JP2001177140A - Radioactive detector - Google Patents

Radioactive detector

Info

Publication number
JP2001177140A
JP2001177140A JP35818799A JP35818799A JP2001177140A JP 2001177140 A JP2001177140 A JP 2001177140A JP 35818799 A JP35818799 A JP 35818799A JP 35818799 A JP35818799 A JP 35818799A JP 2001177140 A JP2001177140 A JP 2001177140A
Authority
JP
Japan
Prior art keywords
layer
lower electrode
selenium
upper electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35818799A
Other languages
Japanese (ja)
Other versions
JP4240707B2 (en
Inventor
Masahito Sato
正仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Yamanashi Electronics Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP35818799A priority Critical patent/JP4240707B2/en
Publication of JP2001177140A publication Critical patent/JP2001177140A/en
Application granted granted Critical
Publication of JP4240707B2 publication Critical patent/JP4240707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a very sensitive radioactive detector which has little generation of surface discharging even if the applied voltage is raised. SOLUTION: A lower electrode 2 is formed on a glass substrate 1. Then at least a selenium layer 4, an antimony trisulfide layer 8, and an upper electrode layer 5 are deposited in layers on the lower electrode 2. When applying DC voltage between the lower electrode 2 and the upper electrode 5, the voltage of the positive (+) polarity is applied to the upper electrode layer 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療分野、工業分
野、さらには原子力分野などに用いられる直接変換方式
の放射線検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct conversion type radiation detector used in the medical, industrial, and nuclear fields.

【0002】[0002]

【従来の技術】放射線(例えばX線)の検出器として
は、X線を光に変換した後に電気信号へ変換する間接変
換方式のものと、放射線感応型の半導体膜に入射したX
線を直ちに電気信号に変換する直接変換方式のものとが
ある。後者の直接変換方式の装置として、例えば図5に
示したように、ガラス基板1の上にITO膜を蒸着して
下部電極2とし、その上にX線感応型の半導体膜として
セレン層4を設け、さらにその上に上部電極層5を設け
た構造のものが知られている。なお、符号3はグランド
電極である。このような構造からなるX線検出器にあっ
ては、下部電極2と上部電極層5の間に電源6から直流
電圧を印加し、その状態でX線が上部電極層5の上方か
ら照射されるとセレン層4中に電荷(電子・正孔対)が
発生し、下部電極2に集められた後にX線照射電流I
として読み出される。なお、下部電極2は酸化インジウ
ムに酸化錫をドーピングし、得られたITO(Indium T
in Oxide)粉末を蒸着することでITO膜として形成し
たものである。
2. Description of the Related Art As a detector for radiation (for example, X-ray), an X-ray is converted into light and then converted into an electric signal.
There is a direct conversion type that immediately converts a wire into an electric signal. As a device of the latter direct conversion system, for example, as shown in FIG. 5, an ITO film is deposited on a glass substrate 1 to form a lower electrode 2, and a selenium layer 4 is formed thereon as an X-ray sensitive semiconductor film. A structure having a structure in which an upper electrode layer 5 is further provided thereon is known. Reference numeral 3 is a ground electrode. In the X-ray detector having such a structure, a DC voltage is applied from the power supply 6 between the lower electrode 2 and the upper electrode layer 5 and X-rays are irradiated from above the upper electrode layer 5 in that state. As a result, charges (electron-hole pairs) are generated in the selenium layer 4 and are collected on the lower electrode 2 before the X-ray irradiation current I 1
Is read as The lower electrode 2 is obtained by doping indium oxide with tin oxide and obtaining the obtained ITO (Indium T
in Oxide) It was formed as an ITO film by evaporating powder.

【0003】また、直接変換方式の他の例として、ガラ
ス基板上に約100〜200μm角の画素を多数設けて
下部電極とし、その上に上述と同様のセレン層と上部電
極層を設けた構造のものもある。各画素毎にX線を照射
したときに発生する電荷を収集する機能、収集した電荷
を蓄積する機能及び蓄積した電荷を読み取る電気的スイ
ッチ機能が設けられ、X線照射に伴って蓄積された電荷
がスイッチ機構を経由してX線照射電流Iとして読み
出されるものである。
Another example of the direct conversion method is a structure in which a large number of pixels of about 100 to 200 μm square are provided on a glass substrate to form a lower electrode, and a selenium layer and an upper electrode layer similar to those described above are provided thereon. Some are. Each pixel is provided with a function to collect charges generated when X-rays are irradiated, a function to accumulate the collected charges, and an electric switch function to read the accumulated charges. There are those read as X-ray emission current I 1 through the switch mechanism.

【0004】ところで、X線検出器は高感度であること
が要求されるが、X線検出器の感度はX線の照射量が一
定の時には下部電極に集められる電荷の量、つまり下部
電極に流れるX線照射電流Iの多少によって決まる。
また、X線検出器のS/N比(X線照射時の電流値Sと
X線を照射しない時の暗電流値Nの比)は、大きい方が
望ましい。
By the way, the X-ray detector is required to have high sensitivity, but the sensitivity of the X-ray detector depends on the amount of electric charge collected at the lower electrode when the X-ray irradiation amount is constant, that is, at the lower electrode. determined by some of the X-ray emission current I 1 flowing.
It is desirable that the S / N ratio of the X-ray detector (the ratio between the current value S when X-rays are irradiated and the dark current value N when X-rays are not irradiated) is large.

【0005】上述したように、X線感応型の半導体膜と
してセレン層を用いた場合、セレン層中で発生した電荷
の移動速度は、下部電極と上部電極層の間に印加される
直流電圧が高いほど速くなり、その結果として下部電極
に流れる電流が多くなることから、X線検出器が高感度
であるためには、X線検出器に印加する直流電圧を高く
する必要がある。
As described above, when a selenium layer is used as an X-ray sensitive semiconductor film, the transfer speed of charges generated in the selenium layer depends on the DC voltage applied between the lower electrode and the upper electrode layer. The higher the value, the faster the current, and as a result, the current flowing through the lower electrode increases. Therefore, in order for the X-ray detector to have high sensitivity, it is necessary to increase the DC voltage applied to the X-ray detector.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図5に
示したように、印加電圧を高くするとセレン層の表面に
沿って表面放電Iがグランド電極3に流れ、検出器と
して利用するX線照射電流Iに雑音が入って画像に悪
影響を及ぼすおそれがある。そこで、図5に示したよう
に、上部電極層5の外周縁とセレン層4の外周縁との間
の距離Yを大きくすることで表面放電Iが発生しにく
い構造とし、それによって印加電圧を高くするといった
提案もなされているが、距離Yを大きくするとX線の検
出部分である上部電極層5の面積が小さくなってしまう
といった問題があった。
[SUMMARY OF THE INVENTION However, as shown in FIG. 5, the higher the applied voltage surface discharge I 2 along the surface of the selenium layer flows to the ground electrode 3, X-ray used as a detector irradiated It may adversely affect the image noise is contained in the current I 1. Therefore, as shown in FIG. 5, a surface discharge I 2 hardly occurs structure by a distance Y is increased between the outer edge of the outer peripheral edge and the selenium layer 4 of the upper electrode layer 5, whereby the applied voltage However, there has been a problem in that the area of the upper electrode layer 5, which is the X-ray detection portion, decreases when the distance Y is increased.

【0007】そこで本発明の目的は、印加電圧を高くし
ても表面放電の発生が少ない高感度の放射線検出器を提
供することである。
It is an object of the present invention to provide a high-sensitivity radiation detector in which the occurrence of surface discharge is small even when the applied voltage is increased.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本願発明者はセレン層と上部電極層との間に三硫化
アンチモン層を設け、直流電圧の印加の極性方向を選択
することによって表面放電を抑制できることを見出し
た。具体的には本発明の請求項1に係る放射線検出器
は、絶縁基板上に下部電極を形成し、その上に少なくと
もセレン層、三硫化アンチモン層及び上部電極層を積層
した構造であって、前記下部電極と上部電極層との間に
直流電圧を印加する際、上部電極層に正(+)の極性の
電圧を印加したことを特徴とする。
In order to solve the above-mentioned problems, the present inventor has provided an antimony trisulfide layer between a selenium layer and an upper electrode layer, and selected the direction of the polarity of DC voltage application. It has been found that surface discharge can be suppressed. Specifically, the radiation detector according to claim 1 of the present invention has a structure in which a lower electrode is formed on an insulating substrate, and at least a selenium layer, an antimony trisulfide layer, and an upper electrode layer are stacked thereon, When a DC voltage is applied between the lower electrode and the upper electrode layer, a positive (+) polarity voltage is applied to the upper electrode layer.

【0009】この発明によれば、三硫化アンチモン(S
)層の表面に蓄積される電荷が少ないために、
三硫化アンチモン層の表面に沿って放電が発生しにくく
なる。また、暗い中でX線を照射しない時の暗電流がセ
レン層のみのときと比べて小さくなり、S/N値が大き
くなる。なお、本発明で用いられる絶縁基板としては、
ガラスやプラスチックなどがある。
According to the present invention, antimony trisulfide (S
b 2 S 3 ) layer has a small charge accumulated on its surface,
Discharge does not easily occur along the surface of the antimony trisulfide layer. In addition, the dark current when the X-ray is not irradiated in the dark is smaller than when only the selenium layer is used, and the S / N value is increased. In addition, as the insulating substrate used in the present invention,
There are glass and plastic.

【0010】請求項2に係る発明は、前記請求項1記載
の放射線検出器において、前記絶縁基板上に形成された
下部電極がITO膜からなることを特徴とする。
According to a second aspect of the present invention, in the radiation detector according to the first aspect, the lower electrode formed on the insulating substrate is made of an ITO film.

【0011】請求項3に係る発明は、前記請求項1記載
の放射線検出器において、前記絶縁基板上に形成された
下部電極が、放射線が入射することによりセレン層に発
生した電荷を収集する電荷収集機能と、収集した電荷を
蓄積する電荷蓄積機能と、蓄積した電荷を読み取る電気
的スイッチ機能とを備えた複数の画素からなることを特
徴とする。
According to a third aspect of the present invention, in the radiation detector according to the first aspect, the lower electrode formed on the insulating substrate collects electric charges generated in the selenium layer by the incidence of radiation. It is characterized by comprising a plurality of pixels having a collecting function, a charge storing function of storing the collected charges, and an electric switch function of reading the stored charges.

【0012】請求項4に係る発明は、前記請求項1記載
の放射線検出器において、前記絶縁基板上に形成された
下部電極が、所定間隔ごとに配列された帯状の導電体で
あることを特徴とする。
According to a fourth aspect of the present invention, in the radiation detector according to the first aspect, the lower electrodes formed on the insulating substrate are strip-shaped conductors arranged at predetermined intervals. And

【0013】上述したように、絶縁基板上に形成される
下部電極の選択幅が大きくなり、用途等に応じて最適な
下部電極を形成することが可能となる。
As described above, the selection range of the lower electrode formed on the insulating substrate is increased, and it is possible to form an optimum lower electrode according to the application and the like.

【0014】[0014]

【発明の実施の形態】以下、添付図面に基づいて本発明
に係る放射線検出器の実施形態を説明する。図1は第1
実施形態に係るX線検出器の基本構成を示した図であ
る。この図において、1はガラス基板、2はITO膜を
利用した下部電極、3はグランド電極、4はセレン層、
5は上部電極層、6は直流電圧を印加するための電源、
8は前記セレン層4と上部電極層5との間に設けられた
三硫化アンチモン層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a radiation detector according to the present invention will be described with reference to the accompanying drawings. Figure 1 shows the first
It is a figure showing the basic composition of the X-ray detector concerning an embodiment. In this figure, 1 is a glass substrate, 2 is a lower electrode using an ITO film, 3 is a ground electrode, 4 is a selenium layer,
5 is an upper electrode layer, 6 is a power supply for applying a DC voltage,
Reference numeral 8 denotes an antimony trisulfide layer provided between the selenium layer 4 and the upper electrode layer 5.

【0015】上記の三硫化アンチモン層8は、上部電極
層5で発生する表面放電の抑制作用を持つが、これは三
硫化アンチモン層8の抵抗率が約10Ωcmであって、
セレン層4の抵抗率約1014Ωcmに比べて小さいた
め、三硫化アンチモン層8の表面に蓄積される電荷が少
なく、三硫化アンチモン層8の表面に沿って放電が発生
しにくくなるからである。また、三硫化アンチモン層を
設けた場合は、暗い中でX線を照射しない時の暗電流が
セレン層のみのときと比べて小さくなり、S/N値が大
きくなる。これは、図1に示したように、上部電極層付
近において、暗電流の一つの原因である上部電極層から
のセレン層中への電荷の注入が押えられる結果、矢印1
7方向の電流が小さくなって暗電流が減少する一方、X
線照射時にはセレン層中に発生した電子が矢印18方向
への移動するのには障壁とならないので、X線照射時の
電流は変わらないためである。
The above-mentioned antimony trisulfide layer 8 has a function of suppressing surface discharge generated in the upper electrode layer 5. This is because the resistivity of the antimony trisulfide layer 8 is about 10 9 Ωcm.
Because the resistivity of the selenium layer 4 is smaller than about 10 14 Ωcm, the electric charge accumulated on the surface of the antimony trisulfide layer 8 is small, and it is difficult to generate discharge along the surface of the antimony trisulfide layer 8. . Further, when the antimony trisulfide layer is provided, the dark current when the X-ray is not irradiated in the dark is smaller than when only the selenium layer is used, and the S / N value is increased. This is because, as shown in FIG. 1, near the upper electrode layer, charge injection from the upper electrode layer into the selenium layer, which is one of the causes of dark current, is suppressed.
While the current in the seven directions decreases and the dark current decreases, X
This is because the electron generated in the selenium layer does not act as a barrier to move in the direction of arrow 18 at the time of X-ray irradiation, so that the current at the time of X-ray irradiation does not change.

【0016】下部電極2を構成するITO膜は、前述し
たように、酸化インジウムに酸化錫をドーピングし、得
られたITO(Indium Tin Oxide)粉末を蒸着すること
によって形成することができる他、スパッタリング法な
どによっても形成することができる。また、下部電極2
としてはアルミニウム、クロム、ニッケルなどの導電体
を使用することができる。
As described above, the ITO film constituting the lower electrode 2 can be formed by doping indium oxide with tin oxide and depositing the obtained ITO (Indium Tin Oxide) powder, or by sputtering. It can also be formed by a method or the like. Also, the lower electrode 2
For example, a conductor such as aluminum, chromium, and nickel can be used.

【0017】前記下部電極2の上面に形成されるセレン
層4の膜厚は、約200〜1500μmの範囲が望まし
い。膜厚が200μmより薄いとX線に対する量子効率
が下がって十分な感度を得ることができない一方、15
00μmより厚くなるとセレン層4中で捕獲される電荷
が多くなり、X線に対する応答性が悪くなるからであ
る。
The thickness of the selenium layer 4 formed on the upper surface of the lower electrode 2 is preferably in the range of about 200 to 1500 μm. If the thickness is less than 200 μm, the quantum efficiency with respect to X-rays decreases, and sufficient sensitivity cannot be obtained.
If the thickness is larger than 00 μm, the charge trapped in the selenium layer 4 increases, and the response to X-rays deteriorates.

【0018】セレン層4は、セレン単体で形成される場
合のみならず、セレンとヒ素との合金又はセレンとテル
ルとの合金等によって形成される場合も含まれる。セレ
ン・ヒ素合金層はセレン層4の結晶化を防止する効果が
あり、30μm以下の層厚が望ましい。また、図2に示
したように、ガラス基板1とセレン層4との間に中間層
15を設けることもできる。この中間層15をポリカー
ボネート樹脂の有機膜で形成した場合には、ガラス基板
1に対するセレン層4の接着性が向上する。また、テル
ル化カドミウム(CdTe)などの無機膜によって中間
層15を形成した場合には、ガラス基板1からセレン層
4への電荷注入を阻止する役目を果たす。
The selenium layer 4 includes not only a case where the selenium is formed alone but also a case where the selenium layer 4 is formed of an alloy of selenium and arsenic or an alloy of selenium and tellurium. The selenium / arsenic alloy layer has an effect of preventing the selenium layer 4 from being crystallized, and preferably has a thickness of 30 μm or less. Further, as shown in FIG. 2, an intermediate layer 15 can be provided between the glass substrate 1 and the selenium layer 4. When the intermediate layer 15 is formed of an organic film of a polycarbonate resin, the adhesiveness of the selenium layer 4 to the glass substrate 1 is improved. In the case where the intermediate layer 15 is formed of an inorganic film such as cadmium telluride (CdTe), it plays a role of preventing charge injection from the glass substrate 1 to the selenium layer 4.

【0019】前記三硫化アンチモン層8の膜厚は、0.
01〜10.0μmの範囲が望ましい。膜厚が0.01
μmより薄いと表面放電を抑制する効果が小さくなると
同時に暗電流を抑制する効果も小さくなる。一方、膜厚
が10.0μmより厚くなると表面放電を抑制する効果
はあるものの、X線照射電流が減少してしまうからであ
る。なお、三硫化アンチモン層8は、蒸着法によって形
成することができる。
The thickness of the antimony trisulfide layer 8 is set at 0.1 mm.
The range of 01 to 10.0 μm is desirable. The film thickness is 0.01
When the thickness is smaller than μm, the effect of suppressing surface discharge decreases, and the effect of suppressing dark current also decreases. On the other hand, when the film thickness is more than 10.0 μm, although the effect of suppressing surface discharge is obtained, the X-ray irradiation current decreases. The antimony trisulfide layer 8 can be formed by a vapor deposition method.

【0020】三硫化アンチモン層8の上に設ける上部電
極層5の材料としては、金、銀、アルミニウム、ニッケ
ル等の導電材であり、蒸着法やスパッタリング法などに
よって形成することができる。上部電極層5の厚みは、
0.01〜3.0μmの範囲が望ましい。
The material of the upper electrode layer 5 provided on the antimony trisulfide layer 8 is a conductive material such as gold, silver, aluminum, and nickel, and can be formed by a vapor deposition method, a sputtering method, or the like. The thickness of the upper electrode layer 5 is
The range of 0.01 to 3.0 μm is desirable.

【0021】図3及び図4は、ガラス基板1上に形成さ
れる下部電極2の他の実施形態を示したものである。図
3に示した下部電極2は、ガラス基板1の上に100〜
200μm角の画素10をマトリックス状に配設したも
のであり、各画素10にはX線の入射でセレン層4に発
生した電荷を収集する電荷収集電極11と、収集した電
荷を蓄積する電荷蓄積コンデンサ12と、蓄積した電荷
を読み取る電気的スイッチ機構としての薄膜トランジス
タ13とが形成されている。また、図4に示した下部電
極2は、ガラス基板1の上面に帯状電極2aを一定間隔
毎に配列して形成したものである。この帯状電極2aの
材料としては、アルミニウム、クロム、ITOなどが用
いられる。
3 and 4 show another embodiment of the lower electrode 2 formed on the glass substrate 1. FIG. The lower electrode 2 shown in FIG.
Pixels 10 of 200 μm square are arranged in a matrix. Each pixel 10 has a charge collecting electrode 11 for collecting charges generated in the selenium layer 4 by X-ray incidence, and a charge storage for accumulating the collected charges. A capacitor 12 and a thin film transistor 13 as an electrical switch mechanism for reading the stored electric charge are formed. Further, the lower electrode 2 shown in FIG. 4 is formed by arranging strip electrodes 2a on the upper surface of the glass substrate 1 at regular intervals. Aluminum, chromium, ITO, or the like is used as a material of the strip electrode 2a.

【0022】上記下部電極2におけるX線照射電流I
の大きさは、下部電極2がITO膜や帯状電極2aの場
合には、図1に示したように、下部電極2に接続される
電流計7によって読み取られる。また、図3に示したよ
うに、下部電極2を多数の画素10で形成した場合に
は、電荷収集電極11により集められた電流が電荷蓄積
コンデンサ12に充電され、ゲートドライバからスイッ
チングライン19を通して薄膜トランジスタ13のゲー
ト端子に電圧が印加されると、薄膜トランジスタ13が
オン状態となる。すると前記電荷蓄積コンデンサ12に
充電された電荷は、薄膜トランジスタ13のソース端子
に接続されている読み出しライン20を介して読み取ら
れることになる。
The X-ray irradiation current I 1 in the lower electrode 2
In the case where the lower electrode 2 is an ITO film or a strip-shaped electrode 2a, the size is read by an ammeter 7 connected to the lower electrode 2 as shown in FIG. In addition, as shown in FIG. 3, when the lower electrode 2 is formed by a large number of pixels 10, the current collected by the charge collecting electrode 11 is charged in the charge storage capacitor 12, and is supplied from the gate driver through the switching line 19. When a voltage is applied to the gate terminal of the thin film transistor 13, the thin film transistor 13 is turned on. Then, the charge charged in the charge storage capacitor 12 is read through the read line 20 connected to the source terminal of the thin film transistor 13.

【0023】[0023]

【実施例】以下、本発明の実施例を説明する。 (実施例1)大きさ75mm×75mm、厚さ0.7mm
のガラス基板1(コーニング社製製品番号7059)の
上にITO膜を形成して下部電極2とした。下部電極2
の大きさは28mm×28mmである。この上に真空蒸着
により大きさ40mm×40mmのセレン層4を500μ
mの厚みに形成し、次いでセレン層4の上に真空蒸着に
より大きさ40mm×40mmの三硫化アンチモン層8を
0.1μmの厚みに形成した。さらに、三硫化アンチモ
ン層8の上に真空蒸着によって大きさ28mm×28mm
の金層を0.1μmの厚みに形成して上部電極層5と
し、図1に示したようなX線検出器を作製した。なお、
前記上部電極層5は、セレン層4を挟んで下部電極2と
対向する位置にある。
Embodiments of the present invention will be described below. (Example 1) Size 75 mm x 75 mm, thickness 0.7 mm
An ITO film was formed on a glass substrate 1 (product number 7059, manufactured by Corning Incorporated) to form a lower electrode 2. Lower electrode 2
Is 28 mm × 28 mm. A selenium layer 4 having a size of 40 mm × 40 mm was formed thereon by vacuum evaporation to a thickness of 500 μm.
m, and an antimony trisulfide layer 8 having a size of 40 mm × 40 mm was formed on the selenium layer 4 by vacuum evaporation to a thickness of 0.1 μm. Further, on the antimony trisulfide layer 8, a size of 28 mm × 28 mm is formed by vacuum evaporation.
Was formed to a thickness of 0.1 μm to form the upper electrode layer 5, and an X-ray detector as shown in FIG. 1 was produced. In addition,
The upper electrode layer 5 is located at a position facing the lower electrode 2 with the selenium layer 4 interposed therebetween.

【0024】上記作製したX線検出器に対して、上部電
極層5と下部電極2との間にセレン層4の膜厚1μm当
たり10vの電圧を印加すると共に、上部電極層5の上
方からX線を照射し(X線量60mR/分)、読み出さ
れたX線照射電流Iの波形から表面放電の有無を調査
した。なお、電圧を印加する際、上部電極層5に正
(+)極性の電圧を印加した時の結果を表1に示す。ま
た、暗電流やX線照射電流を測定してS/N比を求めた
時の結果を表2に示す。
A voltage of 10 V is applied between the upper electrode layer 5 and the lower electrode 2 per 10 μm of the selenium layer 4 to the X-ray detector produced above. irradiating the line (X dose 60MR / min) was investigated whether the surface discharge from the read X-ray emission current I 1 of the waveform. Table 1 shows the results when a positive (+) polarity voltage was applied to the upper electrode layer 5 when a voltage was applied. Table 2 shows the results when the S / N ratio was determined by measuring the dark current and the X-ray irradiation current.

【0025】(実施例2)上記実施例1おいて、三硫化
アンチモン層8の厚みを0.01μmにした他は同様な
方法でX線検出器を作製した。また、上記実施例1と同
様の方法で表面放電の有無を調査した。その結果を表1
に示す。
Example 2 An X-ray detector was manufactured in the same manner as in Example 1 except that the thickness of the antimony trisulfide layer 8 was changed to 0.01 μm. Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.
Shown in

【0026】(実施例3)上記実施例1おいて、三硫化
アンチモン層8の厚みを10.0μmにした他は同様な
方法によりX線検出器を作製した。また、上記実施例1
と同様の方法で表面放電の有無を調査した。その結果を
表1に示す。
(Example 3) An X-ray detector was manufactured in the same manner as in Example 1 except that the thickness of the antimony trisulfide layer 8 was changed to 10.0 µm. In addition, the first embodiment
The presence / absence of surface discharge was investigated in the same manner as described above. Table 1 shows the results.

【0027】(実施例4)上記実施例1において、セレ
ン層4をセレン・ヒ素合金層(濃度0.1重量%)で形
成した他は同様な方法によりX線検出器を作製した。ま
た、上記実施例1と同様の方法で表面放電の有無を調査
した。その結果を表1に示す。
Example 4 An X-ray detector was manufactured in the same manner as in Example 1 except that the selenium layer 4 was formed of a selenium-arsenic alloy layer (concentration: 0.1% by weight). Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.

【0028】(実施例5)上記実施例1において、IT
O膜の代わりに、ガラス基板1上に電極幅0.4mm、
ピッチ幅0.6mmのクロムよりなる帯状電極2aを配
列し、図4に示したような電極基板を使用した他は同様
な方法によりX線検出器を作製した。また、上記実施例
1と同様の方法で表面放電の有無を調査した。その結果
を表1に示す。なお、電流の測定は帯状電極2aにコネ
クタを接続して実行した。
(Embodiment 5) In the first embodiment, the IT
Instead of the O film, the electrode width is 0.4 mm on the glass substrate 1,
An X-ray detector was manufactured by the same method except that the strip electrodes 2a made of chromium having a pitch width of 0.6 mm were arranged and an electrode substrate as shown in FIG. 4 was used. Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results. The current was measured by connecting a connector to the strip electrode 2a.

【0029】(実施例6)上記実施例1において、IT
O膜を設けた電極基板の代わりに、ガラスの大きさが7
5mm×75mmのTFTマトリックス基板(画素サイ
ズ150μm角)を使用した他は同様な方法によりX線
検出器を作製した。各画素は、入射したX線によりセレ
ン層4に発生した電荷を収集する電荷収集電極11と、
収集した電荷を蓄積する電荷蓄積コンデンサ12と、蓄
積した電荷を読み取る電気的スイッチである薄膜トラン
ジスタ13とを有する。上記実施例1と同様の方法で表
面放電の有無を調査した。その結果を表1に示す。
(Embodiment 6) In the first embodiment, the IT
Instead of the electrode substrate provided with the O film, the size of the glass is 7
An X-ray detector was manufactured in the same manner except that a 5 mm × 75 mm TFT matrix substrate (pixel size 150 μm square) was used. Each pixel includes a charge collection electrode 11 for collecting charges generated in the selenium layer 4 by the incident X-rays,
It has a charge storage capacitor 12 for storing collected charges and a thin film transistor 13 which is an electric switch for reading the stored charges. The presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.

【0030】(実施例7)前記実施例6において、上部
電極層5の大きさを32mm×32mmした他は同様な
方法によりX線検出器を作製した。また、上記実施例1
と同様の方法で表面放電の有無を調査した。その結果を
表1に示す。
Example 7 An X-ray detector was manufactured in the same manner as in Example 6, except that the size of the upper electrode layer 5 was changed to 32 mm × 32 mm. In addition, the first embodiment
The presence / absence of surface discharge was investigated in the same manner as described above. Table 1 shows the results.

【0031】(実施例8)上記実施例1において、セレ
ン層4と下部電極2との間に厚み約20μmのセレン・
ヒ素合金層(ヒ素濃度0.5重量%)を中間層15とし
て設けた他は同様な方法によりX線検出器を作製した。
また、上記実施例1と同様の方法で表面放電の有無を調
査した。その結果を表1に示す。
(Eighth Embodiment) In the first embodiment, the selenium layer having a thickness of about 20 μm is provided between the selenium layer 4 and the lower electrode 2.
An X-ray detector was manufactured in the same manner except that an arsenic alloy layer (arsenic concentration 0.5% by weight) was provided as the intermediate layer 15.
Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.

【0032】(比較例1)上記実施例1において、三硫
化アンチモン層を除いた他は同様な方法でX線検出器を
作製した。また、上記実施例1と同様の方法で表面放電
の有無を測定した時の結果を表1に示す。また、暗電流
やX線照射電流を測定してS/N比を求めた時の結果を
表2に示す。
Comparative Example 1 An X-ray detector was manufactured in the same manner as in Example 1 except that the antimony trisulfide layer was omitted. Table 1 shows the results when the presence or absence of surface discharge was measured in the same manner as in Example 1. Table 2 shows the results when the S / N ratio was determined by measuring the dark current and the X-ray irradiation current.

【0033】(比較例2)上記実施例5において、三硫
化アンチモン層を除いた他は同様な方法でX線検出器を
作製した。また、上記実施例1と同様の方法で表面放電
の有無を調査した。その結果を表1に示す。
Comparative Example 2 An X-ray detector was manufactured in the same manner as in Example 5 except that the antimony trisulfide layer was omitted. Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.

【0034】(比較例3)上記実施例6において、三硫
化アンチモン層を除いた他は同様な方法でX線検出器を
作製した。また、上記実施例1と同様の方法で表面放電
の有無を調査した。その結果を表1に示す。
Comparative Example 3 An X-ray detector was manufactured in the same manner as in Example 6 except that the antimony trisulfide layer was omitted. Further, the presence or absence of surface discharge was examined in the same manner as in Example 1 above. Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上説明したように、本発明に係る放射
線検出器によれば、印加電圧を高くしても表面放電の発
生が少なく、またS/N比も稼ぐことができる高感度の
X線検出器が得られた。
As described above, according to the radiation detector of the present invention, even if the applied voltage is increased, the occurrence of surface discharge is small and the X-ray with high sensitivity which can increase the S / N ratio can be obtained. A line detector was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るX線検出器の一実施形態を示す概
念図である。
FIG. 1 is a conceptual diagram showing one embodiment of an X-ray detector according to the present invention.

【図2】本発明に係るX線検出器の他の実施形態を示す
概念図である。
FIG. 2 is a conceptual diagram showing another embodiment of the X-ray detector according to the present invention.

【図3】下部電極を画素の集合体で構成した場合の説明
図である。
FIG. 3 is an explanatory diagram in a case where a lower electrode is formed of an aggregate of pixels.

【図4】下部電極を帯状電極で構成した場合の説明図で
ある。
FIG. 4 is an explanatory diagram in the case where a lower electrode is constituted by a strip electrode.

【図5】従来におけるX線検出器の一例を示す概念図で
ある。
FIG. 5 is a conceptual diagram showing an example of a conventional X-ray detector.

【符号の説明】[Explanation of symbols]

1 ガラス基板(絶縁基板) 2 下部電極 2a 帯状電極 4 セレン層 5 上部電極層 8 三硫化アンチモン層 10 画素 11 電荷収集電極 12 電荷蓄積コンデンサ 13 薄膜トランジスタ 15 中間層 DESCRIPTION OF SYMBOLS 1 Glass substrate (insulating substrate) 2 Lower electrode 2a Strip electrode 4 Selenium layer 5 Upper electrode layer 8 Antimony trisulfide layer 10 Pixel 11 Charge collection electrode 12 Charge storage capacitor 13 Thin film transistor 15 Intermediate layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G088 FF02 GG21 JJ05 JJ09 JJ31 JJ37 LL11 5F088 AB01 BA04 BB06 BB07 FA04 FA05 FA09 FA14 LA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G088 FF02 GG21 JJ05 JJ09 JJ31 JJ37 LL11 5F088 AB01 BA04 BB06 BB07 FA04 FA05 FA09 FA14 LA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に下部電極を形成し、その上
に少なくともセレン層、三硫化アンチモン層及び上部電
極層を積層した構造であって、前記下部電極と上部電極
層との間に直流電圧を印加する際、上部電極層に正
(+)の極性の電圧を印加したことを特徴とする放射線
検出器。
1. A structure in which a lower electrode is formed on an insulating substrate, and at least a selenium layer, an antimony trisulfide layer and an upper electrode layer are laminated thereon, and a direct current is provided between the lower electrode and the upper electrode layer. A radiation detector characterized in that a positive (+) polarity voltage is applied to the upper electrode layer when a voltage is applied.
【請求項2】 前記絶縁基板上に形成された下部電極が
ITO膜からなることを特徴とする請求項1記載の放射
線検出器。
2. The radiation detector according to claim 1, wherein the lower electrode formed on the insulating substrate is made of an ITO film.
【請求項3】 前記絶縁基板上に形成された下部電極
が、放射線が入射することによりセレン層に発生した電
荷を収集する電荷収集機能と、収集した電荷を蓄積する
電荷蓄積機能と、蓄積した電荷を読み取る電気的スイッ
チ機能とを備えた複数の画素からなることを特徴とする
請求項1記載の放射線検出器。
3. A charge collecting function for collecting a charge generated in the selenium layer by the incidence of radiation, a charge storing function for storing the collected charge, and a lower electrode formed on the insulating substrate. 2. The radiation detector according to claim 1, comprising a plurality of pixels having an electric switch function for reading electric charges.
【請求項4】 前記絶縁基板上に形成された下部電極
が、所定間隔ごとに配列された帯状の導電体であること
を特徴とする請求項1記載の放射線検出器。
4. The radiation detector according to claim 1, wherein the lower electrode formed on the insulating substrate is a band-shaped conductor arranged at predetermined intervals.
JP35818799A 1999-12-16 1999-12-16 Radiation detector Expired - Lifetime JP4240707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35818799A JP4240707B2 (en) 1999-12-16 1999-12-16 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35818799A JP4240707B2 (en) 1999-12-16 1999-12-16 Radiation detector

Publications (2)

Publication Number Publication Date
JP2001177140A true JP2001177140A (en) 2001-06-29
JP4240707B2 JP4240707B2 (en) 2009-03-18

Family

ID=18457989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35818799A Expired - Lifetime JP4240707B2 (en) 1999-12-16 1999-12-16 Radiation detector

Country Status (1)

Country Link
JP (1) JP4240707B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061210A (en) * 2002-07-26 2004-02-26 Seiko Instruments Inc Performance evaluation device, method, and program for radioactivity detector
KR100598577B1 (en) 2003-09-24 2006-07-13 가부시키가이샤 시마즈세이사쿠쇼 Radiation detector
JP2008277600A (en) * 2007-05-01 2008-11-13 Fujifilm Corp Radiation image detector
JP2008288318A (en) * 2007-05-16 2008-11-27 Fujifilm Corp Radiographic image detector
JP2009099941A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiation detector, method of manufacturing radiation detector, coating liquid and method of manufacturing organic polymer layer
JP2009158509A (en) * 2007-12-25 2009-07-16 Fujifilm Corp Radiographic image detector
US7608833B2 (en) 2007-09-28 2009-10-27 Fujifilm Corporation Radiation image detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061210A (en) * 2002-07-26 2004-02-26 Seiko Instruments Inc Performance evaluation device, method, and program for radioactivity detector
KR100598577B1 (en) 2003-09-24 2006-07-13 가부시키가이샤 시마즈세이사쿠쇼 Radiation detector
JP2008277600A (en) * 2007-05-01 2008-11-13 Fujifilm Corp Radiation image detector
JP2008288318A (en) * 2007-05-16 2008-11-27 Fujifilm Corp Radiographic image detector
JP2009099941A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Radiation detector, method of manufacturing radiation detector, coating liquid and method of manufacturing organic polymer layer
US7608833B2 (en) 2007-09-28 2009-10-27 Fujifilm Corporation Radiation image detector
JP2009158509A (en) * 2007-12-25 2009-07-16 Fujifilm Corp Radiographic image detector
US7939814B2 (en) 2007-12-25 2011-05-10 Fujiflim Corporation Radiographic image detector

Also Published As

Publication number Publication date
JP4240707B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US7884438B2 (en) Megavoltage imaging with a photoconductor based sensor
EP0722188B1 (en) Image capture panel using a solid state device
JP3589954B2 (en) Electromagnetic wave detector, image detector, and method of manufacturing electromagnetic wave detector
JP5213378B2 (en) Radiation detector
US5729021A (en) X-ray image sensor
US7488966B2 (en) Radiation detector and method for producing photoconductive layer for recording thereof
EP1009038B1 (en) Radiation detecting apparatus
US7723692B2 (en) Solid state radiation sensor and manufacturing method of the same
CN1954442A (en) Radiation detector
JP5073399B2 (en) Radiation detector
JP2010210590A (en) Radiation detector
JP2000058808A (en) Two-dimensional image detector
KR100598577B1 (en) Radiation detector
US7196333B1 (en) Radiation detector using a composite material and method for making same
JP4240707B2 (en) Radiation detector
US6878957B2 (en) Image detector and fabricating method of the same, image recording method and retrieving method, and image recording apparatus and retrieving apparatus
US7728299B2 (en) Radiation image detector
KR100687512B1 (en) X-ray detecting plate and x-ray detecting device
US20050184320A1 (en) Photoconductor having an embedded contact electrode
US20040227095A1 (en) Radiation detector using a composite material and process for manufacturing this detector
US8350207B2 (en) Radiation image detection apparatus and manufacturing method of radiation image detector with substrate side charge transport layer
US20070099116A1 (en) Photoconductive layer forming radiation image taking panel and radiation image taking panel
JP2000208749A (en) Radiation detector
JP5070130B2 (en) Radiation detector
WO2005036595A2 (en) Reducing dark current of photoconductor using herojunction that maitains high x-ray sensitivity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

EXPY Cancellation because of completion of term