加工を行い、所定の条件で再結晶化させると、混粒の発生もなく、平均結晶粒径として3μm以下の結晶粒が得られる。従って、比較的大きな結晶粒径の板材に対し、83%未満の加工率を採用すると、結晶内へのサブグレインの導入が不均一になり、再結晶化させた組織は、再結晶条件をいかに調整しても、混粒の発生が顕著になり、平均結晶粒径として3μm以下の結晶粒を得ることが出来ないのである。なお、冷間圧延加工に用いる加工率の上限を規定していないが、耳われ等の不良発生率、生産効率等を考慮すると、加工率92%程度が上限であると判断できる。   And in the case of the board | plate material of arbitrary particle sizes, it cold-rolls with the process rate of 83% or more. That is, for any grain size, if cold rolling is performed at a processing rate of 83% or more, subgrains of about 1 μm can be introduced into the crystal by strong processing, and a uniform structure can be obtained. can get. And the presence of this subgrain makes it possible to obtain a fine recrystallized state. For example, a plate material having an average crystal grain size of 0.1 mm to 0.2 mm that has been subjected to hot rolling in a laboratory, or a plate material having an average crystal grain size of 25 μm that has been dynamically recrystallized at the production site, When strong processing is performed at a processing rate of 83% or more and recrystallization is performed under a predetermined condition, mixed grains are not generated, and crystal grains having an average crystal grain size of 3 μm or less are obtained. Therefore, if a processing rate of less than 83% is adopted for a plate material having a relatively large crystal grain size, the introduction of subgrains into the crystal becomes non-uniform, and the recrystallized structure is subject to recrystallization conditions. Even if it adjusts, generation | occurrence | production of a mixed grain becomes remarkable and a crystal grain of 3 micrometers or less as an average crystal grain diameter cannot be obtained. In addition, although the upper limit of the processing rate used for cold rolling is not prescribed | regulated, it can be judged that about 92% of a processing rate is an upper limit, considering the defect incidence, production efficiency, etc. of a crack.

次に、「再結晶焼鈍処理」と記載しているが、最終的な再結晶焼鈍を行う前に、1回以上の中間的再結晶焼鈍を行う場合のあることを含む概念として記載している。このような中間的再結晶焼鈍を複数回行う場合には、再結晶焼鈍と再結晶焼鈍との間に圧延処理工程又は他の塑性変形工程を設けるのが通常であり、最終製品の板厚と中間焼鈍時の板厚と加工率とを考慮して、中間的再結晶焼鈍で作り込む結晶粒径を制御する。そして、最終再結晶焼鈍は、最終再結晶焼鈍の結果として得られる硬質α黄銅に対する要求特性として、(i)引張り強さが451MPa〜519MPaの範囲、(ii)平均結晶粒径が1μm〜2μmの範囲、(iii)エリクセン値が8.5以上という成形加工性、(iv)応力腐食割れ破断時間が6時間以上の耐応力腐食割れ性能、の各性能を満足できるように再結晶温度、再結晶時間、再結晶雰囲気、再結晶焼鈍処理と再結晶焼鈍処理との間の圧延処理等の再結晶条件を定めればよいのである。しかしながら、敢えて限定が可能であるとすれば、連続焼鈍法を採用する方が、より均質な再結晶組織が得られるので好ましい。そして、このときの炉温は、炉の能力に左右されるが、350℃〜650℃程度の範囲の再結晶温度を採用することが好ましい。なお、この再結晶焼鈍に関する概念は、以下の第2製造方法及び第3製造方法においても同様である。以上のようにして、本件発明に係る硬質α黄銅の製造が出来るのである。   Next, although described as “recrystallization annealing treatment”, it is described as a concept including the case where one or more intermediate recrystallization annealing is performed before the final recrystallization annealing. . When such an intermediate recrystallization annealing is performed a plurality of times, it is usual to provide a rolling process step or other plastic deformation step between the recrystallization annealing and the recrystallization annealing. In consideration of the plate thickness and processing rate during the intermediate annealing, the crystal grain size formed by the intermediate recrystallization annealing is controlled. And the final recrystallization annealing is a required characteristic for the hard α brass obtained as a result of the final recrystallization annealing. (I) The tensile strength is in the range of 451 MPa to 519 MPa, (ii) The average crystal grain size is 1 μm to 2 μm. Recrystallization temperature and recrystallization so as to satisfy the following conditions: (iii) molding processability with an Erichsen value of 8.5 or more, and (iv) stress corrosion cracking resistance with a stress corrosion cracking rupture time of 6 hours or more. Recrystallization conditions such as time, recrystallization atmosphere, rolling treatment between the recrystallization annealing treatment and the recrystallization annealing treatment may be determined. However, if the limitation is possible, it is preferable to employ the continuous annealing method because a more uniform recrystallized structure can be obtained. And although the furnace temperature at this time is influenced by the capability of a furnace, it is preferable to employ | adopt the recrystallization temperature of the range of about 350 to 650 degreeC. In addition, the concept regarding this recrystallization annealing is the same also in the following 2nd manufacturing methods and 3rd manufacturing methods. As described above, the hard α brass according to the present invention can be manufactured.

第2製造方法は、平均結晶粒径を1μm〜2μmに調整したα黄銅板材を、20%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。この第2製造方法は、第1製造方法では「任意の粒径のα黄銅板材」としていたのに対し、「平均結晶粒径を1μm〜2μmに調整したα黄銅板材」として、当初の板材の平均結晶粒径が1μm〜2μmの範囲にあると判明している場合、冷間圧延加工において83%未満の加工率を採用することが出来ることを明らかにしている。当初の板材の結晶粒径が既に微細化できていることが分かれば、過剰な強加工は不要であり、生産コストの削減も行えるからである。また、当初から板材の平均結晶粒径を1μm〜2μmの微細粒径の範囲にあるとしても、一旦、20%以上、より好ましくは40%以上の加工率を採用して冷間圧延加工を行うことが、1μm前後のサブグレインを結晶内に均一に導入する観点から好ましい。その結果、この組織を再結晶焼鈍することにより、均一で微細な再結晶状態を得ることが出来る。従って、第2製造方法において、冷間圧延加工の際の加工率を20%未満とすると、α黄銅板材の結晶組織内に1μm前後のサブグレインを均一に導入する事が困難である。一方、冷間圧延加工の際の加工率が82%を超えるものとすると、第1製造方法と変わらない加工率となり、合理性に欠けることになる。このようにして、本件発明に係る硬質α黄銅の製造が出来るのである。   The second production method is characterized in that a hard brass is characterized in that an α brass plate material having an average crystal grain size adjusted to 1 μm to 2 μm is cold-rolled at a processing rate of 20% to 82% and then subjected to a recrystallization annealing treatment. It is a manufacturing method of alpha brass. This second production method was “alpha brass plate material having an arbitrary particle size” in the first production method, whereas “α brass plate material having an average crystal grain size adjusted to 1 μm to 2 μm” as the original plate material. When the average crystal grain size is found to be in the range of 1 μm to 2 μm, it has been clarified that a processing rate of less than 83% can be employed in cold rolling. This is because if it is known that the crystal grain size of the original plate material has already been refined, excessive strong processing is unnecessary and the production cost can be reduced. Further, even if the average crystal grain size of the plate material is in the range of fine grain size of 1 μm to 2 μm from the beginning, the cold rolling process is performed once by adopting a processing rate of 20% or more, more preferably 40% or more. It is preferable from the viewpoint of uniformly introducing subgrains of about 1 μm into the crystal. As a result, a uniform and fine recrystallized state can be obtained by recrystallization annealing of this structure. Therefore, in the second manufacturing method, if the processing rate during cold rolling is less than 20%, it is difficult to uniformly introduce subgrains of about 1 μm into the crystal structure of the α brass sheet. On the other hand, if the processing rate in the cold rolling process exceeds 82%, the processing rate is the same as that in the first manufacturing method and lacks rationality. In this manner, the hard α brass according to the present invention can be manufactured.

第3製造方法は、平均結晶粒径を3μm〜6μmに調整したα黄銅板材を、70%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする硬質α黄銅の製造方法である。この第3製造方法は、第1製造方法では「任意の粒径のα黄銅板材」としていたのに対し、「平均結晶粒径を3μm〜6μmに調整したα黄銅板材」としている。即ち、当初の板材の平均結晶粒径が3μm〜6μmの範囲にあると判明している場合、冷間圧延加工において83%未満の加工率を採用することが出来ることを明らかにしている。これは、第2製造方法の場合と同様で、当初の板材の結晶粒径が一定のレベルになっていることが分かれば、過剰な強加工は不要であり、生産コストの削減も行えるからである。第3製造方法の場合、当初の平均結晶粒径は3μm〜6μmの範囲にあるため、冷間圧延加工により結晶組織内に1μm前後のサブグレインを結晶内に均一に導入しなければならない。そうでなければ、事後的な再結晶焼鈍により、均一で微細な再結晶状態を得ることが出来ない。従って、第3製造方法において、冷間圧延加工の際の加工率を70%未満とすると、α黄銅板材の結晶組織内に1μm前後のサブグレインを均一に導入する事が困難である。一方、冷間圧延加工の際の加工率が82%を超えるものとすると、第1製造方法と変わらない加工率となり、合理性に欠けることになる。このようにして、本件発明に係る硬質α黄銅の製造が出来るのである。   The third production method is characterized in that a hard brass is characterized in that an α brass plate whose average crystal grain size is adjusted to 3 μm to 6 μm is cold-rolled at a processing rate of 70% to 82%, and then recrystallized and annealed. It is a manufacturing method of alpha brass. This third manufacturing method is “α brass plate material having an average crystal grain size adjusted to 3 μm to 6 μm”, whereas “α brass plate material having an arbitrary particle size” was used in the first manufacturing method. That is, when the average crystal grain size of the original plate material is found to be in the range of 3 μm to 6 μm, it is clarified that a processing rate of less than 83% can be adopted in cold rolling. This is the same as in the case of the second manufacturing method. If it is known that the crystal grain size of the original plate is at a certain level, excessive strong processing is unnecessary and the production cost can be reduced. is there. In the case of the third production method, since the initial average crystal grain size is in the range of 3 μm to 6 μm, subgrains of about 1 μm must be uniformly introduced into the crystal structure by cold rolling. Otherwise, a uniform and fine recrystallization state cannot be obtained by post-recrystallization annealing. Therefore, in the third manufacturing method, if the processing rate during cold rolling is less than 70%, it is difficult to uniformly introduce subgrains of about 1 μm into the crystal structure of the α brass sheet. On the other hand, if the processing rate in the cold rolling process exceeds 82%, the processing rate is the same as that in the first manufacturing method and lacks rationality. In this manner, the hard α brass according to the present invention can be manufactured.

以上のようにして得られる硬質α黄銅は、JIS C2600、JIS C2680、JIS C2720のいずれかに規定の1/2H材相当の物性を考慮して、当該1/2H材を使用した部位又は部品に対しての適用も可能である。従来1/2H材を使用していた範囲で、本件発明に係るH材相当の物性を備える硬質α黄銅を用いるのである。即ち、本件発明に係るH材相当の物性を備える硬質α黄銅とは、(i)引張り強さが451MPa〜519MPa、(ii)平均結晶粒径が1μm〜2μm、(iii)エリクセン値が8.5以上という成形加工性を有し、(iv)応力腐食割れ破断時間が6時間以上の耐応力腐食割れ性能を備えたものであり、この硬質α黄銅を用いることで、1/2H材を使用していた部位若しくは部品の薄肉化を図ることが可能で、薄肉化してもJIS C2600、JIS C2680、JIS C2720のいずれかに規定の1/2H材相当の部品強度を得ることができ、部品重量の軽減を可能とする。   The hard α brass obtained as described above is applied to a part or a part using the 1 / 2H material in consideration of physical properties equivalent to the 1 / 2H material defined in any of JIS C2600, JIS C2680, and JIS C2720. Application to this is also possible. The hard α brass having the physical properties equivalent to the H material according to the present invention is used in the range where the conventional 1 / 2H material is used. That is, the hard α brass having the physical properties equivalent to the H material according to the present invention includes (i) a tensile strength of 451 MPa to 519 MPa, (ii) an average crystal grain size of 1 μm to 2 μm, and (iii) an Erichsen value of 8. It has a formability of 5 or more, and (iv) has stress corrosion cracking resistance with a stress corrosion cracking break time of 6 hours or more. By using this hard α brass, 1 / 2H material is used. It is possible to reduce the thickness of the parts or parts that have been used, and even if the thickness is reduced, the part strength equivalent to 1 / 2H material specified in any of JIS C2600, JIS C2680, and JIS C2720 can be obtained. Can be reduced.

以下、実施例を通じて本件発明をより詳細に説明する。実施例に用いた黄銅インゴットはすべて鋳造工場で半連続鋳造法で鋳造されたものである。表1には、各インゴットの組成を掲載する。   Hereinafter, the present invention will be described in more detail through examples. All brass ingots used in the examples were cast by a semi-continuous casting method at a foundry. Table 1 lists the composition of each ingot.

インゴット1〜インゴット3を熱間圧延し、面削後、加工率は85%で冷間圧延して1.8mmの素板を得た。ここまでの工程は、従来から行われていた一般的加工工程である。その後、インゴット1から得られた素板に再結晶焼鈍(表中には「再結晶焼鈍1」と表示)のみを施し試料1とした。その他の試料2〜試料5は、当該素板に再結晶焼鈍1を施し、本件発明に係る加工率に準じて冷間圧延加工し、再結晶焼鈍2を行い製造した。このときの製造条件が一見して分かるように表2に各試料毎に製造条件を示した。製造はすべて現場ラインで行い、焼鈍は連続焼鈍法を用いた。試料1〜試料5の内、試料3と試料4とは、温度420℃での連続焼鈍を行った際の通板速度に相違がある。即ち、試料4は、試料3の通板速度を基準として、33%程度速く通板している。   Ingots 1 to 3 were hot-rolled, and after chamfering, they were cold-rolled at a processing rate of 85% to obtain a 1.8 mm base plate. The process so far is a general processing process conventionally performed. Thereafter, only the recrystallization annealing (indicated as “recrystallization annealing 1” in the table) was performed on the base plate obtained from the ingot 1 to obtain a sample 1. The other samples 2 to 5 were manufactured by subjecting the base plate to recrystallization annealing 1, performing cold rolling according to the processing rate according to the present invention, and performing recrystallization annealing 2. Table 2 shows the manufacturing conditions for each sample so that the manufacturing conditions at this time can be seen at a glance. All production was carried out on-site, and the annealing was performed using a continuous annealing method. Among Sample 1 to Sample 5, Sample 3 and Sample 4 are different in plate passing speed when performing continuous annealing at a temperature of 420 ° C. That is, the sample 4 is passed about 33% faster with reference to the passing speed of the sample 3.

表2に示した製造条件で得られた試料1〜試料5の硬質α黄銅の特性と、市販の製品の特性(比較例1〜比較例3として記載したH材及び1/2H材の調質圧延率は、1%〜25%の範囲に入る。)とを対比可能なように表3に掲載した。   Characteristics of hard α brass of Sample 1 to Sample 5 obtained under the manufacturing conditions shown in Table 2 and characteristics of commercially available products (H material described as Comparative Examples 1 to 3 and tempering of 1 / 2H material) The rolling rate is in the range of 1% to 25%).

表3に基づく実施例と比較例との対比: 最初に引張り強さに関して対比する。表3から、本件発明に係る実施例(試料1〜試料5)の各試料の引張り強さは451MPa〜519MPaの範囲にあることが分かる。これに対し、比較例1〜比較例3の引張り強さは410MPa〜499MPaの範囲となっている。従って、本件発明に係る硬質α黄銅である各試料の引張り強さは、JIS C2600、JIS C2680、JIS C2720のいずれかに規定のH材相当の引張り強さを備える事が理解できる。 Comparison of Examples and Comparative Examples Based on Table 3: First, the tensile strength is compared. From Table 3, it can be seen that the tensile strength of each sample of Examples (Sample 1 to Sample 5) according to the present invention is in the range of 451 MPa to 519 MPa. On the other hand, the tensile strengths of Comparative Examples 1 to 3 are in the range of 410 MPa to 499 MPa. Therefore, it can be understood that the tensile strength of each sample which is the hard α brass according to the present invention has a tensile strength equivalent to the H material specified in any of JIS C2600, JIS C2680, and JIS C2720.

次に、硬度と結晶粒径との対比に関して説明する。一般的に、鍛造等の物理的手法で加工を加えると加工硬化を起こし、結晶粒は変形して硬度が上昇する。しかしながら、比較例1〜比較例3の結晶粒径は6μm〜17μm、硬度(ビッカース硬度)は106Hv〜155Hvである。これに対して、試料1〜試料5の結晶粒径は1.2μm〜2.3μm、硬度(ビッカース硬度)は138Hv〜159Hvである。図1に試料1の金属顕微鏡写真を示しているが、この場合の平均結晶粒径は1.9μmである。即ち、試料1〜試料5の結晶粒径は比較例1〜比較例3の結晶粒径と比べて細かいにも拘わらず、硬度(ビッカース硬度)は同程度である。即ち、本件発明に係る硬質α黄銅は、塑性変形する際のスベリ面を遮断する結晶粒界が多く、強度が高くなる。また、本件発明に係る硬質α黄銅の成形加工性が優れているのは、単に転位密度の低い再結晶粒の存在だけに起因するものではなく、種々の方位を持つ微細な結晶粒が多いため、不均質変形を起こしやすくなるためと考えられる。   Next, the contrast between hardness and crystal grain size will be described. In general, when processing is performed by a physical method such as forging, work hardening occurs, and crystal grains are deformed to increase hardness. However, the crystal grain sizes of Comparative Examples 1 to 3 are 6 μm to 17 μm, and the hardness (Vickers hardness) is 106 Hv to 155 Hv. On the other hand, the crystal grain sizes of Sample 1 to Sample 5 are 1.2 μm to 2.3 μm, and the hardness (Vickers hardness) is 138 Hv to 159 Hv. FIG. 1 shows a metallographic micrograph of Sample 1. In this case, the average crystal grain size is 1.9 μm. That is, although the crystal grain sizes of Samples 1 to 5 are smaller than those of Comparative Examples 1 to 3, the hardness (Vickers hardness) is approximately the same. That is, the hard α brass according to the present invention has many crystal grain boundaries that block the sliding surface when plastically deformed, and the strength becomes high. In addition, the excellent formability of the hard α brass according to the present invention is not simply due to the presence of recrystallized grains having a low dislocation density, but because there are many fine crystal grains having various orientations. This is thought to be caused by inhomogeneous deformation.

以上の硬度と結晶粒径との対比からの理解を裏付けるのが、成形加工性の評価試験である。ここでは、180度密着曲げ試験とエリクセン試験とを成形性評価のために用いた。まず、180度密着曲げ試験の結果を対比する。このときの180度密着曲げ試験は、圧延方向に平行に曲げ軸を取る(Bad way曲げ)で、180度密着曲げを行い、外表面を観察し、その検察結果として所見を記載している。この試験に関しては、黄銅板材の厚みが厚いもの程、厳しい試験条件と言える。板厚に関してみると、各試料と比較例との板厚が完全に一致したものはないが、試料1及び試料2の厚さは比較例1よりも厚く、その他の試料3〜試料5は比較例2及び比較例3と同等の厚さとなっている。しかしながら、表3から分かるように、比較例1及び比較例2のH材製品の場合には、180度密着曲げ試験を行うと、全て微小クラックの発生が認められる。これに対し、本件発明に係る試料1〜試料5にはシワ発生が認められる場合はあっても、クラックの発生までは確認できなかった。そして、このことは1/2H材である比較例3と同等の性能を示すことになる。従って、実施例に係る試料1〜試料5は、H材である比較例1及び比較例2よりも成形加工性に優れ、1/2H材と同等の成形加工性を備えると判断できる。   The evaluation test of molding processability supports the understanding from the comparison between the hardness and the crystal grain size. Here, the 180-degree close contact bending test and the Eriksen test were used for formability evaluation. First, the results of the 180-degree contact bending test are compared. In this 180-degree contact bending test, the bending axis is taken in parallel with the rolling direction (Bad way bending), 180-degree contact bending is performed, the outer surface is observed, and the findings are described as inspection results. Regarding this test, the thicker the brass plate, the more severe the test conditions. Regarding the plate thickness, none of the samples and the comparative example have the same thickness, but the thicknesses of the sample 1 and the sample 2 are thicker than those of the comparative example 1, and the other samples 3 to 5 are compared. The thickness is the same as in Example 2 and Comparative Example 3. However, as can be seen from Table 3, in the case of the H material products of Comparative Example 1 and Comparative Example 2, all occurrences of microcracks are observed when the 180 ° adhesion bending test is performed. On the other hand, even if wrinkles were observed in Samples 1 to 5 according to the present invention, it was not possible to confirm until the occurrence of cracks. And this shows the performance equivalent to the comparative example 3 which is a 1 / 2H material. Therefore, it can be judged that Sample 1 to Sample 5 according to the example are superior in molding processability to Comparative Examples 1 and 2 which are H materials and have the same molding processability as 1/2 H materials.

また、成形加工性の判断を行うため、張り出し性の指標となるエリクセン値を測定した。エリクセン試験は、通常手動で行うA法を用いるが、試料1は板厚が厚いため油圧を用いるB法で行った。そして、本来のエリクセン試験は、クラックの発生し始める高さを測定して評価に用いるのであるが、試料1の場合は厚いため、エリクセン値が9.2という高い値を示しているが、B法のためにクラックの発生は明瞭に認められていない。このエリクセン値は、10を超えると絞り加工が可能な成形加工性を備えていると判断される。表3から、他のエリクセン値を判断すると、実施例に係る試料2、試料4、試料5がエリクセン値10.0を超えている。試料3に関しても、エリクセン値が10.0を超えないまでも、9.6という高い値を示している。一方、H材である比較例1及び比較例2のエリクセン値は、7.4〜8.2の範囲であり、実施例に係る各試料のエリクセン値を下回り、成形加工性において劣ることが理解できる。なお、比較例3は、1/2H材であり、このエリクセン値は10.4であり、実施例に係る本件発明に係る硬質α黄銅の成形加工性が、同等のレベルにあることが理解できる。具体的には、同じエリクセン値が得られた試料4と比較例3とを対比すると、引張強さは499MPa(試料4)と410MPa(比較例3)であり、実施例に係る試料4の方が比較例3の1.2倍程度の強度を示している。そして、試料4と比較例3とのエリクセン値は同等である。このことは、その成形加工性に優れた特性が必要であるが故に、従来においては1/2H材を使用せざるを得なかった場合に、同等の成形加工性を示す本件発明に係る硬質α黄銅を選択する事が可能となる。係る場合、本件発明に係る硬質α黄銅は、1/2H材より強度が高いため、同じ強度が要求される限り、材料の薄肉化とコストダウンとを同時に達成することが可能となる。   In addition, in order to determine the moldability, an Erichsen value that is an index of the stretchability was measured. The Eriksen test uses the A method which is usually performed manually, but the sample 1 was performed by the B method using hydraulic pressure because the plate 1 is thick. The original Erichsen test is used for evaluation by measuring the height at which cracks start to occur. In the case of Sample 1, since it is thick, the Eriksen value shows a high value of 9.2. Due to the law, the occurrence of cracks is not clearly recognized. If this Erichsen value exceeds 10, it is determined that the moldability is capable of drawing. When other Erichsen values are judged from Table 3, Sample 2, Sample 4, and Sample 5 according to the examples exceed Erichsen values of 10.0. Sample 3 also shows a high value of 9.6, even if the Erichsen value does not exceed 10.0. On the other hand, the Erichsen value of Comparative Example 1 and Comparative Example 2 which are H materials is in the range of 7.4 to 8.2, which is lower than the Erichsen value of each sample according to the example, and is inferior in molding processability. it can. In addition, the comparative example 3 is a 1 / 2H material, this Erichsen value is 10.4, and it can be understood that the molding processability of the hard α brass according to the present invention according to the example is at an equivalent level. . Specifically, when the sample 4 having the same Erichsen value was compared with the comparative example 3, the tensile strengths were 499 MPa (sample 4) and 410 MPa (comparative example 3). Indicates about 1.2 times the strength of Comparative Example 3. And the Erichsen value of the sample 4 and the comparative example 3 is equivalent. This is because the hard moldability according to the present invention, which shows equivalent molding processability when a 1 / 2H material had to be used in the prior art, is required because of its excellent molding processability characteristics. It becomes possible to select brass. In such a case, since the hard α brass according to the present invention has higher strength than the 1 / 2H material, it is possible to simultaneously achieve a reduction in material thickness and cost reduction as long as the same strength is required.

そして、耐応力腐食割れ性の評価試験の結果を対比して説明する。上述のように、耐応力腐食割れ性は、破断時間が6時間を超えている場合に優れていると評価できる。表3から分かるように、比較例2及び比較例3の破断時間は、1.1時間及び1.3時間となっている。これに対して、本件発明に係る試料1〜試料5の破断時間は6時間〜17時間となり、極めて良好な耐応力腐食割れ性を示すことが分かる。   Then, the results of an evaluation test for stress corrosion cracking resistance will be compared and described. As described above, the stress corrosion cracking resistance can be evaluated as being excellent when the rupture time exceeds 6 hours. As can be seen from Table 3, the break times of Comparative Example 2 and Comparative Example 3 are 1.1 hours and 1.3 hours. On the other hand, the rupture time of Sample 1 to Sample 5 according to the present invention is 6 hours to 17 hours, and it can be seen that extremely good stress corrosion cracking resistance is exhibited.

また、試料2に関しては、表2から明らかなように、冷間加工前の初期結晶粒径1.9μmのα黄銅板材に対し、冷間圧延の加工率を56%とし、再結晶焼鈍を550℃で行っている。これに対し、(1)同じ初期結晶粒径1.9μmのα黄銅板材に対し、実験室的に冷間圧延の加工率を20%とし1.4mmの板厚とし、塩浴を用いた再結晶焼鈍温度を440℃とした場合(試料6)と、(2)同じ初期結晶粒径1.9μmのα黄銅板材に対し1.1mmの板厚とし、冷間圧延の加工率を40%とし、塩浴を用いた再結晶焼鈍温度を420℃とした場合(試料7)との試料を作成し、より適正な加工率の割り出しを行った。このときの試料6及び試料7の結晶粒径と機械的性質とを表4に掲載した。   Further, as apparent from Table 2, with respect to Sample 2, with respect to an α brass sheet having an initial crystal grain size of 1.9 μm before cold working, the cold rolling working rate was set to 56%, and recrystallization annealing was performed at 550. Done at ℃. In contrast, (1) for the same initial crystal grain size of 1.9 μm α brass plate material, the processing rate of cold rolling was laboratory set to 20% and the plate thickness of 1.4 mm, and using a salt bath. When the crystal annealing temperature is set to 440 ° C. (sample 6), and (2) the same initial crystal grain size of 1.9 μm α brass plate, the thickness is 1.1 mm, and the cold rolling processing rate is 40%. A sample was prepared for the case where the recrystallization annealing temperature using a salt bath was 420 ° C. (sample 7), and a more appropriate processing rate was determined. The crystal grain sizes and mechanical properties of Sample 6 and Sample 7 at this time are listed in Table 4.

この表4によれば、初期結晶粒径1.9μmのα黄銅板材に対し、20%の加工を加えても所望の範囲内の特性が得られることが理解できる。しかしながら、試料6の方が引張り強さ及び硬度という観点から見た強度が、試料7に比べ相対的に低く結晶粒径も大きくなっている。従って、40%以上の加工率を適用することがより好ましいことが理解できる。   According to Table 4, it can be understood that characteristics within a desired range can be obtained even when 20% of the processing is applied to an α brass plate material having an initial crystal grain size of 1.9 μm. However, the strength of sample 6 from the viewpoint of tensile strength and hardness is relatively lower than that of sample 7, and the crystal grain size is also large. Therefore, it can be understood that it is more preferable to apply a processing rate of 40% or more.

本件発明に係る硬質α黄銅は、JIS C2600、JIS C2680、JIS C2720に規定するH材と同等の強度を備え、同時に、上述の強加工条件に耐え得る良好な成形加工性及び丹銅と同等の良好な耐応力腐食割れ性を備える。従って、従来の当該H材の使用できなかった環境に於いても使用可能なものとなり、黄銅製品の使用の幅が拡大する。また、本件発明にかかる硬質α黄銅は、JIS C2600、JIS C2680、JIS C2720のいずれかに規定の1/2H材と同程度の成形加工性を要する用途に利用可能であり、しかもH材並の強度があるため、従来1/2H材を使用してきた部品等を薄肉化して軽量化とコストダウンとを図ることが可能となる。   The hard α brass according to the present invention has the same strength as the H material specified in JIS C2600, JIS C2680, and JIS C2720, and at the same time has good moldability that can withstand the above-mentioned strong working conditions and is equivalent to the brass. Has good stress corrosion cracking resistance. Therefore, it can be used even in an environment where the conventional H material cannot be used, and the range of use of brass products is expanded. Further, the hard α brass according to the present invention can be used for applications requiring molding workability equivalent to 1 / 2H material defined in any of JIS C2600, JIS C2680, and JIS C2720, and is comparable to H material. Because of its strength, it is possible to reduce the thickness and cost by reducing the thickness of parts and the like that have conventionally used 1 / 2H materials.

また、本件発明に係る硬質α黄銅の製造は、最終的には再結晶焼鈍を加え、結晶粒径を制御した焼鈍上がり材である点に特徴を有する。この結晶組織は、結晶粒径が微細で有り、且つ、結晶粒の方位が多様となる等の理由で成形加工性に優れたものとなる。本件発明に係る製造方法は、冷間圧延加工前の結晶粒径に応じて、所定の加工率での冷間圧延加工を施し、その後所望の結晶粒径となるように再結晶焼鈍を行うのみで厳密な結晶制御が可能であり、制御ポイントが少なく、短い工程と出来るため、本件発明に係る硬質α黄銅を安価且つ効率よく生産することが可能となる。   In addition, the production of the hard α brass according to the present invention is characterized in that it is an annealed material that is finally subjected to recrystallization annealing to control the crystal grain size. This crystal structure is excellent in moldability because the crystal grain size is fine and the crystal grain orientations are varied. The manufacturing method according to the present invention only performs cold rolling at a predetermined processing rate according to the crystal grain size before cold rolling, and then performs recrystallization annealing so as to obtain a desired crystal grain size. Therefore, it is possible to produce a hard α brass according to the present invention at a low cost and efficiently because the crystal can be controlled strictly and the number of control points is small.

試料1の硬質α黄銅の金属顕微鏡による結晶組織写真である。2 is a photograph of a crystal structure of a hard α brass of sample 1 taken with a metallographic microscope. 耐応力腐食割れ性の指標として用いる破断時間を測定する際の測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method at the time of measuring the fracture | rupture time used as a parameter | index of stress corrosion cracking resistance.

符号の説明Explanation of symbols

1 サンプル
2 プラスチック袋
3 挿入開口部
4 胴体部
5 アンモニア水
6 分銅
7 着脱部材
1 Sample 2 Plastic bag 3 Insertion opening 4 Body 5 Ammonia water 6 Weight 7 Detachable member

Claims (5)

銅71.5重量%〜62.0重量%と不可避不純物とを除き残部が亜鉛とからなるα黄銅において、
引張り強さが451MPa〜519MPaであり、エリクセン値が8.5以上という成形加工性を備え、且つ、応力腐食割れ破断時間が6時間以上の耐応力腐食割れ性能を備えたことを特徴とした硬質α黄銅。
In α brass composed of 71.5 wt% to 62.0 wt% of copper and unavoidable impurities and the balance consisting of zinc,
Hardness characterized by having a tensile strength of 451 MPa to 519 MPa, an Erichsen value of 8.5 or more, and a stress corrosion cracking resistance performance of 6 hours or more. α brass.
平均結晶粒径が1μm〜2μmである請求項1に記載の硬質α黄銅。 The hard α brass according to claim 1, wherein the average crystal grain size is 1 μm to 2 μm. 任意の粒径のα黄銅板材を、83%以上の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする請求項1又は請求項2に記載の硬質α黄銅の製造方法。 3. The production of hard α brass according to claim 1, wherein the α brass plate material having an arbitrary particle size is cold-rolled at a processing rate of 83% or more, and then recrystallized and annealed. Method. 平均結晶粒径を1μm〜2μmに調整したα黄銅板材を、20%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする請求項1又は請求項2に記載の硬質α黄銅の製造方法。 The α-brass plate material having an average crystal grain size adjusted to 1 μm to 2 μm is cold-rolled at a processing rate of 20% to 82%, and then subjected to a recrystallization annealing process. The manufacturing method of the hard alpha brass of description. 平均結晶粒径を3μm〜6μmに調整したα黄銅板材を、70%〜82%の加工率で冷間圧延加工した後、再結晶焼鈍処理を行うことを特徴とする請求項1又は請求項2に記載の硬質α黄銅の製造方法。 The α-brass plate material having an average crystal grain size adjusted to 3 μm to 6 μm is cold-rolled at a processing rate of 70% to 82%, and then subjected to a recrystallization annealing process. The manufacturing method of the hard alpha brass of description.
JP2005231121A 2005-08-09 2005-08-09 Hard α brass and method for producing the hard α brass Active JP5032011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231121A JP5032011B2 (en) 2005-08-09 2005-08-09 Hard α brass and method for producing the hard α brass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231121A JP5032011B2 (en) 2005-08-09 2005-08-09 Hard α brass and method for producing the hard α brass

Publications (2)

Publication Number Publication Date
JP2007046101A true JP2007046101A (en) 2007-02-22
JP5032011B2 JP5032011B2 (en) 2012-09-26

Family

ID=37849179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231121A Active JP5032011B2 (en) 2005-08-09 2005-08-09 Hard α brass and method for producing the hard α brass

Country Status (1)

Country Link
JP (1) JP5032011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001852A1 (en) * 2006-06-30 2008-01-03 Nippon Mining & Metals Co., Ltd. Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JP2013209676A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Cu-Zn ALLOY PLATE EXCELLENT IN STRESS RELAXATION RESISTANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170646A (en) * 1989-11-28 1991-07-24 Nippon Mining Co Ltd Manufacture of copper alloy having fine crystalline grains as well as low strength
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170646A (en) * 1989-11-28 1991-07-24 Nippon Mining Co Ltd Manufacture of copper alloy having fine crystalline grains as well as low strength
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001852A1 (en) * 2006-06-30 2008-01-03 Nippon Mining & Metals Co., Ltd. Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JP2008007839A (en) * 2006-06-30 2008-01-17 Nikko Kinzoku Kk Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JP2013209676A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Cu-Zn ALLOY PLATE EXCELLENT IN STRESS RELAXATION RESISTANCE

Also Published As

Publication number Publication date
JP5032011B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP2009062610A (en) Cu-Zn-Sn BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING THE SAME, AND CONNECTOR
JP2006219763A (en) Al-Mg BASED ALLOY SHEET WITH GOOD PRESS FORMABILITY
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JP2007138227A (en) Magnesium alloy material
JP2009185341A (en) Copper alloy sheet material, and method for producing the same
JP2006257506A (en) Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP2011508081A (en) Copper-nickel-silicon alloy
CN110592444A (en) 700-doped 720 MPa-strength heat-resistant high-intergranular corrosion-resistant aluminum alloy and preparation method thereof
CN1086207C (en) Grain refined tin brass
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP4642119B2 (en) Copper alloy and method for producing the same
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
JP2016138317A (en) High strength aluminum alloy extrusion material excellent in impact resistance and manufacturing method therefor
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP5665186B2 (en) Copper-zinc alloy strip
JP2005139530A (en) Method of producing aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250