JP2007040095A - Method for improving compaction property of water-crushed slag layer - Google Patents

Method for improving compaction property of water-crushed slag layer Download PDF

Info

Publication number
JP2007040095A
JP2007040095A JP2006176855A JP2006176855A JP2007040095A JP 2007040095 A JP2007040095 A JP 2007040095A JP 2006176855 A JP2006176855 A JP 2006176855A JP 2006176855 A JP2006176855 A JP 2006176855A JP 2007040095 A JP2007040095 A JP 2007040095A
Authority
JP
Japan
Prior art keywords
layer
granulated slag
improving
water
slag layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006176855A
Other languages
Japanese (ja)
Inventor
Heizo Chiga
平造 千賀
Hiroshi Yamada
紘 山田
Kazuyoshi Yanagisawa
一好 柳沢
Mitsuhiro Fukuda
光浩 福田
Shunichi Masutani
俊一 増谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSU SERVICE KK
SHINKO SLAG PRODUCTS CO Ltd
Nippon Steel Slag Products Co Ltd
Original Assignee
KENSETSU SERVICE KK
SHINKO SLAG PRODUCTS CO Ltd
Sumikin Koka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSU SERVICE KK, SHINKO SLAG PRODUCTS CO Ltd, Sumikin Koka Co Ltd filed Critical KENSETSU SERVICE KK
Priority to JP2006176855A priority Critical patent/JP2007040095A/en
Publication of JP2007040095A publication Critical patent/JP2007040095A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which is excellent in forming a ground which has high supporting force by improving conventional technology and improving a compaction property of a water-crushed slag layer. <P>SOLUTION: In the method for improving the compaction property of the water-crushed slag layer, earth and sand of decomposed granite soil or the like is laid on a layer comprising a water-crushed slag of a blast-furnace water-crushed slag or the like to form a layer, and the superposed layer is pressed from upward direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水砕スラグを用いて盛土、埋め立て、裏込め、覆土などを実施する場合の締め固め性の改良工法に関するものである。   The present invention relates to a method for improving compaction when embankment, reclamation, backfilling, soil covering, and the like are performed using granulated slag.

地盤、路盤等の盛土、埋め立て、裏込め、覆土などに製鉄所や金属精錬工場からの副生物として産出される水砕スラグが用いられている。この場合、現場密度を増加させるために一般的に、ブルドーザ、タイヤムローラなどの重機を用いて水砕スラグの上部(表層部)の締め固め作業が行われている。   Granulated slag produced as a by-product from steelworks and metal smelting plants is used for embankment, reclamation, backfilling, and covering of ground and roadbeds. In this case, in order to increase the density at the site, generally, the upper portion (surface layer portion) of the granulated slag is compacted using a heavy machine such as a bulldozer or a tire roller.

しかし、水砕スラグはその粒度曲線が滑らかでない単粒度であることより、重機で締め固めしても、水砕スラグ粒子が側方に移動するため締め固め性が悪くCBR値等で表される支持力も出にくいという欠点がある。また、重機で締め固めた直後の水砕スラグ層の表層部はその充填密度が低く、車両が通行すると轍が発生したり、人が通行すれば足跡が残る。また、手指で押すと容易にへこむ等表層部の緻密度が悪いため平坦性が確保されにくいという問題を有している。   However, since granulated slag is a single particle size whose particle size curve is not smooth, even if it is compacted with heavy machinery, the granulated slag particles move to the side, so the compaction property is poor and is expressed by CBR value etc. There is a drawback that it is difficult to support. In addition, the surface layer portion of the granulated slag layer immediately after being compacted with heavy machinery has a low filling density, so that when the vehicle passes, wrinkles are generated, or footprints remain when people pass. In addition, there is a problem that flatness is difficult to be secured because the density of the surface layer portion such as the depression is easily depressed when pressed with a finger.

水砕スラグとして水硬性を有し、経時とともに硬化する性質がある高炉水砕スラグが多用されているが、高炉水砕スラグを用いた場合には、該スラグ層の表面から内部方向約15 cm 程度の表層部が空気と接触することによって炭酸化して水和反応が阻害される。このため経時変化を起こさず水砕スラグ層が固結しないと言う問題もある。
特開2003−12363号公報
Blast-furnace granulated slag, which has hydraulic properties and hardens with time, is often used as granulated slag, but when blast-furnace granulated slag is used, it is approximately 15 cm inward from the surface of the slag layer. When the surface layer part of the layer comes into contact with air, it is carbonated to inhibit the hydration reaction. Therefore, there is also a problem that the granulated slag layer does not solidify without causing a change with time.
JP 2003-12363 A

本発明は、上述したような従来技術の問題を解消し、水砕スラグ層の締め固め性を向上させて、支持力の高い地盤をつくるための優れた工法を提供することをその課題としてなされたものである。   It is an object of the present invention to provide an excellent method for solving the above-described problems of the prior art, improving the compaction property of the granulated slag layer, and creating a ground having a high supporting force. It is a thing.

前掲の課題を解決するためになされた本発明の要旨とする構成は以下の通りである。   The structure which makes the summary of this invention made | formed in order to solve the subject mentioned above is as follows.

すなわち、第一発明は、水砕スラグからなる層の上部に土砂を敷設して層となし、この重合層の上方より押圧することを特徴とする水砕スラグ層の締め固め性改良工法である。   That is, the first invention is a method for improving the compaction property of a granulated slag layer, characterized in that earth and sand are laid on the upper part of the layer made of granulated slag to form a layer and pressed from above the polymerized layer. .

また、第二発明は、前記第一発明において、水砕スラグ層と土砂からなる層とによって構成される重合層が複数層敷設されるものである水砕スラグ層の締め固め性改良工法である。   The second invention is a method for improving compaction of a granulated slag layer in which a plurality of polymer layers composed of a granulated slag layer and a layer made of earth and sand are laid in the first invention. .

そして、第三発明は、前記第一発明又は第二発明において、水砕スラグが高炉水砕スラグである水砕スラグ層の締め固め性改良工法である。   The third invention is a method for improving compaction of a granulated slag layer, wherein the granulated slag is a blast furnace granulated slag in the first invention or the second invention.

さらに、第四発明は、前記第一発明乃至第三発明のいずれかにおいて、土砂がまさ土である水砕スラグ層の締め固め性改良工法である。   Furthermore, a fourth invention is a method for improving compaction of a granulated slag layer in which the earth and sand is masa in any of the first to third inventions.

本発明によれば、簡便な工法で水砕スラグ層の締め固め性を改善できるため容易に支持力の高い地盤を得ることができる。また本発明では製鉄所や金属精錬工場から多量に副生する水砕スラグを利用するため、施工コストを下げることができるとともに資源の有効活用の面からも有用な効果を発揮するものである。   According to the present invention, since the compaction property of the granulated slag layer can be improved by a simple construction method, a ground having a high supporting force can be easily obtained. Moreover, in this invention, since the granulated slag byproduced in large quantities from a steelworks and a metal smelting factory is utilized, a construction cost can be lowered | hung and a useful effect is exhibited also from the surface of effective utilization of resources.

本発明者らは、前述の従来技術の問題点を解決し、水砕スラグを使用した盛土、地盤等の締め固め性を向上させる手段としてまさ土等の土砂を併用することを検討してきた結果、水砕スラグの上面に滑らかな粒度分布を有し、かつ、水砕スラグに対して充填密度が高いまさ土等の土砂の薄層で覆土することが有効であることを見出し本発明に至った。   The present inventors have solved the above-mentioned problems of the prior art, and have studied the use of earth and sand such as masa soil as a means for improving the compaction properties of embankments and grounds using granulated slag. It has been found that it is effective to cover the ground granulated slag with a thin layer of earth and sand such as muddy soil having a smooth particle size distribution on the upper surface of the granulated slag and having a high packing density. It was.

以下に、本発明の実施の形態を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図2は、盛土又は覆土施工時の地盤の模式的断面を示すもので、図1において、基礎地盤1に盛土する場合、先ず、基礎地盤1の上面に水砕スラグを敷き均して一定の層厚さの水砕スラグ層2を形成する。次いで、この水砕スラグ層2の上部にまさ土を敷き均して一定層厚さのまさ土層3を形成する。つまり、まさ土層3と水砕スラグ層2とを上下に重ね合わせた重合層Aを形成する。その後、転圧機械等を用いて重合層Aの表層部を転圧し、矢印Fで示されるように該重合層Aの上方より層の全域を押圧する。
このようにして押圧作業を行うことにより、まさ土3の充填密度が高くなり、その締め固め性が改善され、その結果、地盤の支持力向上に繋がるのである。
FIG. 1 and FIG. 2 show a schematic cross section of the ground during embankment or covering work. In FIG. 1, when embanking on the foundation ground 1, first, granulated slag is spread on the upper surface of the foundation ground 1. The granulated slag layer 2 having a constant layer thickness is formed. Next, a clay soil is spread on the upper part of the granulated slag layer 2 to form a clay soil layer 3 having a constant layer thickness. That is, the superposition | polymerization layer A which piled up the masa soil layer 3 and the granulated slag layer 2 up and down is formed. Thereafter, the surface layer portion of the polymerization layer A is rolled using a rolling machine or the like, and the entire region of the layer is pressed from above the polymerization layer A as indicated by an arrow F.
By performing the pressing operation in this way, the filling density of the clay 3 is increased, and the compaction property is improved. As a result, the supporting force of the ground is improved.

図2は、前記図1で示した重合層Aの上部に2層目の重合層A´を形成した場合の模式的断面を示すもので、図1で重合層Aの押圧作業が完了した後、該重合Aの上部に一定層厚さの水砕スラグ層2´を形成し、更に水砕スラグ層2´の上部に一定層厚さのまさ土層3´を形成する。このようにして水砕スラグ層とまさ土層から成る重合層A、A´を形成する。その後,重合層A´の表層部をその上方より矢印Fで示される方向に転圧機械等を用いて転圧することにより、2層目の重合層A´のみならず1層目の重合層Aにも押圧力が作用する。このようにして重合層A、A´は全体として締め固め性が改善されることによって高い支持力を有する地盤となる。   FIG. 2 shows a schematic cross section when the second polymer layer A ′ is formed on the polymer layer A shown in FIG. 1, and after the pressing operation of the polymer layer A is completed in FIG. A granulated slag layer 2 ′ having a constant layer thickness is formed on the upper part of the polymerization A, and a rust soil layer 3 ′ having a constant layer thickness is further formed on the upper part of the granulated slag layer 2 ′. In this way, the polymerization layers A and A ′ composed of the granulated slag layer and the mass soil layer are formed. Thereafter, the surface layer portion of the polymer layer A ′ is rolled in the direction indicated by the arrow F from above by using a rolling machine or the like, not only the second polymer layer A ′ but also the first polymer layer A. The pressing force also acts. In this way, the polymerization layers A and A ′ become a ground having a high supporting force by improving the compaction property as a whole.

上記実施形態の説明からもわかるように、本発明に係る工法においては骨材として用いられる水砕スラグの締め固め性を補うためにまさ土が重要な役割を担っている。   As can be seen from the description of the above-described embodiment, masa soil plays an important role in the construction method according to the present invention in order to supplement the compaction property of the granulated slag used as the aggregate.

一方、骨材である水砕スラグは、各種金属の精錬過程で生成する高温度の溶融スラグに加圧水をかけて急速に冷却することによって粒状化した砂状の物質で、製鉄所をはじめ各種金属の精錬工場において発生する副生物である。水砕スラグとしては高炉水砕スラグ、製鋼水砕スラグ、合金鉄水砕スラグ、銅精錬水砕スラグなど種々のものがあり、そのいずれの水砕スラグでも使用することができるが、特に本発明において好ましいものとして、高炉水砕スラグが推奨される。   On the other hand, granulated slag, which is aggregate, is a sand-like substance granulated by applying high-pressure water to high-temperature molten slag generated during the refining process of various metals and rapidly cooling it. It is a by-product generated in the smelting factory. As the granulated slag, there are various types such as blast furnace granulated slag, steelmaking granulated slag, alloyed iron granulated slag, copper refined granulated slag, and any of the granulated slag can be used. As preferred, blast furnace granulated slag is recommended.

この高炉水砕スラグは、最大径が10mm以下の粒度構成を有しており、CaO、SiO2、Al2O3等の鉱物成分を豊富に含んでおり強度も比較的高く、透水性、保水性、水硬性に優れている。   This granulated blast furnace slag has a maximum particle size of 10mm or less, contains abundant mineral components such as CaO, SiO2, Al2O3, and has relatively high strength, water permeability, water retention, hydraulic properties. Is excellent.

本発明において水砕スラグに高炉水砕スラグを用いた場合には、この高炉水砕スラグ層の上部にまさ土層が形成されるため、高炉水砕スラグ層の表層部は空気との接触を遮断される。したがって、高炉水砕スラグ層はその表層部が炭酸化して水和反応が阻害されることなく、層内全域にわたって水和反応が進行して硬化し、水砕スラグ層自身の支持力を強化するという有利な特性を備えるようになる。   In the present invention, when blast furnace granulated slag is used as the granulated slag, a mass layer is formed on the upper part of the blast furnace granulated slag layer, so that the surface portion of the blast furnace granulated slag layer is in contact with air. Blocked. Accordingly, the ground granulated blast furnace slag layer is not carbonated and the hydration reaction is not hindered, but the hydration reaction proceeds and hardens throughout the entire layer, thereby strengthening the support capacity of the granulated slag layer itself. It comes to have the advantageous characteristics of.

次に、実施の形態について、図1及び図2で説明したものは水砕スラグ層とまさ土層からなる重合層が1層及び2層の例を示したが、これら重合層は1層又は2層に限定されるものではなく、地盤、路盤等の盛土面、埋め立て面等の受圧荷重が大きくなる場合には、重合層が3層以上の多層構造が採用されることは当然である。   Next, the embodiment described in FIG. 1 and FIG. 2 shows an example in which the polymerized layer composed of the granulated slag layer and the masa soil layer has one layer and two layers. It is not limited to two layers, and when the pressure receiving load on the embankment surface such as the ground and the roadbed and the landfill surface becomes large, it is natural that a multilayer structure having three or more polymerization layers is adopted.

本発明の優れた効果を明確にするため、以下に実施例について説明する。   In order to clarify the excellent effects of the present invention, examples will be described below.

(実施例1)
室内試験において、本発明に係る工法の基礎的な効果を確認した。
φ15×12.5 cm のCBRモールド内の下層部に高炉水砕スラグを敷き均して水砕スラグ層を形成し、その上層部に粒度10mm以下のまさ土を敷き均してまさ土層を形成した。まさ土層と水砕スラグ層の厚さの組み合わせを表1に示す。水砕スラグ層とまさ土層の厚さを変えたM1からM5の5種類の試験体をJIS A1210のE - c 法によって締め固め、JIS A1211の設計CBR試験によってCBR 値を測定した。CBR 値は1試験体番号につき3体の測定結果の平均値をとったものである。その結果を表2及び図3に示す。図3は、各試験体のCBR値をまさ土層厚さとの対比で示したグラフである。
Example 1
In the laboratory test, the basic effect of the construction method according to the present invention was confirmed.
A granulated slag layer was formed by laying and leveling granulated blast furnace slag in the lower layer in a φ15 × 12.5 cm CBR mold. . Table 1 shows the combinations of the thicknesses of the Masa soil layer and the granulated slag layer. Five types of specimens M1 to M5 with different thicknesses of granulated slag layer and masa soil layer were compacted by the E-c method of JIS A1210, and the CBR value was measured by the design CBR test of JIS A1211. The CBR value is the average of the measurement results of 3 specimens per specimen number. The results are shown in Table 2 and FIG. FIG. 3 is a graph showing the CBR value of each specimen in comparison with the soil layer thickness.

Figure 2007040095
Figure 2007040095

Figure 2007040095
Figure 2007040095

表2及び図3より気中養生及び水中養生いずれの養生条件でもまさ土層と水砕スラグ層を重合した重合層を形成した場合には、まさ土層の厚さに比例してCBR値が上昇していることがわかる。
(実施例2)
次に、現場施工試験により本発明工法の実際の効果を確認した。
From Table 2 and Fig. 3, when a polymerized layer is formed by polymerizing the masamite layer and the granulated slag layer under both the curing conditions in the air and underwater, the CBR value is proportional to the thickness of the masamite layer. You can see that it is rising.
(Example 2)
Next, the actual effect of the construction method of the present invention was confirmed by an on-site construction test.

表3に示すように、試験工区(場所)として平坦な40m2(10m×4m)の地盤を4箇所選定(A〜D工区)し、バックホーを用いて高炉水砕スラグを一層1mの厚さで敷き均して層形成した。この上(表面)にまさ土を0cm(A工区)、5cm(B工区)、10cm(C工区)及び15cm(D工区)の厚さに敷き固めて被覆した路床地盤を施工、形成した。まさ土の敷き固めはマカダムローラー(12t)を用いた転圧作業を6回行なった。 As shown in Table 3, 4 ground 40m 2 (10m x 4m) grounds were selected as test zones (locations) (A to D zones), and blast furnace granulated slag was 1m thick using a backhoe. And layered to form a layer. On this (surface), a subgrade ground was formed by covering and covering masa soil with a thickness of 0 cm (A section), 5 cm (B section), 10 cm (C section) and 15 cm (D section). The clay was spread and compacted using a macadam roller (12 t) 6 times.

Figure 2007040095
Figure 2007040095

この施工試験に基づく試験体のCBR試験結果を図4及び図5に示す。  The CBR test result of the test body based on this construction test is shown in FIGS.

図4は施工直後に測定した各工区の路床地盤表面のCBR値をA工区の値を1として比(各工区のCBR値/A工区CBR値)で表したもので、また図5は材令を変化させた場合すなわち施工直後、施工後3ヶ月及び施工後6ヶ月に各工区のまさ土層を掘削して水砕スラグ層の、同様に各工区のCBR値をA工区の施工直後の値を1として比(各工区のCBR値/A工区の施工直後のCBR値)で表したものである。   FIG. 4 shows the CBR value of the roadbed ground surface of each work section measured immediately after construction, expressed as a ratio (CBR value of each work section / A work section CBR value) with the value of the A work section being 1, and FIG. When the decree is changed, that is, immediately after the construction, 3 months after the construction and 6 months after the construction, excavate the soil layer in each work area, and the granulated slag layer, the CBR value of each work area in the same way The value is represented by a ratio (CBR value of each work section / CBR value immediately after construction of the A work section).

図4から、まさ土層を水砕スラグ層の上に被覆、重合させた路床地盤の場合(B、C及びD工区)はまさ土層を被覆しない水砕スラグ単層(A工区)に比較してCBR値が増大していることが分る。   From Fig.4, in the case of subgrade ground (B, C and D section) where the masa soil layer is coated and polymerized on the granulated slag layer, the granulated slag single layer (A section) that does not cover the masa soil layer. It can be seen that the CBR value is increased in comparison.

また5図の結果から、水砕スラグ単層(A工区)の場合は材令が増えてもそのCBR値に変化は見られないが、まさ土層を重合させた場合(B、C及びD工区)は水砕スラグ層表面のCBR値がまさ土層の何れの厚みにおいても材令が増えるにつれて増加する傾向がはっきり認められる。これは前述のように被覆したまさ土層によって水砕スラグ層の表層部が空気との接触が遮断されるため、水和反応が阻害されること無く、十分に進行して硬化し、水砕スラグ層の支持力が強化されるためである。   From the results of Fig. 5, in the case of granulated slag single layer (A zone), even if the material age increases, the CBR value does not change, but when the soil layer is polymerized (B, C and D) It is clearly recognized that the CBR value on the surface of the granulated slag layer increases as the age increases in any thickness of the soil layer. This is because the surface layer portion of the granulated slag layer is blocked from contact with air by the magma soil layer coated as described above, so that the hydration reaction is not hindered and cured sufficiently, This is because the supporting force of the slag layer is strengthened.

このまさ土層の厚さについては、上記実施例の結果からもその厚さを増加すれば締め固め性すなわち地盤の支持力は向上するが、一方でまさ土の使用量の増加によりコストも上昇することになるため、その両面を勘案すれば、3〜20cmの厚さで用いることが好ましく、7〜15cmの厚さが特に好ましいものである。   As for the thickness of the masa layer, if the thickness is increased from the results of the above example, the compactness, that is, the supporting force of the ground will be improved. On the other hand, the cost increases due to the increase in the amount of masa soil used. Therefore, considering both surfaces, it is preferable to use a thickness of 3 to 20 cm, and a thickness of 7 to 15 cm is particularly preferable.

なお、本発明の実施形態並びに実施例においては、土砂の例として特に好ましいまさ土を用いた場合について説明したが、これに限定されるものではなく、他の土砂を適用した場合も本発明の前記目的を達成できるものである。   In the embodiments and examples of the present invention, the case of using a particularly preferable mass as an example of earth and sand has been described. However, the present invention is not limited to this, and the case of applying other earth and sand is also not limited thereto. The object can be achieved.

本発明に係る改良工法の実施形態を示す地盤の模式的断面図。The typical sectional view of the ground which shows the embodiment of the improved construction method concerning the present invention. 本発明に係る改良工法の他の実施形態を示す地盤の模式的断面図。The typical sectional view of the ground which shows other embodiments of the improved construction method concerning the present invention. 本発明の実施例1における各種試験体のCBR値を示すグラフ。The graph which shows the CBR value of the various test body in Example 1 of this invention. 本発明の実施例2における各工区の施工直後における路床地盤表面のCBR値(相対値)を示すグラフ。The graph which shows the CBR value (relative value) of the roadbed ground surface immediately after construction of each work area in Example 2 of this invention. 本発明の実施例2におけるまさ土層を掘削した各工区の水砕スラグ層表面のCBR値(相対値)を示すグラフ。The graph which shows the CBR value (relative value) of the granulated slag layer surface of each work area which excavated the masa layer in Example 2 of this invention.

符号の説明Explanation of symbols

1 : 基礎地盤
2、2´:水砕スラグ層
3、3´:まさ土層
A、A´:重合層
F ; 押圧力

1: Basic ground
2, 2 ': Granulated slag layer
3, 3 ': Masa soil layer
A, A´: Polymerization layer
F: Pressing force

Claims (4)

水砕スラグからなる層の上部に土砂を敷設して層となし、この重合層の上方より押圧することを特徴とする水砕スラグ層の締め固め性改良工法。 A method for improving the compaction property of a granulated slag layer, characterized in that earth and sand are laid on the upper part of the layer composed of granulated slag to form a layer and pressed from above the polymerized layer. 前記水砕スラグ層と土砂からなる層とによって構成される重合層が複数層敷設されるものである請求項1に記載の水砕スラグ層の締め固め性改良工法。 The compaction improvement method of the granulated slag layer according to claim 1, wherein a plurality of polymer layers composed of the granulated slag layer and a layer made of earth and sand are laid. 前記水砕スラグが高炉水砕スラグである請求項1又は請求項2に記載の水砕スラグ層の締め固め性改良工法。 The method for improving compaction of a granulated slag layer according to claim 1 or 2, wherein the granulated slag is blast furnace granulated slag. 前記土砂がまさ土である請求項1乃至請求項3のいずれかに記載の水砕スラグ層の締め固め性改良工法。

4. The method for improving compaction of a granulated slag layer according to any one of claims 1 to 3, wherein the earth and sand is a mass.

JP2006176855A 2005-06-28 2006-06-27 Method for improving compaction property of water-crushed slag layer Pending JP2007040095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176855A JP2007040095A (en) 2005-06-28 2006-06-27 Method for improving compaction property of water-crushed slag layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005188733 2005-06-28
JP2006176855A JP2007040095A (en) 2005-06-28 2006-06-27 Method for improving compaction property of water-crushed slag layer

Publications (1)

Publication Number Publication Date
JP2007040095A true JP2007040095A (en) 2007-02-15

Family

ID=37798333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176855A Pending JP2007040095A (en) 2005-06-28 2006-06-27 Method for improving compaction property of water-crushed slag layer

Country Status (1)

Country Link
JP (1) JP2007040095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117544A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Filling material for sand compaction pile, construction method of sand compaction pile and sand compaction pile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055304A (en) * 1991-05-16 1993-01-14 Nippon Solid Co Ltd Sank-covering work
JPH10219606A (en) * 1997-02-07 1998-08-18 Toshihide Ishihara Soil structure of ground and the like and its formation method
JPH11131415A (en) * 1997-10-29 1999-05-18 Chugai Shoko Kk Manufacture of natural soil pavement body
JPH11181751A (en) * 1997-12-17 1999-07-06 Taihei Kogyo Co Ltd Method for reinforcing soft ground using slag
JP2001207404A (en) * 2000-01-24 2001-08-03 Showa Kogyo Kk Permeable pavement structure of road
JP2006291448A (en) * 2005-04-05 2006-10-26 Kanbe Ichi Weak sediment improving construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055304A (en) * 1991-05-16 1993-01-14 Nippon Solid Co Ltd Sank-covering work
JPH10219606A (en) * 1997-02-07 1998-08-18 Toshihide Ishihara Soil structure of ground and the like and its formation method
JPH11131415A (en) * 1997-10-29 1999-05-18 Chugai Shoko Kk Manufacture of natural soil pavement body
JPH11181751A (en) * 1997-12-17 1999-07-06 Taihei Kogyo Co Ltd Method for reinforcing soft ground using slag
JP2001207404A (en) * 2000-01-24 2001-08-03 Showa Kogyo Kk Permeable pavement structure of road
JP2006291448A (en) * 2005-04-05 2006-10-26 Kanbe Ichi Weak sediment improving construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117544A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Filling material for sand compaction pile, construction method of sand compaction pile and sand compaction pile

Similar Documents

Publication Publication Date Title
CN106320123B (en) Construction of Soft Soil Subgrade method
Michalowski et al. Deformation patterns of reinforced foundation sand at failure
Terashi et al. Ground improvement-state of the art
EP2018454B1 (en) Ground engineering method
CN108914912A (en) A kind of Foundation Treatment engineering method of column-hammer forced tamping displacement
CN110439082B (en) Backfill structure suitable for vibration isolation of underground pipeline and construction method
KR20150033967A (en) Embedding method of waste by step solum utilizing stony mountain or a steep slope
JP2007040095A (en) Method for improving compaction property of water-crushed slag layer
CN101597897B (en) Secondary processing method of collapsibility foundation in loess region and composite foundation structure
JP2013119578A (en) Soil reformed body and execution method thereof
Wu et al. Centrifugal model testing for deformations in high-filling foundation of loess in a gully
JP6287914B2 (en) Sand compaction pile material, sand compaction pile, and method for creating sand compaction pile
JP2006348466A (en) Improved ground concurrently using different types of sand compaction piles (scp)
RU89121U1 (en) DEVELOPMENT OF ROAD CLOTHES
CN108589758A (en) A kind of foundation structure and construction method of acid-resistance infiltration
CN105088916B (en) Road surface pipeline monitor Node Protection structure
Li et al. Strength and load-bearing behaviors of cement-industrial by-products solidified crust layer over soft subsoil
CN107268668A (en) A kind of construction method of infant industry waste residue basement process
CN113882211A (en) Environment-friendly water-preserving type pavement structure and construction method
JP2014001602A (en) Sand compaction pile and construction method for the same
CN208578002U (en) Composite structure of banketing is changed in a kind of control heightening and thickening dike relative settlement
CN208251134U (en) A kind of foundation structure of acid-resistance infiltration
KR100444133B1 (en) Materials for filling the back of abreast wall using copper slag and abreast wall structure using the same
JP2017031677A (en) Gravity-type breakwater
CN104727294B (en) High-water-level foundation dynamic compaction construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090521

A521 Written amendment

Effective date: 20090521

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20110225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110712

Free format text: JAPANESE INTERMEDIATE CODE: A02