JP2007044580A - Solubilization manufacturing method of fermented nutritional source - Google Patents

Solubilization manufacturing method of fermented nutritional source Download PDF

Info

Publication number
JP2007044580A
JP2007044580A JP2005229089A JP2005229089A JP2007044580A JP 2007044580 A JP2007044580 A JP 2007044580A JP 2005229089 A JP2005229089 A JP 2005229089A JP 2005229089 A JP2005229089 A JP 2005229089A JP 2007044580 A JP2007044580 A JP 2007044580A
Authority
JP
Japan
Prior art keywords
acid
solid
protein
fermentation
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005229089A
Other languages
Japanese (ja)
Inventor
Makoto Hirata
誠 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2005229089A priority Critical patent/JP2007044580A/en
Publication of JP2007044580A publication Critical patent/JP2007044580A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a solubilizing method of a protein-containing organic matter, treat the protein-containing organic matter by the solubilizing method, and at the same time, provide a manufacturing method of a nutritional source low in cost. <P>SOLUTION: A solubilization manufacturing method of the fermented nutritional source comprises the steps of carrying out a solid-liquid separation after an autoclave treatment of the protein-containing organic matter is previously carried out with an acid or alkali, of carrying out the solid-liquid separation after the separated solid residual is hydrolyzed with the acid or alkali, and of mixing these solid-liquid separated clear supernatant liquids. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は蛋白質含有有機物から発酵栄養源を可溶化製造する方法に関するものである。 The present invention relates to a method for solubilizing and producing a fermentation nutrient source from a protein-containing organic material.

近年,蛋白質含有廃棄物が環境問題となってきた。この廃棄物の栄養源としての活用について様々研究された。特に水産廃棄物は栄養物が多く含まれるため,最も使用しやすいと考えられる。これについての研究は魚蛋白質加水分解物の生産,水産廃棄物の飼肥料化,水産廃棄物からの単細胞蛋白質の生産,魚内臓からペプトンの生産などである。
また,これらの廃棄物を用いた発酵への応用が注目されてきた。菌体の成長には炭素源の他,アミノ酸等の窒素源,ビタミンBのような栄養源が必須である。通常の培養においては,栄養源として酵母エキスを用いる場合が多いが,これは経済的ではない。そのため,多くの研究者は酵母エキスやペプトン等の代わりに,ホエー蛋白質及び魚内臓のような蛋白質含有廃棄物を発酵の栄養源とする調査を行った。通常,水産廃棄物加工及び蛋白質の回収には酵素による加水分解を適用しているが,安全性は高いものの,反応速度が遅く,コストが高いという欠点がある。それに対し,酸あるいはアルカリによる加水分解は,反応時間が短く,コストが低いという利点を有する。しかしながら,酸あるいはアルカリ加水分解では,ビタミンのような栄養源の多くが破壊されやすい問題がある。また,従来の蛋白質加水分解法は高濃度の塩酸あるいは硫酸を加えて加熱することにより行われてきたが,酸のコストが高く,酸による装置の腐食と高い塩分による発酵阻害という欠点がある。実際のところ,発酵では高濃度の酸により生成された酸加水分解物が酵母エキスに匹敵する例はない。これは,菌体成長するのに必要な窒素源以外の栄養源が,高濃度の酸により破壊されるということと,そのため高濃度の酸を中和した酸加水分解物を大量に必要とすることにより,高い塩分が発酵に悪影響を及ぼすためである。
無し
In recent years, protein-containing waste has become an environmental problem. Various studies have been conducted on the use of this waste as a nutrient source. In particular, marine waste is thought to be the easiest to use because it contains a lot of nutrients. Research on this includes the production of fish protein hydrolysates, the production of marine waste as fertilizer, the production of single-cell proteins from marine waste, and the production of peptone from fish internal organs.
In addition, application to fermentation using these wastes has attracted attention. In addition to carbon sources, nitrogen sources such as amino acids and nutrient sources such as vitamin B are essential for the growth of the cells. In normal culture, yeast extract is often used as a nutrient source, but this is not economical. For this reason, many researchers have conducted research using protein-containing wastes such as whey protein and fish internal organs as nutrients for fermentation instead of yeast extract and peptone. In general, enzymatic hydrolysis is applied to marine waste processing and protein recovery. However, although it is highly safe, the reaction rate is slow and the cost is high. On the other hand, hydrolysis with acid or alkali has the advantages of short reaction time and low cost. However, acid or alkaline hydrolysis has a problem that many nutrient sources such as vitamins are easily destroyed. In addition, the conventional protein hydrolysis method has been carried out by adding high-concentration hydrochloric acid or sulfuric acid and heating. However, the cost of the acid is high, and there are disadvantages of corrosion of the apparatus by acid and inhibition of fermentation by high salt content. In fact, in fermentation there is no example where the acid hydrolyzate produced by a high concentration of acid is comparable to yeast extract. This means that nutrient sources other than the nitrogen source necessary for cell growth are destroyed by high-concentration acid, and therefore a large amount of acid hydrolyzate that neutralizes high-concentration acid is required. This is because high salt has an adverse effect on fermentation.
None

本発明が解決しようとする課題は,蛋白質含有有機物の可溶化法を改善し,酸あるいはアルカリ加水分解による栄養の破壊と品質低下を解決する方法を提供しようとするものである。 The problem to be solved by the present invention is to improve the solubilization method of protein-containing organic substances and to provide a method for solving the destruction of nutrients and deterioration of quality due to acid or alkali hydrolysis.

本発明は上記課題を解決するために講じたものであり,蛋白質含有有機物を予め酸あるいはアルカリなしでオートクレーブ処理した後,固液分離し,得られた上清を保留し,固体残渣のみを酸あるいはアルカリによる加水分解を行い,再び固液分離し,ここで得られた上清を上記保留した上清と混ぜることによりにより,発酵に十分な栄養源が得られるものである。即ち,本発明は蛋白質含有有機物を有効に処理するとともに,発酵の栄養源コストを低減する発酵栄養源の可溶化製造方法である。 The present invention has been devised to solve the above-mentioned problems. After the protein-containing organic matter is autoclaved without an acid or alkali in advance, it is subjected to solid-liquid separation, the resulting supernatant is retained, and only the solid residue is acidified. Alternatively, by performing hydrolysis with alkali, solid-liquid separation again, and mixing the supernatant obtained here with the retained supernatant, a nutrient source sufficient for fermentation can be obtained. That is, the present invention is a method for solubilizing and producing a fermented nutrient source that effectively treats a protein-containing organic substance and reduces the cost of the nutrient source for fermentation.

上記したように本発明によれば,本可溶化法により蛋白質含有有機物を効率的に処理でき,可溶化物は発酵に高い生産性を与えることが出来た。これにより,廃棄物処理が出来るとともに,発酵の栄養源コストを抑えるに至った。
次に実施例をあげ,本発明を更に具体的に説明するが,本発明はこれらにより限定されるものではない。本研究において用いる発酵は,Lactobacillus rhamnosus (NBRC 3863)による乳酸発酵である。発酵は,42℃,pH6.0で嫌気的な条件で行った。ここでの発酵において共通の基本培地は、グルコース 100 g/L,NaCl 0.1 g/L,K2HPO4 0.50 g/L,MgSO4 2.0 g/Lである。
As described above, according to the present invention, protein-containing organic matter can be efficiently treated by the solubilization method, and the solubilized product can give high productivity to fermentation. As a result, it was possible to treat waste and to reduce the nutrient cost of fermentation.
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The fermentation used in this study is lactic acid fermentation by Lactobacillus rhamnosus (NBRC 3863). Fermentation was performed under anaerobic conditions at 42 ° C and pH 6.0. A common basic medium in the fermentation is glucose 100 g / L, NaCl 0.1 g / L, K 2 HPO 4 0.50 g / L, MgSO 4 2.0 g / L.

本発明の実施の形態は図1に示すように,改良した従来法を可溶化法A,本新規可溶化法を可溶化法Bとする。以下に詳細に説明する。可溶化法Aでは,ビタミン,核酸のような破壊されやすい栄養源を出来る限り保全するため,通常用いられる高濃度の酸あるいはアルカリではなく,希釈された酸あるいはアルカリを用いてオートクレーブにより加水分解を行うよう改良した。その後遠心分離で固液分離し,上清を発酵の栄養源とする。可溶化法Bでは,破壊されやすい栄養源をさらに保全するため,酸あるいはアルカリ加水分解の前段階としてオートクレーブ処理により水抽出する。尚,酸あるいはアルカリのない状態で熱をかけると,分子量の大きい蛋白質が変性して固まるため,静置のみで固液分離が出来る利点を有する。この上清1には,可溶性蛋白質,ビタミン類と核酸等菌体の成長に必要な栄養源が含まれている。残渣に含まれる固化した蛋白質は,可溶化法Aにより加水分解し,遠心分離で得られた上清2を上記の上清1と混ぜ,発酵の栄養源とする。これらの可溶化法は従来の一般的な高濃度の酸による加水分解プロセスと比べ,酸のコストが低く,破壊されやすい栄養源の保全ができる上,加水分解後の中和が容易といった利点が挙げられる。また,従来の高濃度の酸による加水分解プロセスでは,栄養源の破壊により多量の加水分解物を添加する必要があるが,中和後の塩分濃度が高く,塩が発酵に悪影響を与えるため,酵母エキスやペプトンのような高価な栄養源と組み合わせて発酵を行わなければならない。それに対し,本可溶化法により得られる可溶化物は,塩分の影響は無視できる程であり,多量の可溶化物を添加も可能で,生産性をより高めることも出来る。
本可溶化法により得られる可溶化物はそのまま使用できるが,凍結乾燥により乾燥粉末としても品質は低下しない。
本可溶化法により得られる可溶化物あるいは可溶化物粉末は,酵母エキスなどの高価な栄養源の代替物として使用でき,生産性及び収率を低下せずに発酵が行え,発酵コストを抑えることが出来る。
In the embodiment of the present invention, as shown in FIG. 1, the improved conventional method is a solubilization method A, and the new solubilization method is a solubilization method B. This will be described in detail below. In the solubilization method A, in order to preserve as much as possible the nutrients that are easily destroyed such as vitamins and nucleic acids, hydrolysis is carried out by autoclaving using diluted acids or alkalis instead of the usual high concentrations of acids or alkalis. Improved to do. Then, solid-liquid separation is performed by centrifugation, and the supernatant is used as a nutrient source for fermentation. In solubilization method B, water is extracted by autoclaving as a pre-stage of acid or alkaline hydrolysis to further preserve nutrients that are easily destroyed. If heat is applied in the absence of acid or alkali, the protein having a large molecular weight is denatured and solidified, so that there is an advantage that solid-liquid separation can be performed only by standing. The supernatant 1 contains nutrients necessary for the growth of cells such as soluble proteins, vitamins and nucleic acids. The solidified protein contained in the residue is hydrolyzed by solubilization method A, and the supernatant 2 obtained by centrifugation is mixed with the above supernatant 1 to serve as a nutrient source for fermentation. These solubilization methods have the advantages of lower acid costs, the preservation of nutrient sources that are easily destroyed, and easier neutralization after hydrolysis compared to conventional high-concentration acid hydrolysis processes. Can be mentioned. In addition, in the conventional hydrolysis process with a high concentration of acid, it is necessary to add a large amount of hydrolyzate due to the destruction of nutrient sources, but the salt concentration after neutralization is high and the salt adversely affects the fermentation. Fermentation must be performed in combination with expensive nutrient sources such as yeast extract and peptone. On the other hand, the solubilized product obtained by this solubilization method has negligible influence of salinity, so that a large amount of solubilized product can be added and the productivity can be further increased.
The solubilized product obtained by this solubilization method can be used as it is, but the quality does not deteriorate even when the powder is dried by lyophilization.
The solubilized product or solubilized product powder obtained by this solubilization method can be used as an alternative to expensive nutrient sources such as yeast extract, allowing fermentation without reducing productivity and yield, and reducing fermentation costs. I can do it.

実施例1は蛋白質含有廃棄物の可溶化物を栄養源とした乳酸発酵例である。
から揚げ50 gとアジの開き50 gをミキサーで粉砕した後混合し,これを原料として可溶化法AとBにより可溶化物を作った。可溶化法AとBの手順を図1に示す。可溶化法Aでは,塩酸を用いてpH1の廃棄物混合液を調製し,オートクレーブ処理(121℃で20分間)で加熱した後,遠心分離により固液分離した。ここで得られた上清を発酵の栄養源とする。可溶化法Bでは,酸を添加しない廃棄物混合液をオートクレーブ処理(121℃で20分間)により水抽出した後,静置して固液分離する。分離された上清1は保留し,塩酸を用いて残渣1はpH1の懸濁液とした後,オートクレーブ処理(121℃で40分間)により加水分解した。この加水分解物の遠心分離により得られた上清2を先の上清1と混ぜ,発酵の栄養源として基本培地に加えた培地を調整した。
結果を図2と表1に示す。
Example 1 is an example of lactic acid fermentation using a solubilized product of protein-containing waste as a nutrient source.
50 g of fried rice and 50 g of horse mackerel were pulverized with a mixer and mixed. Solubilized materials were prepared by solubilization methods A and B using this as a raw material. The procedure of solubilization methods A and B is shown in FIG. In solubilization method A, a pH 1 waste mixture was prepared using hydrochloric acid, heated in an autoclave (121 ° C for 20 minutes), and then solid-liquid separated by centrifugation. The supernatant obtained here is used as a nutrient source for fermentation. In solubilization method B, the waste mixture without addition of acid is extracted with water by autoclaving (at 121 ° C for 20 minutes), and then left to stand for solid-liquid separation. The separated supernatant 1 was retained, and the residue 1 was made into a pH 1 suspension using hydrochloric acid, followed by hydrolysis by autoclaving (121 ° C. for 40 minutes). The supernatant 2 obtained by centrifugation of this hydrolyzate was mixed with the previous supernatant 1 to prepare a medium added to the basic medium as a nutrient source for fermentation.
The results are shown in FIG.

Figure 2007044580
酸加水分解を一切行わずに粉砕した混合廃棄物を直接添加した場合では,生産性が非常に低く,発酵開始後100時間以降乳酸はほとんど生成されず,発酵開始約160時間で得られた乳酸量は約65 gで,収率は65%しかなかった。尚,栄養源添加なしでは発酵が全く進まなかったため,廃棄物を直接添加しても発酵前の滅菌を目的としたオートクレーブ処理によりある程度の効果は見られたが,明らかな栄養源不足であった。これに対し,可溶化法AとBにより生成された可溶化物を添加した場合では,発酵は早く終了し,可溶化物は発酵に十分な栄養源として寄与した。特に可溶化法Bの場合では,発酵は30時間で終了し,20 g/Lの酵母エキスを用いた発酵とほぼ同程度の生産性を得ることが出来た。可溶化法Aとの比較において,可溶化法Bは乳酸生成が早く開始しており,最終生産性は約3倍向上した。このことにより,本可溶化法により得られる蛋白質含有廃棄物の可溶化物は発酵の栄養源として十分有効であることが明らかとなった。
Figure 2007044580
When mixed ground waste that has been pulverized without any acid hydrolysis is added directly, the productivity is very low, and almost no lactic acid is produced after 100 hours from the start of fermentation. The amount was about 65 g and the yield was only 65%. In addition, fermentation did not proceed at all without the addition of nutrients, so even if waste was added directly, autoclave treatment for the purpose of sterilization before fermentation had some effect, but there was a clear lack of nutrients. . In contrast, when solubilized products produced by solubilization methods A and B were added, the fermentation was completed early, and the solubilized product contributed as a sufficient nutrient source for the fermentation. In particular, in the case of solubilization method B, the fermentation was completed in 30 hours, and almost the same productivity as fermentation using 20 g / L yeast extract was obtained. In comparison with solubilization method A, solubilization method B started lactic acid production earlier, and the final productivity improved about 3 times. Thus, it was revealed that the solubilized protein-containing waste obtained by this solubilization method is sufficiently effective as a nutrient source for fermentation.

次に発酵に及ぼす可溶化に供する魚廃棄物量の影響について詳述する。
可溶化物濃度の影響を調べるため,100 g(乾燥質量 38 g),150 g(乾燥質量 57 g)及び200 g(乾燥質量 76 g)の魚廃棄物を可溶化法Bにより処理し,発酵の栄養源として用いた。可溶化条件は実施例1に記載した通りである。発酵に及ぼす魚廃棄物量の影響は、図3及び表2に示すように,廃棄物量の増加に従って,生産性が高くなることが分かる。
Next, the influence of the amount of fish waste used for solubilization on fermentation will be described in detail.
To investigate the effect of lysate concentration, 100 g (dry mass 38 g), 150 g (dry mass 57 g) and 200 g (dry mass 76 g) fish waste were treated by solubilization method B and fermented. Used as a nutrient source. Solubilization conditions are as described in Example 1. As shown in FIG. 3 and Table 2, the influence of the amount of fish waste on fermentation shows that productivity increases as the amount of waste increases.

Figure 2007044580
Figure 2007044580

実施例2は、魚廃棄物の可溶化物粉末を栄養源とした乳酸発酵例である。
工業的な応用ではハンドリングが重要であり,これを容易にするため,可溶化物は粉末とすることが望ましい。ここでは,可溶化法Bにより得られた魚廃棄物の可溶化物を凍結乾燥により粉末とした。可溶化条件は実施例1に記載した通りである。操作手順としては,可溶化法Bにより液状可溶化物を作った後,凍結乾燥装置で可溶化物の質量が一定になるまで乾燥させた。ここでは,150 gの魚廃棄物より49 gの粉末が得られた。
図4(魚廃棄物の可溶化物粉末を栄養源とした乳酸発酵)に示すように,液状可溶化物を用いた発酵と粉末可溶化物を用いた発酵は,ほぼ同時間で終了し,同様の生産性であったことより,凍結乾燥で作られた乾燥粉末は品質の低下がないことが明らかとなった。
Example 2 is an example of lactic acid fermentation using solubilized powder of fish waste as a nutrient source.
In industrial applications, handling is important. To make this easier, the solubilized product is preferably a powder. Here, the solubilized fish waste obtained by the solubilization method B was lyophilized into powder. Solubilization conditions are as described in Example 1. As an operation procedure, a liquid solubilizate was prepared by solubilization method B, and then dried by a freeze-drying apparatus until the mass of the solubilizate became constant. Here, 49 g of powder was obtained from 150 g of fish waste.
As shown in Fig. 4 (lactic acid fermentation using solubilized powder of fish waste as a nutrient source), the fermentation using the liquid solubilized product and the fermentation using the powder solubilized product were completed in substantially the same time, It was clarified that the dry powder made by freeze-drying had no deterioration in quality because of the same productivity.

本発明によれば,本可溶化法により蛋白質含有有機物を効率的に処理でき,可溶化物は発酵に高い生産性を与えることが出来た。これにより,廃棄物処理が出来るとともに,発酵の栄養源コストを抑えるに至った。 According to the present invention, protein-containing organic substances can be efficiently treated by this solubilization method, and the solubilized substances can give high productivity to fermentation. As a result, it was possible to treat waste and to reduce the nutrient cost of fermentation.

可溶化法A、Bの処理フローを示す説明図である。It is explanatory drawing which shows the processing flow of solubilization method A and B. FIG. 蛋白質含有廃棄物の可溶化物を栄養源とした乳酸発酵の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the lactic acid fermentation which used the solubilized material of the protein containing waste as a nutrient source. 発酵に及ぼす可溶化に供する魚廃棄物量の影響を示すグラフである。It is a graph which shows the influence of the amount of fish waste provided to solubilization which acts on fermentation. 魚廃棄物の可溶化物粉末を栄養源とした乳酸発酵を示すグラフである。It is a graph which shows lactic acid fermentation which used the solubilized powder of fish waste as a nutrient source.

符号の説明Explanation of symbols

特に無し
None

Claims (5)

蛋白質含有有機物を予め酸あるいはアルカリによりオートクレーブ処理して後固液分離し、その分離固体残渣を酸あるいはアルカリにより加水分解して後固液分離し,これら固液分離した上澄液を混合してなることを特徴とする発酵栄養源の可溶化製造方法。 The protein-containing organic matter is autoclaved with acid or alkali in advance and then separated into solid and liquid. The separated solid residue is hydrolyzed with acid or alkali and then separated into solid and liquid, and these solid and liquid separated supernatants are mixed. A method for solubilizing and producing a fermented nutrient source. 蛋白質含有有機物を予め酸あるいはアルカリによりオートクレーブ処理して後固液分離し、その分離固体残渣を酸あるいはアルカリにより加水分解して後固液分離し,これら固液分離した上澄液を混合して凍結乾燥で乾燥粉末にすることを特徴とする発酵栄養源の可溶化製造方法。 The protein-containing organic matter is autoclaved with acid or alkali in advance and then separated into solid and liquid. The separated solid residue is hydrolyzed with acid or alkali and then separated into solid and liquid, and these solid and liquid separated supernatants are mixed. A method for solubilizing and producing a fermented nutrient source, wherein the powder is freeze-dried to obtain a dry powder. オートクレーブ処理の抽出水の温度を50℃から180℃にすることを特徴とする請求項1に記載の発酵栄養源の可溶化製造方法。 2. The method for solubilizing and producing a fermented nutrient source according to claim 1, wherein the temperature of the extraction water in the autoclave treatment is 50 ° C. to 180 ° C. 加水分解に使用する酸として、塩酸,硫酸,水酸化ナトリウム,水酸化カリウムを用いることを特徴とする請求項1に記載の発酵栄養源の可溶化製造方法。 2. The method for solubilizing and producing a fermentation nutrient source according to claim 1, wherein hydrochloric acid, sulfuric acid, sodium hydroxide, or potassium hydroxide is used as an acid used for hydrolysis. 蛋白質含有有機物として,動物性蛋白質,及び又は植物性蛋白質を主体とする廃棄物であることを特徴とする請求項1に記載の発酵栄養源の可溶化製造方法。
2. The method for solubilizing and producing a fermented nutrient source according to claim 1, wherein the protein-containing organic substance is a waste mainly composed of animal protein and / or vegetable protein.
JP2005229089A 2005-08-08 2005-08-08 Solubilization manufacturing method of fermented nutritional source Pending JP2007044580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229089A JP2007044580A (en) 2005-08-08 2005-08-08 Solubilization manufacturing method of fermented nutritional source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229089A JP2007044580A (en) 2005-08-08 2005-08-08 Solubilization manufacturing method of fermented nutritional source

Publications (1)

Publication Number Publication Date
JP2007044580A true JP2007044580A (en) 2007-02-22

Family

ID=37847886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229089A Pending JP2007044580A (en) 2005-08-08 2005-08-08 Solubilization manufacturing method of fermented nutritional source

Country Status (1)

Country Link
JP (1) JP2007044580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903740A (en) * 2016-03-29 2016-08-31 杨宗波 Harmless treatment process for animal carcass
WO2016209095A1 (en) * 2015-06-23 2016-12-29 23 Rs Coras Sp Z O.O. Mixture with high carbon contents, method for obtaining mixture with high carbon contents and use of the mixture in an activated sludge process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209095A1 (en) * 2015-06-23 2016-12-29 23 Rs Coras Sp Z O.O. Mixture with high carbon contents, method for obtaining mixture with high carbon contents and use of the mixture in an activated sludge process
CN105903740A (en) * 2016-03-29 2016-08-31 杨宗波 Harmless treatment process for animal carcass

Similar Documents

Publication Publication Date Title
García et al. Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis
Gao et al. Acid-hydrolysis of fish wastes for lactic acid fermentation
Bhaskar et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease
Guérard et al. Recent developments of marine ingredients for food and nutraceutical applications: a review.
CN104003766A (en) Method for producing amino acid fertilizer by means of waste water and meat and bone meal generated by livestock harmless treatment
TW201915165A (en) Bacillus subtilis strain for preparing fermented feather meal and use thereof for producing feather powder and proteolytic enzyme and keratinolytic enzyme strains
Lu et al. Highly efficient shrimp shell recovery by solid-state fermentation with Streptomyces sp. SCUT-3
Kasmi et al. Novel approach for the use of dairy industry wastes for bacterial growth media production
CN106086128A (en) A kind of preparation method of tuna peptone
CN108796016B (en) Walnut peptide and enzymolysis extraction method thereof
JP2007044580A (en) Solubilization manufacturing method of fermented nutritional source
EP2210678A1 (en) Biotechnological method for the processing of meat by-products and resulting product
CN107494891A (en) A kind of method that mycoprotein makes animal food additive
Sun et al. Producing amino acid fertilizer by hydrolysis of the fermented mash of food waste with the synergy of three proteases expressed by engineered Candida utilis
KR20230150357A (en) How to Produce Cell Growth Media
Neklyudov et al. Production and purification of protein hydrolysates
Ji et al. A synergistic catalytic system of keratinase and disulfide reductase for the bioconversion of feather wastes to feed alternative protein
KR20140115054A (en) Method for manufacturing Fish Liquefied Fertilizer from Marine wastes
Ovissipour et al. Use of hydrolysates from Yellowfin tuna Thunnus albacares fisheries by-product as a nitrogen source for bacteria growth media
CN114262676A (en) Method for producing amino acid by efficiently degrading feather keratin with bacillus
Dong et al. Research on the suitable parameters for hydrolysis reaction of red meat of striped tuna (Sarda orientalis) by using commercial protamex
WO2016209095A1 (en) Mixture with high carbon contents, method for obtaining mixture with high carbon contents and use of the mixture in an activated sludge process
FR3072002B1 (en) PROCESS FOR PREPARING A FOOD GEL OF PEANUT PROTEINS, GEL OBTAINED AND USE THEREOF
Calzoni et al. Mixed microbial and thermal degradation of agricultural derived plant wastes.
JP5458536B2 (en) Method for producing lactic acid and additive for lactic acid fermentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519