JP2007042559A - Transmission type photoelectric surface and photodetector - Google Patents

Transmission type photoelectric surface and photodetector Download PDF

Info

Publication number
JP2007042559A
JP2007042559A JP2005228237A JP2005228237A JP2007042559A JP 2007042559 A JP2007042559 A JP 2007042559A JP 2005228237 A JP2005228237 A JP 2005228237A JP 2005228237 A JP2005228237 A JP 2005228237A JP 2007042559 A JP2007042559 A JP 2007042559A
Authority
JP
Japan
Prior art keywords
layer
photocathode
nitride semiconductor
group iii
iii nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005228237A
Other languages
Japanese (ja)
Other versions
JP4772414B2 (en
Inventor
Tokuaki Futahashi
得明 二橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2005228237A priority Critical patent/JP4772414B2/en
Publication of JP2007042559A publication Critical patent/JP2007042559A/en
Application granted granted Critical
Publication of JP4772414B2 publication Critical patent/JP4772414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric surface improved in linearity characteristics while suppressing the pollution of the emission face of photoelectrons by introducing a conductive layer which maintains sufficient ultraviolet region transmittance, and a photoelectric cathode. <P>SOLUTION: The photoelectric surface 1 is provided with a glass substrate 11 of which on one face ultraviolet rays enter, an adhesion layer 12 formed on the other face opposed to one face of the glass substrate 11, a group III nitride semiconductor layer 14 which is located on the side of the other face of the glass substrate 11 and generates photoelectrons according to the incidence of the ultraviolet rays, and an ultraviolet region transparent conductive layer 13 which is located between the adhesion layer 12 and the group III nitride semiconductor layer 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、III族窒化物半導体層を含む透過型光電面及びこれを用いた光検出器に関する。   The present invention relates to a transmission type photocathode including a group III nitride semiconductor layer and a photodetector using the same.

光電子増倍管などの光電面には、例えばIII-V族化合物半導体が用いられ、その中でも、III族窒化物半導体は、高い量子効率、高信頼性等の優れた特性を有すると共に、強度や環境への影響の面からも良質な材料である。   For example, a group III-V compound semiconductor is used for the photocathode such as a photomultiplier tube. Among them, a group III nitride semiconductor has excellent characteristics such as high quantum efficiency and high reliability, It is also a good material in terms of environmental impact.

III族窒化物半導体を用いた透過型光電面としては、UVガラス基板と、UVガラス基板上に形成されたSiO層、III族窒化物半導体層及びアルカリ金属含有層からなる積層体と、積層体の周縁部に形成され、積層体に電位を与えるための電極部を備える透過型光電面が知られている(特許文献1参照)。
特許第3623068号公報
As a transmission type photocathode using a group III nitride semiconductor, a UV glass substrate, a laminate composed of a SiO 2 layer, a group III nitride semiconductor layer and an alkali metal-containing layer formed on the UV glass substrate, 2. Description of the Related Art A transmission type photocathode that is formed on a peripheral portion of a body and includes an electrode portion for applying a potential to a stacked body is known (see Patent Document 1).
Japanese Patent No. 3623068

透過型光電面におけるIII族窒化物半導体の特性には、p型が選択されるのが一般的である。しかし、p型ドーパントであるMgの活性化エネルギーEaは、GaNにおいてEa=150meV、Al0.3GaNにおいてはEa=300meVと非常に大きく、キャリアの発生率は低い。また、キャリア濃度を高めるためにドーパント濃度を高めることも考えられるが、活性層の結晶質を低下させるため、高濃度化には限界がある。 In general, the p-type is selected for the characteristics of the group III nitride semiconductor on the transmission type photocathode. However, the activation energy Ea of Mg, which is a p-type dopant, is very large with Ea = 150 meV in GaN and Ea = 300 meV in Al 0.3 GaN, and the carrier generation rate is low. Although it is conceivable to increase the dopant concentration in order to increase the carrier concentration, there is a limit to increasing the concentration because the crystal quality of the active layer is lowered.

さらに、III族窒化物半導体を用いた光電面は、上述のようにEaが大きいというだけでなく、薄膜であるためにシート抵抗が高い。透過型光電面では、窒化物半導体層の所要膜厚は100nm程度であるが、この場合、シート抵抗はGaNで数GΩ/□(sq.)、Al0.3GaNにおいては数100GΩ/□(sq.)にまで達する。そのため、光電面の高速応答性が悪化する上に、リニアリティ特性が大きく低下し、例えば、光電管や光電子増倍管等の光検出器に用いた場合、光検出器のリニアリティ特性も大きく低下する。また、近接型イメージインテンシファイアに用いた場合にはゲート特性が大きく低下する。 Furthermore, the photocathode using a group III nitride semiconductor not only has a large Ea as described above, but also has a high sheet resistance because it is a thin film. In the transmission type photocathode, the required film thickness of the nitride semiconductor layer is about 100 nm. In this case, the sheet resistance is several GΩ / □ (sq.) For GaN, and several 100 GΩ / □ (for Al 0.3 GaN). sq.). Therefore, the high-speed response of the photocathode is deteriorated and the linearity characteristic is greatly reduced. For example, when used in a photodetector such as a photoelectric tube or a photomultiplier tube, the linearity characteristic of the photodetector is also greatly reduced. In addition, when used in the proximity image intensifier, the gate characteristics are greatly deteriorated.

そこで、本発明者は、III族窒化物半導体層を含む透過型光電面において導電層を導入することについて検討を行った。具体的には、透過型光電面における活性層の真空側表面に、金属膜等を極薄くあるいは格子状やメッシュ状に形成することについて検討を行った。   In view of this, the present inventor has studied the introduction of a conductive layer in a transmissive photocathode including a group III nitride semiconductor layer. Specifically, studies were made on forming a metal film or the like on the surface of the active layer on the vacuum side of the transmission type photocathode in an extremely thin or lattice or mesh form.

活性層の真空側表面、すなわち光電子放出層の光電子放出面の全面に導電層を導入する場合、導電層は光電子をトンネルする層になるために、良好に光電子をトンネルする特性を確保するために導電層の膜厚を極薄くする必要がある。しかしながら、膜厚が数nm程度でも導電層における光電子の通過率は10%以下と非常に悪く、その上、光電子放出面に導電層を形成するプロセスにおいて光電子放出層の表面の汚染は避けられず、光電面としての特性は低下する。   When a conductive layer is introduced over the vacuum side surface of the active layer, that is, the entire surface of the photoelectron emission surface of the photoelectron emission layer, the conductive layer becomes a layer that tunnels photoelectrons, so that the characteristics of tunneling photoelectrons can be ensured. It is necessary to make the thickness of the conductive layer extremely thin. However, even if the film thickness is about several nanometers, the photoelectron transmission rate in the conductive layer is very poor at 10% or less, and in addition, contamination of the surface of the photoelectron emission layer is inevitable in the process of forming the conductive layer on the photoelectron emission surface. The characteristics as the photocathode are degraded.

一方、格子状やメッシュ状に導電層を形成する場合、格子電極部が形成されない領域の光電子の放出は良好となるが、格子電極部では光電子は通過できず特性が大きく低下してしまう。そのために受光面全体の一様性は確保できず、例えばイメージ管等に用いた場合、出力イメージ像に格子模様が現れてしまうといった問題を生じる。   On the other hand, when the conductive layer is formed in a lattice shape or a mesh shape, photoelectrons are emitted in a region where the lattice electrode portion is not formed, but the photoelectrons cannot pass through the lattice electrode portion, and the characteristics are greatly deteriorated. For this reason, the uniformity of the entire light receiving surface cannot be ensured. For example, when used in an image tube or the like, there arises a problem that a lattice pattern appears in an output image image.

本発明は上述の検討による知見に基づいてなされたものであり、導電層の導入によっても、光電子放出層の光電子放出面を汚染することなく、十分な紫外域感度を維持し、リニアリティの高いIII族窒化物半導体層を用いた透過型光電面及びそれを用いた光検出器を提供することを目的とする。   The present invention has been made on the basis of the knowledge obtained by the above-described studies. Even when the conductive layer is introduced, the sufficient sensitivity in the ultraviolet region is maintained without contaminating the photoelectron emission surface of the photoelectron emission layer. It is an object of the present invention to provide a transmission type photocathode using a group nitride semiconductor layer and a photodetector using the same.

本発明の透過型光電面は、紫外線が一方の面に入射されるガラス基板と、上記ガラス基板の一方の面と対向する他方の面に形成される接着層と、上記ガラス基板の他方の面の側に位置し、紫外線の入射に応じて光電子を生成するIII族窒化物半導体層と、上記接着層と上記III族窒化物半導体層との間に位置する紫外域透明導電層と、を備える。   The transmission type photocathode of the present invention includes a glass substrate on which ultraviolet light is incident on one surface, an adhesive layer formed on the other surface facing the one surface of the glass substrate, and the other surface of the glass substrate. And a group III nitride semiconductor layer that generates photoelectrons in response to incidence of ultraviolet light, and an ultraviolet transparent conductive layer positioned between the adhesive layer and the group III nitride semiconductor layer. .

本発明の透過型光電面によれば、光電子放出層の光入射側に紫外域透明導電層の薄膜を形成しているため、十分な紫外域感度及びリニアリティ特性を得ることができると共に、光電子放出層の光電子放出面が製造プロセスにおいて汚染されることがない。   According to the transmissive photocathode of the present invention, a thin film of the ultraviolet transparent conductive layer is formed on the light incident side of the photoelectron emission layer, so that sufficient ultraviolet sensitivity and linearity characteristics can be obtained and photoelectron emission is achieved. The photoemission surface of the layer is not contaminated in the manufacturing process.

また、接着層はSiO層、SiN層もしくはSi層のいずれかを備えても良い。紫外域透明電極層に対してガラス基板を接着するための層としてSiO層、SiN層もしくはSi層を用いることで、紫外域透明電極層を形成する材料の選択は、材料の紫外域透過率特性を考慮するだけで良く、製造プロセスにおいては、III族窒化物半導体の結晶成長に対しては全く制約とならず良質のIII族窒化物半導体を形成することができる。 The adhesive layer may include any one of a SiO 2 layer, a SiN layer, and a Si 3 N 4 layer. By using a SiO 2 layer, a SiN layer, or a Si 3 N 4 layer as a layer for adhering the glass substrate to the ultraviolet transparent electrode layer, the selection of the material for forming the ultraviolet transparent electrode layer depends on the material UV It is only necessary to consider the region transmittance characteristics. In the manufacturing process, the crystal growth of the group III nitride semiconductor is not restricted at all, and a high-quality group III nitride semiconductor can be formed.

上記紫外域透明導電層は金属層もしくは金属酸化物層としても良い、また、上記紫外域透明導電層は、金属層と、上記金属層と上記III族窒化物半導体層との間に形成されたAlN層を備えることとしても良い。紫外域透明導電層をこのような構成とすることで、高い紫外域透過率を有する非常に薄い層を形成することができる。特に、紫外域透明導電層を薄膜の金属層とした場合には、良好な紫外域透過率を有する数nmから10数nmの極薄い層を得ることができる。   The ultraviolet transparent conductive layer may be a metal layer or a metal oxide layer, and the ultraviolet transparent conductive layer is formed between the metal layer, the metal layer, and the group III nitride semiconductor layer. It is good also as providing an AlN layer. By configuring the ultraviolet transparent conductive layer in such a configuration, a very thin layer having a high ultraviolet transmittance can be formed. In particular, when the ultraviolet transparent conductive layer is a thin metal layer, it is possible to obtain a very thin layer of several nm to several tens of nm with good ultraviolet transmittance.

また、本発明の光検出器は、上記透過型光電面と、上記透過型光電面から放出された電子を出力信号として取り出すための陽極と、を備える。このように構成することで、高い紫外域感度を有し、リニアリティ特性を向上させた光検出器を得ることができる。   The photodetector of the present invention includes the transmissive photocathode and an anode for taking out electrons emitted from the transmissive photocathode as an output signal. With this configuration, a photodetector having high ultraviolet sensitivity and improved linearity characteristics can be obtained.

本発明によれば、透過型光電面において、光電子を生成するIII族窒化物半導体層の紫外線入射側に導電層が形成されるため、光電子の放出面を汚染することなく、十分な紫外域感度を有し、リニアリティ特性の高い透過型光電面を得ることができる。   According to the present invention, the conductive layer is formed on the ultraviolet incident side of the group III nitride semiconductor layer that generates photoelectrons on the transmission type photocathode, so that sufficient sensitivity in the ultraviolet region is obtained without contaminating the photoelectron emission surface. And a transmissive photocathode having high linearity characteristics can be obtained.

以下、本発明の実施の形態に係る透過型光電面及び光検出器について説明する。同一要素又は同一機能を有する要素は同一符号を用いるものとし、重複する説明は省略する。   Hereinafter, a transmission type photocathode and a photodetector according to an embodiment of the present invention will be described. The same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

図1は、本発明の実施の形態に係る透過型光電面の断面図であり、図3は、図1に示される透過型光電面のバンドモデルを示す。   FIG. 1 is a sectional view of a transmissive photocathode according to an embodiment of the present invention, and FIG. 3 shows a band model of the transmissive photocathode shown in FIG.

図1に示される透過型光電面1(以下、必要がない場合は単に「光電面」とする)は、紫外線が一方の面11aに入射されるガラス基板11と、ガラス基板11の一方の面11aに対向する他方の面11bに形成される接着層12と、ガラス基板11の他方の面11bの側に位置し、紫外線の入射に応じて光電子を生成するIII族窒化物半導体層14(光電子放出層)と、接着層12とIII族窒化物半導体層14との間に位置する紫外域透明導電層13と、を備える。また、紫外域透明導電層13が形成されていない面であって、III族窒化物半導体層14にて生成された光電子が放出される側の面14bには、アルカリ層もしくはアルカリ酸化物層である層15が形成されている。ここで、光電面1において、ガラス基板11の一方の面11aより紫外光が入射すると、光電子が生成され光の入射した面11aと反対の面である光電子放出面(本実施形態においては層15の表面15b)より光電子が放出される。ここで、層15は必ずしも形成される必要はない。   The transmission type photocathode 1 shown in FIG. 1 (hereinafter simply referred to as “photocathode” when not necessary) includes a glass substrate 11 on which ultraviolet rays are incident on one surface 11 a and one surface of the glass substrate 11. An adhesive layer 12 formed on the other surface 11b opposite to 11a and a group III nitride semiconductor layer 14 (photoelectron) that is located on the other surface 11b side of the glass substrate 11 and generates photoelectrons in response to the incidence of ultraviolet rays. Emission layer), and an ultraviolet transparent conductive layer 13 located between the adhesive layer 12 and the group III nitride semiconductor layer 14. Further, the surface 14b on the side where the ultraviolet transparent conductive layer 13 is not formed and from which the photoelectrons generated in the group III nitride semiconductor layer 14 are emitted is an alkali layer or an alkali oxide layer. A certain layer 15 is formed. Here, in the photocathode 1, when ultraviolet light is incident from one surface 11a of the glass substrate 11, photoelectrons are generated, and a photoelectron emission surface (in this embodiment, the layer 15 is opposite to the surface 11a on which the light is incident). Photoelectrons are emitted from the surface 15b). Here, the layer 15 is not necessarily formed.

ガラス基板11は、例えば、紫外域に透明なガラスであるUVガラスで構成される。ここで例示するUVガラスとは、硼珪酸ガラスのうち、一般的な硼珪酸ガラス(例えばコバールガラス)の短波長側の限界透過波長閾値を185nmまで延ばしたガラスであり、例えば、現在、コーニング社の9781、ショット社の8337,8337Bがある。また、接着層12は、後述する紫外域透明導電層13に対してガラス基板11を接着するための層であり、材料としてはSiO、SiN、Si等を用いることができる。 The glass substrate 11 is made of, for example, UV glass that is transparent in the ultraviolet region. The UV glass exemplified here is a glass in which the threshold wavelength limit wavelength on the short wavelength side of a general borosilicate glass (for example, Kovar glass) is extended to 185 nm among borosilicate glasses. 9781 and 8337, 8337B of Schott. The adhesive layer 12 is a layer for adhering the glass substrate 11 to the ultraviolet transparent conductive layer 13 described later, and as a material, SiO 2 , SiN, Si 3 N 4 or the like can be used.

紫外域透明導電層13は、金属薄膜もしくは金属酸化物薄膜として形成される層である。   The ultraviolet transparent conductive layer 13 is a layer formed as a metal thin film or a metal oxide thin film.

紫外域透明導電層13として用いる金属薄膜としては、Cr、Ti、W、Mo、Zr、Ta、Nb等の高融点金属からなる金属薄膜、もしくは、これらの金属成分を含むシリサイド薄膜や窒化物薄膜を用いることができる。このような金属薄膜を形成する方法としてはIBS法(イオン・ビーム・スパッタリング法)があり、金属薄膜が蒸着されるIII族窒化物半導体層14(例えば、GaN層)の表面は充分に平坦であるため、数nmから10数nmの極薄い膜でも連続膜を形成することができる。また、紫外域透過率に関しては、14nmの膜厚で、400nm以下の紫外域の透過率は45%以上となる。なお、金属薄膜は、III族窒化物半導体層14に用いられるGaN面との接着強度が低いという問題があるが、事前にGaN層の表面にCr膜を極薄く形成しておくことで充分な強度が得られる。   As a metal thin film used as the ultraviolet transparent conductive layer 13, a metal thin film made of a refractory metal such as Cr, Ti, W, Mo, Zr, Ta, or Nb, or a silicide thin film or a nitride thin film containing these metal components Can be used. As a method of forming such a metal thin film, there is an IBS method (ion beam sputtering method), and the surface of the group III nitride semiconductor layer 14 (for example, GaN layer) on which the metal thin film is deposited is sufficiently flat. Therefore, a continuous film can be formed even with an extremely thin film of several nm to several tens of nm. Regarding the ultraviolet transmittance, the transmittance in the ultraviolet region of 400 nm or less is 45% or more with a film thickness of 14 nm. Although the metal thin film has a problem that the adhesive strength with the GaN surface used for the group III nitride semiconductor layer 14 is low, it is sufficient to form a Cr film on the surface of the GaN layer in advance. Strength is obtained.

一方、紫外域透明導電層13として形成される金属酸化物薄膜としては、Ga、ITO、ZnO等の酸化物系のワイドバンドギャップを有する材料がある。GaはEg=4.9eVであって、透過波長の短波長閾値は250nmである。さらに、Gaは単結晶成長も可能であって、紫外域透過率は100nmの膜厚で55%と高く、導電率は1S/cm以下のn型膜とすることができる。ITOはEg=3.9eVで透過波長の短波長閾値は320nm、ZnOはEg=3.4eVで、透過波長の短波長閾値は365nmとなり、InGaN系透過型光電面に好適な紫外域透明導電膜として用いることができる。 On the other hand, the metal oxide thin film formed as the ultraviolet transparent conductive layer 13 includes materials having an oxide-based wide band gap such as Ga 2 O 3 , ITO, and ZnO. Ga 2 O 3 has Eg = 4.9 eV, and the short wavelength threshold of the transmission wavelength is 250 nm. Furthermore, Ga 2 O 3 can be grown as a single crystal, and the ultraviolet transmittance is as high as 55% when the film thickness is 100 nm, and the conductivity can be an n-type film of 1 S / cm or less. ITO has an Eg of 3.9 eV and a short wavelength threshold of transmission wavelength of 320 nm, ZnO has an Eg of 3.4 eV and a short wavelength threshold of transmission wavelength of 365 nm, and is suitable for an InGaN-based transmission type photocathode. Can be used as

また、図2に示すように、透過型光電面10は、紫外域透明電極層として金属膜13Aと、金属膜13AとIII族窒化物半導体層14との間に形成されたAlN層13Bとを備えるようにしても良い。AlNはバンドギャップEg=6.2eVで透明電極層に適している上に、III族窒化物半導体層とは欠陥の少ない良質な界面を形成することができる。また、Siドープによって数10Ω/□(sq.)というシート抵抗が非常に小さなn型のAlNの成長技術が開発されている。n型のAlN層13Bは、III族窒化物半導体層14を例えばMOCVD成長させた後、III族窒化物半導体層14上にエピタキシャルにより形成する。厚さは10nm〜数10nmで良い。その後、AlN層13B上に更に金属薄膜(金属膜13A)を形成する。   As shown in FIG. 2, the transmission type photocathode 10 includes a metal film 13A as an ultraviolet transparent electrode layer, and an AlN layer 13B formed between the metal film 13A and the group III nitride semiconductor layer 14. You may make it prepare. AlN has a band gap Eg = 6.2 eV and is suitable for a transparent electrode layer, and can form a high-quality interface with few defects from the group III nitride semiconductor layer. Further, a growth technique for n-type AlN having a very small sheet resistance of several tens of Ω / □ (sq.) By Si doping has been developed. The n-type AlN layer 13B is formed epitaxially on the group III nitride semiconductor layer 14 after the group III nitride semiconductor layer 14 is grown, for example, by MOCVD. The thickness may be 10 nm to several tens of nm. Thereafter, a metal thin film (metal film 13A) is further formed on the AlN layer 13B.

III族窒化物半導体層14は、例えば、Mgをドープさせたp型GaNをはじめとする窒化物系半導体層として形成される層である。また、層15は、アルカリ層及びアルカリ酸化物層のいずれでも良く、Cs−O、Cs−I、Ce−Te、Sb−Cs等の層として形成される。   The group III nitride semiconductor layer 14 is a layer formed as a nitride-based semiconductor layer including, for example, p-type GaN doped with Mg. The layer 15 may be either an alkali layer or an alkali oxide layer, and is formed as a layer of Cs—O, Cs—I, Ce—Te, Sb—Cs, or the like.

上述のように構成した光電面1は、図3のバンドモデルに示されるように、紫外域透明導電層13は光電子が通過する層とならない。そのため、光電面としての特性を維持しつつ、導電層を導入することができる。   In the photocathode 1 configured as described above, as shown in the band model of FIG. 3, the ultraviolet transparent conductive layer 13 does not become a layer through which photoelectrons pass. Therefore, the conductive layer can be introduced while maintaining the characteristics as the photocathode.

ここまで、図1及び図2に示される透過型光電面1、10について説明したが、光検出器に組み込む際には、III族窒化物半導体層14に電位を与えるための電極部は光電子放出を妨げない様に、III族窒化物半導体層14の光電子が放出される側の面14bの周縁部を被うように設ければ良い。具体的には、図4に示されるように、ガラス基板11の側面11sから面14bの一部まで、電極部21として例えばCr金属層を真空蒸着法で形成することができる。なお、図4では、III族窒化物半導体層14の一部を除去して紫外域透明導電層13を数箇所で露出させることで、電極部21との導通を取った場合を示している。   The transmission type photocathodes 1 and 10 shown in FIGS. 1 and 2 have been described so far, but when incorporated in a photodetector, the electrode portion for applying a potential to the group III nitride semiconductor layer 14 is a photoelectron emission. In order to prevent this, the peripheral portion of the surface 14b from which the photoelectrons of the group III nitride semiconductor layer 14 are emitted may be covered. Specifically, as shown in FIG. 4, for example, a Cr metal layer can be formed as the electrode portion 21 from the side surface 11 s to a part of the surface 14 b of the glass substrate 11 by a vacuum deposition method. FIG. 4 shows a case where conduction with the electrode portion 21 is achieved by removing a part of the group III nitride semiconductor layer 14 and exposing the ultraviolet transparent conductive layer 13 at several places.

図5は、図4に示される透過型光電面2を用いた光電管100の概略断面図を示す。図5に示される光電管100の真空気密容器は、ガラス基板11の内側に光電面2が形成された受光面板を、真空雰囲気中で、バルブ140の開口端に備えられたカソードリード板131にIn等の低融点金属を介して固定することで形成される。また、光電面2に対向して気密容器内には円板状のアノード110が設けられている。光電面2とカソードリード板131とは、電極部であるクロム層120及びIn等の低融点金属を介して電気的に接続され、アノード110はリード線132に電気的に接続されている。アノード110には光電面2よりも高い一定電圧がリード線132を介して印加された状態で光電面2に光子が入射すると、光電面2からは入射光量に応じた光電子が放出され、アノード110に収集されることで、入射光が電気信号として検出される。なお、本発明による光電面は、上記光電管の他、図5に示される光電面2とアノード110との間にダイノード(図示せず)を設けた光電子増倍管や、イメージインテンシファイア等の光電面を用いる種々の光検出器に利用できる。   FIG. 5 shows a schematic cross-sectional view of the phototube 100 using the transmission type photocathode 2 shown in FIG. The vacuum hermetic container of the photoelectric tube 100 shown in FIG. 5 has a light receiving face plate in which the photocathode 2 is formed on the inner side of the glass substrate 11 in a cathode atmosphere on the cathode lead plate 131 provided at the opening end of the bulb 140. It is formed by fixing via a low melting point metal such as. Further, a disc-shaped anode 110 is provided in the airtight container so as to face the photocathode 2. The photocathode 2 and the cathode lead plate 131 are electrically connected via a chromium layer 120 as an electrode part and a low melting point metal such as In, and the anode 110 is electrically connected to a lead wire 132. When a photon is incident on the photocathode 2 in a state where a constant voltage higher than that of the photocathode 2 is applied to the anode 110 via the lead wire 132, photoelectrons corresponding to the amount of incident light are emitted from the photocathode 2. In this way, incident light is detected as an electrical signal. The photocathode according to the present invention includes, in addition to the phototube described above, a photomultiplier tube provided with a dynode (not shown) between the photocathode 2 and the anode 110 shown in FIG. 5, an image intensifier, and the like. It can be used for various photodetectors using a photocathode.

続いて、ガラス基板11にUVガラス、紫外域透明導電層13にGaの紫外域透明導電膜、III族窒化物半導体層14にp型GaNを用いた場合を例として、本発明の実施の形態に係る透過型光電面の製造方法を説明する。 Subsequently, UV glass is used for the glass substrate 11, an ultraviolet transparent conductive film of Ga 2 O 3 is used for the ultraviolet transparent conductive layer 13, and p-type GaN is used for the group III nitride semiconductor layer 14 as an example. A method for manufacturing a transmissive photocathode according to an embodiment will be described.

まず、III族窒化物半導体層14となる活性層を結晶成長させるため、結晶成長用基板としてSi(111)基板を用意し、その主面にAlN又はAlNとGaNの多層膜等を成長させて緩衝層を形成する。その後、緩衝層の主面に、活性層を構成するGaNをエピタキシャル成長させる。結晶成長させたウエファのGaNの面には、紫外域透明導電層13としてGaの紫外域透明導電膜を形成する。このGa膜の形成は、シンターしたβ−GaOターゲットを用いた真空中でのパルスレーザ蒸着法等で行うことができる。膜形成に際しては、ウエファを例えば880℃までに加熱し、レーザにはKrFエキシマレーザを用いることで、Gaの紫外域透明導電膜を形成することができる。また、紫外域透明導電膜の形成時にSnイオンをドーピングすると同時に10−5Pa以下の低O分圧下で蒸着することで、抵抗値をより下げることができる。Gaの膜厚は100nm程度とすれば良く、その場合、入射光280nmに対する光透過率は約75%である。 First, in order to grow an active layer to be a group III nitride semiconductor layer 14, a Si (111) substrate is prepared as a crystal growth substrate, and a multilayer film of AlN or AlN and GaN is grown on the main surface thereof. A buffer layer is formed. Thereafter, GaN constituting the active layer is epitaxially grown on the main surface of the buffer layer. On the GaN surface of the crystal-grown wafer, an ultraviolet transparent conductive film of Ga 2 O 3 is formed as the ultraviolet transparent conductive layer 13. The Ga 2 O 3 film can be formed by a pulse laser deposition method or the like in a vacuum using a sintered β-GaO 3 target. When forming the film, the wafer is heated to, for example, 880 ° C., and a KrF excimer laser is used as the laser, whereby a Ga 2 O 3 ultraviolet transparent conductive film can be formed. In addition, the resistance value can be further reduced by doping Sn ions during the formation of the ultraviolet transparent conductive film and simultaneously performing deposition under a low O 2 partial pressure of 10 −5 Pa or less. The film thickness of Ga 2 O 3 may be about 100 nm. In that case, the light transmittance for incident light of 280 nm is about 75%.

形成したGaの紫外域透明導電膜の面には、ガラス基板11との接着層12として、SiO層を形成する。SiO層は、例えば、熱CVD法を用いて厚さ200nm程度形成すれば良い。SiO層を形成した後、ウエファと共に、ガラス基板11として用意されたUVガラスを、真空中あるいは不活性ガス中にてUVガラスの軟化点温度付近まで加熱する。温度が上昇したところでウエファとUVガラスとを接着した後、加重して接合させる。(ガラスボンディング法) A SiO 2 layer is formed as an adhesive layer 12 with the glass substrate 11 on the surface of the formed Ga 2 O 3 ultraviolet transparent conductive film. The SiO 2 layer may be formed with a thickness of about 200 nm using, for example, a thermal CVD method. After forming the SiO 2 layer, the UV glass prepared as the glass substrate 11 together with the wafer is heated to near the softening point temperature of the UV glass in vacuum or in an inert gas. After the temperature has risen, the wafer and UV glass are bonded together and then weighted and bonded. (Glass bonding method)

ウエファとUVガラスとを接合させた後、UVガラスの露出部分をフッ酸によるエッチングから守るためにピセイン等でコートする。そして、フッ酸系エッチング液にてSi(111)基板をエッチング除去する。さらに、KOH系あるいはHPO系エッチング液でAlN又はAlNとGaNの多層膜等からなる緩衝層をエッチング除去する。緩衝層を除去した後、蒸着法でCr金属を所望の位置に形成して電極部21とする。電極部21を形成してデバイス形状に構成した後、光電子放出を良好なものとするため、真空中にてIII族窒化物半導体層14の光電子放出面14bをアルカリあるいはアルカリ酸化物で活性処理する。 After bonding the wafer and the UV glass, the exposed portion of the UV glass is coated with picein or the like to protect the exposed portion of the UV glass from etching with hydrofluoric acid. Then, the Si (111) substrate is removed by etching with a hydrofluoric acid etching solution. Further, the buffer layer made of AlN or a multilayer film of AlN and GaN or the like is removed by etching with a KOH-based or H 3 PO 4- based etching solution. After removing the buffer layer, Cr metal is formed at a desired position by vapor deposition to form the electrode part 21. After the electrode portion 21 is formed and configured into a device shape, the photoelectron emission surface 14b of the group III nitride semiconductor layer 14 is activated with an alkali or an alkali oxide in vacuum in order to improve the photoelectron emission. .

以上に説明した本発明の透過型光電面及び光検出器の効果について説明する。   The effects of the transmission type photocathode and the photodetector of the present invention described above will be described.

本発明の光電面では、光電子放出層となる活性層の光入射側に導電層の薄膜を形成しているため、光電子放出層の光電子放出面が製造プロセスにおいて汚染されにくい。特に、導電層として金属成分を含む膜を用いた場合には、45〜50%超の高い紫外域透過率を有する数nmから10数nmの極薄い層を形成することが可能なため、十分な紫外域感度及びリニアリティ特性を得ることができる。   In the photocathode of the present invention, since the thin film of the conductive layer is formed on the light incident side of the active layer serving as the photoelectron emission layer, the photoelectron emission surface of the photoelectron emission layer is not easily contaminated in the manufacturing process. In particular, when a film containing a metal component is used as the conductive layer, it is possible to form a very thin layer of several nm to several tens of nm having a high ultraviolet transmittance of 45 to more than 50%. Ultraviolet sensitivity and linearity characteristics can be obtained.

また、本発明の光電面は、接着層にSiO層、SiN層もしくはSi層を用いているため、III族窒化物半導体層を成長させた後に導電層の形成を行うことが可能である。従って、導電層の形成がIII族窒化物半導体層の結晶成長に影響を与えず、良質な結晶を得ることができる。また、簡単な蒸着工程を導入するだけで光電面を大面積に渡って形成することができる点にも利点がある。 In addition, since the photocathode of the present invention uses a SiO 2 layer, a SiN layer or a Si 3 N 4 layer as an adhesive layer, it is possible to form a conductive layer after growing a group III nitride semiconductor layer. It is. Therefore, the formation of the conductive layer does not affect the crystal growth of the group III nitride semiconductor layer, and a high-quality crystal can be obtained. Another advantage is that the photocathode can be formed over a large area simply by introducing a simple vapor deposition process.

本発明の実施の形態に係る透過型光電面の断面図である。It is sectional drawing of the transmission type photocathode which concerns on embodiment of this invention. 本発明の別の実施の形態に係る透過型光電面の断面図である。It is sectional drawing of the transmission type photocathode which concerns on another embodiment of this invention. 図1に示される透過型光電面のバンドモデルである。It is a band model of the transmissive photocathode shown in FIG. 図1に示される透過型光電面に電極部を形成した態様の要部を示す図である。It is a figure which shows the principal part of the aspect which formed the electrode part in the transmissive photocathode shown by FIG. 本発明の実施の形態に係る光電管の概略断面図である。It is a schematic sectional drawing of the photoelectric tube which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1,2,10…透過型光電面、11…ガラス基板、12…接着層、13…導電層、14…III族窒化物半導体層(光電子放出層)、15…アルカリ層もしくはアルカリ酸化物層、21…電極部、100…光電管、110…アノード、120…電極部、131…カソードリード板、132…リード線、140…バルブ。
DESCRIPTION OF SYMBOLS 1, 2, 10 ... Transmission type photocathode, 11 ... Glass substrate, 12 ... Adhesion layer, 13 ... Conductive layer, 14 ... Group III nitride semiconductor layer (photoelectron emission layer), 15 ... Alkali layer or alkali oxide layer, DESCRIPTION OF SYMBOLS 21 ... Electrode part, 100 ... Phototube, 110 ... Anode, 120 ... Electrode part, 131 ... Cathode lead plate, 132 ... Lead wire, 140 ... Valve | bulb.

Claims (5)

紫外線が一方の面に入射されるガラス基板と、
前記ガラス基板の一方の面と対向する他方の面に形成される接着層と、
前記ガラス基板の他方の面の側に位置し、紫外線の入射に応じて光電子を生成するIII族窒化物半導体層と、
前記接着層と前記III族窒化物半導体層との間に位置する紫外域透明導電層と、
を備える透過型光電面。
A glass substrate on which ultraviolet rays are incident on one surface;
An adhesive layer formed on the other surface opposite to one surface of the glass substrate;
A group III nitride semiconductor layer located on the other surface side of the glass substrate and generating photoelectrons in response to incidence of ultraviolet rays;
An ultraviolet transparent conductive layer located between the adhesive layer and the group III nitride semiconductor layer;
A transmissive photocathode.
前記接着層がSiO層、SiN層もしくはSi層のいずれかを備えることを特徴とする請求項1に記載の透過型光電面。 The transmission type photocathode according to claim 1, wherein the adhesive layer includes any one of a SiO 2 layer, a SiN layer, and a Si 3 N 4 layer. 前記紫外域透明導電層が金属層もしくは金属酸化物層であることを特徴とする請求項1もしくは請求項2に記載の透過型光電面。   The transmission type photocathode according to claim 1 or 2, wherein the ultraviolet transparent conductive layer is a metal layer or a metal oxide layer. 前記紫外域透明導電層が、金属層と、前記金属層と前記III族窒化物半導体層との間に形成されたAlN層と、を備えることを特徴とする請求項1もしくは請求項2に記載の透過型光電面。   The said ultraviolet transparent conductive layer is provided with the metal layer and the AlN layer formed between the said metal layer and the said group III nitride semiconductor layer, The Claim 1 or Claim 2 characterized by the above-mentioned. Transmissive photocathode. 真空容器の内部に、請求項1から請求項4のいずれかに記載の透過型光電面と、前記透過型光電面から放出された電子を出力信号として取り出すための陽極と、を備える光検出器。

5. A photodetector comprising a transmissive photocathode according to any one of claims 1 to 4 and an anode for taking out electrons emitted from the transmissive photocathode as an output signal inside a vacuum vessel. .

JP2005228237A 2005-08-05 2005-08-05 Transmission type photocathode and photodetector Expired - Fee Related JP4772414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228237A JP4772414B2 (en) 2005-08-05 2005-08-05 Transmission type photocathode and photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228237A JP4772414B2 (en) 2005-08-05 2005-08-05 Transmission type photocathode and photodetector

Publications (2)

Publication Number Publication Date
JP2007042559A true JP2007042559A (en) 2007-02-15
JP4772414B2 JP4772414B2 (en) 2011-09-14

Family

ID=37800346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228237A Expired - Fee Related JP4772414B2 (en) 2005-08-05 2005-08-05 Transmission type photocathode and photodetector

Country Status (1)

Country Link
JP (1) JP4772414B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088403A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission-type photoelectric cathode
CN111261488A (en) * 2020-01-29 2020-06-09 北方夜视技术股份有限公司 Metal nitride antireflection film of photomultiplier glass light window, preparation method and preparation system thereof, and photomultiplier
JP2020537289A (en) * 2017-10-10 2020-12-17 ケーエルエー コーポレイション Photocathode design and how to use a photocathode to generate an electron beam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598730B2 (en) * 1991-09-11 1997-04-09 株式会社荏原総合研究所 Method and apparatus for charging fine particles
JP3623068B2 (en) * 1997-02-28 2005-02-23 浜松ホトニクス株式会社 Photocathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598730B2 (en) * 1991-09-11 1997-04-09 株式会社荏原総合研究所 Method and apparatus for charging fine particles
JP3623068B2 (en) * 1997-02-28 2005-02-23 浜松ホトニクス株式会社 Photocathode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088403A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission-type photoelectric cathode
WO2015064173A1 (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission photocathode
EP3065159A4 (en) * 2013-11-01 2017-06-28 Hamamatsu Photonics K.K. Transmission photocathode
US9824844B2 (en) 2013-11-01 2017-11-21 Hamamatsu Photonics K.K. Transmission mode photocathode
JP2020537289A (en) * 2017-10-10 2020-12-17 ケーエルエー コーポレイション Photocathode design and how to use a photocathode to generate an electron beam
JP7082660B2 (en) 2017-10-10 2022-06-08 ケーエルエー コーポレイション Photocathode design, and how to use a photocathode to generate an electron beam
CN111261488A (en) * 2020-01-29 2020-06-09 北方夜视技术股份有限公司 Metal nitride antireflection film of photomultiplier glass light window, preparation method and preparation system thereof, and photomultiplier
CN111261488B (en) * 2020-01-29 2022-04-22 北方夜视技术股份有限公司 Metal nitride antireflection film of photomultiplier glass light window, preparation method and preparation system thereof, and photomultiplier

Also Published As

Publication number Publication date
JP4772414B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
KR100492139B1 (en) Photocathodes and electron tubes containing them
JP6200175B2 (en) Semiconductor photocathode and manufacturing method thereof, electron tube and image intensifier tube
JP4762891B2 (en) Method for producing layered member and layered member
EP2006876B1 (en) Photoelectric surface, electron tube comprising same, and method for producing photoelectric surface
US5912500A (en) Integrated photocathode
US7525131B2 (en) Photoelectric surface and photodetector
US6580215B2 (en) Photocathode
US11043350B2 (en) Photocathode with nanowires and method of manufacturing such a photocathode
JP2008135350A (en) Semiconductor photocathode
JP4772414B2 (en) Transmission type photocathode and photodetector
EP3400469B1 (en) Image intensifier for night vision device
JPH0896705A (en) Semiconductor photoelectric cathode and photoelectric tube
US5982093A (en) Photocathode and electron tube having enhanced absorption edge characteristics
CN109671600B (en) AlGaAs photocathode with adjustable wavelength
JP3623068B2 (en) Photocathode
US6674235B2 (en) Photocathode having ultra-thin protective layer
JP7227230B2 (en) Thermally assisted negative electron affinity photocathode
JP2007080799A (en) Photo cathode and electron tube
JP3806515B2 (en) Semiconductor photocathode
EP1024513A1 (en) Semiconductor photoelectric surface
JP3762535B2 (en) Photocathode and electron tube
JP4740853B2 (en) Antimonide alkali photocathode by MBE growth
JP3565535B2 (en) Photocathode and electron tube
JP2000021295A (en) Semiconductor photo-electric cathode
CN103208737B (en) A kind of manufacture method and obtained ultraviolet light of ultraviolet light screen are shielded and apply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees