JP2006348466A - Improved ground concurrently using different types of sand compaction piles (scp) - Google Patents

Improved ground concurrently using different types of sand compaction piles (scp) Download PDF

Info

Publication number
JP2006348466A
JP2006348466A JP2005171972A JP2005171972A JP2006348466A JP 2006348466 A JP2006348466 A JP 2006348466A JP 2005171972 A JP2005171972 A JP 2005171972A JP 2005171972 A JP2005171972 A JP 2005171972A JP 2006348466 A JP2006348466 A JP 2006348466A
Authority
JP
Japan
Prior art keywords
pile
ground
scp
improved ground
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005171972A
Other languages
Japanese (ja)
Inventor
Haruhiko Shinozaki
晴彦 篠崎
Masao Nakagawa
雅夫 中川
Eiji Kiso
英滋 木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005171972A priority Critical patent/JP2006348466A/en
Publication of JP2006348466A publication Critical patent/JP2006348466A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low-replacement improved ground using steel slag. <P>SOLUTION: In a ground improving structure using the steel slag, a pile 1 made of an unhardenable material such as natural sand, and a steel slag pile 3 are concurrently used in a juxtaposed manner. In the improved ground concurrently using different types of SCP (sand compaction piles), an upper layer section 7 of the improved ground 6 is the improved ground 6 using the piles 1 and 3, and a lower layer section 8 thereof is the improved ground 6 using the pile 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サンドコンパクションパイル工法(以下、SCP工法ともいう)による改良地盤に関し、特に、SCP工法で鉄鋼スラグを用いた鉄鋼スラグ杭と、SCP工法の砂杭との異種のSCP杭を併用した改良地盤に関する。   The present invention relates to an improved ground by a sand compaction pile method (hereinafter also referred to as an SCP method), and in particular, steel slag piles using steel slag by the SCP method and different types of SCP piles of the sand pile of the SCP method are used in combination. Regarding improved ground.

従来、地盤改良工法として、(1)図7に示すような砂杭1を軟弱な粘土地盤2に打設するサンドコンパクションパイル工法(以下、SCP工法ともいう)が知られている。   Conventionally, as a ground improvement construction method, (1) a sand compaction pile construction method (hereinafter also referred to as an SCP construction method) in which a sand pile 1 as shown in FIG. 7 is placed on a soft clay ground 2 is known.

前記のSCP工法は、砂を用いて、締め固めた強固な大径の砂杭を改良すべき地盤中に強制的に打設して、緩い砂地盤の場合、締め固めによる液状化防止、軟弱な粘土地盤では強制的な置き換え排除によって強度増強あるいは圧密沈下防止を目的とした地盤改良工法である。   The above-mentioned SCP method uses sand to forcibly place a solid large-diameter sand pile into the ground to be improved. In the case of loose sand ground, liquefaction prevention due to compaction is weak. This is a ground improvement method for the purpose of strengthening strength or preventing consolidation settlement by forcibly replacing the clay ground.

特に粘土地盤を対象としたSCP工法には、高置換改良(改良率≧60〜70%程度)と、低置換改良(改良率≦30%)があり、中でも低置換SCP工法は、高置換SCP工法に比較して、杭本数が少なく経済的であることから近年港湾工事を中心として多用されつつある。   In particular, the SCP method for clay ground has high replacement improvement (improvement rate ≧ 60 to 70%) and low replacement improvement (improvement rate ≦ 30%). Among them, the low replacement SCP method is the high replacement SCP method. Compared to the construction method, the number of piles is small and economical.

一方、SCP工法に用いられる砂杭は、従来良質な天然砂が用いられてきたが、近年港湾工事を中心として多数箇所に利用され、砂によるSCP杭においては、天然資源の保護の観点より鉄鋼スラグ等のリサイクル材料の有効活用が推進されている。   On the other hand, sand piles used in the SCP method have been used for high quality natural sand. However, sand piles have been used in many places mainly in port construction in recent years. Effective utilization of recycled materials such as slag is promoted.

例えば、粘土地盤に高置換SCP工法を適用した場合には、(1)SCP杭による強制的な部分置換によるSCP杭と粘土地盤とからなる複合地盤としての改良効果を期待するもので、SCP杭に要求される性能は強度上の点であり、砂杭に代えて鉄鋼スラグ杭を使用することも可能である。   For example, when the high replacement SCP method is applied to clay ground, (1) The improvement effect as a composite ground consisting of SCP pile and clay ground by forced partial replacement with SCP pile is expected. The performance required for this is a point on strength, and it is possible to use steel slag piles instead of sand piles.

他方、粘土地盤に低置換SCP工法を適用した場合には、前記の(1)SCP杭による強制的な部分置換によるSCP杭と粘土地盤とからなる複合地盤としての改良効果の他に、(2)SCP杭のドレーン効果による軟弱粘土地盤の圧密による強度増加の効果を図る点がある。このような低置換SCP工法の砂杭に、砂杭と同じ長さの鉄鋼スラグ杭を築造した場合には、鉄鋼スラグ、例えば製鋼スラグの潜在水硬性に伴う硬化と著しい透水性低下により、前記(2)の作用効果が阻害されるため、低置換改良のSCP工法へ鉄鋼スラグ杭の適用性が困難などの利用上の制約があるという問題がある。また、鉄鋼スラグ杭を用いた低置換改良では、製鋼スラグの硬化に伴う製鋼スラグ杭への応力集中が生じると共に透水性の低下によりドレーン材として機能できなくなるため、軟弱粘土地盤の改良効果は期待できないことも知られている(例えば、非特許文献1参照)。   On the other hand, when the low replacement SCP method is applied to the clay ground, in addition to (1) the improvement effect as a composite ground composed of the SCP pile and the clay ground by the forced partial replacement by the SCP pile, (2 ) There is a point which aims at the effect of the strength increase by consolidation of the soft clay ground by the drain effect of the SCP pile. When a steel slag pile of the same length as the sand pile is constructed in the sand pile of such a low replacement SCP method, the steel slag, for example, steelmaking slag is hardened due to the latent hydraulic property and the water permeability is significantly reduced. Since the effect of (2) is hindered, there is a problem that there is a limitation in use such as difficulty in applicability of the steel slag pile to the SCP method with improved low replacement. In addition, with low displacement improvement using steel slag piles, stress concentration on steelmaking slag piles due to hardening of steelmaking slag occurs and it becomes impossible to function as a drain material due to reduced water permeability. It is also known that this is not possible (see Non-Patent Document 1, for example).

また、粘土地盤において、低置換SCP工法における砂杭に代えて、図6に示すように、製鋼スラグ杭3のみの低置換改良とにした場合には、製鋼スラグ杭3の著しい硬化と、透水性の低下により軟弱な粘土地盤2の圧密促進機能の低下を引き起こすため、製鋼スラグ杭3単体のみを用いた低置換改良工法は困難である。また、このようにした場合、(2)製鋼スラグ杭3への水平力の集中による地盤改良部の転倒破壊モードへの移行に伴う耐力低下と水平変位の増大を伴うという問題も生じる(例えば、非特許文献2参照)。
(財)沿岸開発技術センター発行、港湾工事用製鋼スラグ利用手引書P19〜P20、2000.3 北詰直樹 他、着定型杭状深層混合処理地盤の破壊挙動P1〜P28、港湾技術研究所報告、1998.6
Moreover, in the clay ground, instead of the sand pile in the low substitution SCP method, as shown in FIG. 6, when the low substitution improvement of only the steelmaking slag pile 3 is made, the steelmaking slag pile 3 is significantly hardened and permeable. The low replacement improvement method using only the steel-making slag pile 3 is difficult because it causes a decrease in the consolidation promoting function of the soft clay ground 2 due to the decrease in the properties. Moreover, when doing in this way, the problem also arises that (2) a decrease in yield strength and an increase in horizontal displacement accompanying the transition to the overturning failure mode of the ground improvement part due to the concentration of the horizontal force on the steel slag pile 3 (for example, Non-patent document 2).
Issuance of Coastal Development Technology Center, Steelmaking Slag Use Handbook for Port Construction P19-P20, 2000.3 Naoki Kitazume et al., Destruction behavior P1-P28 of fixed-type pile-shaped deep-mixed ground, Report from the Port Engineering Laboratory, 1998.

前記のように、製鋼スラグ杭3は、高置換SCP工法に使用できても、低置換SCP工法には使用できないという問題があった。   As described above, even though the steelmaking slag pile 3 can be used for the high replacement SCP method, there is a problem that it cannot be used for the low replacement SCP method.

本発明は、前記の地盤改良における低置換SCP工法において、前記の課題を有利に解決することができる異種のSCP杭を併用した改良地盤を提供することを目的とする。   It is an object of the present invention to provide an improved ground using different types of SCP piles that can advantageously solve the above-mentioned problems in the low replacement SCP method in the ground improvement.

前記の課題を有利に解決するために、本発明の異種のSCP杭を併用した改良地盤では、鉄鋼スラグを用いたSCP杭と天然砂などを用いたSCP杭の2種のSCP杭を併用した改良地盤において、鉄鋼スラグを用いたSCP杭の長さを天然砂などを用いたSCP杭の長さよりも短くしたことを特徴とする。これにより、改良地盤の上層部に鉄鋼スラグ杭と非硬化性材料製杭とを形成すると共に、改良地盤の下層部を圧密効果のある天然砂等の非硬化性材料製杭のみとしている。   In order to advantageously solve the above-described problems, the improved ground using the different types of SCP piles of the present invention uses two types of SCP piles, an SCP pile using steel slag and an SCP pile using natural sand. In the improved ground, the length of the SCP pile using steel slag is shorter than the length of the SCP pile using natural sand or the like. As a result, steel slag piles and non-hardening material piles are formed on the upper part of the improved ground, and the lower part of the improved ground is made of only non-hardening material piles such as natural sand having a consolidation effect.

本発明によると次のような効果がある。
(1)天然砂等の非硬化性材料製杭の部分がドレーン材の作用を発揮するため、地盤の圧密効果がある。
(2)改良地盤の上層部は、下層部よりも高置換改良となるため水平力による転倒破壊に対する抵抗力が向上する。
(3)地盤改良された上層部は、下層部よりも高置換改良となるために、圧密沈下層は下層の一部となり、沈下量が小さくなると共に、改良地盤全体の圧密沈下を期待する従来のSCP杭工法に比べて、沈下期間が短くなるため、施工期間を短くすることができる。
(4)鉄鋼スラグ杭のみによる低置換工法に比べて、最小安全率を与える円弧すべり線が拡大(大深度化)することにより、改良地盤により支持力の増大を図ることができる。
(5) 改良地盤全体を高置換改良地盤とする場合に比べて、施工が容易で経済的である。
The present invention has the following effects.
(1) Since the portion of the pile made of non-hardening material such as natural sand exhibits the action of the drain material, there is a consolidation effect of the ground.
(2) Since the upper layer portion of the improved ground has a higher displacement improvement than the lower layer portion, the resistance to overturning damage due to horizontal force is improved.
(3) Since the improved upper layer is a higher displacement improvement than the lower layer, the consolidated subsidence becomes a part of the lower layer, and the amount of subsidence is reduced, and the consolidation of the entire improved ground is expected Compared with the SCP pile method, the settlement period is shortened, so the construction period can be shortened.
(4) Compared with the low replacement method using only steel slag piles, the bearing force can be increased by the improved ground by expanding (increasing depth) the arc slip line that gives the minimum safety factor.
(5) Compared to the case where the entire improved ground is a high replacement improved ground, the construction is easy and economical.

次に、本発明を図示の実施形態に基づいて詳細に説明する。     Next, the present invention will be described in detail based on the illustrated embodiment.

図1〜図3は、本発明の一実施形態を示すものであって、海底粘土地盤2にSCP工法による天然砂等の非硬化性材料4が打設されて、長尺の非硬化性材料製杭5が、地盤改良区域の前後方向および左右方向に間隔をおいて多数(所要数)形成され、また、前後方向または左右方向あるいは斜め方向に隣り合う前記非硬化性材料製杭5の間に、SCP工法による鉄鋼スラグを用いた短尺の鉄鋼スラグ杭3が形成されている。すなわち、多数の長尺の非硬化性材料製杭5による非硬化性材料製杭群とこれらの間に形成された多数の短尺の製鋼スラグ杭3による鉄鋼スラグ杭群とが、護岸構造物に沿うように混在に形成されている。   1 to 3 show an embodiment of the present invention, in which a non-hardening material 4 such as natural sand by an SCP method is placed on a submarine clay ground 2 to form a long non-hardening material. A large number (required number) of piles 5 are formed at intervals in the front-rear direction and the left-right direction of the ground improvement area. Moreover, the short steel slag pile 3 using the steel slag by the SCP method is formed. That is, the non-hardening material pile group by many long non-hardening material piles 5 and the steel slag pile group by many short steel-making slag piles 3 formed between these become a revetment structure. It is formed in a mixed manner along.

図示のように、粘土地盤2に長尺の非硬化性材料製杭5と短尺の鉄鋼スラグ杭3とを並列して併用した改良地盤6とされ、鉄鋼スラグ杭3の打設寸法は、図示の形態では、天然砂等の非硬化性材料製杭5の打設寸法の1/2程度とされているが、設計により適宜設定することができる。   As shown in the figure, it is an improved ground 6 in which a long non-hardening material pile 5 and a short steel slag pile 3 are used in parallel on a clay ground 2, and the placement dimensions of the steel slag pile 3 are shown in the figure. In this form, it is about ½ of the placement dimension of the pile 5 made of non-hardening material such as natural sand, but it can be appropriately set depending on the design.

前記のように施工された改良地盤6では、非硬化性材料製杭5と鉄鋼スラグ杭3とが混在する上層部7は、下層改良地盤に比べて高置換改良地盤となり、また、下層部8は、天然砂等の非硬化性材料製杭54のみの低置換改良地盤となる。   In the improved ground 6 constructed as described above, the upper layer portion 7 in which the non-hardening material pile 5 and the steel slag pile 3 are mixed becomes a high replacement improved ground compared to the lower layer improved ground, and the lower layer portion 8 Becomes a low replacement improved ground of only the pile 54 made of non-hardening material such as natural sand.

前記のように、SCP工法による短い鉄鋼スラグ杭3とSCP工法による長い非硬化性材料製杭5を併用する本発明の改良地盤6では、次のような利点がある。
(1)ドレーン材としての機能は、鉄鋼スラグ杭3と並列して打設される天然砂などの非硬化性材料製杭5で発揮させることができるため、鉄鋼スラグSCP杭3の硬化による圧密硬化の低下は生じない。
(2)改良された上層部7では、下層部よりも高置換改良となるため、水平力による転倒破壊に対する抵抗力が向上する。
(3)上層部7は二種類の杭を混合した改良層で高強度であるので特に圧密改良の必要がなくなるため、圧密期間の短縮と沈下量を抑制することができる。
(4)鉄鋼スラグ杭のみによる低置換工法に比べて、最小安全率を与える円弧すべり線の拡大(大深度化)することにより、改良地盤により支持力の増大を図ることができる。
(5)改良地盤全体を高置換改良地盤とする場合に比べて施工が容易で経済的である。
As described above, the improved ground 6 of the present invention using the short steel slag pile 3 by the SCP method and the long non-hardening material pile 5 by the SCP method has the following advantages.
(1) Since the function as a drain material can be exhibited by a pile 5 made of non-hardening material such as natural sand placed in parallel with the steel slag pile 3, consolidation by hardening the steel slag SCP pile 3 There is no reduction in cure.
(2) In the improved upper layer portion 7, since the replacement is improved higher than the lower layer portion, the resistance to overturning damage due to horizontal force is improved.
(3) Since the upper layer portion 7 is an improved layer in which two types of piles are mixed and has high strength, it is not particularly necessary to improve consolidation, so that the consolidation period can be shortened and the amount of settlement can be suppressed.
(4) Compared with the low replacement method using only steel slag piles, the bearing capacity can be increased by the improved ground by expanding (increasing depth) the arc slip line that gives the minimum safety factor.
(5) The construction is easier and more economical than the case where the entire improved ground is a high replacement improved ground.

前記の鉄鋼スラグとは、高炉スラグ(高炉除冷スラグ、高炉水砕スラグ)、製鋼スラグを意味する。
前記の製鋼スラグとは、高炉で製造された硬くて脆い銑鉄から、不要な成分を除去し、靭性・加工性のある鋼にする製鋼過程で生じる石灰石を主体とした石状の副産物であり、転炉スラグ、溶銑予備処理スラグ、電気炉スラグ等を用いることができる。
The steel slag mentioned above means blast furnace slag (blast furnace decooling slag, blast furnace granulated slag) and steelmaking slag.
The steelmaking slag is a stone-like by-product mainly composed of limestone that is produced in the steelmaking process by removing unnecessary components from hard and brittle pig iron produced in a blast furnace and making it tough and workable steel, Converter slag, hot metal pretreatment slag, electric furnace slag, and the like can be used.

また、前記の非硬化性材料としては、天然砂以外に、銅水砕スラグ、フェロニッケルスラグ、石炭灰造粒物あるいはコンクリートがら等を使用することもできる。   Moreover, as said non-hardening material, copper granulated slag, ferronickel slag, coal ash granulated material, concrete waste etc. can also be used besides natural sand.

なお、図示の形態では、改良地盤上に、捨て石マウンド9が形成され、その捨て石マウンド9の上に順次直列にケーソン10が沈設・着底され、適宜ケーソン内に廃棄物等の充填材が充填されて、コンクリート床版11および上部工12が設けられ、ケーソン10背面に裏込め土13が充填されて、ケーソン護岸構造物14が形成されている。   In the illustrated embodiment, a discarded stone mound 9 is formed on the improved ground, and a caisson 10 is sequentially deposited and settled in series on the discarded stone mound 9, and a filler such as waste is appropriately filled in the caisson. Then, the concrete floor slab 11 and the superstructure 12 are provided, and the backfill soil 13 is filled in the back of the caisson 10 to form a caisson revetment structure 14.

上記のように本発明では、下記のような作用効果を奏することができる。
(1)打設長さの長い砂等の非硬化性材料製杭の部分でドレーン材の作用を分担するため、地盤の圧密効果がある。
(2)改良地盤の上層部は、下層部よりも高置換改良となるため水平力による転倒破壊に対する抵抗力が向上する。
(3)地盤改良された上層部は、下層部よりも高置換改良となるために、圧密沈下層は下層部の一部となり、沈下量が小さくなると共に、改良地盤全体の圧密沈下を期待する従来のSCP杭工法に比べて、沈下期間が例えば半減するなど格段に短くなるため、施工期間を短くすることができる。
(4)鉄鋼スラグ杭のみによる低置換改良地盤6の円弧すべり線r(図5参照)に比べて、最小安全率を与える円弧すべり線Rが拡大(大深度化)することにより、鉄鋼スラグ杭のみの低置換改良地盤に比べて、より支持力の増大を図ることができる。
(5) 改良地盤全体を高置換改良地盤とする場合に比べて、施工が容易で経済的である。
As described above, the present invention can provide the following effects.
(1) Since the action of the drain material is shared by the non-hardening material pile such as sand having a long casting length, there is a consolidation effect of the ground.
(2) Since the upper layer portion of the improved ground has a higher displacement improvement than the lower layer portion, the resistance to overturning damage due to horizontal force is improved.
(3) Since the improved upper layer is a higher displacement improvement than the lower layer, the consolidated subsidence becomes a part of the lower layer, and the amount of subsidence is reduced, and the consolidation of the entire improved ground is expected. Compared with the conventional SCP pile construction method, the construction period can be shortened because the settlement period is remarkably shortened, for example, by half.
(4) Compared with the arc slip line r (see Fig. 5) of the low displacement improved ground 6 using only steel slag piles, the arc slip line R that gives the minimum safety factor is expanded (deepening), so that the steel slag piles Compared with only the low replacement improved ground, the supporting force can be further increased.
(5) Compared to the case where the entire improved ground is a high replacement improved ground, the construction is easy and economical.

ここで、図4を参照して、非硬化性材料製杭5の配置形態と改良率について説明すると、(a)のように非硬化性材料製杭5中心を結ぶ形状が正方形配置とし、杭直径を2m(断面積As=3.14m)として、x=2.1mの間隔で非硬化性材料製杭5を打設すると改良率as=0.71となる。同様に(b)の正三角形とすると改良率as=0.82となり、同様に(c)のく形配置では、x1=4.2,x2=2.1とした場合では改良率0.36となる。前記の非硬化性材料製杭5の直径および配置形態並びに配置間隔を適宜設定することにより、改良率を30%前後〜80%前後に適宜設定することができる。 Here, with reference to FIG. 4, the arrangement | positioning form and improvement rate of the non-hardening material pile 5 are demonstrated, and the shape which connects the non-hardening material pile 5 center like FIG. When the diameter is 2 m (cross-sectional area As = 3.14 m 2 ) and the non-hardening material pile 5 is driven at an interval of x = 2.1 m, the improvement rate is = 0.71. Similarly, when the regular triangle of (b) is used, the improvement rate as = 0.82. Similarly, in the rectangular arrangement of (c), the improvement rate is 0.36 when x1 = 4.2 and x2 = 2.1. It becomes. By appropriately setting the diameter and arrangement of the non-curable material pile 5 and the arrangement interval, the improvement rate can be appropriately set to about 30% to about 80%.

図4(d)左に示すように、SCP工法による多数の非硬化性材料製杭5を間隔をおいて粘土地盤等の地盤2に先行施工した後、同じ杭築造装置により、同図右に示すように、非硬化性材料製杭5間にSCP工法による鉄鋼スラグ杭3を築造すると、同じ杭築造装置を使用して効率良く施工することができる。また、多数の鉄鋼スラグ杭3を先行築造した後、鉄鋼スラグ杭3間に非硬化性材料製杭5を築造するようにしてもよい。非硬化性材料製杭5の長さに対する製鋼スラグ杭3の長さは、設計により適宜設定される。   As shown on the left of FIG. 4 (d), after a number of non-hardening material piles 5 made by the SCP method are pre-constructed on the ground 2 such as clay ground at intervals, the same pile construction device is used on the right. As shown, when the steel slag pile 3 is constructed between the non-hardening material piles 5 by the SCP method, it can be efficiently constructed using the same pile construction apparatus. Moreover, after constructing many steel slag piles 3 in advance, non-hardening material piles 5 may be constructed between the steel slag piles 3. The length of the steel-making slag pile 3 relative to the length of the non-hardening material pile 5 is appropriately set depending on the design.

SCP工法による地盤改良範囲および改良率等の使用の決定は、一般的に図7に示すように常時の荷重作用条件下での円弧すべりを仮定した安定解析により行われる。
すなわち、円弧すべりを生じさせる起動力は、円弧の中心点O点まわりのモーメントとして、M=ΣF・Lで与えられる。ここで時計まわりのすべりを考える場合、Fは円弧の中心点を通る鉛直線の右側にある地盤・構造物の重量、Lは円弧の中心点を通る鉛直線から地盤・構造物の重心までの距離である。一方、この円弧すべりに対する抵抗力としてのモーメントMは、前記鉛直線の左側部分のO点まわりのモーメントM=ΣF・Lと、円弧すべり面の地盤の抵抗によるO点まわりのモーメントM=Στ・Rの和となる。ここで、τは地盤のせん断強度であり、Rは円弧の半径である。
円弧すべりに対する地盤破壊に対する安全の確保は、起動モーメントMに対する抵抗モーメントMの比で示される安全率Fsが所望の値であることを確認することにより行われる。
The use of the ground improvement range and improvement rate by the SCP method is generally determined by a stability analysis assuming an arc slip under normal load action conditions as shown in FIG.
In other words, impetus causing arc slip, as a moment around the center of the arc point O point is given by M R = ΣF R · L R . When considering the slip clockwise Here, the center of gravity of F R is the weight of the soil-structure to the right of the vertical line passing through the arc center point, L R is soil-structure from a vertical line that passes through the arc center point It is the distance to. On the other hand, the moment M as a resistance to the arc slip, and the moment M L = ΣF L · L L around point O in the left part of the vertical line, moments about point O by the resistance of the ground of the arc sliding surface M S = Sum of Στ · R. Here, τ is the shear strength of the ground, and R is the radius of the arc.
Ensuring safety for ground breaking against arcuate slip safety factor Fs represented by the ratio of the resistance moment M for starting moment M R is performed by confirming that the desired value.

上記地盤のせん断抵抗力は、SCP工法により改良された地盤については、SCP杭による改良率、SCP杭のせん断強度、原地盤のせん断強度、原地盤の圧密による強度上昇等を考慮した下記式(1)により表される複合地盤としてのせん断強度を用いる。
τ=(1−a)(c+c/p・(σ・z+μ・σ−P)・U)+
(γz・μ・σ)a・tanφ・cosθ (1)

ここで、前記(1)の式中、
τ :改良地盤のせん断抵抗
:置換率
:粘性土の粘着力
σ:載荷による増加応力
μ=1/[1+(n−1)a
μ=n/[1+(n−1)a
n:応力分担比
U: 圧密度
c/p :粘着率増加係数
γ :砂の水中単位体積重量
重量 [=(1−a)γ’+aγ’
μ,μ:応力集中(低減)係数
:先行圧密応力
z:土被り深さ
θ:すべり面が水平面となす角度
For the ground improved by the SCP method, the shear resistance of the above ground is the following formula considering the improvement rate by the SCP pile, the shear strength of the SCP pile, the shear strength of the original ground, and the strength increase due to the consolidation of the original ground ( The shear strength as the composite ground represented by 1) is used.
τ = (1−a S ) (c 0 + c / p · (σ c · z + μ c · σ z −P C ) · U) +
s z · μ s · σ z ) a s · tan φ s · cos 2 θ (1)

Here, in the formula (1),
τ: Shear resistance of improved ground a s : Substitution rate c 0 : Adhesive force of cohesive soil σ z : Increased stress due to loading μ c = 1 / [1+ (n−1) a s ]
μ s = n / [1+ (n−1) a s ]
n: Stress sharing ratio U: Pressure density c / p: Adhesion rate increase coefficient γ s : Unit volume weight of sand in water Weight [= (1-a S ) γ ′ c + a S γ ′ s ]
μ s , μ c : Stress concentration (reduction) coefficient P c : Preliminary consolidation stress z: Depth of earth covering θ: Angle formed by sliding surface and horizontal plane

上記(1)の式から、上式右辺の c/p・(σ・z+μ・σ−P)・Uの項が高置換工法では無視されるが、粘土の圧密強度上昇を期待する低置換工法では、この項により改良地盤のせん断抵抗が大きく左右される。すなわち、非硬化性材料杭1の低置換では、圧密度Uが高くなるに従って、圧密による増加粘着力(上式右辺のc/p・(σ・z+μ・σ−P)・Uの項)が高くなり、せん断抵抗が高くなる。
なお、(γz・μ・σ)a・tanφ・cosθの項は、砂杭のせん断強度を意味している。
From the above formula (1), the c / p · (σ c · z + μ c · σ z −P C ) · U term on the right side of the above equation is ignored in the high substitution method, but an increase in the consolidation strength of the clay is expected. In the low replacement method, the shear resistance of the improved ground is greatly influenced by this term. That is, in the low-substituted non-curable material pile 1, in accordance with the consolidation degree U increases, increased adhesive force due to compaction (upper right-hand side of equation c / p · (σ c · z + μ c · σ z -P C) · U ) And the shear resistance is increased.
The term (γ s z · μ s · σ z ) a s · tan φ s · cos 2 θ means the shear strength of the sand pile.

前記実施形態では、護岸構造物の下部地盤に適用した場合を説明したが、本発明を実施する場合、粘土地盤以外の軟弱地盤等に適用してもよい。   In the above embodiment, the case where the present invention is applied to the lower ground of the revetment structure has been described. However, when the present invention is implemented, the present invention may be applied to soft ground other than the clay ground.

本発明の鉄鋼スラグを用いた地盤改良工法を適用した改良地盤およびその改良地盤上にケーソン護岸を築造した状態を示す縦断正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal front view which shows the state which built the improved ground which applied the ground improvement construction method using the steel slag of this invention, and the caisson revetment on the improved ground. 図1の上層部の横断平面図である。It is a cross-sectional plan view of the upper layer part of FIG. 図1の下層部の横断平面図である。It is a cross-sectional plan view of the lower layer part of FIG. (a)(b)(c)は、それぞれ砂杭の配置形態を示す平面図、(d)は砂杭を形成した後、鉄鋼スラグ杭を形成する施工形態の一例を示す平面図である。(A) (b) (c) is a top view which shows the arrangement | positioning form of a sand pile, respectively, (d) is a top view which shows an example of the construction form which forms a steel slag pile after forming a sand pile. 本発明を実施した改良地盤の場合に円弧すべり線が拡大することを説明するための説明図である。It is explanatory drawing for demonstrating that an arc slip line expands in the case of the improved ground which implemented this invention. 鉄鋼スラグ杭のみの改良地盤およびその改良地盤上にケーソン護岸を築造した状態を示す縦断正面図である。It is a vertical front view which shows the state which built the improvement ground only of the steel slag pile, and the caisson revetment on the improvement ground. 地盤の破壊とSCP工法による地盤支持力改良機構を説明するための説明図である。It is explanatory drawing for demonstrating the destruction of a ground, and the ground support force improvement mechanism by a SCP method.

符号の説明Explanation of symbols

1 砂杭などの非硬化性材料製杭
2 粘土地盤
3 鉄鋼スラグ杭
6 改良地盤
7 上部層
8 下部層
9 捨て石マウンド
10 ケーソン
11 コンクリート床版
12 上部工
13 裏込め土
14 ケーソン護岸構造物
1 Pile made of non-hardening material such as sand pile 2 Clay ground 3 Steel slag pile 6 Improved ground 7 Upper layer 8 Lower layer 9 Discarded stone mound 10 Caisson 11 Concrete slab 12 Upper work 13 Backfill soil 14 Caisson revetment structure

Claims (1)

鉄鋼スラグを用いたSCP杭と天然砂などを用いたSCP杭とからなるSCP改良地盤において、鉄鋼スラグを用いたSCP杭の長さが天然砂などを用いたSCP杭の長さより短いことを特徴とする異種のSCP杭を併用した改良地盤。   In SCP improved ground consisting of SCP pile using steel slag and SCP pile using natural sand etc., the length of SCP pile using steel slag is shorter than the length of SCP pile using natural sand etc. Improved ground using different types of SCP piles.
JP2005171972A 2005-06-13 2005-06-13 Improved ground concurrently using different types of sand compaction piles (scp) Withdrawn JP2006348466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171972A JP2006348466A (en) 2005-06-13 2005-06-13 Improved ground concurrently using different types of sand compaction piles (scp)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171972A JP2006348466A (en) 2005-06-13 2005-06-13 Improved ground concurrently using different types of sand compaction piles (scp)

Publications (1)

Publication Number Publication Date
JP2006348466A true JP2006348466A (en) 2006-12-28

Family

ID=37644596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171972A Withdrawn JP2006348466A (en) 2005-06-13 2005-06-13 Improved ground concurrently using different types of sand compaction piles (scp)

Country Status (1)

Country Link
JP (1) JP2006348466A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102801A (en) * 2007-10-19 2009-05-14 Jfe Steel Corp Material for sand compaction pile with low sand replacement ratio
CN102080364A (en) * 2010-12-17 2011-06-01 浙江海桐高新工程技术有限公司 Pile bearing caisson seawall and construction method thereof
JP2011106148A (en) * 2009-11-17 2011-06-02 Fudo Tetra Corp Soil improving method and soil improving structure
CN106567379A (en) * 2016-11-04 2017-04-19 中航勘察设计研究院有限公司 Method for reinforcing manual dewatering, bedding course, low-energy replacement dynamic compaction shallow foundation
CN117536192A (en) * 2024-01-05 2024-02-09 中交第一航务工程局有限公司 Construction method for treating coastal backfill super-thick gravelly soil foundation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102801A (en) * 2007-10-19 2009-05-14 Jfe Steel Corp Material for sand compaction pile with low sand replacement ratio
JP2011106148A (en) * 2009-11-17 2011-06-02 Fudo Tetra Corp Soil improving method and soil improving structure
CN102080364A (en) * 2010-12-17 2011-06-01 浙江海桐高新工程技术有限公司 Pile bearing caisson seawall and construction method thereof
CN106567379A (en) * 2016-11-04 2017-04-19 中航勘察设计研究院有限公司 Method for reinforcing manual dewatering, bedding course, low-energy replacement dynamic compaction shallow foundation
CN106567379B (en) * 2016-11-04 2019-04-12 中航勘察设计研究院有限公司 Method for reinforcing manual dewatering, bedding course, low-energy replacement dynamic compaction shallow foundation
CN117536192A (en) * 2024-01-05 2024-02-09 中交第一航务工程局有限公司 Construction method for treating coastal backfill super-thick gravelly soil foundation

Similar Documents

Publication Publication Date Title
JP5998713B2 (en) Filling method
CN102418339B (en) Novel energy-saving anti-floating pile
JP2006348466A (en) Improved ground concurrently using different types of sand compaction piles (scp)
CN107654239A (en) A kind of tunnel bottom is excavated and inverted arch construction method
JP2007154528A (en) Reinforced and back-filled ground, and method of developing the same
JP6327215B2 (en) Gravity breakwater
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
CN105178338A (en) Soil slope protection structure and protection method thereof
CN106149624A (en) A kind of gravity type quay being applicable to roadbed of alluvial silt and construction method thereof
Wong et al. Support of road embankments on soft ground using controlled modulus columns
Brown Zen and the art of drilled shaft construction: The pursuit of quality
Spagnoli et al. Trench cutter case histories and their possible application for offshore piles as relieve drilling
JP2015059362A (en) Earthquake strengthening structure for pier
JP4057873B2 (en) Foundation pile structure on support ground and construction method of foundation pile
JP2014001602A (en) Sand compaction pile and construction method for the same
JP2004225453A (en) Construction method of civil engineering structure
JP2018184823A (en) Ground material and ground improvement method
JP7525828B2 (en) Quay or revetment structure
JP6296017B2 (en) Gravity breakwater
JP3363219B2 (en) Sabo dam structure
JP4080305B2 (en) Construction method of foundation using slag having expansibility and solidification
JP4118694B2 (en) Ground improvement method
JP4606928B2 (en) Scour prevention method
JP4945159B2 (en) Processing method for air-mixed lightweight soil
JP2006057242A (en) Construction method for earth retaining wall

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902