JP2007042442A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2007042442A
JP2007042442A JP2005225468A JP2005225468A JP2007042442A JP 2007042442 A JP2007042442 A JP 2007042442A JP 2005225468 A JP2005225468 A JP 2005225468A JP 2005225468 A JP2005225468 A JP 2005225468A JP 2007042442 A JP2007042442 A JP 2007042442A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
power generation
cell stack
separators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225468A
Other languages
Japanese (ja)
Other versions
JP5200318B2 (en
Inventor
Hisafumi Kotani
尚史 小谷
Naoya Murakami
直也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005225468A priority Critical patent/JP5200318B2/en
Priority to US11/795,312 priority patent/US20110151348A1/en
Priority to PCT/JP2006/300266 priority patent/WO2006077762A1/en
Priority to EP06711589A priority patent/EP1855338A4/en
Publication of JP2007042442A publication Critical patent/JP2007042442A/en
Application granted granted Critical
Publication of JP5200318B2 publication Critical patent/JP5200318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To regulate movement of a separator in a plane direction occurring by thermal strain under a high-temperature atmosphere at power generation, and prevent damage to power generating cells. <P>SOLUTION: In the fuel cell stack 1 of a flat lamination type made by alternately laminating power generating cells 5 and separators 8 and weighing the laminated body from a lamination direction, each separator 8 is provided with a plurality of through-holes 22 penetrating in the lamination direction, into which 22, fixing rods 23 are inserted for regulating movement of the separator 8 in a plane direction due to thermal strain at operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池スタックに関し、特に、運転時(発電時)の高温雰囲気下において熱歪みにより生じるセパレータの平面方向の動きを防止するための固定構造に関するものである。   The present invention relates to a fuel cell stack, and more particularly to a fixing structure for preventing a separator from moving in a plane direction caused by thermal distortion in a high temperature atmosphere during operation (power generation).

近年、燃料の有する化学エネルギーを直接電気エネルギーに変換する燃料電池は高効率でクリーンな発電装置として注目されている。この燃料電池は、酸化物イオン導電体から成る固体電解質層を両側から空気極層(カソード)と燃料極層(アノード)で挟み込んだ積層構造を有する。   In recent years, fuel cells that directly convert chemical energy of fuel into electrical energy have attracted attention as highly efficient and clean power generators. This fuel cell has a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (cathode) and a fuel electrode layer (anode) from both sides.

発電時、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO、CH4等) が供給される。空気極層と燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れも多孔質の層とされている。 During power generation, an oxidant gas (oxygen) is supplied to the air electrode layer side and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode layer side as a reaction gas. The air electrode layer and the fuel electrode layer are both porous layers so that the reaction gas can reach the interface with the solid electrolyte layer.

発電セル内において、空気極層側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動する。燃料極層との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。尚、電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 In the power generation cell, oxygen supplied to the air electrode layer passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. It is ionized to (O 2− ). The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode layer. Oxide ions that have reached the vicinity of the interface with the fuel electrode layer react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and discharge electrons to the fuel electrode layer. Electrons generated by the electrode reaction can be taken out as an electromotive force at an external load on another route.

平板積層型の燃料電池は、これら発電セルとセパレータを交互に多数積層してスタック化すると共に、その両端より積層方向に荷重を掛けてスタックの各構成要素を相互に圧接・密着させることにより構成されている。   A flat plate type fuel cell is constructed by stacking a large number of these power generation cells and separators alternately and stacking them together, and by applying a load in the stacking direction from both ends of each of the components of the stack so that they are in pressure contact with each other. Has been.

このような積層型の燃料電池は、例えば、特許文献1に開示されている。
特許文献1には、燃料電池セルがセパレータを介して水平方向に積層された、車両(自動車車体)搭載用の燃料電池スタックが記載されている。当燃料電池スタックは横置きにして使用するため、車両運転時の振動や衝撃によって燃料電池セルやセパレータがずれたり開いたりしないよう、積層体の積層方向に設けた固定用のロッドにより固定されている。
特開2002−56882号公報
Such a stacked fuel cell is disclosed in Patent Document 1, for example.
Patent Document 1 describes a fuel cell stack for mounting on a vehicle (automobile body) in which fuel cells are stacked in a horizontal direction via a separator. Since this fuel cell stack is used horizontally, it is fixed by a fixing rod provided in the stacking direction of the stack so that the fuel cell and separator do not slip or open due to vibration or impact during vehicle operation. Yes.
JP 2002-56882 A

ところで、既述したように、平板積層型の燃料電池は、複数の発電要素を積層して構成される発電セルを、更にセパレータ等の導電部材を介して多数積層した構造であるから、安定した電池性能を確保するため構成要素相互の優れた密着性が要求される。このため、通常はスタック組立後にその両端より積層方向に荷重を掛けて各構成要素を圧接させる構造が採用されており、例えば、スタック上下端に締付板を配し、上下締付板をボルト・ナットにて両端より締め付けすることにより積層体を一括して加重している。   By the way, as described above, the flat plate type fuel cell has a structure in which a plurality of power generation cells configured by stacking a plurality of power generation elements are further stacked via conductive members such as separators, and thus stable. In order to ensure battery performance, excellent adhesion between components is required. For this reason, a structure is generally adopted in which a load is applied in the stacking direction from both ends of the stack after assembling the stack and the components are pressed against each other. For example, a clamping plate is arranged on the upper and lower ends of the stack, and the upper and lower clamping plates are bolted. -The laminated body is collectively loaded by tightening from both ends with nuts.

ところが、このような荷重構造では、発電中の高温雰囲気下において、セパレータの熱膨率にも依るが、特に金属製セパレータの場合は、セパレータ自体が熱歪みにより面方向に変位し易く、これに圧接・挟持される発電セルに面方向の応力が作用して発電セルが破損(割れ)するという問題が有った。   However, in such a load structure, depending on the thermal expansion coefficient of the separator in a high temperature atmosphere during power generation, particularly in the case of a metal separator, the separator itself is easily displaced in the surface direction due to thermal strain. There was a problem that the power generation cell was damaged (cracked) by the stress in the surface direction acting on the power generation cell being pressed and sandwiched.

本発明は、このような問題に鑑み成されたもので、発電時の高温雰囲気下において熱歪みにより生じるセパレータの平面方向の動きを規制することにより、熱応力による発電セルの破損を防止した信頼性の高い燃料電池スタックを提供することを目的としている。   The present invention has been made in view of such a problem, and by restricting the movement of the separator in the plane direction caused by thermal distortion in a high temperature atmosphere during power generation, the reliability in which the power generation cell is prevented from being damaged by thermal stress. The object is to provide a highly fuel cell stack.

すなわち、請求項1に記載の本発明は、発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重して構成した平板積層型の燃料電池スタックにおいて、前記各セパレータに積層方向に貫通する複数の通孔を設け、これら通孔に運転時の熱歪みによる前記セパレータの面方向の動きを規制する固定ロッドを挿通したことを特徴としている。   That is, the present invention according to claim 1 is a flat plate type fuel cell stack in which power generation cells and separators are alternately stacked and the stacked body is weighted from the stacking direction. A plurality of through-holes are provided in the through-holes, and fixed rods for restricting the movement in the surface direction of the separator due to thermal distortion during operation are inserted into these through-holes.

また、請求項2に記載の本発明は、請求項1に記載の燃料電池スタックにおいて、前記発電セルとセパレータとが垂直方向に積層されて成ることを特徴としている。   According to a second aspect of the present invention, in the fuel cell stack according to the first aspect, the power generation cell and the separator are stacked in the vertical direction.

また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の燃料電池スタックにおいて、前記固定ロッドの熱膨張率は、前記セパレータの熱膨張率に比べて小さいことを特徴としている。   Further, according to a third aspect of the present invention, in the fuel cell stack according to the first or second aspect, the thermal expansion coefficient of the fixed rod is smaller than the thermal expansion coefficient of the separator. It is characterized by.

また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の燃料電池スタックにおいて、前記固定ロッドの材料としてアルミナまたはシリカを用いたことを特徴としている。   According to a fourth aspect of the present invention, in the fuel cell stack according to any one of the first to third aspects, alumina or silica is used as a material for the fixed rod.

本発明によれば、多数積層されたセパレータの各々に固定ロッドを挿通して熱歪みによるセパレータの面方向の動きを規制したので、発電中の高温雰囲気下において、各セパレータ間に圧接・挟持される発電セルに熱応力が加わらなくすることができ、これにより、発電セルの破損が防止できる。   According to the present invention, since the fixing rod is inserted into each of a large number of stacked separators to restrict the movement of the separator in the surface direction due to thermal strain, the separators are pressed and sandwiched between the separators in a high temperature atmosphere during power generation. It is possible to prevent thermal stress from being applied to the power generation cell, thereby preventing the power generation cell from being damaged.

以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明が適用された平板積層型の固体酸化物形燃料電池(燃料電池スタック)の構成を示し、図2は図1のA−A矢視である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a flat plate type solid oxide fuel cell (fuel cell stack) to which the present invention is applied, and FIG. 2 is a view taken along the line AA of FIG.

図1(b)に示すように、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した円状の発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。   As shown in FIG. 1B, the unit cell 10 includes a circular power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are arranged on both surfaces of a solid electrolyte layer 2, and an outer side of the fuel electrode layer 3. The fuel electrode current collector 6, the air electrode current collector 7 disposed outside the air electrode layer 4, and the separator 8 disposed outside each current collector 6, 7.

これら発電要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi等の金属、あるいはNi−YSZ等のサーメットで構成され、空気極層4はLaMnO3、LaCoO3等で構成され、燃料極集電体6はNi等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg等のスポンジ状の多孔質焼結金属板で構成されている。 Among these power generation elements, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or a cermet such as Ni—YSZ. 4 is composed of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is composed of a sponge-like porous sintered metal plate such as Ni, and the air electrode current collector 7 is a sponge-like porous material such as Ag. It consists of a sintered metal plate.

セパレータ8は、図2に示すように、四角形のステンレス板で構成され、その中央部に配した発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、内部に燃料ガスが流通する燃料ガス通路11と、酸化剤ガスが流通する酸化剤ガス通路12とを備えている。   As shown in FIG. 2, the separator 8 is composed of a rectangular stainless steel plate, and electrically connects the power generation cells 5 arranged at the center thereof, and supplies a reaction gas to the power generation cells 5. And a fuel gas passage 11 through which fuel gas flows and an oxidant gas passage 12 through which oxidant gas flows.

セパレータ8の一対角線上の角部に板厚方向に貫通する一対のガス孔13、14が設けてあり、一方のガス孔13は上記燃料ガス通路11に連通し、他方のガス孔14は酸化剤ガス通路12に連通している。各ガス孔13、14から、これらのガス通路11、12を通してガス吐出口11a、12aより各発電セル5の各電極面に燃料ガスおよび酸化剤ガスが吐出・供給されることによって発電セル5の各電極において発電反応が生じる。
尚、上下に積層されるセパレータ8のガス孔同士は、それぞれリング状の絶縁性ガスケット15、16にて連結される。
A pair of gas holes 13, 14 penetrating in the plate thickness direction are provided at corners on a pair of diagonal lines of the separator 8. One gas hole 13 communicates with the fuel gas passage 11, and the other gas hole 14 is oxidized. It communicates with the agent gas passage 12. Fuel gas and oxidant gas are discharged and supplied from the gas holes 13 and 14 to the electrode surfaces of the power generation cells 5 from the gas discharge ports 11a and 12a through the gas passages 11 and 12, respectively. A power generation reaction occurs at each electrode.
The gas holes of the separators 8 stacked one above the other are connected by ring-shaped insulating gaskets 15 and 16, respectively.

また、本実施形態のセパレータ8は、図2に示すように、左右端部のガス孔13、14部分と中央の発電セル5が位置する部分とを繋ぐ連絡部分8a、8aを細長帯状として後述する荷重に対する可撓性を持たせた構造としており、これにより、構成要素の積層・組立で生じるセパレータ周縁部分と中央部分の高さバラツキ等を吸収して全面が均等に加重されるようにして積層体を構成する各発電要素の密着性とガスケット部分のガスシール性を向上している。   Further, as shown in FIG. 2, the separator 8 of the present embodiment has connecting portions 8 a and 8 a connecting the gas holes 13 and 14 at the left and right ends and the portion where the power generation cell 5 at the center is formed as an elongated band, which will be described later. It has a structure that is flexible with respect to the load to be applied, so that the entire surface is evenly weighted by absorbing the height variation of the separator peripheral part and the central part that occur in the lamination and assembly of components. The adhesion of each power generating element constituting the laminate and the gas sealing property of the gasket portion are improved.

図1に示す燃料電池スタック1は、上記構成の単セル10を、間にガスケット15、16を介在して多数積層すると共に、その上下両端にステンレス製の角板で成る締付板20、20を配して周縁部の4箇所をボルト・ナット21a、21bにて締め付けし、その締め付け荷重によって各構成要素を一体的に密着させた構造としている。また、締め付け荷重により、各々のガスケット15、16がそれぞれセパレータ8の各ガス孔13、14を介して積層方向に連結されることにより、スタック内部を積層方向に延びる燃料ガス導入用の管状マニホールドと酸化剤ガス導入用の管状マニホールドの2系統が形成される。   A fuel cell stack 1 shown in FIG. 1 includes a plurality of single cells 10 having the above-described configuration stacked with gaskets 15 and 16 interposed therebetween, and fastening plates 20 and 20 made of stainless steel square plates at upper and lower ends thereof. The four peripheral parts are fastened with bolts and nuts 21a and 21b, and the structural elements are brought into close contact with each other by the fastening load. In addition, the gaskets 15 and 16 are connected in the stacking direction via the gas holes 13 and 14 of the separator 8 by the tightening load, respectively, so that a tubular manifold for introducing fuel gas extending in the stacking direction inside the stack and Two systems of tubular manifolds for introducing oxidant gas are formed.

ところで、既述したように、上記構成のような平板積層型の燃料電池スタックでは、発電時に発電セル内に発生するジュール熱等によりセパレータ8に熱歪みが生じると、その面方向の変位により発電セル5に水平方向の応力が作用して発電セル5が破損するという問題が有った。   By the way, as described above, in the flat plate type fuel cell stack having the above-described configuration, when thermal distortion occurs in the separator 8 due to Joule heat or the like generated in the power generation cell during power generation, power is generated by displacement in the surface direction. There was a problem that the power generation cell 5 was damaged due to the stress in the horizontal direction acting on the cell 5.

そこで、本発明では、図1、図2に示すように、上下両端の締付板20、20、および、これら締付板20、20に挟持される複数のセパレータ8の各々にそれぞれ通孔22を設けると共に、これら通孔22に固定ロッド23を積層体の積層方向(垂直方向)に挿通し、この固定ロッド23により熱歪みによるセパレータの面方向の動きを規制することにより、熱応力による上記発電セル5の破損を防止するようにした。   Therefore, in the present invention, as shown in FIGS. 1 and 2, the through holes 22 are respectively provided in the upper and lower fastening plates 20 and 20 and each of the plurality of separators 8 sandwiched between the fastening plates 20 and 20. The fixing rods 23 are inserted into the through holes 22 in the stacking direction (vertical direction) of the laminated body, and the movement of the separator in the surface direction due to thermal strain is regulated by the fixing rods 23, thereby The power generation cell 5 was prevented from being damaged.

本実施形態では、セパレータ8面上の発電セル5が位置する部分を囲むように、その外周近傍に、且つ対角線状に4箇所通孔22を設けて固定ロッド23を挿通している。因みに、通孔22の孔径は3φ、これに挿通される固定ロッド23の外径は3.5φとしている。   In this embodiment, the fixing rod 23 is inserted by providing four through holes 22 in the vicinity of the outer periphery and diagonally so as to surround a portion where the power generation cell 5 is located on the surface of the separator 8. Incidentally, the diameter of the through hole 22 is 3φ, and the outer diameter of the fixed rod 23 inserted through the through hole 22 is 3.5φ.

これら固定ロッド23は、上端締付板20の通孔22より挿通され、その下端部が下端締付板20において支持されている。従って、全ての固定ロッド23は、各通孔22に遊嵌された状態となっており、積層体の積層方向への加重には何等寄与しておらず、単にセパレータ8の面方向の動きのみを規制している。   These fixed rods 23 are inserted through the through holes 22 of the upper end fastening plate 20, and the lower ends thereof are supported by the lower end fastening plate 20. Accordingly, all the fixing rods 23 are loosely fitted in the respective through holes 22, do not contribute to the load in the stacking direction of the stacked body, and merely move in the surface direction of the separator 8. Is regulated.

また、固定ロッド23の材料としては、絶縁性、高耐熱性を有し、且つ、セパレータ8の材料(ステンレス)より熱膨張率の小さい、例えば、アルミナ、またはシリカ等を用いている。
固定ロッド23の熱膨張率をセパレータ8の熱膨張率より小さくしたのは、発電中に固定ロッド23の熱歪みがセパレータ8に与える機械的影響を無くすためであり、固定ロッド23を絶縁性ロッドとしたのは、各々セパレータ同士がこの固定ロッド23により短絡されるのを回避するためである。
Further, as the material of the fixing rod 23, for example, alumina, silica, or the like, which has insulation and high heat resistance and has a smaller thermal expansion coefficient than the material of the separator 8 (stainless steel), is used.
The reason why the thermal expansion coefficient of the fixed rod 23 is made smaller than the thermal expansion coefficient of the separator 8 is to eliminate the mechanical influence of the thermal strain of the fixed rod 23 on the separator 8 during power generation. The reason for this is to prevent the separators from being short-circuited by the fixing rod 23.

尚、通孔22の数は、上述した平面方向の4箇所に限るものではなく、少なくとも3箇所以上設けてあれば良く、セパレータ8の平面方向の動きは確実に規制できる。特に、3箇所に設ける場合は、発電セル5が位置する部分を囲むようにその外周近傍に等間隔(正三角形状)に配設されることが望ましい。   Note that the number of the through holes 22 is not limited to the four positions in the plane direction described above, and it is sufficient that at least three positions are provided, and the movement of the separator 8 in the plane direction can be reliably regulated. In particular, when it is provided at three places, it is desirable that the power generation cells 5 are arranged at equal intervals (regular triangles) in the vicinity of the outer periphery so as to surround the portion where the power generation cells 5 are located.

以上、固定ロッド23を用いた燃料電池スタック1の固定構造によれば、多数積層されたセパレータ8の各々に固定ロッド23を挿通して発電の熱歪みによるセパレータ8変位、すなわち、面方向の動きを規制するようにしたので、発電時の高温雰囲気下において、各セパレータ8間に圧接・挟持される発電セル5に面方向の熱応力を加わらなくすることができ、発電セル5の破損が防止できる。これにより、発電セル5の寿命が向上し、安定した発電性能が得られる信頼性の高い燃料電池スタック1が実現できる。   As described above, according to the fixing structure of the fuel cell stack 1 using the fixing rod 23, the fixing rod 23 is inserted into each of a large number of stacked separators 8, and the displacement of the separator 8 due to thermal distortion of power generation, that is, the movement in the surface direction. Therefore, in the high temperature atmosphere during power generation, it is possible to prevent the power generation cells 5 being pressed and sandwiched between the separators 8 from being subjected to thermal stress in the surface direction and to prevent the power generation cells 5 from being damaged. it can. Thereby, the lifetime of the power generation cell 5 is improved, and a highly reliable fuel cell stack 1 that can obtain stable power generation performance can be realized.

本発明が適用された燃料電池スタックの構成を示し、(a)は平面図、(b)は側面図。The structure of the fuel cell stack to which this invention was applied is shown, (a) is a top view, (b) is a side view. 図1のA−A矢視図。The AA arrow directional view of FIG.

符号の説明Explanation of symbols

1 燃料電池スタック(固体酸化物形燃料電池)
5 発電セル
8 セパレータ
22 通孔
23 固定ロッド
1 Fuel cell stack (solid oxide fuel cell)
5 Power generation cell 8 Separator 22 Through hole 23 Fixed rod

Claims (4)

発電セルとセパレータを交互に積層すると共に、この積層体を積層方向より加重して構成した平板積層型の燃料電池スタックにおいて、
前記各セパレータに積層方向に貫通する複数の通孔を設け、これら通孔に運転時の熱歪みによる前記セパレータの面方向の動きを規制する固定ロッドを挿通したことを特徴とする燃料電池スタック。
In the flat plate type fuel cell stack in which the power generation cells and the separators are alternately stacked, and this stacked body is configured by weighting from the stacking direction,
A fuel cell stack, wherein a plurality of through holes penetrating in the stacking direction are provided in each of the separators, and a fixing rod for restricting movement in the surface direction of the separator due to thermal strain during operation is inserted into the through holes.
前記発電セルとセパレータとが垂直方向に積層されて成ることを特徴とする請求項1に記載の燃料電池スタック。 The fuel cell stack according to claim 1, wherein the power generation cell and the separator are stacked in a vertical direction. 前記固定ロッドの熱膨張率は、前記セパレータの熱膨張率に比べて小さいことを特徴とする請求項1または請求項2の何れかに記載の燃料電池スタック。 The fuel cell stack according to claim 1, wherein a thermal expansion coefficient of the fixing rod is smaller than a thermal expansion coefficient of the separator. 前記固定ロッドの材料としてアルミナまたはシリカを用いたことを特徴とする請求項1から請求項3までの何れかに記載の燃料電池スタック。 The fuel cell stack according to any one of claims 1 to 3, wherein alumina or silica is used as a material of the fixing rod.
JP2005225468A 2005-01-19 2005-08-03 Fuel cell stack Expired - Fee Related JP5200318B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005225468A JP5200318B2 (en) 2005-08-03 2005-08-03 Fuel cell stack
US11/795,312 US20110151348A1 (en) 2005-01-19 2006-01-12 Flat plate laminated type fuel cell and fuel cell stack
PCT/JP2006/300266 WO2006077762A1 (en) 2005-01-19 2006-01-12 Flat laminate type fuel cell and fuel cell stack
EP06711589A EP1855338A4 (en) 2005-01-19 2006-01-12 Flat laminate type fuel cell and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225468A JP5200318B2 (en) 2005-08-03 2005-08-03 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2007042442A true JP2007042442A (en) 2007-02-15
JP5200318B2 JP5200318B2 (en) 2013-06-05

Family

ID=37800236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225468A Expired - Fee Related JP5200318B2 (en) 2005-01-19 2005-08-03 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP5200318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236848B1 (en) 2010-11-26 2013-02-25 삼성중공업 주식회사 Full cell stack fixing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119665A (en) * 1989-10-03 1991-05-22 Toshiba Corp Fuel cell fastening device
JP2000268843A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Fuel cell
JP2004303472A (en) * 2003-03-28 2004-10-28 Honda Motor Co Ltd Fuel cell stack
JP2006331805A (en) * 2005-05-25 2006-12-07 Honda Motor Co Ltd Stack structure of fuel cell
JP2008535189A (en) * 2005-04-05 2008-08-28 ビーワイディー カンパニー リミテッド Flow field plate and fuel cell stack including the flow field plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119665A (en) * 1989-10-03 1991-05-22 Toshiba Corp Fuel cell fastening device
JP2000268843A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Fuel cell
JP2004303472A (en) * 2003-03-28 2004-10-28 Honda Motor Co Ltd Fuel cell stack
JP2008535189A (en) * 2005-04-05 2008-08-28 ビーワイディー カンパニー リミテッド Flow field plate and fuel cell stack including the flow field plate
JP2006331805A (en) * 2005-05-25 2006-12-07 Honda Motor Co Ltd Stack structure of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236848B1 (en) 2010-11-26 2013-02-25 삼성중공업 주식회사 Full cell stack fixing device

Also Published As

Publication number Publication date
JP5200318B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5023429B2 (en) Flat plate fuel cell
US20110151348A1 (en) Flat plate laminated type fuel cell and fuel cell stack
JP2008508688A (en) Fuel cell stack with clamping device
JP5881688B2 (en) Fuel cell
US20100092837A1 (en) Plate-laminated type fuel cell
JP4892897B2 (en) Fuel cell
JP5140926B2 (en) Solid oxide fuel cell
JP4440958B2 (en) Fuel cell
US10205179B2 (en) Electrically insulating gasket for SOC unit
JP2008251236A (en) Flat lamination type fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP6702585B2 (en) Flat electrochemical cell stack
WO2009119108A1 (en) Fuel cell stack and flat-plate solid oxide fuel cell using same
JP5200318B2 (en) Fuel cell stack
JP6893126B2 (en) Electrochemical reaction cell stack
JP6118230B2 (en) Fuel cell stack
EP1852929B1 (en) Solid oxide fuel cell
JP4984374B2 (en) Fuel cell
JP5125376B2 (en) Fuel cell
JP2009245627A (en) Solid oxide fuel cell
JP2007042441A (en) Fuel cell and operation method of the same
JP5846936B2 (en) Fuel cell
JP6926193B2 (en) Flat plate electrochemical cell stack
US8697307B2 (en) Solid oxide fuel cell stack
JP2009054414A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees