JP2007042246A - Lens measuring device - Google Patents

Lens measuring device Download PDF

Info

Publication number
JP2007042246A
JP2007042246A JP2005228150A JP2005228150A JP2007042246A JP 2007042246 A JP2007042246 A JP 2007042246A JP 2005228150 A JP2005228150 A JP 2005228150A JP 2005228150 A JP2005228150 A JP 2005228150A JP 2007042246 A JP2007042246 A JP 2007042246A
Authority
JP
Japan
Prior art keywords
light
lens
optical
diffraction grating
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228150A
Other languages
Japanese (ja)
Inventor
Hidetoshi Utsuro
英俊 宇津呂
和政 ▲高▼田
Kazumasa Takada
Hirokazu Furuta
寛和 古田
Takesato Urashima
毅吏 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005228150A priority Critical patent/JP2007042246A/en
Publication of JP2007042246A publication Critical patent/JP2007042246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens measuring device for an optical pickup, configured so as to easily maintain the accuracy of the device, and to reduce time necessary for manufacturing the device and detecting characteristics of an objective lens. <P>SOLUTION: A light transmitted through an objective lens 6 is emitted from an optical pickup 1, the transmitted light is diffracted by a diffraction grating 11 to be a diffracted light whose phase is modulated for each wavelength, then the diffracted light is received as an interference image by reducing its center area quantity by a semitransmissive optical element 15, and the objective lens 6 is inspected based on the change of optical intensity in the interference image. Thus, the inspection is carried out within a short time by the simplified device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ディスクなどの情報記録媒体に対し、データや画像、音声等の情報信号の記録、再生、消去等を行うための光ピックアップのレンズ計測装置に関するものである。   The present invention relates to an optical pickup lens measuring device for recording, reproducing, erasing, etc., information signals such as data, images, and sounds on an information recording medium such as an optical disk.

光ディスクなどの情報記録媒体に情報を記録又は再生するための手段の一つとして、光ピックアップが用いられている。この光ピックアップには、情報記録媒体から情報を読み取り、またこの情報記録媒体に情報を記録するために、光源から出射された光を目的の場所に正確に照射できる光学系が必要である。一般的な光ピックアップは、半導体レーザ素子のような光源と受光素子、コリメートレンズ、ビームスプリッタや対物レンズのような光学素子により構成されている。   An optical pickup is used as one of means for recording or reproducing information on an information recording medium such as an optical disk. This optical pickup requires an optical system capable of accurately irradiating a target location with light emitted from a light source in order to read information from the information recording medium and record information on the information recording medium. A typical optical pickup includes a light source such as a semiconductor laser element and a light receiving element, a collimating lens, an optical element such as a beam splitter or an objective lens.

従来例として、光ピックアップを用いて光ディスクにレーザを照射する装置を図6の光ディスク装置の構成図に基づいて説明する。   As a conventional example, an apparatus for irradiating an optical disk with a laser using an optical pickup will be described with reference to the block diagram of the optical disk apparatus in FIG.

図6において、光ピックアップ1内の光源2より出射された光はビームスプリッタ3を透過し、コリメートレンズ4によって平行光になる。この平行光は、立ち上げミラー5で反射された後、対物レンズ6で集光され光ディスク7に光スポットとして照射される。光ディスク7の情報記録面には一定の間隔で溝8が形成されており、この溝8と隣接する溝との間に位置する凸部9(トラック)に光が照射されることにより情報の再生や記録、消去が可能となる。   In FIG. 6, the light emitted from the light source 2 in the optical pickup 1 passes through the beam splitter 3 and becomes parallel light by the collimating lens 4. The parallel light is reflected by the rising mirror 5, then collected by the objective lens 6 and irradiated onto the optical disk 7 as a light spot. Grooves 8 are formed on the information recording surface of the optical disc 7 at regular intervals, and information is reproduced by irradiating light onto a convex portion 9 (track) located between the groove 8 and the adjacent groove. And recording and erasing are possible.

また、光ディスク7において反射した反射光は、ビームスプリッタ3までは出射光の光路と逆方向に進み、ビームスプリッタ3にて出射光の光路とは別の光路に分離され、受光素子10に入射する。この受光素子10において、例えば非点収差法によってフォーカス信号の検出が行われたり、プッシュプル法によってトラッキング信号の検出が行われたりする。   The reflected light reflected by the optical disk 7 travels in the opposite direction to the optical path of the emitted light up to the beam splitter 3, is separated into an optical path different from the optical path of the emitted light by the beam splitter 3, and enters the light receiving element 10. . In the light receiving element 10, for example, a focus signal is detected by an astigmatism method, or a tracking signal is detected by a push-pull method.

光ピックアップ1における対物レンズ6は、図示しない対物レンズ駆動装置(アクチュエーター)によって、電磁的な駆動力で光軸方向(フォーカシング方向)及び光軸方向に直行する方向(トラッキング方向)の2軸方向に変位変動される。これにより、光スポットが光ディスク7の記録面に焦点を合わせつつトラック上を正確に走査する。記録時には光スポットにより光ディスク7の記録面上のトラックに沿って情報を記録し、再生時には記録面により反射された光ビームを受光素子10により検出して、記録面上の情報を再生している。   The objective lens 6 in the optical pickup 1 is moved in two axial directions, ie, an optical axis direction (focusing direction) and a direction orthogonal to the optical axis direction (tracking direction) by an electromagnetic driving force by an objective lens driving device (actuator) (not shown). The displacement is changed. As a result, the light spot accurately scans the track while focusing on the recording surface of the optical disc 7. During recording, information is recorded along a track on the recording surface of the optical disk 7 by a light spot. During reproduction, the light beam reflected by the recording surface is detected by the light receiving element 10 to reproduce information on the recording surface. .

近年用いられている高密度で大容量のDVD(Digital Versatile Disk)等の高密度情報記録媒体に対して情報を読み書きするためには、光源からの光が所定の位置を正確に照射するように構成されていなければならない。そのため、光ピックアップにおける対物レンズは、対物レンズ自体に厳しい光学的特性が要求されるとともに、その取り付け位置や角度においても正確な調整が必要となっている。   In order to read / write information from / to a high-density information recording medium such as a high-density and large-capacity DVD (Digital Versatile Disk) that has been used in recent years, light from a light source accurately irradiates a predetermined position. Must be configured. Therefore, the objective lens in the optical pickup is required to have strict optical characteristics in the objective lens itself, and it is necessary to accurately adjust the attachment position and angle.

これらの課題を解決するために、光ピックアップ内の対物レンズを透過した光を回折させて異なる次数の回折光を発生させ、それぞれの次数の回折光を干渉させてシェアリング干渉像を形成し、この干渉像の複数の点で測定した光強度の位相の差を用いて各種収差(デフォーカス、コマ収差、非点収差、球面収差)を評価し、対物レンズを調整する回折干渉法が提案されている(例えば、特許文献1参照)。   In order to solve these problems, the light transmitted through the objective lens in the optical pickup is diffracted to generate diffracted lights of different orders, and the diffracted lights of the respective orders are interfered to form a sharing interference image, A diffraction interferometry method has been proposed in which various aberrations (defocus, coma, astigmatism, spherical aberration) are evaluated using the phase differences of the light intensity measured at multiple points in this interference image, and the objective lens is adjusted. (For example, refer to Patent Document 1).

回折干渉法を利用したレンズ計測装置の概略図を図7に示す。   FIG. 7 shows a schematic diagram of a lens measuring device using the diffraction interferometry.

図7において、光ピックアップ1から出射された光ビームが集光する光スポットの位置には回折格子11が配置されており、回折格子11に入射された光は、0次、±1次、±2次・・・の次数オーダの回折光に分解される。このとき、回折された光によるシェアリング干渉光を拡散光(球面波)のまま受像すると、図8のシェアリング干渉像の光量分布図に示すような中心部が明るく周辺部が暗い、光量に偏りが生じている干渉像が得られる。そのため図7では、シェアリング干渉像は一旦集光レンズ12によって平行光に変換された後に結像レンズ13によって撮像素子14の受光面上に結像される。撮像素子14に結像された画像において、0次の回折光と±1次の回折光の干渉領域は、デフォーカス、コマ収差、非点収差および球面収差による干渉縞を含む。   In FIG. 7, a diffraction grating 11 is disposed at the position of the light spot where the light beam emitted from the optical pickup 1 is collected, and the light incident on the diffraction grating 11 is in the 0th order, ± 1st order, ± It is decomposed into diffracted light of the order of the second order. At this time, when sharing interference light due to diffracted light is received as diffuse light (spherical wave), the central portion is bright and the peripheral portion is dark as shown in the light amount distribution diagram of the sharing interference image in FIG. An interference image with a bias is obtained. Therefore, in FIG. 7, the shearing interference image is once converted into parallel light by the condenser lens 12 and then imaged on the light receiving surface of the image sensor 14 by the imaging lens 13. In the image formed on the image sensor 14, the interference region of 0th-order diffracted light and ± 1st-order diffracted light includes interference fringes due to defocus, coma aberration, astigmatism, and spherical aberration.

ここで、干渉縞における各点は固有の位相を有するため、回折格子11を光軸と直行する方向に一定の速度で移動し、回折光の干渉領域のある点における光強度の変化と別の点における光強度の変化の位相差を求め、その位相差を解析して各収差を評価し、対物レンズ6の検査や調整を行うことが可能である。   Here, since each point in the interference fringe has a unique phase, the diffraction grating 11 is moved at a constant speed in a direction perpendicular to the optical axis, and the light intensity change at a certain point in the interference region of the diffracted light is different from that. It is possible to obtain the phase difference of the light intensity change at the point, analyze the phase difference to evaluate each aberration, and inspect and adjust the objective lens 6.

コマ収差、非点収差、球面収差等の測定精度を高めるため、回折格子の格子溝が異なる複数の領域を有する回折格子を用いて回折光の位相を変化させ、異なる次数の2つの回折光を干渉させてシェアリング干渉像を形成する収差検出方法および装置がさらに提案されている(例えば、特許文献2参照)。
特開2000−329648号公報 特開2002−202223号公報
In order to improve the measurement accuracy of coma, astigmatism, spherical aberration, etc., the phase of the diffracted light is changed using a diffraction grating having a plurality of regions where the grating grooves of the diffraction grating are different, and two diffracted lights of different orders are There has been further proposed an aberration detection method and apparatus for forming a shearing interference image by causing interference (see, for example, Patent Document 2).
JP 2000-329648 A JP 2002-202223 A

しかしながら前述の従来のレンズ計測装置では、光ピックアップから光ビームを出射する対物レンズの光軸と、その光ビームを集める装置側の集光レンズの光軸を正確に合わせる必要があり、その高精度な位置合わせに長時間を要するという課題と、集光レンズや結像レンズなど複数の光学素子を用いる必要があるため、装置側の光学系の構成が複雑になり、精度の低下を招きやすいという課題を有していた。   However, in the conventional lens measuring device described above, it is necessary to accurately match the optical axis of the objective lens that emits the light beam from the optical pickup with the optical axis of the condensing lens on the device side that collects the light beam. This requires a long time for proper alignment and requires the use of a plurality of optical elements such as a condensing lens and an imaging lens, which complicates the configuration of the optical system on the device side and tends to cause a decrease in accuracy. Had problems.

本発明の目的は、これら装置の光学系を簡素化することにより、装置の精度を維持しやすい構成にするとともに、装置の製作と特性検出に要する時間を短縮することにある。   SUMMARY OF THE INVENTION An object of the present invention is to simplify the optical system of these devices so as to make it easy to maintain the accuracy of the devices, and to shorten the time required for device manufacture and characteristic detection.

上記目的を達成するため、本発明のレンズ計測装置において、レンズの出射光から異なる次数の回折光を形成する回折格子と、前記回折光を干渉像として撮像する撮像素子と、前記回折格子と前記撮像素子の間に配置され、0次の回折光の光軸との交差部から離れるに従って透過率が高くなる透過光学素子とを備えたことを特徴とする。   In order to achieve the above object, in the lens measurement device of the present invention, a diffraction grating that forms diffracted light of different orders from the light emitted from the lens, an imaging device that captures the diffracted light as an interference image, the diffraction grating, and the And a transmissive optical element that is disposed between the imaging elements and has a higher transmittance as the distance from the intersection with the optical axis of the zeroth-order diffracted light increases.

また、レンズの出射光から異なる次数の回折光を形成する回折格子と、前記回折光を干渉像として撮像する撮像素子と、前記回折格子と前記撮像素子の間に配置され、0次の回折光の光軸との交差部から離れるに従って段階的に透過率が高くなる透過光学素子とを備えたことを特徴とする。   Also, a diffraction grating that forms diffracted light of different orders from the light emitted from the lens, an image sensor that captures the diffracted light as an interference image, and a zero-order diffracted light that is disposed between the diffraction grating and the image sensor. And a transmission optical element whose transmittance increases stepwise as the distance from the intersection with the optical axis increases.

以上のように本発明によれば、装置の光学系の構成を簡素化し、レンズ間の光軸を精密に合わせこむ作業が不要になり、レンズ計測に要する時間を短縮することができる。   As described above, according to the present invention, it is possible to simplify the configuration of the optical system of the apparatus, eliminate the need for precisely aligning the optical axes between lenses, and reduce the time required for lens measurement.

また、装置側の集光レンズや結像レンズがなくなるため、より簡便な装置で従来の装置と同様の効果を得ることができる。   Further, since there is no condensing lens or imaging lens on the apparatus side, the same effects as those of the conventional apparatus can be obtained with a simpler apparatus.

以下、本発明の実施の形態について図を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるレンズ計測装置の概略図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a lens measuring device according to Embodiment 1 of the present invention.

図1において、光ピックアップ1は図示しない光ピックアップ保持機構により固定されている。光ピックアップ1内には、図示しない半導体レーザ光源、コリメートレンズ、ビームスプリッタ及び対物レンズ6が搭載されており、光ピックアップ1内の半導体レーザ光源からの光は、コリメートレンズ及びビームスプリッタを透過して対物レンズ6より出射される。   In FIG. 1, an optical pickup 1 is fixed by an optical pickup holding mechanism (not shown). A semiconductor laser light source, a collimator lens, a beam splitter and an objective lens 6 (not shown) are mounted in the optical pickup 1, and light from the semiconductor laser light source in the optical pickup 1 passes through the collimator lens and the beam splitter. The light is emitted from the objective lens 6.

対物レンズ6から出射された光は、結像位置にある回折格子11に入射され、0次回折光、±1次回折光、±2次回折光、・・・に回折される。回折された光は、半透過光学素子15を透過して、スクリーン16に投影される。スクリーン16に投影された回折された光の投影像を、結像レンズ17を通して撮像素子14で撮像する。それにより、撮像素子14上の受光面上に、0次回折光と+1次回折光、0次回折光と−1次回折光が重なりシェアリング干渉像を形成する。撮像素子14の受光面上で受像された干渉縞を解析装置18により解析し、その解析結果を表示装置19にて表示する。ここで半透過光学素子15は、0次の回折光の光軸と交差する部分を含む中心領域20から外周領域21に向かうに従って透過率が高くなる特性を有したものを用いている。ここで、透過率が中心領域20から離れるに従って徐々に高くなる透過光学素子を用いると、外乱の少ない光に対して一様に変化するので高精度に出来、また、透過率が段階的に高くなる透過光学素子はその素子を製造するのがより容易である。   The light emitted from the objective lens 6 is incident on the diffraction grating 11 at the imaging position, and is diffracted into 0th-order diffracted light, ± 1st-order diffracted light, ± 2nd-order diffracted light,. The diffracted light passes through the transflective optical element 15 and is projected onto the screen 16. A projection image of the diffracted light projected on the screen 16 is captured by the image sensor 14 through the imaging lens 17. Thereby, on the light receiving surface on the image sensor 14, the 0th-order diffracted light and the + 1st-order diffracted light, and the 0th-order diffracted light and the −1st-order diffracted light overlap to form a shearing interference image. The interference fringes received on the light receiving surface of the image sensor 14 are analyzed by the analysis device 18 and the analysis results are displayed on the display device 19. Here, the transflective optical element 15 has a characteristic that the transmittance increases from the central region 20 including the portion intersecting the optical axis of the 0th-order diffracted light toward the outer peripheral region 21. Here, when a transmission optical element whose transmittance gradually increases as it moves away from the central region 20 is used, it can be changed with high accuracy because it changes uniformly with respect to light with less disturbance, and the transmittance increases stepwise. The resulting transmissive optical element is easier to manufacture.

図2に、本発明の実施の形態1における半透過光学素子の特性図を示す。半透過光学素子15は、NDフィルタのような静的な光学素子を用いると簡便な構造とすることができ、液晶素子のような動的な光学素子を用いると透過特性を制御可能とすることができる。スクリーン16としては、空間分解能や、投影光量と撮影光量の直線性を考慮するとオパール拡散板が適している。   FIG. 2 shows a characteristic diagram of the transflective optical element according to Embodiment 1 of the present invention. The transflective optical element 15 can have a simple structure when a static optical element such as an ND filter is used, and the transmission characteristics can be controlled when a dynamic optical element such as a liquid crystal element is used. Can do. An opal diffuser is suitable for the screen 16 in consideration of spatial resolution and linearity between the projection light quantity and the photographing light quantity.

スクリーン16の設置位置としては、シェアリング干渉像の撮影倍率によっても異なるが、光ピックアップ1の対物レンズ6の開口径が撮像素子14の受光面よりもやや小さく、シェアリング干渉像の撮影倍率が等倍であると考えると、スクリーン16と結像レンズ17、結像レンズ17と受光素子14の受光面との間の距離は、それぞれ結像レンズ17の焦点距離f2の2倍が最適である。   Although the installation position of the screen 16 varies depending on the imaging magnification of the sharing interference image, the aperture diameter of the objective lens 6 of the optical pickup 1 is slightly smaller than the light receiving surface of the image sensor 14, and the imaging magnification of the sharing interference image is large. Assuming that the magnification is equal, the optimal distance between the screen 16 and the imaging lens 17 and between the imaging lens 17 and the light receiving surface of the light receiving element 14 is twice the focal length f2 of the imaging lens 17. .

ここで用いている回折格子11は、例えば石英ガラスにマスクをしてエッチングすることにより製造され、透過光の位相を部分的に変調させる位相変調素子である。回折格子11は、一定の厚みを有する基板の一方の表面に複数の格子溝が所定の間隔で形成されている。図3に本発明の実施の形態1における回折格子の構成図を示す。ここでは、3種類の格子溝の領域を有する回折格子を例示している。第1の格子溝領域22には、回折格子の移動方向と直行する方向に形成された複数の格子溝が一定の間隔を有して延設されている。第2の格子溝領域23には、第1の格子溝領域22と45°の角度を有する方向に平行に形成された複数の格子溝が一定の間隔を有して延設されている。また、第3の格子溝領域24には、第2の格子溝領域23の格子溝と90°の角度を有する方向に平行に形成された複数の格子溝が一定の間隔を有して延設されている。従って、3種類の格子溝領域を有する回折格子11を第1の格子溝領域22と直角方向に移動させることにより、光ピックアップ1の対物レンズ6を透過した光は、第1の格子溝領域22から、第2の格子溝領域23、第3の格子溝領域24に順次入射し、光の回折方向を変換することができる。   The diffraction grating 11 used here is a phase modulation element that is manufactured by, for example, etching using quartz glass as a mask and partially modulates the phase of transmitted light. The diffraction grating 11 has a plurality of grating grooves formed at predetermined intervals on one surface of a substrate having a constant thickness. FIG. 3 shows a configuration diagram of the diffraction grating according to the first embodiment of the present invention. Here, a diffraction grating having three types of grating groove regions is illustrated. In the first grating groove region 22, a plurality of grating grooves formed in a direction orthogonal to the moving direction of the diffraction grating are extended with a constant interval. In the second grating groove region 23, a plurality of grating grooves formed in parallel with the first grating groove region 22 in a direction having an angle of 45 ° are extended at a constant interval. Further, in the third grating groove region 24, a plurality of grating grooves formed in parallel with the grating grooves of the second grating groove region 23 in a direction having an angle of 90 ° are extended with a certain interval. Has been. Therefore, the light transmitted through the objective lens 6 of the optical pickup 1 is moved by moving the diffraction grating 11 having three types of grating groove regions in a direction perpendicular to the first grating groove region 22. To the second grating groove region 23 and the third grating groove region 24 sequentially, and the diffraction direction of the light can be converted.

撮像素子14の受光面上に生じたシェアリング干渉による干渉縞のパターンには、デフォーカスによる干渉パターン、コマ収差による干渉パターン、非点収差による干渉パターン、球面収差による干渉パターン等がある。一般にこれらの収差は、単独では表れず、複数の収差が複合して形成される。   Examples of interference fringe patterns caused by sharing interference generated on the light receiving surface of the image sensor 14 include an interference pattern caused by defocusing, an interference pattern caused by coma aberration, an interference pattern caused by astigmatism, and an interference pattern caused by spherical aberration. Generally, these aberrations do not appear alone, but are formed by combining a plurality of aberrations.

実施の形態1における回折格子11は3種類の格子溝領域を有するため、第1の格子溝領域22、第2の格子溝領域23、第3の格子溝領域24のそれぞれに入射した光から得られるシェアリング干渉パターンから収差を解析する。解析装置18における収差解析は、干渉領域の複数の点における光強度の位相分布を求めて各収差を評価する位相シフト法を用いて行われる。   Since diffraction grating 11 in the first embodiment has three types of grating groove regions, it is obtained from light incident on each of first grating groove region 22, second grating groove region 23, and third grating groove region 24. The aberration is analyzed from the obtained sharing interference pattern. Aberration analysis in the analysis device 18 is performed using a phase shift method in which the phase distribution of light intensity at a plurality of points in the interference region is obtained and each aberration is evaluated.

なお図1では、半透過光学素子15は回折格子11とスクリーン16の間に設けた例を示したが、図4にレンズ計測装置の別構成の概略図として示すように、回折格子11と対物レンズ6の間に設けると用途に応じて半透過光学素子15を入れ替えるのが容易となり、又、回折格子11等に固定することによって、半透過光学素子15単体で光軸に合わせこむことによる時間のロスを軽減することもできる。   Although FIG. 1 shows an example in which the transflective optical element 15 is provided between the diffraction grating 11 and the screen 16, as shown in FIG. 4 as a schematic diagram of another configuration of the lens measuring device, the diffraction grating 11 and the objective When it is provided between the lenses 6, it is easy to replace the transflective optical element 15 according to the application, and by fixing the transflective optical element 15 to the diffraction grating 11 or the like, the time required for aligning the transflective optical element 15 alone with the optical axis. Can also reduce the loss.

なお、半透過光学素子15を回折格子11とスクリーン16の間、若しくは結像レンズ17と撮像素子14の間に設けると、半透過光学素子15を装置内に含有するレンズ計測装置とすることができる。   If the transflective optical element 15 is provided between the diffraction grating 11 and the screen 16 or between the imaging lens 17 and the image sensor 14, a lens measuring device including the transflective optical element 15 in the apparatus may be obtained. it can.

(実施の形態2)
図5に、本発明の実施の形態2におけるレンズ計測装置の概略図を示す。
(Embodiment 2)
FIG. 5 shows a schematic diagram of a lens measuring apparatus according to Embodiment 2 of the present invention.

本発明の実施の形態2のレンズ計測装置において、本発明の実施の形態1のレンズ計測装置と異なる点は、スクリーン16及び結像レンズ17が設置されていない点である。本発明の実施の形態2では、回折格子11により回折された光は、半透過光学素子15を透過して撮像素子14の受光面上に結像される。   The lens measurement device according to the second embodiment of the present invention is different from the lens measurement device according to the first embodiment of the present invention in that the screen 16 and the imaging lens 17 are not installed. In Embodiment 2 of the present invention, the light diffracted by the diffraction grating 11 passes through the semi-transmissive optical element 15 and forms an image on the light receiving surface of the imaging element 14.

直接撮像素子14で撮像することにより、本発明の実施の形態1よりも撮像素子14を回折格子11に近づけることができるが、逆に撮像素子14と回折格子11の距離が遠すぎると回折格子11からの回折光が拡散してしまい、検査を行うことができない。また、本発明の実施の形態2の構成により、より簡便なレンズ計測装置を提供することができる。   By directly capturing an image with the image sensor 14, the image sensor 14 can be brought closer to the diffraction grating 11 than in the first embodiment of the present invention. Conversely, if the distance between the image sensor 14 and the diffraction grating 11 is too long, the diffraction grating The diffracted light from 11 is diffused and inspection cannot be performed. Moreover, a simpler lens measurement device can be provided by the configuration of the second embodiment of the present invention.

本発明のレンズ計測方法及び装置は、レンズ計測装置の光学系を簡素化することができ、対物レンズの光軸と集光レンズの光軸を高精度に合わせこむ必要がなくなるため検査にかかる時間を短縮することができるという効果を有し、大容量性と高速性を有する光ディスク方式の高密度情報記録媒体(例えばBDやHD−DVD等)に、データや画像、音声等の情報信号の記録、再生、消去等を行う光ピックアップの検査、調整装置にも適用できる。   The lens measuring method and apparatus of the present invention can simplify the optical system of the lens measuring apparatus, and it is not necessary to align the optical axis of the objective lens and the optical axis of the condenser lens with high accuracy. Recording of information signals such as data, images, and audio on an optical disc type high-density information recording medium (for example, BD, HD-DVD, etc.) having the effect of shortening the recording capacity and speed. It can also be applied to an optical pickup inspection and adjustment device that performs reproduction, erasure, and the like.

本発明の実施の形態1におけるレンズ計測装置の概略図Schematic of the lens measuring device in Embodiment 1 of the present invention 本発明の実施の形態1における半透過光学素子の特性図Characteristics diagram of transflective optical element according to Embodiment 1 of the present invention 本発明の実施の形態1における回折格子の概略図Schematic diagram of diffraction grating in Embodiment 1 of the present invention 本発明の実施の形態1におけるレンズ計測装置の別構成の概略図Schematic of another structure of the lens measuring device in Embodiment 1 of this invention 本発明の実施の形態2におけるレンズ計測装置の概略図Schematic of the lens measuring device in Embodiment 2 of the present invention 従来例における光ディスク装置の構成図Configuration diagram of optical disc apparatus in conventional example 従来例におけるレンズ計測装置の概略図Schematic diagram of a conventional lens measurement device 従来例におけるシェアリング干渉像の光量分布図Light intensity distribution diagram of sharing interference image in conventional example

符号の説明Explanation of symbols

1 光ピックアップ
6 対物レンズ
11 回折格子
14 撮像素子
15 半透過光学素子
16 スクリーン
17 結像レンズ
18 解析装置
19 表示装置
DESCRIPTION OF SYMBOLS 1 Optical pick-up 6 Objective lens 11 Diffraction grating 14 Image pick-up element 15 Semi-transmissive optical element 16 Screen 17 Imaging lens 18 Analyzing device 19 Display device

Claims (5)

レンズの出射光から異なる次数の回折光を形成する回折格子と、前記回折光を干渉像として撮像する撮像素子と、前記回折格子と前記撮像素子の間に配置され、前記回折光の光軸との交差部から離れるに従って透過率が高くなる透過光学素子とを備えたこと
を特徴とするレンズ計測装置。
A diffraction grating that forms diffracted light of different orders from the light emitted from the lens, an image sensor that captures the diffracted light as an interference image, and an optical axis of the diffracted light that is disposed between the diffraction grating and the image sensor. A lens measuring device comprising: a transmissive optical element whose transmittance increases as the distance from the crossing portion increases.
前記透過光学素子と前記撮像素子との間に、更にスクリーンを配置したこと
を特徴とする請求項1記載のレンズ計測装置。
The lens measuring apparatus according to claim 1, further comprising a screen disposed between the transmissive optical element and the imaging element.
前記透過光学素子が、NDフィルタであること
を特徴とする請求項1又は2記載のレンズ計測装置。
The lens measuring device according to claim 1, wherein the transmission optical element is an ND filter.
前記透過光学素子が、液晶素子であること
を特徴とする請求項1又は2記載のレンズ計測装置。
The lens measuring device according to claim 1, wherein the transmissive optical element is a liquid crystal element.
前記スクリーンが、オパール拡散板であること
を特徴とする請求項2記載のレンズ計測装置。
The lens measuring device according to claim 2, wherein the screen is an opal diffuser.
JP2005228150A 2005-08-05 2005-08-05 Lens measuring device Pending JP2007042246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228150A JP2007042246A (en) 2005-08-05 2005-08-05 Lens measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228150A JP2007042246A (en) 2005-08-05 2005-08-05 Lens measuring device

Publications (1)

Publication Number Publication Date
JP2007042246A true JP2007042246A (en) 2007-02-15

Family

ID=37800070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228150A Pending JP2007042246A (en) 2005-08-05 2005-08-05 Lens measuring device

Country Status (1)

Country Link
JP (1) JP2007042246A (en)

Similar Documents

Publication Publication Date Title
US7965607B2 (en) Hologram recording/reproducing device and recording/reproducing optical apparatus
EP1471507A2 (en) A method for recording and reproducing holographic data and an apparatus therefor
JP3918006B2 (en) Holographic ROM player with servo function
JP3730831B2 (en) Aberration measuring device and adjusting device
JPH0792925B2 (en) Optical head of optical disk device
JP2005135539A (en) Optical head and optical information recording and reproducing device using the same
JPH0370859B2 (en)
JP2007042246A (en) Lens measuring device
JPH0320911Y2 (en)
JP2720749B2 (en) Light spot distortion measurement adjustment device
JPH11110791A (en) Reproduction pickup device for optical information recording medium
JP4830837B2 (en) Lens measuring device
JP2007033098A (en) Lens measuring method and lens measuring instrument
JP4167778B2 (en) Method for evaluating aberration of optical element
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
JP3300536B2 (en) Displacement measuring device and optical pickup
JP2000214048A (en) Lens aberration measuring instrument and lens tilt adjusting device using same
US20040017742A1 (en) Optical head and optical disk drive
JP4106191B2 (en) Optical system adjustment method
JP2008032588A (en) Lens-measuring device
JP2008076160A (en) Diffraction grating used for lens evaluation, lens evaluating method, and lens evaluating device
KR100472471B1 (en) Apparatus for measuring skew of actuator and measuring method thereof
JPS6233659B2 (en)
JPH02277003A (en) Diffraction grating and optical head device
JP2005345363A (en) Measuring device of optical equipment and its measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202