JP2007040686A - Aluminum fin material - Google Patents

Aluminum fin material Download PDF

Info

Publication number
JP2007040686A
JP2007040686A JP2005305388A JP2005305388A JP2007040686A JP 2007040686 A JP2007040686 A JP 2007040686A JP 2005305388 A JP2005305388 A JP 2005305388A JP 2005305388 A JP2005305388 A JP 2005305388A JP 2007040686 A JP2007040686 A JP 2007040686A
Authority
JP
Japan
Prior art keywords
resin
film
fin material
hydrophilic
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005305388A
Other languages
Japanese (ja)
Other versions
JP4456551B2 (en
Inventor
Yosuke Ota
陽介 太田
Takahiro Shimizu
高宏 清水
Shoichi Yokoyama
昭一 横山
Takashi Sugio
孝 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Panasonic Holdings Corp
Original Assignee
Kobe Steel Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Matsushita Electric Industrial Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2005305388A priority Critical patent/JP4456551B2/en
Publication of JP2007040686A publication Critical patent/JP2007040686A/en
Application granted granted Critical
Publication of JP4456551B2 publication Critical patent/JP4456551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum fin material which can maintain hydrophilic property and antimicrobial and antibacterial properties over a long period. <P>SOLUTION: The aluminum fin material 1 comprises a substrate 20 of aluminum or an aluminum alloy, an anticorrosive film 3 of inorganic oxide or organic-inorganic composite compound formed on the substrate 2, a resin anticorrosive film 4 0.5-10 μm thick formed on the film 3, and a hydrophilic film 5 0.1-10 μm thick of hydrophilic resin formed on the film 4. The resin anticorrosive film 4 is formed of at least one resin selected from urethane resin, epoxy resin, polyester resin and vinyl chloride resin, and it contains, to 100 pts.wt. of the resin, 0.1-100 pts.wt. of zinc pyrithione having an average diameter of 0.01-1.0 μm. Otherwise, this material comprises a water-soluble film 8 0.1-10 μm thick formed on the hydrophilic film 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、その表面に塗膜が形成されたアルミニウムまたはアルミニウム合金よりなるアルミニウムフィン材、殊にカビや細菌の繁殖抑制に優れ、ルームエアコン等の熱交換器のフィンの用途等に好適な熱交換器用アルミニウムフィン材に関する。   The present invention is an aluminum fin material made of aluminum or an aluminum alloy having a coating film formed on its surface, particularly excellent in suppressing the growth of mold and bacteria, and suitable for use in fins of heat exchangers such as room air conditioners. The present invention relates to an aluminum fin material for an exchanger.

熱交換器はルームエアコン、パッケージエアコン、冷凍ショーケース、冷蔵庫、オイルクーラーおよびラジエータ等を代表として様々な分野に利用されている。そして、ルームエアコンおよびパッケージエアコン等の熱交換器において、そのフィンには熱伝導性及び加工性が優れることからアルミニウム材が使用されている。   Heat exchangers are used in various fields such as room air conditioners, packaged air conditioners, refrigeration showcases, refrigerators, oil coolers and radiators. In heat exchangers such as room air conditioners and packaged air conditioners, aluminum materials are used for the fins because of their excellent thermal conductivity and workability.

この熱交換器用のフィンの表面には、腐食発生防止を目的として、そのフィンに防食処理が施されている。また、冷房運転時の凝縮水がフィン間に留まることを防止するため、粒状水滴の落下性を高める親水性向上のための表面処理がフィン表面に施されている。
親水性を高める表面処理をアルミニウム材表面に施すと、このアルミニウム材からなるフィンに付着した水滴の接触角を小さくすることができる。図2は平面上の水滴の接触角を示す模式図、図3は熱交換器の熱交換部を模式的に示す斜視図である。図2に示すように、接触角θとは水滴Wの表面において平面10から立ち上がった点Aにおける水滴Wの接線11と平面10がなす角度をいい、接触角θが低いほど水膜(水滴)が薄くなり、親水性が良好となる。図3に示すような熱交換器の熱交換部においては、フィン6を貫くように通っている銅管7の中を矢印で示す方向に冷媒が流れるため、フィン6の表面には水滴が結露するが、親水性が良好な場合はこの水滴の落下性が良好となる。その結果、フィン6に付着した水滴や水膜によって送風時の抵抗が高くなることを防止でき、優れた熱交換器特性を得ることができる。
The surface of the fin for the heat exchanger is subjected to anticorrosion treatment for the purpose of preventing corrosion. Moreover, in order to prevent the condensed water at the time of air_conditionaing | cooling operation from staying between fins, the surface treatment for the hydrophilic improvement which improves the fall property of a granular water droplet is given to the fin surface.
When the surface treatment for enhancing hydrophilicity is performed on the surface of the aluminum material, the contact angle of water droplets attached to the fin made of the aluminum material can be reduced. FIG. 2 is a schematic view showing a contact angle of water drops on a plane, and FIG. 3 is a perspective view schematically showing a heat exchange part of the heat exchanger. As shown in FIG. 2, the contact angle θ is an angle formed by the plane 10 and the tangent 11 of the water drop W at the point A rising from the plane 10 on the surface of the water drop W, and the lower the contact angle θ, the water film (water droplet). Becomes thinner and the hydrophilicity becomes better. In the heat exchange part of the heat exchanger as shown in FIG. 3, the coolant flows in the direction indicated by the arrow through the copper pipe 7 passing through the fin 6, so that water droplets are condensed on the surface of the fin 6. However, when the hydrophilicity is good, the dropability of the water drops is good. As a result, it is possible to prevent the resistance at the time of air blowing from being increased due to water droplets or a water film adhering to the fins 6 and to obtain excellent heat exchanger characteristics.

図4(a)ないし図4(c)はフィン表面の水滴付着状態を示す模式図である。図4(a)において、下向きの矢印の長さは一定時間に水滴が落下する距離に比例する。図4(a)に示すように、親水性が良好なフィン6aの場合は水滴Wの接触角が小さいので、水滴Wはフィン6aに沿って容易に落下する。その結果、水滴Wが送風を遮ることが無いので、送風抵抗が小さくなる。一方親水性が劣るフィンからなる熱交換器では、図4(b)に示すように水滴Wがフィン6bに留まったり、図4(c)に示すように水滴Wが隣接するフィン6c、6cの両者に接触して留まったりするために、水滴Wが送風を遮り、送風抵抗が著しく増加する。   4 (a) to 4 (c) are schematic views showing the state of water droplet adhesion on the fin surface. In FIG. 4 (a), the length of the downward arrow is proportional to the distance at which a water drop falls in a certain time. As shown in FIG. 4A, in the case of the fin 6a having good hydrophilicity, since the contact angle of the water droplet W is small, the water droplet W easily falls along the fin 6a. As a result, since the water droplet W does not block the blowing, the blowing resistance is reduced. On the other hand, in the heat exchanger composed of fins having poor hydrophilicity, the water droplets W stay on the fins 6b as shown in FIG. 4B, or the water droplets W are adjacent to the adjacent fins 6c and 6c as shown in FIG. In order to stay in contact with both, the water droplet W interrupts ventilation, and ventilation resistance increases remarkably.

ここで、エアコン等が使用される環境に存在する様々な汚染物質、例えばフタル酸ジイソオクチル等の可塑剤、パルミチン酸・ステアリン酸・パラフィン類等のプラスチック用滑剤等がフィンに付着すると、親水性が劣化しやすくなる。そのため、これらの汚染物質が付着しても親水性が劣化しない親水性の表面処理(親水性皮膜)であることが望ましい。また、親水性皮膜中にシリカ等の無機微粒子が存在する場合、フィン成形加工時における工具磨耗が生じやすくなり、またシリカ皮膜特有の異臭が発生してしまうため、有機系樹脂皮膜によって親水性処理が施されることが望ましい。   Here, various pollutants present in the environment where air conditioners are used, such as plasticizers such as diisooctyl phthalate, plastic lubricants such as palmitic acid, stearic acid, paraffins, etc., adhere to the fins, making them hydrophilic. It becomes easy to deteriorate. Therefore, a hydrophilic surface treatment (hydrophilic film) that does not deteriorate the hydrophilicity even if these contaminants adhere is desirable. In addition, when inorganic fine particles such as silica are present in the hydrophilic film, tool wear during fin molding processing is likely to occur, and a strange odor peculiar to the silica film is generated. Is desirable.

これら全ての課題を解決する手段としては、特許文献1に、アルミニウムまたはアルミニウム合金よりなる基板上に、無機酸化物または有機−無機複合化合物よりなる耐食性皮膜を形成し、その上に、分子内に水酸基を有する水溶性樹脂を含有するポリアクリル酸またはポリアクリル酸塩よりなる親水性皮膜を形成し、さらにその上に、分子内に水酸基を有する水溶性樹脂皮膜を形成した、汚染物質付着時の親水持続性に優れた熱交換器用アルミニウムフィン材が記載されている。   As a means for solving all of these problems, Patent Document 1 discloses that a corrosion-resistant film made of an inorganic oxide or an organic-inorganic composite compound is formed on a substrate made of aluminum or an aluminum alloy, and on the molecule, A hydrophilic film made of polyacrylic acid or polyacrylate containing a water-soluble resin having a hydroxyl group is formed, and a water-soluble resin film having a hydroxyl group in the molecule is formed on the hydrophilic film. An aluminum fin material for heat exchangers having excellent hydrophilic sustainability is described.

一方で、冷房時のエアコンは、熱交換器が結露することによって室内機内部が高湿度雰囲気に長時間保たれるため、カビが繁殖しやすい(「濱田信夫,山田明男:エアコンのカビ汚染,防菌防黴,Vol.21,No.7,385〜389頁,1993年」参照)。また、室内機内部で繁殖したカビの胞子が、空調機から放出されることが指摘されている(「阿部恵子:エアコン冷房時のカビ指数とカビ汚染,室内環境学会誌,Vol.1,No.1,41〜50頁,1998年」参照)。この空調機からのカビ胞子の放出はアレルギーを引き起こす可能性が指摘されており(「B.Crook,J.Lacey:Enumeration of Airborne Micro-Organisms in Work Environments,Environ.Technol.Lett.,Vol.9,pp.515〜520(1988)」、「高嶋浩介:住環境にみるカビと健康障害,J.Natl. Inst. Public Health,Vol.47,13〜18頁,1998年」参照)、エアコン使用時における快適性が損なわれるという問題がある。また、カビが繁殖することで微生物由来揮発性有機化合物が発生することが報告されており、これがエアコンの臭気の原因となりうる(「朴俊錫,池田耕一,藤井修二:空調機内における真菌由来化学物質に関する研究、空気調和・衛生工学会学術講演会講演論文集、1273〜1276頁、2001年」参照)。   On the other hand, air conditioners during cooling are susceptible to mold growth because the interior of the indoor unit is kept in a high humidity atmosphere for a long time due to condensation of heat exchangers (“Nobuo Hamada, Akio Yamada: Air conditioner mold contamination, (Refer to antibacterial fungi, Vol. 21, No. 7, 385-389, 1993)). In addition, it has been pointed out that mold spores propagated inside the indoor unit are released from the air conditioner (“Abe Keiko: Mold Index and Mold Contamination During Air Conditioning Cooling, Journal of Indoor Environment Society, Vol. 1, No. .1, 41-50, 1998 "). It has been pointed out that release of mold spores from this air conditioner may cause allergies (“B. Crook, J. Lacey: Enumeration of Airborne Micro-Organisms in Work Environments, Environ. Technol. Lett., Vol. 9 , Pp. 515-520 (1988) ”,“ Kosuke Takashima: Mold and Health Disorders in Living Environments, J. Natl. Inst. Public Health, Vol. 47, pp. 13-18, 1998 ”), use of air conditioner There is a problem that comfort in time is impaired. In addition, it has been reported that volatile organic compounds derived from microorganisms are generated by the growth of mold, which may cause odor of air conditioners (“Pak Shun-Shi, Koichi Ikeda, Shuji Fujii: Regarding fungi-derived chemicals in air conditioners” Research, Air Conditioning and Sanitary Engineering Society Annual Lecture Collection, 1273-1276, 2001 ”).

上述のような課題に対して、アルミニウム基板の表面に、亜鉛物質の粉末と抗菌剤を含む親水性皮膜を設けた防カビ抗菌性が付与された熱交換器用フィン材が特許文献2に記載されている。また、アルミニウム基板の表面に、防カビ抗菌剤の1つである粒径1〜10μmのビス(2−ピリジルチオ)−ジンク−1,1’−ジオキサイド(いわゆる、ジンクピリチオン)を含有する水性樹脂皮膜を形成したのち、その水性樹脂皮膜の表面に親水性皮膜を形成したアルミニウム合金製フィン材が特許文献3に記載されている。
特許第3383914号公報(請求項1、段落番号0035、図4) 特許第2934917号公報(請求項1、段落番号0024、0049、図3) 特開2000−171191号公報(段落番号0009〜0013、図1)
In order to solve the above-mentioned problems, Patent Document 2 describes a fin material for a heat exchanger in which a fungus antibacterial property is provided by providing a hydrophilic film containing a zinc substance powder and an antibacterial agent on the surface of an aluminum substrate. ing. Also, an aqueous resin film containing bis (2-pyridylthio) -zinc-1,1′-dioxide (so-called zinc pyrithione) having a particle diameter of 1 to 10 μm, which is one of the mold antibacterial agents, on the surface of the aluminum substrate. Patent Document 3 describes an aluminum alloy fin material in which a hydrophilic film is formed on the surface of the water-based resin film.
Japanese Patent No. 3383914 (Claim 1, paragraph number 0035, FIG. 4) Japanese Patent No. 2934917 (Claim 1, paragraph numbers 0024 and 0049, FIG. 3) JP 2000-171191 A (paragraph numbers 0009 to 0013, FIG. 1)

しかしながら、特許文献2に示されているように親水性皮膜に防カビ抗菌剤が含有されている場合、一般に良好な親水性を付与した場合においては微量ながら水に対して親水性皮膜が溶解するため、冷房運転時に発生する結露水によって防カビ抗菌剤が流出しやすく、防カビ抗菌性が持続しないという問題がある。また、敢えて流出を抑制するために硬化剤などを添加した場合、エアコン用フィン材として重要な特性である親水性が劣化しやすくなるという問題がある。これは、皮膜の中に保持させることができるような防カビ抗菌剤は水への溶解度が一般的に極めて低いため、親水性への悪影響が大きくなるからである。   However, as shown in Patent Document 2, in the case where the antifungal antibacterial agent is contained in the hydrophilic film, in general, when the hydrophilic film is imparted with a good hydrophilicity, the hydrophilic film dissolves in water in a small amount. For this reason, there is a problem in that the antifungal antibacterial agent easily flows out due to the dew condensation water generated during the cooling operation, and the antifungal antibacterial property does not continue. In addition, when a curing agent or the like is added in order to suppress outflow, there is a problem that hydrophilicity, which is an important characteristic as a fin material for an air conditioner, easily deteriorates. This is because an antifungal antibacterial agent that can be retained in the film generally has a very low solubility in water, and thus adversely affects hydrophilicity.

また、特許文献3のフィン材においては、ジンクピリチオンの粒径が大きいため、長期冷房運転によってフィン材表面からジンクピリチオンが粒子の状態のまま脱落しやすく、防カビ抗菌性が持続しないという問題がある。また、親水性皮膜の形成(塗布、焼付)時の熱によって、ジンクピリチオンの熱分解が促進され、防カビ抗菌性が低下しやすく、さらに、熱分解生成物自体から発生する異臭不具合の原因ともなる。   Moreover, in the fin material of patent document 3, since the particle diameter of zinc pyrithione is large, there exists a problem that zinc pyrithione is easy to drop | omit from a fin material surface with a state of a particle | grain by long-term cooling operation, and mold | fungi antibacterial property does not continue. In addition, the thermal decomposition of zinc pyrithione is accelerated by the heat during the formation (coating and baking) of the hydrophilic film, and the antibacterial and antifungal properties are liable to deteriorate, and it also causes a bad odor problem generated from the thermal decomposition product itself. .

本発明は、前記の問題に鑑みてなされたものであり、親水性および防カビ抗菌性が長期にわたって持続するアルミニウムフィン材を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the aluminum fin material with which hydrophilic property and antifungal antibacterial property continue over a long period of time.

本発明者らは鋭意研究した結果、防カビ抗菌剤としてジンクピリチオンを選択し、このジンクピリチオンを親水性皮膜に含有させるのではなく、ジンクピリチオンを有する皮膜を設けた後に、親水性皮膜を独立に設けることが有効であることを見出した。   As a result of intensive research, the present inventors have selected zinc pyrithione as an antifungal antibacterial agent, and do not include this zinc pyrithione in the hydrophilic film, but instead provide the hydrophilic film independently after providing the film having zinc pyrithione. Was found to be effective.

すなわち、本発明に係るアルミニウムフィン材は、アルミニウムまたはアルミニウム合金よりなる基板と、この基板の上に形成された無機酸化物または有機−無機複合化合物よりなる耐食性皮膜と、この耐食性皮膜の上に形成された膜厚0.5〜10μmの樹脂耐食性皮膜と、この樹脂耐食性皮膜の上に形成された親水性樹脂よりなる膜厚0.1〜10μmの親水性皮膜とを備えるアルミニウムフィン材において、前記樹脂耐食性皮膜は、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂および塩化ビニル系樹脂のうち少なくとも1種よりなる樹脂であり、当該樹脂100重量部に対して、平均粒径が0.01〜1.0μmのジンクピリチオンを0.1〜100重量部含有することを特徴とする(請求項1)。   That is, the aluminum fin material according to the present invention is formed on a substrate made of aluminum or an aluminum alloy, a corrosion-resistant film made of an inorganic oxide or an organic-inorganic composite compound formed on the substrate, and the corrosion-resistant film. In the aluminum fin material provided with the formed resin corrosion-resistant film having a film thickness of 0.5 to 10 μm and the hydrophilic film having a film thickness of 0.1 to 10 μm made of a hydrophilic resin formed on the resin corrosion-resistant film, The resin corrosion resistant film is a resin composed of at least one of a urethane resin, an epoxy resin, a polyester resin, and a vinyl chloride resin, and the average particle diameter is 0.01 to 1 with respect to 100 parts by weight of the resin. 0.1 to 100 parts by weight of zinc pyrithione of 0.0 μm is contained (claim 1).

前記構成によれば、ジンクピリチオンを含有する樹脂耐食性皮膜を形成したことにより、フィン材の防カビ抗菌性が向上する。樹脂耐食性皮膜の上に親水性皮膜を形成したことにより、アルミニウムフィン材表面に結露水が発生しても、ジンクピリチオンが容易に流出することなく、樹脂耐食性皮膜内に長期間保持されると共に、親水性皮膜が樹脂耐食性皮膜と独立し、ジンクピリチオンが親水性皮膜の親水性に悪影響を与えることが防止される。樹脂耐食性皮膜の膜厚およびジンクピリチオンの含有量を所定範囲に規定することにより、平均粒径0.01〜1.0μmのジンクピリチオンが膜厚0.5〜10μmの樹脂耐食性皮膜表面から露出せず、皮膜表面近傍に濃化しやすくなる。これは、親水性皮膜形成の際の熱により促進されるものである。樹脂耐食性皮膜は所定の親水性を有しない樹脂によって構成されることにより、親水性を有しない樹脂に含有されるジンクピリチオンが徐々に放出される。ジンクピリチオンの平均粒径を所定範囲に規定することにより、親水性皮膜形成の際の熱によるジンクピリチオンの熱分解及び昇華が防止されると共に、長期冷房運転において樹脂耐食性皮膜からジンクピリチオンが粒子の状態のまま脱落することが発生しにくくなり、徐々に溶解させることが可能となる。基板と樹脂耐食性皮膜の間に耐食性皮膜が形成されることにより、基板と樹脂耐食性皮膜との密着性が向上して、ジンクピリチオンが粒子の状態のまま脱落することがさらに防止されると共に、フィン材に耐食性が付与される。フィン材の最表面に所定膜厚の親水性皮膜を形成したことにより、フィン材に親水性が付与される。   According to the said structure, the mold antibacterial property of a fin material improves by forming the resin corrosion-resistant film | membrane containing a zinc pyrithione. By forming a hydrophilic film on the resin corrosion-resistant film, zinc pyrithione does not flow out easily even if dew condensation water is generated on the surface of the aluminum fin material. Is independent of the resin corrosion resistant film, and zinc pyrithione is prevented from adversely affecting the hydrophilicity of the hydrophilic film. By defining the film thickness of the resin corrosion resistant film and the content of zinc pyrithione within a predetermined range, zinc pyrithione having an average particle diameter of 0.01 to 1.0 μm is not exposed from the surface of the resin corrosion resistant film having a film thickness of 0.5 to 10 μm. It tends to concentrate near the surface of the film. This is promoted by heat in forming the hydrophilic film. The resin corrosion-resistant film is composed of a resin having no predetermined hydrophilicity, so that zinc pyrithione contained in the resin having no hydrophilicity is gradually released. By defining the average particle size of zinc pyrithione within a predetermined range, thermal decomposition and sublimation of zinc pyrithione due to heat during the formation of the hydrophilic film are prevented, and zinc pyrithione remains in the particle state from the resin corrosion resistant film during long-term cooling operation. It becomes difficult to drop off, and it is possible to dissolve gradually. By forming a corrosion-resistant film between the substrate and the resin corrosion-resistant film, the adhesion between the substrate and the resin corrosion-resistant film is improved, and zinc pyrithione is further prevented from falling off in the form of particles, and the fin material Is given corrosion resistance. By forming a hydrophilic film having a predetermined thickness on the outermost surface of the fin material, hydrophilicity is imparted to the fin material.

また、本発明に係るアルミニウムフィン材は、前記親水性樹脂が、カルボキシル基、水酸基、スルホン酸基、アミド結合、エーテル結合およびそれらの塩のうち少なくとも1種を有するものであることを特徴とする(請求項2)。前記構成によれば、フィン材の親水性がより一層向上する。   Further, the aluminum fin material according to the present invention is characterized in that the hydrophilic resin has at least one of a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide bond, an ether bond and a salt thereof. (Claim 2). According to the said structure, the hydrophilic property of a fin material improves further.

また、本発明に係るアルミニウムフィン材は、前記親水性皮膜の上に形成された膜厚0.1〜10μmの水溶性皮膜を備え、前記水溶性皮膜は、分子内に水酸基を有する水溶性樹脂よりなることを特徴とする(請求項3)。前記構成によれば、水溶性皮膜が冷房運転の際の結露時に徐々に溶解するため、フィン作製の際のプレス加工においてフィン表面に残存した加工油が洗い落とされる。したがって、フィン材の親水性がより一層向上する。また、親水性皮膜が吸湿することにより、プレス加工の際に、プレス金型とフィン材(親水性皮膜)とが粘着する不具合を抑えることが可能となる。   The aluminum fin material according to the present invention includes a water-soluble film having a film thickness of 0.1 to 10 μm formed on the hydrophilic film, and the water-soluble film has a water-soluble resin having a hydroxyl group in the molecule. (Claim 3). According to the above configuration, since the water-soluble film is gradually dissolved at the time of dew condensation during the cooling operation, the processing oil remaining on the fin surface is washed away in the press working at the time of fin production. Therefore, the hydrophilicity of the fin material is further improved. Further, the moisture absorption of the hydrophilic film makes it possible to suppress a problem that the press mold and the fin material (hydrophilic film) adhere to each other during press working.

請求項1に記載のアルミニウムフィン材によれば、親水性および防カビ抗菌性が長期にわたって持続する。また、請求項2に記載のアルミニウムフィン材によれば、フィン材の親水性がより一層向上する。さらに、請求項3に記載のアルミニウムフィン材によれば、フィン材の親水性がより一層向上すると共に、加工性が向上する。   According to the aluminum fin material of claim 1, hydrophilicity and antifungal antibacterial properties last for a long time. Moreover, according to the aluminum fin material of Claim 2, the hydrophilicity of a fin material improves further. Furthermore, according to the aluminum fin material of the third aspect, the hydrophilicity of the fin material is further improved and the workability is improved.

本発明の実施形態について説明する。図1(a)、(b)はアルミニウムフィン材の断面を模式的に示す断面図である。
図1(a)に示すように、アルミニウムフィン材(以下、フィン材と称す)1は、基板2と、基板2の上に形成された耐食性皮膜3と。耐食性皮膜3の上に形成された樹脂耐食性皮膜4と、樹脂耐食性皮膜4の上に形成された親水性皮膜5とを備える。また、図1(b)に示すように、アルミニウムフィン材1は、親水性皮膜5の上に形成された水溶性皮膜8を備えてもよい。ここで、基板2の上とは、基板2の片面または両面(図示せず)を意味する。以下、各構成について説明する。
An embodiment of the present invention will be described. 1A and 1B are cross-sectional views schematically showing a cross section of an aluminum fin material.
As shown in FIG. 1A, an aluminum fin material (hereinafter referred to as a fin material) 1 includes a substrate 2 and a corrosion-resistant film 3 formed on the substrate 2. A resin corrosion resistant film 4 formed on the corrosion resistant film 3 and a hydrophilic film 5 formed on the resin corrosion resistant film 4 are provided. As shown in FIG. 1B, the aluminum fin material 1 may include a water-soluble film 8 formed on the hydrophilic film 5. Here, the top of the substrate 2 means one side or both sides (not shown) of the substrate 2. Each configuration will be described below.

(基板)
基板2は、アルミニウムまたはアルミニウム合金よりなる板材であって、熱伝導性および加工性が優れることからJIS H4000規定の1000系のアルミニウム、好ましくは合金番号1200のアルミニウムが使用される。なお、熱交換器用アルミニウムフィン材においては、強度、熱伝導性および加工性等を考慮して、板厚0.08〜0.3mm程度のものが使用される。
(substrate)
The substrate 2 is a plate material made of aluminum or an aluminum alloy, and since it has excellent thermal conductivity and workability, 1000 series aluminum defined by JIS H4000, preferably aluminum of alloy number 1200 is used. In addition, in the aluminum fin material for heat exchangers, those having a thickness of about 0.08 to 0.3 mm are used in consideration of strength, thermal conductivity, workability, and the like.

(耐食性皮膜)
耐食性皮膜3は、無機酸化物または有機−無機複合化合物よりなる。無機酸化物としては、主成分としてクロム(Cr)またはジルコニウム(Zr)を含むものが好ましく、例えば、リン酸クロメート処理、リン酸ジルコニウム処理、クロム酸クロメート処理を行うことにより形成されたものである。しかし、本発明においては、耐食性を奏する皮膜であればこれに限定されず、例えば、リン酸亜鉛処理、リン酸チタン酸処理を行うことによっても耐食性皮膜3を形成することができる。また、有機−無機複合化合物としては、塗布型クロメート処理または塗布型ジルコニウム処理を行なうことにより形成されたもので、アクリル−ジルコニウム複合体等が挙げられる。
(Corrosion resistant coating)
The corrosion resistant coating 3 is made of an inorganic oxide or an organic-inorganic composite compound. The inorganic oxide preferably contains chromium (Cr) or zirconium (Zr) as a main component, and is formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, or chromate chromate treatment. . However, in this invention, if it is a film | membrane which shows corrosion resistance, it will not be limited to this, For example, the corrosion-resistant film | membrane 3 can be formed also by performing a zinc phosphate process and a phosphoric acid titanate process. The organic-inorganic composite compound is formed by performing a coating type chromate treatment or a coating type zirconium treatment, and examples thereof include an acryl-zirconium composite.

耐食性皮膜3は、CrまたはZrを1〜100mg/mの範囲で含有するものが好ましく、また、耐食性皮膜3の膜厚としては、10〜1000Åとするのが好ましいが、使用目的等に合わせて適宜変更が可能であることはいうまでもない。この耐食性皮膜3の形成により、基板2と樹脂耐食性皮膜4との密着性が向上して、ジンクピリチオンの樹脂耐食性皮膜4からの脱落が防止され、フィン材1の防カビ抗菌性が持続する。それと共に、フィン材1に耐食性が付与される。 The corrosion-resistant film 3 preferably contains Cr or Zr in the range of 1 to 100 mg / m 2 , and the film thickness of the corrosion-resistant film 3 is preferably 10 to 1000 mm, depending on the purpose of use, etc. Needless to say, it can be changed as appropriate. The formation of the corrosion-resistant coating 3 improves the adhesion between the substrate 2 and the resin corrosion-resistant coating 4, prevents zinc pyrithione from falling off the resin corrosion-resistant coating 4, and the mold material 1 has a fungicidal antibacterial property. At the same time, corrosion resistance is imparted to the fin material 1.

(樹脂耐食性皮膜)
樹脂耐食性皮膜4は、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂のうち少なくとも1種よりなり、その100重量部に対して、平均粒径が0.01〜1.0μmのジンクピリチオンを0.1〜100重量部含有する膜厚0.5〜10μmのものである。この樹脂耐食性皮膜4の形成により、フィン材1に防カビ抗菌性が付与される。
(Resin corrosion resistant film)
The resin corrosion resistant film 4 is made of at least one of urethane resin, epoxy resin, polyester resin, and vinyl chloride resin, and has an average particle diameter of 0.01 to 1.0 μm with respect to 100 parts by weight thereof. The film thickness is 0.5 to 10 μm containing 0.1 to 100 parts by weight of zinc pyrithione. The formation of the resin corrosion resistant film 4 imparts antifungal properties to the fin material 1.

樹脂耐食性皮膜4が、親水性を有しないウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂のうち少なくとも1種よりなる、例えば、ウレタン系樹脂、エポキシ系樹脂、または、エポキシ系樹脂とポリエステル系樹脂を混合したものよりなることにより、後記するジンクピリチオンが樹脂耐食性皮膜4から親水性皮膜5に徐々に放出されることとなる。   The resin corrosion-resistant film 4 is made of at least one of urethane-based resin, epoxy-based resin, polyester-based resin, and vinyl chloride-based resin having no hydrophilicity, for example, urethane-based resin, epoxy-based resin, or epoxy-based resin By being made of a mixture of polyester resin and zinc pyrithione, which will be described later, is gradually released from the resin corrosion-resistant film 4 to the hydrophilic film 5.

ジンクピリチオンは、幅広い抗菌スペクトルを有する抗菌剤であり、細菌と真菌のいずれに対しても有効なものである(「原著編者:ジョンJ カバラ、訳者:吉村孝一・滝川博文,香粧品医薬品 防腐・殺菌剤の科学,発行所:フレグランスジャーナル社,93〜104頁(1990年)」参照)。   Zinc pyrithione is an antibacterial agent with a broad antibacterial spectrum and is effective against both bacteria and fungi ("Original Editor: John J Kabbalah, Translated by: Koichi Yoshimura, Hirofumi Takikawa, Cosmetics Drugs, Antiseptic / Sterilization Pharmaceutical Science, Publisher: Fragrance Journal, pages 93-104 (1990) ").

ジンクピリチオンの平均粒径を0.01〜1.0μmに規定した理由は、以下のとおりである。平均粒径が0.01μm未満のものは、製造すること自体が困難であり、実用性が乏しい。平均粒径が1.0μmを超えると、親水性皮膜5の形成(塗布、焼付)の際の熱による熱分解が促進されやすくなり、ジンクピリチオン自体が昇華してしまう。特に、ジンクピリチオンの含有量を多くした場合において顕著となる。このことは、防カビ抗菌性の低下を招くのみでなく、熱分解生成物が樹脂耐食性皮膜4中に滞留して、熱分解生成物自体から発生する異臭不具合の原因となる。また、平均粒径が大きいと、長期冷房運転の際、フィン材1(樹脂耐食性皮膜4)から脱落し、フィン材1の防カビ抗菌性が持続しなくなる。   The reason why the average particle size of zinc pyrithione is specified to be 0.01 to 1.0 μm is as follows. Those having an average particle size of less than 0.01 μm are difficult to produce and are not practical. When the average particle diameter exceeds 1.0 μm, thermal decomposition due to heat during the formation (application, baking) of the hydrophilic film 5 tends to be promoted, and zinc pyrithione itself is sublimated. This is particularly noticeable when the content of zinc pyrithione is increased. This not only reduces the antifungal property of the mold, but also causes the thermal decomposition product to stay in the resin corrosion-resistant film 4 and cause a bad odor defect generated from the thermal decomposition product itself. On the other hand, if the average particle size is large, the fin material 1 (resin corrosion-resistant film 4) will fall off during long-term cooling operation, and the antifungal property of the fin material 1 will not be sustained.

ジンクピリチオンの含有量を、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂および塩化ビニル系樹脂のうち少なくとも1種の100重量部に対して、0.1〜100重量部に規定した理由は以下のとおりである。すなわち、含有量が0.1重量部未満であると、ジンクピリチオンの含有量が少なく、フィン材1の防カビ抗菌性が低下する。含有量が100重量部を超えると、ジンクピリチオンは水への溶解度が極めて低いため、樹脂耐食性皮膜4の上に形成される親水性皮膜5の親水性に悪影響を与え、フィン材1の親水性が低下する。また、ジンクピリチオン自体が高価なものであるため、製造コストが高くなる。さらに、樹脂耐食性皮膜4の膜形成性も低下する。なお、ジンクピリチオンの好ましい含有量は0.1〜50重量部、より好ましい含有量は0.1〜25重量部である。このような含有量により、フィン材1の親水性および防カビ抗菌性がより一層高くなる。   The reason why the content of zinc pyrithione is defined as 0.1 to 100 parts by weight with respect to 100 parts by weight of at least one of urethane resin, epoxy resin, polyester resin and vinyl chloride resin is as follows. It is. That is, when the content is less than 0.1 parts by weight, the content of zinc pyrithione is small, and the antifungal property of the fin material 1 is lowered. If the content exceeds 100 parts by weight, the solubility of zinc pyrithione in water is extremely low, which adversely affects the hydrophilicity of the hydrophilic film 5 formed on the resin corrosion-resistant film 4, and the hydrophilicity of the fin material 1 descend. Moreover, since zinc pyrithione itself is expensive, the manufacturing cost is increased. Furthermore, the film formability of the resin corrosion resistant film 4 is also reduced. In addition, the preferable content of zinc pyrithione is 0.1 to 50 parts by weight, and the more preferable content is 0.1 to 25 parts by weight. By such content, the hydrophilic property and antifungal property of the fin material 1 are further enhanced.

樹脂耐食性皮膜4の膜厚を0.5〜10μmに規定した理由は、以下のとおりである。すなわち、膜厚が0.5μm未満であると、樹脂耐食性皮膜4におけるジンクピリチオンの存在量が少なくなるため、フィン材1の防カビ抗菌性が低下する。また、平均粒径0.01〜1.0μmのジンクピリチオンが樹脂耐食性皮膜4の表面から露出しやすくなる。それにより、長期冷房運転の際、樹脂耐食性皮膜4からジンクピリチオンが粒子の状態のまま脱落しやすくなり、フィン材1の防カビ抗菌性が持続しなくなる。膜厚が10μmを超えると、ジンクピリチオンが樹脂耐食性皮膜4に埋没し、その表面に濃化しにくくなる。それにより、親水性皮膜5へのジンクピリチオンの放出量が低下し、フィン材1の防カビ抗菌性が低下する。なお、樹脂耐食性皮膜4の好ましい膜厚は0.5〜5μm、より好ましい膜厚は0.8〜3μmである。このような膜厚により、フィン材1の防カビ抗菌性がより一層高くなる。   The reason why the thickness of the resin corrosion resistant coating 4 is specified to be 0.5 to 10 μm is as follows. That is, when the film thickness is less than 0.5 μm, the amount of zinc pyrithione present in the resin corrosion-resistant coating 4 is reduced, so that the antifungal property of the fin material 1 is reduced. In addition, zinc pyrithione having an average particle diameter of 0.01 to 1.0 μm is easily exposed from the surface of the resin corrosion resistant coating 4. As a result, during the long-term cooling operation, zinc pyrithione tends to fall off from the resin corrosion-resistant film 4 in the form of particles, and the antifungal property of the fin material 1 does not continue. If the film thickness exceeds 10 μm, zinc pyrithione is buried in the resin corrosion-resistant film 4 and it is difficult to concentrate on the surface. Thereby, the amount of zinc pyrithione released to the hydrophilic film 5 decreases, and the antifungal property of the fin material 1 decreases. In addition, the preferable film thickness of the resin corrosion-resistant film 4 is 0.5 to 5 μm, and the more preferable film thickness is 0.8 to 3 μm. With such a film thickness, the antifungal property of the fin material 1 is further enhanced.

(親水性皮膜)
親水性皮膜5は、親水性樹脂よりなる膜厚0.1〜10μmのものである。また、親水性樹脂は、カルボキシル基、水酸基、スルホン酸基、アミド結合、エーテル結合およびそれらの塩のうち少なくとも1種を有するものであることが好ましい。ここで、カルボキシル基を有するものとしてはポリアクリル酸、水酸基を有するものとしてはポリビニルアルコールやカルボキシメチルセルロース、アミド結合を有するものとしてポリアクリルアミド、スルホン酸基を有するものとしてスルホエチルアクリレートとアクリル酸の共重合体、エーテル結合を有するものとしてポリエチレングリコール等が好ましい。さらに、樹脂耐食性皮膜4との密着性向上と、前記の可塑剤、プラスチック用滑剤等の汚染物質付着時においても親水性が劣化することを防止するためには、親水性樹脂は、カルボキシル基を有するものがより好ましい。この親水性皮膜5の形成により、フィン材1に親水性が付与される。
(Hydrophilic film)
The hydrophilic film 5 has a film thickness of 0.1 to 10 μm made of a hydrophilic resin. The hydrophilic resin preferably has at least one of a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide bond, an ether bond, and a salt thereof. Here, polyacrylic acid has a carboxyl group, polyvinyl alcohol or carboxymethylcellulose has a hydroxyl group, polyacrylamide has an amide bond, and sulfoethyl acrylate and acrylic acid have a sulfonic acid group. Polyethylene glycol and the like are preferable as the polymer and those having an ether bond. Furthermore, in order to improve the adhesion with the resin corrosion resistant film 4 and prevent the hydrophilicity from deteriorating even when adhering contaminants such as the plasticizer and plastic lubricant, the hydrophilic resin has a carboxyl group. What has is more preferable. By forming the hydrophilic film 5, hydrophilicity is imparted to the fin material 1.

親水性皮膜5の膜厚を0.1〜10μmに規定した理由は、以下のとおりである。すなわち、膜厚が0.1μm未満であると、フィン材1の親水性が低下する。膜厚が10μmを超えると、親水性のさらなる向上は認められず、樹脂耐食性皮膜4に含有されたジンクピリチオンが親水性皮膜5を通って放出されなくなる。なお、親水性皮膜5の好ましい膜厚は0.1〜5μm、より好ましい膜厚は0.1〜1μmである。このような膜厚により、フィン材1の親水性および防カビ抗菌性がより一層高くなる。   The reason why the thickness of the hydrophilic film 5 is specified to be 0.1 to 10 μm is as follows. That is, if the film thickness is less than 0.1 μm, the hydrophilicity of the fin material 1 is lowered. When the film thickness exceeds 10 μm, further improvement in hydrophilicity is not recognized, and zinc pyrithione contained in the resin corrosion-resistant film 4 is not released through the hydrophilic film 5. In addition, the preferable film thickness of the hydrophilic membrane | film 5 is 0.1-5 micrometers, and a more preferable film thickness is 0.1-1 micrometer. By such a film thickness, the hydrophilic property and antifungal property of the fin material 1 are further enhanced.

(水溶性皮膜)
水溶性皮膜8は、分子内に水酸基を有する水溶性樹脂よりなる膜厚0.1〜10μmのものである。また、水溶性樹脂は、分子内に水酸基を有するものであれば特に限定されるものではなく、例えば、カルボキシメチルセルロースナトリウム、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。そして、本発明において、水溶性皮膜とは、水道水に浸漬して24時間で95質量%以上が溶解するものを意味する。したがって、水溶性樹脂は、分子内に水酸基を有するものであっても、後記する水溶性皮膜8の形成時の塗装焼付等により、水溶性皮膜8内に架橋構造を形成するような官能基、例えば、イソシアネート基、エポキシ基を含有しないほうが好ましい。これは、水溶性樹脂が前記した官能基を有すると、架橋構造により水溶性皮膜8の溶解性が低下するからである。さらに、この水溶性樹脂は、前記した樹脂を単独で用いても、2種以上を混合して用いてもよい。
(Water-soluble film)
The water-soluble film 8 has a film thickness of 0.1 to 10 μm made of a water-soluble resin having a hydroxyl group in the molecule. The water-soluble resin is not particularly limited as long as it has a hydroxyl group in the molecule, and examples thereof include sodium carboxymethyl cellulose, polyvinyl alcohol, and polyethylene glycol. And in this invention, a water-soluble film | membrane means what is 95 mass% or more melt | dissolves in 24 hours after being immersed in a tap water. Therefore, even if the water-soluble resin has a hydroxyl group in the molecule, a functional group that forms a cross-linked structure in the water-soluble film 8 by coating baking at the time of forming the water-soluble film 8 described later, For example, it is preferable not to contain an isocyanate group or an epoxy group. This is because if the water-soluble resin has the functional group described above, the solubility of the water-soluble film 8 is lowered due to the crosslinked structure. Further, as the water-soluble resin, the above-described resins may be used alone or in combination of two or more.

この水溶性皮膜8は、膜厚として0.1〜10μmであることが好ましい。膜厚が0.1μm未満であると、プレス加工等でこのフィン材から作製したフィンにおいて、冷房運転時(結露時)の水溶性皮膜8の溶解量が低下し、フィン表面に付着した加工油を洗い落とすことが難しくなり、親水性の向上が見られなくなる。また、水溶性皮膜8の下層となる親水性皮膜5が吸湿を起こし易くなり、プレス加工の際、金型にフィン材が粘着し、加工性が低下し易くなる。膜厚が10μmを超えると、塗装焼付の際、フィン材の塗工性が低下し易くなる。   The water-soluble film 8 preferably has a thickness of 0.1 to 10 μm. When the film thickness is less than 0.1 μm, the amount of the water-soluble film 8 dissolved during cooling operation (condensation) decreases in the fin produced from this fin material by press working or the like, and the processing oil adhered to the fin surface It becomes difficult to wash off and the hydrophilicity is not improved. In addition, the hydrophilic film 5 which is the lower layer of the water-soluble film 8 is likely to absorb moisture, and the fin material sticks to the mold during press working, and the workability is likely to be lowered. When the film thickness exceeds 10 μm, the coating property of the fin material is likely to be lowered during the baking process.

次に、本発明に係るフィン材1の製造方法について説明する。フィン材1は以下の方法で製造される。
(1)アルミニウムまたはアルミニウム合金よりなる基板2の片面または両面(図示せず)に、リン酸クロメート処理、リン酸ジルコニウム処理等を施すことにより、無機酸化物または有機−無機複合化合物よりなる耐食性皮膜3を形成する。ここで、リン酸クロメート処理、リン酸ジルコニウム処理等は、基板2に化成処理液をスプレー等により塗布することで行われる。その塗布量としては、CrまたはZr換算で1〜100mg/mの範囲で塗布するのが好ましく、形成される膜厚としては、10〜1000Åとするのが好ましい。また、耐食性皮膜3を形成する前に、基板2の表面にアルカリ水溶液をスプレー等して、基板2の表面を予め脱脂することが好ましい。脱脂により基板2と耐食性皮膜3との密着性が向上する。
Next, the manufacturing method of the fin material 1 which concerns on this invention is demonstrated. The fin material 1 is manufactured by the following method.
(1) Corrosion-resistant film made of inorganic oxide or organic-inorganic composite compound by subjecting one side or both sides (not shown) of substrate 2 made of aluminum or aluminum alloy to phosphoric acid chromate treatment, zirconium phosphate treatment, etc. 3 is formed. Here, the phosphoric acid chromate treatment, the zirconium phosphate treatment, and the like are performed by applying a chemical conversion treatment solution to the substrate 2 by spraying or the like. The coating amount is preferably 1 to 100 mg / m 2 in terms of Cr or Zr, and the formed film thickness is preferably 10 to 1000 mm. Moreover, before forming the corrosion-resistant film 3, it is preferable to degrease the surface of the substrate 2 in advance by spraying an alkaline aqueous solution or the like on the surface of the substrate 2. The adhesion between the substrate 2 and the corrosion-resistant coating 3 is improved by degreasing.

(2)形成された耐食性皮膜3の上に、ジンクピリチオンを含有するウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂および塩化ビニル系樹脂のうち少なくとも1種の樹脂溶液を塗布、焼付を行い、基板2の上に樹脂耐食性皮膜4を形成する。 (2) On the formed corrosion-resistant coating 3, at least one resin solution of urethane-based resin, epoxy-based resin, polyester-based resin and vinyl chloride-based resin containing zinc pyrithione is applied and baked. A resin corrosion resistant film 4 is formed on the substrate.

ここで、塗布はバーコーダ、ロールコータ等の従来公知の塗布方法で行い、塗布量は、樹脂耐食性皮膜4の厚みが0.5〜10μmとなるように適宜設定する。焼付温度は、塗布する樹脂溶液によって、適宜設定するが、ジンクピリチオンが分解しない焼付温度で行う。また、樹脂耐食性皮膜4を形成する前に、基板2の表面にアルカリ水溶液をスプレー等して、基板2の表面を予め脱脂することが好ましい。脱脂により基板2と樹脂耐食性皮膜4との密着性が向上する。   Here, the coating is performed by a conventionally known coating method such as a bar coder or a roll coater, and the coating amount is appropriately set so that the thickness of the resin corrosion-resistant film 4 is 0.5 to 10 μm. The baking temperature is appropriately set depending on the resin solution to be applied, but is performed at a baking temperature at which zinc pyrithione is not decomposed. In addition, before forming the resin corrosion resistant coating 4, it is preferable to degrease the surface of the substrate 2 in advance by spraying an alkaline aqueous solution on the surface of the substrate 2. The adhesion between the substrate 2 and the resin corrosion-resistant film 4 is improved by degreasing.

(3)形成された樹脂耐食性皮膜4の表面に、親水性樹脂の樹脂溶液を塗布、焼付を行い、樹脂耐食性皮膜4の上に親水性皮膜5を形成してフィン材1とする。ここで、塗布はバーコーダ、ロールコータ等の従来公知の塗布方法で行い、塗布量は、親水性皮膜5の厚みが0.1〜10μmとなるように適宜設定する。焼付温度は、樹脂耐食性皮膜4の焼付温度より高く焼付けることで、ジンクピリチオンの樹脂耐食性皮膜4表面への濃化を促進する。なお、親水性皮膜5側の表面に濃化したジンクピリチオンが親水性皮膜5を通して放出され、フィン材1に防カビ抗菌性が付与される。また、塗布する(親水性)樹脂溶液によって、適宜設定する必要があるが、ジンクピリチオンが分解しない焼付温度で行う。 (3) A resin solution of a hydrophilic resin is applied to the surface of the formed resin corrosion-resistant film 4 and baked to form a hydrophilic film 5 on the resin corrosion-resistant film 4 to obtain the fin material 1. Here, the application is performed by a conventionally known application method such as a bar coder or a roll coater, and the application amount is appropriately set so that the thickness of the hydrophilic film 5 is 0.1 to 10 μm. The baking temperature promotes the concentration of zinc pyrithione on the surface of the resin corrosion-resistant film 4 by baking higher than the baking temperature of the resin corrosion-resistant film 4. In addition, zinc pyrithione concentrated on the surface on the hydrophilic film 5 side is released through the hydrophilic film 5 to impart antifungal property to the fin material 1. Moreover, although it is necessary to set suitably by the (hydrophilic) resin solution to apply | coat, it carries out at the baking temperature which a zinc pyrithione does not decompose | disassemble.

また、フィン材1が、水溶性皮膜8有するものである場合には、前記(3)の親水性皮膜5の形成後、以下(4)を行なう。
(4)形成された親水性皮膜5の表面に、水溶性樹脂の樹脂溶液を塗布、焼付を行い、親水性皮膜5の上に水溶性皮膜8を形成する。ここで、塗布はバーコーダ、ロールコータ等の従来公知の塗布方法で行い、塗布量は、水溶性皮膜8の膜厚が0.1〜10μmとなるように適宜設定する。そして、焼付温度は、できるだけ低い温度で焼付けることが好ましい。これは、焼付温度が高いと、水溶性皮膜8(水溶性樹脂)と親水性皮膜5(親水性樹脂)とが縮合反応を起こし、冷房運転時(結露時)に水溶性皮膜8が溶解し難くなるからである。したがって、焼付温度は200℃以下が好ましい。
When the fin material 1 has the water-soluble film 8, the following (4) is performed after the formation of the hydrophilic film 5 of (3).
(4) A resin solution of a water-soluble resin is applied to the surface of the formed hydrophilic film 5 and baked to form a water-soluble film 8 on the hydrophilic film 5. Here, the coating is performed by a conventionally known coating method such as a bar coder or a roll coater, and the coating amount is appropriately set so that the film thickness of the water-soluble film 8 is 0.1 to 10 μm. And it is preferable to bake by baking temperature as low as possible. This is because when the baking temperature is high, the water-soluble film 8 (water-soluble resin) and the hydrophilic film 5 (hydrophilic resin) undergo a condensation reaction, and the water-soluble film 8 dissolves during cooling operation (condensation). Because it becomes difficult. Therefore, the baking temperature is preferably 200 ° C. or less.

以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例について説明する。
実施例1〜5の効果を確認するために、図1(a)、(b)に示すフィン材1を作製した。そして、基板2は、いずれもJIS H4000に規定する合金番号1200のアルミニウムよりなる板厚0.1mmのアルミニウム板を用いた。
Although the best mode for carrying out the present invention has been described above, examples in which the effects of the present invention have been confirmed will be described below.
In order to confirm the effect of Examples 1-5, the fin material 1 shown to Fig.1 (a), (b) was produced. And the board | substrate 2 used the aluminum plate with a plate | board thickness of 0.1 mm which consists of aluminum of the alloy number 1200 prescribed | regulated to JISH4000.

このアルミニウム板の表面に、耐食性皮膜3を形成するためのリン酸クロメート処理を行った。化成処理液としては、日本ペイント株式会社製アルサーフ(登録商標)401/45、リン酸、クロム酸を使用した。このとき、耐食性皮膜3の膜厚は400Åとした(蛍光X線法で測定したCr換算値は20mg/m2であった)。 The surface of this aluminum plate was subjected to a phosphoric acid chromate treatment for forming a corrosion-resistant film 3. As the chemical conversion treatment liquid, Alsurf (registered trademark) 401/45, phosphoric acid, and chromic acid manufactured by Nippon Paint Co., Ltd. were used. At this time, the film thickness of the corrosion-resistant film 3 was 400 mm (Cr conversion value measured by the fluorescent X-ray method was 20 mg / m 2 ).

そして、耐食性皮膜3の上に、樹脂耐食性皮膜用塗料としてウレタン系樹脂塗料(東邦化学社製、ウレタン変性樹脂エマルジョン、ハイテック(登録商標)S−6254)を使用し、表1に示す重量部のジンクピリチオン(平均粒径0.37μm)を含有させたものを所定量塗布し、その後焼付を行った。焼付温度はアルミニウム板の到達温度で160℃となるように実施した。なお、ジンクピリチオンの平均粒径は、レーザー回折・散乱式粒度分散測定装置(セイシン企業SK LAASER MICRON SIZER LMS−24)を使用し、分散液として水、分散方法としてスクリュー分散を用いて測定した。このようにして、表1に示す膜厚の樹脂耐食性皮膜4を形成した。   And, on the corrosion-resistant film 3, a urethane-based resin paint (manufactured by Toho Chemical Co., Ltd., urethane-modified resin emulsion, Hitech (registered trademark) S-6254) is used as a resin-corrosion-resistant paint, and the parts by weight shown in Table 1 are used. A predetermined amount of zinc pyrithione (average particle size 0.37 μm) was applied, followed by baking. The baking temperature was 160 ° C. at the temperature reached by the aluminum plate. In addition, the average particle diameter of zinc pyrithione was measured using a laser diffraction / scattering type particle size dispersion measuring apparatus (SEISIN company SK LAASER MICRON SIZER LMS-24), using water as a dispersion and screw dispersion as a dispersion method. In this way, a resin corrosion resistant film 4 having a film thickness shown in Table 1 was formed.

そして、樹脂耐食性皮膜4の上に、カルボキシル基を有する樹脂としてポリアクリル酸(分子量10万)、エーテル基を含有する樹脂としてポリエチレングリコール(分子量6千)、水酸基を含有する樹脂としてポリビニルアルコール(ケン化度98%)を混合(ポリアクリル酸30質量%、ポリエチレングリコール30質量%、ポリビニルアルコール40質量%)した樹脂水溶液を所定量塗布し、その後焼付を行った。焼付温度はアルミ板の到達温度で240℃となるように実施した。このようにして、表1に示す膜厚の親水性皮膜5を形成した。   Then, on the resin corrosion-resistant film 4, polyacrylic acid (molecular weight: 100,000) as a resin having a carboxyl group, polyethylene glycol (molecular weight: 6,000) as a resin containing an ether group, and polyvinyl alcohol (ken) as a resin containing a hydroxyl group. A predetermined amount of a resin aqueous solution mixed with poly (acrylic acid 30% by mass, polyethylene glycol 30% by mass, polyvinyl alcohol 40% by mass) was applied and then baked. The baking temperature was 240 ° C. at the temperature reached by the aluminum plate. In this way, a hydrophilic film 5 having a film thickness shown in Table 1 was formed.

また、実施例4、実施例5については、親水性皮膜5の上に、水酸基を有する水溶性樹脂としてカルボキシメチルセルロースナトリウム(分子量10万)、ポリエチレングリコール(分子量6千)をそれぞれ50質量%ずつ混合した樹脂水溶液を所定量塗布し、その後焼付を行った。焼付温度はアルミニウム板の到達温度で150℃となるように実施した。このようにして、表1に示す膜厚の水溶性皮膜8を形成した。なお、水溶性皮膜8の溶解性は、水道水に浸漬して24時間で99質量%以上であった。   Moreover, about Example 4 and Example 5, 50 mass% each of sodium carboxymethylcellulose (molecular weight 100,000) and polyethyleneglycol (molecular weight 6,000) are mixed on the hydrophilic film 5 as a water-soluble resin having a hydroxyl group. A predetermined amount of the aqueous resin solution was applied, and then baked. The baking temperature was 150 ° C. at the temperature reached by the aluminum plate. Thus, the water-soluble film 8 having the film thickness shown in Table 1 was formed. In addition, the solubility of the water-soluble film | membrane 8 was 99 mass% or more in 24 hours after being immersed in tap water.

なお、実施例の対照として比較例1〜6のフィン材も作製した。比較例1、2は樹脂耐食性皮膜4の膜厚を、比較例3はジンクピリチオンの含有量(重量部)を、比較例4は親水性皮膜5の膜厚を本発明の特許請求の範囲を満足しないものとしたこと以外は、前記実施例と同様にしてフィン材を作製した。また、比較例5は、ジンクピリチオンを樹脂耐食性皮膜4ではなく親水性皮膜5に含有させたこと以外は、実施例と同様にしてフィン材を作製した。また、比較例6は、平均粒径が1μmを超える(=4μm)ジンクピリチオンを使用したこと以外は実施例と同様にしてフィン材を作製した。   In addition, the fin material of Comparative Examples 1-6 was also produced as a control | contrast of an Example. Comparative Examples 1 and 2 satisfied the film thickness of the resin corrosion resistant film 4, Comparative Example 3 satisfied the zinc pyrithione content (parts by weight), and Comparative Example 4 satisfied the film thickness of the hydrophilic film 5 within the scope of the present invention. A fin material was produced in the same manner as in the above example except that it was not. In Comparative Example 5, a fin material was produced in the same manner as in Example except that zinc pyrithione was contained in the hydrophilic film 5 instead of the resin corrosion-resistant film 4. Moreover, the comparative example 6 produced the fin material like the Example except having used the zinc pyrithione whose average particle diameter exceeds 1 micrometer (= 4 micrometer).

次に、実施例1〜5および比較例1〜6のフィン材を、長期の冷房運転時を想定して水道水流水(1000cc/min)中に240時間浸漬した後、以下に示す方法で、親水性および防カビ抗菌性について評価した。その結果を表1に示す。また、水道水流水に浸漬する前のフィン材について、加工性および初期臭気の有無を以下に示す方法で確認し、その結果を表1に示す。   Next, after immersing the fin materials of Examples 1-5 and Comparative Examples 1-6 in running tap water (1000 cc / min) for 240 hours assuming long-term cooling operation, the method shown below, The hydrophilicity and antifungal properties were evaluated. The results are shown in Table 1. Moreover, about the fin material before being immersed in a tap water flow, the presence or absence of workability and an initial stage odor was confirmed by the method shown below, and the result is shown in Table 1.

(親水性)
浸漬後のフィン材に、純水を1μl滴下し、それによって生じた水滴の接触角θをゴニオメーター(協和界面科学(株)製 CA−X250型)により測定し、30°以下であれば良好とした。
(防カビ抗菌性)
「山田貞子ら:固体材料表面の迅速な抗カビ活性試験方法,防菌防黴,Vol.31,No.11,711〜717頁(2003年)」に記載されているガラスリング法による試験によって評価した。なお、使用するカビとしては、黒カビ(Aspegillus niger)、青カビ(Penicillium chrysogenum)、クロカワカビ(Cladosporium cladosporioides)の3種類のカビを混合したものとした。評価結果は、表2に示した6段階によって評価した。
(加工性)
ドローレス方式の金型(日高精機製)を用いてプレス試験を実施し、加工時の成型不良が発生するプレス成形速度を確認した。プレス成型速度(spm)が大きいほど加工性が良好であり、通常は200spm程度であれば十分である。
(初期臭気)
(社)におい・かおり環境協会が定める嗅覚検査に合格したパネラーが、作製したフィン材から臭いが感じられるか否かについて官能評価の上判断し、臭気の有無を確認した。
(Hydrophilic)
1 μl of pure water is dropped on the fin material after immersion, and the contact angle θ of the resulting water droplet is measured with a goniometer (Kyowa Interface Science Co., Ltd. CA-X250 type). It was.
(Anti-fungal)
According to the test by the glass ring method described in “Sadako Yamada et al .: Rapid antifungal activity test method on solid material surface, antibacterial fungus, Vol.31, No.11, pages 711 to 717 (2003)”. evaluated. The mold used was a mixture of three types of mold, black mold (Aspegillus niger), blue mold (Penicillium chrysogenum), and black mold (Cladosporium cladosporioides). The evaluation results were evaluated according to the 6 levels shown in Table 2.
(Processability)
A press test was conducted using a drawless mold (manufactured by Hidaka Seiki Co., Ltd.), and the press molding speed at which molding defects occurred during processing was confirmed. The higher the press molding speed (spm), the better the workability, and usually about 200 spm is sufficient.
(Initial odor)
Panelists who passed the olfactory test established by the Odor / Odor Environment Association judged whether or not odor was felt from the prepared fin material, and determined the presence or absence of odor.

Figure 2007040686
Figure 2007040686

Figure 2007040686
Figure 2007040686

表1の結果より、実施例1〜5のフィン材は、特許請求の範囲を満足するため、親水性、防カビ抗菌性、加工性および初期臭気の全てにおいて優れているものであった。また、実施例4のフィン材は、所定範囲を満足する膜厚の水溶性皮膜を親水性皮膜の上に形成したため、プレス成形速度が向上しており、加工性においてさらに優れているものであった。なお、実施例5のフィン材は、水溶性皮膜を形成したものの、水溶性皮膜の膜厚が所定範囲を下回るものであったため、プレス成型速度の向上は見られなかった。   From the results shown in Table 1, the fin materials of Examples 1 to 5 were excellent in all of hydrophilicity, antifungal property, processability and initial odor in order to satisfy the claims. In addition, the fin material of Example 4 was formed with a water-soluble film having a film thickness satisfying a predetermined range on the hydrophilic film, so that the press molding speed was improved and the workability was further improved. It was. In addition, although the fin material of Example 5 formed the water-soluble film | membrane, since the film thickness of the water-soluble film | membrane was less than the predetermined range, the improvement of the press molding speed was not seen.

一方、比較例1、2のフィン材は、樹脂耐食性皮膜4の膜厚が特許請求の範囲外であるため、親水性、加工性および初期臭気については良好であったが、防カビ抗菌性において劣るものであった。比較例3のフィン材は、ジンクピリチオンの含有量が特許請求の範囲の下限値未満であるため、親水性、加工性および初期臭気については良好であったが、防カビ抗菌性において劣るものであった。比較例4のフィン材は、親水性皮膜5の膜厚が特許請求の範囲の下限値未満であるため、加工性、防カビ抗菌性および初期臭気については良好であったが、親水性において劣るものであった。比較例5のフィン材は、ジンクピリチオンが親水性皮膜5に含有されているため、加工性および初期臭気については良好であったが、親水性および防カビ抗菌性の両者において劣るものであった。比較例6のフィン材は、ジンクピリチオンの粒径が1μmを超えるものであるため、加工性以外の、親水性、防カビ抗菌性および初期臭気の全てにおいて劣るものであった。   On the other hand, the fin materials of Comparative Examples 1 and 2 had good hydrophilicity, processability and initial odor because the film thickness of the resin corrosion-resistant film 4 was outside the scope of the claims. It was inferior. Since the content of zinc pyrithione was less than the lower limit of the claims, the fin material of Comparative Example 3 was good in hydrophilicity, processability and initial odor, but was inferior in antifungal property. It was. In the fin material of Comparative Example 4, since the film thickness of the hydrophilic film 5 was less than the lower limit of the claims, the processability, antifungal property and initial odor were good, but the hydrophilicity was poor. It was a thing. Since the fin material of Comparative Example 5 contained zinc pyrithione in the hydrophilic film 5, the workability and the initial odor were good, but both the hydrophilic property and the antifungal property were inferior. The fin material of Comparative Example 6 was inferior in all of hydrophilicity, antifungal antibacterial properties and initial odor other than processability because the particle size of zinc pyrithione exceeded 1 μm.

(a)は本発明に係るアルミニウムフィン材の断面を模式的に示す断面図、(b)は他のアルミニウムフィン材の断面図である。(A) is sectional drawing which shows typically the cross section of the aluminum fin material which concerns on this invention, (b) is sectional drawing of another aluminum fin material. 平面上の水滴の接触角を示す模式図である。It is a schematic diagram which shows the contact angle of the water drop on a plane. 熱交換器の熱交換部を模式的に示す斜視図である。It is a perspective view which shows typically the heat exchange part of a heat exchanger. (a)ないし(c)はフィン表面の水滴付着状態を示す模式図である。(A) thru | or (c) is a schematic diagram which shows the water droplet adhesion state on the fin surface.

符号の説明Explanation of symbols

1 フィン材
2 基板
3 耐食性皮膜
4 樹脂耐食性皮膜
5 親水性皮膜
8 水溶性皮膜
J ジンクピリチオン粒子
DESCRIPTION OF SYMBOLS 1 Fin material 2 Substrate 3 Corrosion-resistant film 4 Resin corrosion-resistant film 5 Hydrophilic film 8 Water-soluble film J Zinc pyrithione particles

Claims (3)

アルミニウムまたはアルミニウム合金よりなる基板と、
この基板の上に形成された無機酸化物または有機−無機複合化合物よりなる耐食性皮膜と、
この耐食性皮膜の上に形成された膜厚0.5〜10μmの樹脂耐食性皮膜と、
この樹脂耐食性皮膜の上に形成された親水性樹脂よりなる膜厚0.1〜10μmの親水性皮膜とを備えるアルミニウムフィン材において、
前記樹脂耐食性皮膜は、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂および塩化ビニル系樹脂のうち少なくとも1種よりなる樹脂であり、当該樹脂100重量部に対して、平均粒径が0.01〜1.0μmのジンクピリチオンを0.1〜100重量部含有することを特徴とするアルミニウムフィン材。
A substrate made of aluminum or an aluminum alloy;
A corrosion-resistant film made of an inorganic oxide or an organic-inorganic composite compound formed on the substrate;
A resin corrosion resistant film having a film thickness of 0.5 to 10 μm formed on the corrosion resistant film;
In an aluminum fin material provided with a hydrophilic film having a film thickness of 0.1 to 10 μm made of a hydrophilic resin formed on this resin corrosion-resistant film,
The resin corrosion-resistant film is a resin composed of at least one of a urethane resin, an epoxy resin, a polyester resin, and a vinyl chloride resin, and an average particle diameter is 0.01 to 100 parts by weight of the resin. An aluminum fin material comprising 0.1 to 100 parts by weight of 1.0 μm zinc pyrithione.
前記親水性樹脂が、カルボキシル基、水酸基、スルホン酸基、アミド結合、エーテル結合およびそれらの塩のうち少なくとも1種を有するものであることを特徴とする請求項1に記載のアルミニウムフィン材。   The aluminum fin material according to claim 1, wherein the hydrophilic resin has at least one of a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide bond, an ether bond, and a salt thereof. 前記親水性皮膜の上に形成された膜厚0.1〜10μmの水溶性皮膜を備え、前記水溶性皮膜は、分子内に水酸基を有する水溶性樹脂よりなることを特徴とする請求項1または請求項2に記載のアルミニウムフィン材。   2. A water-soluble film having a thickness of 0.1 to 10 μm formed on the hydrophilic film, wherein the water-soluble film is made of a water-soluble resin having a hydroxyl group in the molecule. The aluminum fin material according to claim 2.
JP2005305388A 2005-06-27 2005-10-20 Aluminum fin material Active JP4456551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305388A JP4456551B2 (en) 2005-06-27 2005-10-20 Aluminum fin material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005187425 2005-06-27
JP2005305388A JP4456551B2 (en) 2005-06-27 2005-10-20 Aluminum fin material

Publications (2)

Publication Number Publication Date
JP2007040686A true JP2007040686A (en) 2007-02-15
JP4456551B2 JP4456551B2 (en) 2010-04-28

Family

ID=37798836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305388A Active JP4456551B2 (en) 2005-06-27 2005-10-20 Aluminum fin material

Country Status (1)

Country Link
JP (1) JP4456551B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093905A (en) * 2006-10-10 2008-04-24 Furukawa Sky Kk Aluminum-coated plate and precoated aluminum fin material using the plate
JP2008241237A (en) * 2007-03-01 2008-10-09 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009030894A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009144949A (en) * 2007-12-12 2009-07-02 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger, and heat exchanger using it
JP2009186149A (en) * 2008-02-08 2009-08-20 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger, and heat exchanger using it
EP2119996A1 (en) * 2007-02-16 2009-11-18 Kabushiki Kaisha Kobe Seiko Sho Aluminum fin material for heat exchanger
JP2009297995A (en) * 2008-06-12 2009-12-24 Kobe Steel Ltd Deodorized and aluminum-made fin material
JP2010210127A (en) * 2009-03-09 2010-09-24 Kobe Steel Ltd Aluminum fin material
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
WO2010110261A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2010230304A (en) * 2009-03-04 2010-10-14 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger for air conditioner
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
JP2012076456A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Fin material made from aluminum
JP2012189273A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Heat exchanger, and method of manufacturing the same
JP2012189272A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Heat exchanger, and method of manufacturing the same
JP2012225536A (en) * 2011-04-15 2012-11-15 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2013113544A (en) * 2011-11-30 2013-06-10 Mitsubishi Alum Co Ltd Fin material for heat exchanger and heat exchanger
JP2013130320A (en) * 2011-12-20 2013-07-04 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
JP2014167383A (en) * 2014-04-02 2014-09-11 Mitsubishi Alum Co Ltd Fin material for air conditioner and method of manufacturing the same
WO2015151909A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum fin material
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093905A (en) * 2006-10-10 2008-04-24 Furukawa Sky Kk Aluminum-coated plate and precoated aluminum fin material using the plate
EP2119996A1 (en) * 2007-02-16 2009-11-18 Kabushiki Kaisha Kobe Seiko Sho Aluminum fin material for heat exchanger
EP2119996A4 (en) * 2007-02-16 2012-06-06 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2008241237A (en) * 2007-03-01 2008-10-09 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009030894A (en) * 2007-07-27 2009-02-12 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009144949A (en) * 2007-12-12 2009-07-02 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger, and heat exchanger using it
JP2009186149A (en) * 2008-02-08 2009-08-20 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger, and heat exchanger using it
JP2009297995A (en) * 2008-06-12 2009-12-24 Kobe Steel Ltd Deodorized and aluminum-made fin material
JP2010230304A (en) * 2009-03-04 2010-10-14 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger for air conditioner
JP2010210127A (en) * 2009-03-09 2010-09-24 Kobe Steel Ltd Aluminum fin material
WO2010110261A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
CN102378893A (en) * 2009-03-24 2012-03-14 株式会社神户制钢所 Aluminum fin material for heat exchanger
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
JP2012076456A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Fin material made from aluminum
JP2012189273A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Heat exchanger, and method of manufacturing the same
JP2012189272A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Heat exchanger, and method of manufacturing the same
JP2012225536A (en) * 2011-04-15 2012-11-15 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2013113544A (en) * 2011-11-30 2013-06-10 Mitsubishi Alum Co Ltd Fin material for heat exchanger and heat exchanger
JP2013130320A (en) * 2011-12-20 2013-07-04 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
WO2015151909A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum fin material
JP2015200486A (en) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 aluminum fin material
JP2014167383A (en) * 2014-04-02 2014-09-11 Mitsubishi Alum Co Ltd Fin material for air conditioner and method of manufacturing the same
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JPWO2016021367A1 (en) * 2014-08-07 2017-05-25 シャープ株式会社 Heat exchanger having fins with sterilizing surface, metal member having sterilizing surface, sterilization method using fin surface of heat exchanger, electric water heater having metal member, and beverage feeder And lunch box lid
JP2018028148A (en) * 2014-08-07 2018-02-22 シャープ株式会社 Fin with surface having antifungal action, heat exchanger having fin, and metallic component with surface having bactericidal action
US10107574B2 (en) 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
US11280563B2 (en) 2014-08-07 2022-03-22 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member

Also Published As

Publication number Publication date
JP4456551B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4456551B2 (en) Aluminum fin material
JP2008224204A (en) Aluminum fin material for heat exchanger
JP5663174B2 (en) Aluminum or aluminum alloy material having surface treatment film and surface treatment method thereof
JP4008620B2 (en) Aluminum alloy heat exchanger
JP5570127B2 (en) Hydrophilic treatment agent, aluminum-containing metal material and aluminum alloy heat exchanger
JP5586834B2 (en) Aluminum fin material for heat exchanger
CN100406836C (en) Aluminium fin material
JP2009030894A (en) Aluminum fin material for heat exchanger
JP6887366B2 (en) Pre-coated fin material
JP2010223514A (en) Aluminum fin material for heat exchanger
JP5191248B2 (en) Aluminum fin material for heat exchanger and heat exchanger using the same
JP2008036588A (en) Aluminum fin material for heat exchanger and heat exchanger using the same
JP2006078134A (en) Aluminum fin material
JP5559227B2 (en) Aluminum fin material
JP2007268387A (en) Surface-treated fin material for heat exchanger
JP3383914B2 (en) Aluminum fin material for heat exchanger
CN1431454A (en) Aluminium alloy material with coated film and heat exchanger radiating fin made by same material
JP6412938B2 (en) Heat exchanger coating
JP2013210144A (en) Aluminum fin material
JP5358087B2 (en) Aluminum fin material for heat exchanger and heat exchanger using the same
JP5620870B2 (en) Aluminum fin material for heat exchanger
JP2009254999A (en) Fin material made of resin-coated aluminum
WO2021153495A1 (en) Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
JP2015190744A (en) Aluminum fin material for heat exchanger
JP2006001852A (en) Antibacterial antifungal resin shaped article and air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250