JP2007040935A - Electromagnetic wave sensor - Google Patents

Electromagnetic wave sensor Download PDF

Info

Publication number
JP2007040935A
JP2007040935A JP2005228111A JP2005228111A JP2007040935A JP 2007040935 A JP2007040935 A JP 2007040935A JP 2005228111 A JP2005228111 A JP 2005228111A JP 2005228111 A JP2005228111 A JP 2005228111A JP 2007040935 A JP2007040935 A JP 2007040935A
Authority
JP
Japan
Prior art keywords
radiation
visible light
electrode
sensor
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228111A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shima
和彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Sensor Device Co Ltd
Original Assignee
Shindengen Sensor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Sensor Device Co Ltd filed Critical Shindengen Sensor Device Co Ltd
Priority to JP2005228111A priority Critical patent/JP2007040935A/en
Publication of JP2007040935A publication Critical patent/JP2007040935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave sensor capable of detecting independently an electromagnetic wave and a visible ray respectively at the same time, and capable of analyzing accurately and quickly respective signals therein. <P>SOLUTION: This sensor includes a transparent base body 2, a visible ray sensor part 3 and a radiation sensor part 4 layered in order on the transparent base body 2, and a bias electrode 5 formed between the visible ray sensor part 3 and the radiation sensor part 4, detects the visible ray incident from a transparent base body 2 side, between the bias electrode 5 and a visible ray reading electrode 3a provided in the visible ray sensor part 3, and detects a radiation incident from the transparent base body 2 side, between the bias electrode 5 and a radiation reading electrode 4a provided in the radiation sensor part 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光及び放射線の両方のセンサ機能を兼ね備えた電磁波センサに関するものである。   The present invention relates to an electromagnetic wave sensor having both visible light and radiation sensor functions.

原子力発電所や医療用の放射線撮像装置の設置場所などには、放射線環境を定常的に監視する手段として放射線監視設備が設置されている。この放射線監視設備は、放射線漏れなどをモニターする放射線検出器を備え、この放射線検出器の撮像素子から得られた放射線情報を常に監視するものである。また、放射線環境における人体などの有無を検出する手段として可視光センサ装置が設置されている。この可視光センサ装置は、可視光を検出して画像信号を出力するCCD(Charge Coupled Device)やCMOS(Complementary Metal−Oxide−Semiconductor)等を用いたセンサ素子やその集合体を用いており、ビデオカメラやデジタルカメラ等で監視している。従来。これらの放射線検出器及び可視孔センサ装置は、それぞれが独立した装置として設置されていたが、最近ではこれら両方の装置からの信号を一つのデバイスで検出して画素信号として取り出す方法も提案されている(特許文献1を参照)。   Radiation monitoring equipment is installed as a means for constantly monitoring the radiation environment in places such as nuclear power plants and medical radiation imaging devices. This radiation monitoring facility includes a radiation detector that monitors radiation leakage and the like, and constantly monitors radiation information obtained from an image sensor of the radiation detector. Further, a visible light sensor device is installed as means for detecting the presence or absence of a human body or the like in a radiation environment. This visible light sensor device uses a sensor element using CCD (Charge Coupled Device), CMOS (Complementary Metal-Oxide-Semiconductor), or the like that detects visible light and outputs an image signal. Monitoring is performed with a camera or digital camera. Conventional. These radiation detectors and visible hole sensor devices have been installed as independent devices, but recently, a method has been proposed in which signals from both devices are detected by a single device and extracted as pixel signals. (See Patent Document 1).

しかしながら、上記のように放射線及び可視光の両センサ機能を兼ね備えた装置は、各々の信号を検出し、画素信号として取り出すことは可能であるが、両者からの信号を同時に区別して取り出すことは困難である。これは、センサ機能を有する光受光部が一つ、信号取り出し部が一つしかないために、一度に2種類の光を受光した場合は、出力信号を混在した信号として取り出すことになり、信号の判別をすることが困難と思われるからである。そのため、現状では各センサ装置を別々に設置せざるを得ず、それぞれの設置場所を確保する必要がある他、コスト的にも割高になるという問題を有している。
特開2000−244824号公報
However, as described above, a device having both radiation and visible light sensor functions can detect each signal and extract it as a pixel signal, but it is difficult to distinguish and extract signals from both simultaneously. It is. This is because there is only one light receiving part having a sensor function and only one signal extracting part. When two types of light are received at a time, the output signal is extracted as a mixed signal. This is because it seems difficult to discriminate. Therefore, at present, each sensor device has to be installed separately, and it is necessary to secure the respective installation locations, and there is a problem that it is expensive in terms of cost.
JP 2000-244824 A

そこで、本発明の目的は、電磁波と可視光とをそれぞれ独立して同時に検出できるようにし、それぞれの信号に対する解析を正確且つ素早く処理できるような電磁波センサを提供することである。また、本発明の電磁波センサは、従来別々に設置されていた放射線検出器及び可視孔センサ装置とを1つに集約することで、設置場所をとらず且つ低コストで設備できることを目的とする。   Therefore, an object of the present invention is to provide an electromagnetic wave sensor that can detect electromagnetic waves and visible light independently and simultaneously, and can accurately and quickly process analysis of each signal. Another object of the electromagnetic wave sensor of the present invention is to consolidate the radiation detector and the visible hole sensor device, which have been separately installed conventionally, into one, and can be installed at a low cost without taking up an installation place.

上記課題を解決するために、本発明に係る電磁波センサは、透明基体と、この透明基体上に順に積層される可視光センサ部および放射線センサ部とを備え、前記透明基体側から入射する可視光を可視光センサ部で検出する一方、前記透明基体側から入射する放射線を放射線センサ部で検出することを特徴とする。   In order to solve the above-described problems, an electromagnetic wave sensor according to the present invention includes a transparent substrate, a visible light sensor unit and a radiation sensor unit that are sequentially stacked on the transparent substrate, and visible light incident from the transparent substrate side. Is detected by the visible light sensor unit, while radiation incident from the transparent substrate side is detected by the radiation sensor unit.

また、本発明の一例では、前記可視光センサ部と放射線センサ部との間にバイアス電極が形成され、このバイアス電極と可視光センサ部に設けられた可視光読取電極との間で可視光を検出し、前記バイアス電極と放射線センサ部に設けられた放射線読取電極との間で放射線を検出することを特徴とする。   In one example of the present invention, a bias electrode is formed between the visible light sensor unit and the radiation sensor unit, and visible light is transmitted between the bias electrode and a visible light reading electrode provided in the visible light sensor unit. And detecting radiation between the bias electrode and a radiation reading electrode provided in the radiation sensor unit.

本発明によれば、放射線などの電磁波を検出する機能と可視光などの光を検出する機能とを一つのセンサの中に独立して設けたので、電磁波と可視光とを同時に検出することができると共に、検出したそれぞれの信号を混同させることなく独立して解析することができる。また、従来はそれぞれ単独で設置していた2種類のセンサ装置を1つに集約できるので、設置場所が1箇所で済む他、設備に要するコストを抑えられる。   According to the present invention, since the function of detecting electromagnetic waves such as radiation and the function of detecting light such as visible light are provided independently in one sensor, electromagnetic waves and visible light can be detected simultaneously. In addition, each detected signal can be analyzed independently without being confused. In addition, since two types of sensor devices that have conventionally been installed independently can be integrated into one, only one installation location is required, and the cost required for equipment can be reduced.

以下、本発明に係る電磁波センサの好ましい実施の形態を詳細に説明する。なお、本発明の実施形態を図によって示すが、本発明はこれに限定されるものではない。
本発明に係る電磁波センサの構成は、放射線などの電磁波を検出する機能と、可視光などの光を検出する機能を一度に同時に達成させるために、バイアス電極を挟んでその上下に光導電体層を設け、さらに両者の光を電気信号として取り出す電極をそれぞれ設けたことを特徴とする。
Hereinafter, preferred embodiments of the electromagnetic wave sensor according to the present invention will be described in detail. In addition, although embodiment of this invention is shown with a figure, this invention is not limited to this.
The configuration of the electromagnetic wave sensor according to the present invention is such that a photoconductor layer is placed above and below a bias electrode in order to simultaneously achieve a function of detecting electromagnetic waves such as radiation and a function of detecting light such as visible light at the same time. And an electrode for taking out both lights as an electrical signal.

図1は本発明に係る電磁波センサの一構成例をモデル的に示した図である。この図において、本発明に係る電磁波センサ1は、ガラスや透明樹脂など可視光を透過する絶縁性の透明基体2と、この透明基体2の上に層状に形成された可視光センサ部3および放射線センサ部4と、これら両センサ部3,4の間に形成されたバイアス電極5とを備える。   FIG. 1 is a diagram schematically showing a configuration example of an electromagnetic wave sensor according to the present invention. In this figure, an electromagnetic wave sensor 1 according to the present invention includes an insulating transparent substrate 2 that transmits visible light, such as glass and transparent resin, a visible light sensor unit 3 formed in a layer on the transparent substrate 2, and radiation. A sensor unit 4 and a bias electrode 5 formed between the sensor units 3 and 4 are provided.

前記透明基体2は、上記したガラスの他にフレキシブルな樹脂製シートによっても構成することができ、例えばポリマーフィルムをシートとして用いることができる。前記ポリマーフィルムとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)等からなるフィルムが挙げられる。このようなプラスチックフィルムを用いることで、ガラス基板を使用した場合に比べて軽量化を図ることができ、可搬性を高めることができるとともに、衝撃に対する耐性が向上する。   The transparent substrate 2 can be constituted by a flexible resin sheet in addition to the glass described above. For example, a polymer film can be used as the sheet. Examples of the polymer film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). The film which becomes is mentioned. By using such a plastic film, the weight can be reduced as compared with the case where a glass substrate is used, portability can be improved, and resistance to impact is improved.

前記可視光センサ部3は、人や物の動きを監視するための機能を有し、可視光の強度(濃淡差)に応じた電気信号に変換して電荷、電流量として取り出すものであり、可視光読取電極3aと可視光導電体3bとで層状に形成されている。可視光読取電極3aは、薄膜トランジスタを用いた2次元マトリクスのように画像認識が可能な電極構造からなる。適用される材料としては、可視光を透過する導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)等を用いることができ、その中でも特に、白金、金、銀、銅、アルミニウム、インジウム、ITOおよび炭素が好ましい。   The visible light sensor unit 3 has a function for monitoring the movement of a person or an object, converts it into an electric signal corresponding to the intensity of the visible light (darkness difference), and takes it out as an electric charge and a current amount. The visible light reading electrode 3a and the visible light conductor 3b are formed in layers. The visible light reading electrode 3a has an electrode structure capable of image recognition like a two-dimensional matrix using a thin film transistor. The applied material is not particularly limited as long as it is a conductive material that transmits visible light. Platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, Rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony, indium tin oxide (ITO), etc. can be used, among which platinum, gold, silver, copper, aluminum, indium, ITO And carbon are preferred.

前記可視光読取電極3aの形成方法としては、例えば上記の材料を用いて蒸着やスパッタリング等により導電性薄膜を形成し、この導電性薄膜を公知のフォトリソグラフ法やリフトオフ法を用いて電極を形成する方法、あるいは前記導電性薄膜をアルミニウムや銅などの金属箔上に熱転写したり、インクジェット等によるレジストを用いてエッチングする方法などがある。   As a method for forming the visible light reading electrode 3a, for example, a conductive thin film is formed by vapor deposition, sputtering, or the like using the above-mentioned material, and this conductive thin film is formed using a known photolithographic method or lift-off method. Or a method of thermally transferring the conductive thin film onto a metal foil such as aluminum or copper, or a method of etching using a resist such as inkjet.

他方、可視光導電体3bは、その内部に生じた光電荷(キャリア)を前記可視光読取電極3aと後述する放射線センサ部4の放射線読取電極4aとの間を流れる電流値として反映させるものである。この可視光導電体3bの材料としては、可視光の照射で電気抵抗が下がる反面電磁波に対しては電気抵抗変化を示さない有機光導電材料が好ましい。   On the other hand, the visible light conductor 3b reflects the photocharge (carrier) generated therein as a current value flowing between the visible light reading electrode 3a and a radiation reading electrode 4a of the radiation sensor unit 4 described later. is there. As the material of the visible light conductor 3b, an organic photoconductive material that does not show a change in electric resistance against electromagnetic waves is preferable, while its electric resistance decreases when irradiated with visible light.

有機光導電材料としては、電荷発生機能を有する物質と電荷輸送機能を有する物質の中から選択される。可視光導電体3bは、前記電荷発生機能を有する物質と電荷輸送機能を有する物質をそれぞれ積層した2層構造として形成され、あるいは前記2種の物質を混合した単層構造として形成される。   The organic photoconductive material is selected from a substance having a charge generation function and a substance having a charge transport function. The visible light conductor 3b is formed as a two-layer structure in which the substance having a charge generation function and a substance having a charge transport function are laminated, or a single-layer structure in which the two kinds of substances are mixed.

電荷発生機能を有する電荷発生物質としては、例えばスーダンレッド又はダイアンブルー等のアゾ顔料、ピレンキノン、アントアントロン等のキノン顔料、インジゴ、チオインジゴなどのインジゴ顔料、アズレニウム塩顔料、銅フタロシアニン、無金属フタロシアニン、チタニルフタロシアニンなどのフタロシアニン顔料の中から選択される。   Examples of charge generation materials having a charge generation function include azo pigments such as Sudan Red or Diane Blue, quinone pigments such as pyrenequinone and anthanthrone, indigo pigments such as indigo and thioindigo, azurenium salt pigments, copper phthalocyanine, metal-free phthalocyanine, Selected from phthalocyanine pigments such as titanyl phthalocyanine.

一方、電荷輸送機能を有する電荷輸送物質としては、例えばオキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、スチリル化合物、ヒドラゾン化合物、ピラゾリン誘導体、オキサゾロン誘導体、ベンゾチアゾール誘導体、ベンゾフラン誘導体、アクリジン誘導体、フエナジン誘導体、アミノスチルベン誘導体、ポリ−N−ビニルカルバゾール、ポリ−1−ビニルピレン、ポリ−9−ビニルアントラセン、スチリル化合物、アミン誘導体、ジスチリル系化合物(以上p型)、ベンゾキノン系化合物、アントラキノン系化合物、ナフトキノン系化合物、ナフタレンジイミド系化合物、フルオレノン系化合物、チオピラン系化合物、インダン系化合物、インダンジオン系化合物、シクロペンタジエン系化合物及びこれらのニトロ誘導体、シアノ誘導体、ジシアノメチレン誘導体、マロンサンエステル誘導体、フエニルイミノ誘導体(以上n型)などの中から選択される。   On the other hand, as a charge transport material having a charge transport function, for example, oxazole derivatives, oxadiazole derivatives, thiazole derivatives, thiadiazole derivatives, triazole derivatives, imidazole derivatives, styryl compounds, hydrazone compounds, pyrazoline derivatives, oxazolone derivatives, benzothiazole derivatives, Benzofuran derivative, acridine derivative, phenazine derivative, aminostilbene derivative, poly-N-vinylcarbazole, poly-1-vinylpyrene, poly-9-vinylanthracene, styryl compound, amine derivative, distyryl compound (above p-type), benzoquinone Compound, anthraquinone compound, naphthoquinone compound, naphthalene diimide compound, fluorenone compound, thiopyran compound, indane compound, indanji Emissions-based compounds, cyclopentadiene-based compounds and their nitro derivatives, cyano derivatives, dicyano-methylene derivative, malonic acid ester derivative is selected from among such Fueniruimino derivatives (or n-type).

前記可視光導電体3bは、ポリエステル、ポリカーボネート、ポリスチレン、ポリビニルブチラール、ポリ酢酸ビニル、アクリル樹脂、ポリビニルピロリドン、エチルセルロース、酢酸酪酸セルロース等のバインダー樹脂に前記有機光導電材料を適当量分散させたものを形成したものである。なお、形成される可視光導電体3bの膜厚は、0.01〜10μm程度、好ましくは0.1〜5μmである。   The visible light conductor 3b is obtained by dispersing an appropriate amount of the organic photoconductive material in a binder resin such as polyester, polycarbonate, polystyrene, polyvinyl butyral, polyvinyl acetate, acrylic resin, polyvinyl pyrrolidone, ethyl cellulose, and cellulose acetate butyrate. Formed. The formed visible light conductor 3b has a thickness of about 0.01 to 10 μm, preferably 0.1 to 5 μm.

一方、放射線センサ部4は、放射線の強度を電気信号に変換して、電荷、電流量として取り出すものであり、放射線読取電極4aと放射線導電体4bとを有する。具体的には透明基体2から入射した放射線を放射線導電体4bで受光して電子対を発生させ、これを放射線の入力信号として例えば放射線漏れなどの検出が可能となる。   On the other hand, the radiation sensor unit 4 converts the intensity of the radiation into an electrical signal and extracts it as electric charge and current amount, and has a radiation reading electrode 4a and a radiation conductor 4b. Specifically, radiation incident from the transparent substrate 2 is received by the radiation conductor 4b to generate an electron pair, and this can be used as a radiation input signal to detect, for example, radiation leakage.

前記放射線センサ部4の放射線読取電極4aは、バイアス電極5と同様に、抵抗値の小さい導電体であれば特に限定されるものではないが、金やアルミ等の膜形成が容易な材料が好ましい。一方の放射線導電体4bは、高エネルギーである電磁波に対し吸収性の高い光導電材料が好ましく、例えば、CdTe、CdSのようなカドミウム化合物、Se、SeTe、SeAsのようなセレン化合物、ZnS、ZnSeのような亜鉛化合物等々の重元素並びにその化合物が適用できるものである。より好ましくは、原子番号30以上の重元素を1つ以上含む光導電性材料がよい。その中でも特に、X線の吸収率が高いセレン、砒素、テルルなどが好ましい。   The radiation reading electrode 4a of the radiation sensor unit 4 is not particularly limited as long as the bias electrode 5 is a conductor having a small resistance value, but a material such as gold or aluminum that is easy to form a film is preferable. . One of the radiation conductors 4b is preferably a photoconductive material having high absorbability with respect to high-energy electromagnetic waves. For example, a cadmium compound such as CdTe or CdS, a selenium compound such as Se, SeTe, or SeAs, ZnS, or ZnSe. Such heavy elements as zinc compounds and the like, and compounds thereof can be applied. More preferably, a photoconductive material containing one or more heavy elements having an atomic number of 30 or more is preferable. Of these, selenium, arsenic, tellurium and the like having a high X-ray absorption rate are particularly preferable.

本発明のバイアス電極5は、前記可視光導電体3bと放射線導電体4bとの間に挟まれるように設けられ、上下の導電体3b、4bに一様にバイアスをかけることができる。前記バイアス電極5に用いる材料としては、Au、Pt、Ni、In等の金属、アモルファス半導体厚膜などが挙げられる。また、他の方法として、バイアス電極5に接する側の可視光導電体3bと放射線導電体4bにそれぞれカーボンテープを貼り付けてバイアス電極5としてもよいし、カーボンブラック、ニッケル微粒子などの導電微粒子を分散させたフイルム状、ペースト状の電気接続材料でもよい。   The bias electrode 5 of the present invention is provided so as to be sandwiched between the visible light conductor 3b and the radiation conductor 4b, and can uniformly bias the upper and lower conductors 3b and 4b. Examples of the material used for the bias electrode 5 include metals such as Au, Pt, Ni, and In, and thick amorphous semiconductor films. As another method, a carbon tape may be attached to the visible light conductor 3b and the radiation conductor 4b on the side in contact with the bias electrode 5 to form the bias electrode 5, or conductive fine particles such as carbon black and nickel fine particles may be used. A dispersed film-like or paste-like electrical connection material may be used.

上記構成からなる電磁波センサ1は、図1に示されるように、バイアス電極5を挟んで上下に可視光センサ部3と放射線センサ部4とが配置され、可視光センサ部3の上部に透明基体2が配置された層状構造からなる。また、可視光センサ部3は可視光読取電極3aと可視光導電体3bとで層状をなし、放射線センサ部4は放射線読取電極4aと放射線導電体4bとで層状をなしている。また、本発明の電磁波センサ1は、上記の基本構成の範囲内であれば、例えば、可視光読取電極3aと可視光導電体3bとの間、可視光導電体3bとバイアス電極5との間、バイアス電極5と放射線導電体4bとの間、放射線導電体4bと放射線読取電極4aとの間に中間層を設け、センサのSN比を高くし、各センサ機能を上げることができるものである。   As shown in FIG. 1, the electromagnetic wave sensor 1 having the above configuration includes a visible light sensor unit 3 and a radiation sensor unit 4 arranged above and below a bias electrode 5, and a transparent substrate above the visible light sensor unit 3. It consists of a layered structure in which 2 is arranged. In addition, the visible light sensor unit 3 has a layer shape with the visible light reading electrode 3a and the visible light conductor 3b, and the radiation sensor unit 4 has a layer shape with the radiation reading electrode 4a and the radiation conductor 4b. The electromagnetic wave sensor 1 of the present invention is, for example, between the visible light reading electrode 3a and the visible light conductor 3b and between the visible light conductor 3b and the bias electrode 5 within the above basic configuration. An intermediate layer is provided between the bias electrode 5 and the radiation conductor 4b and between the radiation conductor 4b and the radiation reading electrode 4a, so that the SN ratio of the sensor can be increased and each sensor function can be improved. .

次に、上記構成からなる電磁波センサ1の検出動作について説明する。図2において、バイアス電極5にかかるバイアス極性は正負いずれでもよいがバイアス極性が負の場合、電磁波センサ1の透明基体2側から可視光Aが入射されると、可視光読取電極3a付近の可視光導電体3bで可視光が吸収され、電子正孔の対を形成して対向電極であるバイアス電極5側へ正孔が移動する。これにより可視光導電体3bの電荷密度が上昇して抵抗値が大幅に低下し、バイアス電極5に印加されたバイアス電圧により、上下電極間を流れる電流値に反映され、該電流値を検出することで、可視光センサとして用いることができる。なお、バイアス電極5に印加されるバイアス電圧は、0〜50V程度が好ましい。   Next, the detection operation of the electromagnetic wave sensor 1 having the above configuration will be described. In FIG. 2, the bias polarity applied to the bias electrode 5 may be either positive or negative. When the bias polarity is negative, when visible light A is incident from the transparent substrate 2 side of the electromagnetic wave sensor 1, the visible light near the visible light reading electrode 3a is visible. Visible light is absorbed by the photoconductor 3b, electron-hole pairs are formed, and holes move to the side of the bias electrode 5 that is the counter electrode. As a result, the charge density of the visible light conductor 3b is increased and the resistance value is significantly reduced. The bias voltage applied to the bias electrode 5 is reflected in the current value flowing between the upper and lower electrodes, and the current value is detected. Therefore, it can be used as a visible light sensor. The bias voltage applied to the bias electrode 5 is preferably about 0 to 50V.

図3は放射線センサとして作用する時の動作を示したものである。透明基体2側から放射線Bが入射されると、放射線導電体4bで電子正孔の対を形成し、それぞれ逆極性の対向電極へ移動する。これにより、放射線導電体4bの電荷密度が上昇して抵抗値が大幅に低下し、バイアス電極5に印加されたバイアス電圧により、上下電極間を流れる電流値に反映され、該電流値を検出することで、放射線センサとして用いることができる。本発明の電磁波センサ1は、紫外線エネルギー以上のエネルギーを有する紫外線、ガンマ線、電子線等の検知に有効である。   FIG. 3 shows the operation when acting as a radiation sensor. When the radiation B is incident from the transparent substrate 2 side, a pair of electron holes is formed by the radiation conductor 4b, and each moves to a counter electrode of opposite polarity. As a result, the charge density of the radiation conductor 4b is increased and the resistance value is greatly reduced, and the current value flowing between the upper and lower electrodes is reflected by the bias voltage applied to the bias electrode 5, and the current value is detected. Therefore, it can be used as a radiation sensor. The electromagnetic wave sensor 1 of the present invention is effective for detecting ultraviolet rays, gamma rays, electron beams and the like having energy higher than ultraviolet energy.

以下、本発明に関する実施例を述べるが、本発明はこれに限定されるものではなく、適用できるものである。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not limited thereto and can be applied.

<実施例1>
透明のガラス基板上にITOによる可視光読取電極3aを形成し、この可視光読取電極3a上に可視光導電体3bとしてアゾ顔料とポリビニルブチラール樹脂からなる電荷発生層と電荷輸送物質のブタジエン化合物とポリカーボネート樹脂をこの上に塗布により積層して形成した。次いで、金を真空蒸着してバイアス電極5を形成し、その一端に高圧ケーブルを接続し、該接続部にはシリコン樹脂を塗布して可視光読取電極3aならびに上層に形成する放射線読取電極4aとの絶縁関係を確保した。さらに、セレンを真空蒸着して放射線導電体4bとして200μmのセレン層を形成した。最後に、金を真空蒸着して放射線読取電極4aを形成することで電磁波センサ1を完成させた。
<Example 1>
A visible light reading electrode 3a made of ITO is formed on a transparent glass substrate, and a charge generation layer made of an azo pigment and polyvinyl butyral resin as a visible light conductor 3b on the visible light reading electrode 3a, a butadiene compound as a charge transport material, and A polycarbonate resin was formed thereon by coating. Next, gold is vacuum-deposited to form a bias electrode 5, a high voltage cable is connected to one end thereof, and a silicon resin is applied to the connection portion to form a visible light reading electrode 3 a and a radiation reading electrode 4 a formed on the upper layer. The insulation relationship was secured. Further, selenium was vacuum-deposited to form a 200 μm selenium layer as the radiation conductor 4b. Finally, the electromagnetic wave sensor 1 was completed by vacuum-depositing gold to form the radiation reading electrode 4a.

<実施例2>
可視光導電体3bをヒドラゾン化合物で形成した以外は、前記実施例1と同様の方法で作成した。
<Example 2>
It was prepared in the same manner as in Example 1 except that the visible photoconductor 3b was formed of a hydrazone compound.

<実施例3>
放射線導電体4bをセレン砒素で形成した以外は、前記実施例1と同様の方法で作成した。
<Example 3>
It was prepared by the same method as in Example 1 except that the radiation conductor 4b was formed of selenium arsenide.

<実施例4>
バイアス電極5及び放射線読取電極4aをアルミニウムで形成した以外は、前記実施例1と同様の方法で作成した。
<Example 4>
The bias electrode 5 and the radiation reading electrode 4a were formed by the same method as in Example 1 except that the bias electrode 5 and the radiation reading electrode 4a were formed of aluminum.

<実施例5>
可視光読取電極3aを金で形成した以外は、前記実施例1と同様の方法で作成した。
<Example 5>
It was created by the same method as in Example 1 except that the visible light reading electrode 3a was made of gold.

<実施例6>
可視光読取電極3aをアルミニウムで形成した以外は、前記実施例1と同様の方法で作成した。
<Example 6>
It was created by the same method as in Example 1 except that the visible light reading electrode 3a was made of aluminum.

<実施例7>
可視光読取電極3aと可視光導電体3bとの間に中間層として硫化カドミウムを設けた以外は、前記実施例1と同様の方法で作成した。
<Example 7>
It was produced by the same method as in Example 1 except that cadmium sulfide was provided as an intermediate layer between the visible light reading electrode 3a and the visible light conductor 3b.

<実施例8>
放射線読取電極4aと放射線導電体4bとの間に中間層として酸化セリウムを設けた以外は、前記実施例1と同様の方法で作成した。
<Example 8>
It was prepared in the same manner as in Example 1 except that cerium oxide was provided as an intermediate layer between the radiation reading electrode 4a and the radiation conductor 4b.

上記実施例1〜8についてその電気的特性(暗電流と信号電流)を調べた。暗電流及び信号電流は以下のようにして評価した。その評価結果を表1に示す。   The electrical characteristics (dark current and signal current) of Examples 1 to 8 were examined. The dark current and the signal current were evaluated as follows. The evaluation results are shown in Table 1.

暗電流の評価:バイアス電極5へのバイアス極性を負とし、1Kvの電圧を与えたまま、その状態で暗所放置し3分後の値を記録した。バイアス印加のみで可視光導電体3b及び放射線導電体4bに流れるノイズ成分を定量化した結果で評価した。なお、可視光読取電極3aでの暗電流をD11、放射線読取電極4aでの暗電流をD16とする。   Evaluation of dark current: The bias polarity to the bias electrode 5 was negative, and a value of 3 minutes was recorded in a dark place with a voltage of 1 Kv being applied. The noise component flowing in the visible light conductor 3b and the radiation conductor 4b only by bias application was evaluated based on the result of quantification. The dark current at the visible light reading electrode 3a is D11, and the dark current at the radiation reading electrode 4a is D16.

信号電流:上記暗電流測定後、一様な可視光及び放射線を照射させ、照射1分後に可視光導電体3b及び放射線導電体4bに流れる電流値を記録したものである。それぞれの光により流れた信号成分を定量化した。可視光読取電極3aでの信号電流をL12、放射線読取電極4aでの信号電流をL16とする。この時の可視光は10Lux、X線照射条件としては、X線管電圧80Kvで線量としては1Rとした。   Signal current: after the dark current measurement, uniform visible light and radiation are irradiated, and a current value flowing through the visible light conductor 3b and the radiation conductor 4b after 1 minute of irradiation is recorded. The signal components that flowed with each light were quantified. The signal current at the visible light reading electrode 3a is L12, and the signal current at the radiation reading electrode 4a is L16. At this time, the visible light was 10 Lux, the X-ray irradiation conditions were an X-ray tube voltage of 80 Kv and a dose of 1R.

Figure 2007040935
Figure 2007040935

上記表結果からもわかるように、可視光並びに放射線に対し、いずれの構成でもセンサ機能であるシグナル/ノイズ比ともに使用可能なレベルであった。   As can be seen from the above table results, the signal / noise ratio, which is a sensor function, is usable at both configurations for visible light and radiation.

本発明の電磁波センサは、原子力発電所や医療用の放射線撮像装置の設置場所などにおいて、場所を取らず且つ低コストのセンサ手段として有効に利用される。   The electromagnetic wave sensor of the present invention is effectively used as a low-cost sensor means without taking up space in a place where a nuclear power plant or a medical radiation imaging apparatus is installed.

本発明に係る電磁波センサの構造を示す概念図である。It is a conceptual diagram which shows the structure of the electromagnetic wave sensor which concerns on this invention. 可視光センサ部の動作説明図である。It is operation | movement explanatory drawing of a visible light sensor part. 放射線センサ部の動作説明図である。It is operation | movement explanatory drawing of a radiation sensor part.

符号の説明Explanation of symbols

1 電磁波センサ
2 透明基体
3 可視光センサ部
3a 可視光読取電極
3b 可視光導電体
4 放射線センサ部
4a 放射線読取電極
4b 放射線導電体
5 バイアス電極
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave sensor 2 Transparent base | substrate 3 Visible light sensor part 3a Visible light reading electrode 3b Visible light conductor 4 Radiation sensor part 4a Radiation reading electrode 4b Radiation conductor 5 Bias electrode

Claims (3)

透明基体と、
この透明基体上に順に積層される可視光センサ部および放射線センサ部とを備え、
前記透明基体側から入射する可視光を可視光センサ部で検出する一方、前記透明基体側
から入射する放射線を放射線センサ部で検出することを特徴とする電磁波センサ。
A transparent substrate;
The visible light sensor unit and the radiation sensor unit are sequentially laminated on the transparent substrate,
An electromagnetic wave sensor, wherein visible light incident from the transparent substrate side is detected by a visible light sensor unit, and radiation incident from the transparent substrate side is detected by a radiation sensor unit.
前記可視光センサ部と放射線センサ部との間にバイアス電極が形成され、このバイアス
電極と可視光センサ部に設けられた可視光読取電極との間で可視光を検出し、前記バイアス電極と放射線センサ部に設けられた放射線読取電極との間で放射線を検出する請求項1記載の電磁波センサ。
A bias electrode is formed between the visible light sensor unit and the radiation sensor unit, visible light is detected between the bias electrode and a visible light reading electrode provided in the visible light sensor unit, and the bias electrode and the radiation are detected. The electromagnetic wave sensor of Claim 1 which detects a radiation between the radiation reading electrodes provided in the sensor part.
前記可視光センサ部は、可視光導電体を備えており、この可視光導電体が有機光導電材料からなる請求項1又は2記載の電磁波センサ。   The electromagnetic wave sensor according to claim 1, wherein the visible light sensor unit includes a visible light conductor, and the visible light conductor is made of an organic photoconductive material.
JP2005228111A 2005-08-05 2005-08-05 Electromagnetic wave sensor Pending JP2007040935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228111A JP2007040935A (en) 2005-08-05 2005-08-05 Electromagnetic wave sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228111A JP2007040935A (en) 2005-08-05 2005-08-05 Electromagnetic wave sensor

Publications (1)

Publication Number Publication Date
JP2007040935A true JP2007040935A (en) 2007-02-15

Family

ID=37799035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228111A Pending JP2007040935A (en) 2005-08-05 2005-08-05 Electromagnetic wave sensor

Country Status (1)

Country Link
JP (1) JP2007040935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139918B1 (en) * 2010-08-19 2012-04-30 주식회사 캔티스 Measuring apparatus for arc and electromagnetic waves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139918B1 (en) * 2010-08-19 2012-04-30 주식회사 캔티스 Measuring apparatus for arc and electromagnetic waves

Similar Documents

Publication Publication Date Title
JP6150797B2 (en) Radiological imaging system
US20110079729A1 (en) Megavoltage imaging with a photoconductor based sensor
US7488966B2 (en) Radiation detector and method for producing photoconductive layer for recording thereof
JP2000105297A (en) Electrostatic recording body, electrostatic latent image recording apparatus and electrostatic latent image reader
US20180145204A1 (en) Device for direct x-ray detection
JP2013044723A (en) Radiation detector, manufacturing method of radiation detector, and radiation image photographing device
US20040178426A1 (en) Laminated semiconductor radiation detector
US7233003B2 (en) Radiation detector
JP2013044724A (en) Radiation detector, manufacturing method of radiation detector, radiation image photographing device
Grynko et al. Bilayer lead oxide X-ray photoconductor for lag-free operation
JP2001284628A (en) X-ray detector
JP2007040935A (en) Electromagnetic wave sensor
US10739475B2 (en) Radiation imaging method
Scheuermann et al. Low dose digital X-ray imaging with avalanche amorphous selenium
EP1262797B1 (en) Method and apparatus for image recording and image recording medium
JP2001177140A (en) Radioactive detector
JP2010027834A (en) Method for manufacturing photoconductive layer for recording of radiation detector
JPH0463555B2 (en)
WO1990011551A1 (en) Photosensitive member and electrostatic data recording method
US7382006B2 (en) Photo-conductive layer for constituting a radiation imaging panel
JP4787227B2 (en) Radiation detector and method for producing photoconductive layer for recording radiation detector
JP2007150277A (en) Radiation image taking panel and photoconductive layer forming the same
JP2014137373A (en) High resolution x-ray imaging with thin, flexible digital sensors
US20070096035A1 (en) Residual charge erasing method for solid state radiation detectors and radiation image recording/readout apparatus
JPH05129576A (en) Image reading element