JP2007039927A - Pile foundation structure - Google Patents
Pile foundation structure Download PDFInfo
- Publication number
- JP2007039927A JP2007039927A JP2005223632A JP2005223632A JP2007039927A JP 2007039927 A JP2007039927 A JP 2007039927A JP 2005223632 A JP2005223632 A JP 2005223632A JP 2005223632 A JP2005223632 A JP 2005223632A JP 2007039927 A JP2007039927 A JP 2007039927A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- ground
- liquefied
- pile foundation
- foundation structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Foundations (AREA)
Abstract
Description
本発明は、主として高架橋の杭基礎に適用される杭基礎構造に関する。 The present invention relates to a pile foundation structure mainly applied to a viaduct pile foundation.
地震時に起こる液状化は、地震によって地盤に水平振動が作用したときに該地盤のせん断変形によって砂粒子間の間隙水圧が上昇し、その間隙水圧上昇に伴って有効応力がゼロになり砂粒子間で応力伝達ができなくなって流動性が高くなり、やがては鉛直支持力を失って建物の倒壊を招く現象であり、言うまでもなく、緩い飽和砂質地盤で起こりやすい(以下、液状化が発生しやすい地盤を液状化地盤と言う)。 The liquefaction that occurs during an earthquake is that when horizontal vibrations act on the ground due to the earthquake, the pore water pressure between the sand particles rises due to the shear deformation of the ground, and the effective stress becomes zero with the increase in the pore water pressure, and between the sand particles. This is a phenomenon in which stress cannot be transmitted and fluidity increases, eventually leading to the collapse of the building by losing the vertical support force. Needless to say, it tends to occur in loose saturated sandy ground (hereinafter, liquefaction is likely to occur) The ground is called liquefied ground).
かかる液状化による被害の甚大さは、我が国では古くは新潟地震から強く認識されるようになり、従来からさまざまな液状化対策が研究開発されてきた。 In Japan, the devastating damage caused by such liquefaction has long been recognized by the Niigata Earthquake, and various liquefaction countermeasures have been researched and developed.
典型的な液状化対策としては、既設構造物が立設されている場合、その下方に拡がる液状化地盤の広い範囲に薬剤注入等で地盤強度を向上させ、地震時のせん断変形を抑制する工法である。 As a typical countermeasure against liquefaction, when an existing structure is erected, the ground strength is improved by injecting chemicals into a wide area of the liquefied ground that extends downward, and shear deformation during an earthquake is suppressed. It is.
ここで、杭基礎の場合には、地震時において杭周辺の地盤が液状化すると、水平地盤反力が杭に作用しなくなる。換言すれば、液状化によって地盤抵抗が低下するため、既設構造物からの地震時水平力のうち、その大部分を杭が負担することとなり、杭頭に大きな曲げモーメントが生じて曲げ破壊を起こし、ひいては杭全体が既設構造物の荷重を支持できない状況に陥る。 Here, in the case of a pile foundation, when the ground around the pile is liquefied during an earthquake, the horizontal ground reaction force does not act on the pile. In other words, because ground resistance decreases due to liquefaction, the pile bears most of the horizontal force during earthquakes from existing structures, causing a large bending moment at the pile head and causing bending failure. As a result, the entire pile cannot support the load of the existing structure.
しかしながら、液状化地盤の広い範囲に薬剤注入等で地盤強度を向上させる従来の液状化対策は、施工能率が悪いだけではなく、例えば高架橋を支持する杭基礎の場合、高架橋の橋軸に沿った長い区間にわたる地盤改良が必要となり、工期や工費といった面で現実性に欠けるという問題を生じていた。 However, conventional liquefaction measures that improve the ground strength by injecting chemicals etc. over a wide range of liquefied ground not only have poor construction efficiency, but also, for example, pile foundations that support viaducts, along the bridge axis of the viaduct It was necessary to improve the ground over a long section, and there was a problem of lack of reality in terms of construction period and construction cost.
本発明は、上述した事情を考慮してなされたもので、液状化地盤を広範囲に地盤改良せずとも、構造物の倒壊を確実に防止することが可能な杭基礎構造を提供することを目的とする。 The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a pile foundation structure capable of reliably preventing the collapse of a structure without improving the ground of the liquefied ground extensively. And
上記目的を達成するため、本発明に係る杭基礎構造は請求項1に記載したように、地盤内に埋設された杭で上部構造物を支持するように構成されてなる杭基礎構造であって、前記地盤のうち、前記杭をその周面で当接するようにして取り囲む被覆領域のみを地盤改良してなるものである。
In order to achieve the above object, a pile foundation structure according to the present invention is a pile foundation structure configured to support an upper structure with a pile embedded in the ground as described in
また、本発明に係る杭基礎構造は請求項2に記載したように、地盤内に埋設された複数本からなる杭で上部構造物を支持するように構成されてなる杭基礎構造であって、前記地盤を、前記各杭をそれらの周面で当接するようにして取り囲む複数の被覆領域と該被覆領域の外側に拡がる中間領域とに区分するとともに、前記複数の被覆領域のみを地盤改良してなるものである。
Moreover, the pile foundation structure which concerns on this invention is a pile foundation structure comprised so that an upper structure may be supported by the pile which consists of two or more embedded in the ground, as described in
また、本発明に係る杭基礎構造は、前記杭の径をD、前記被覆領域の厚みをtとしたとき、被覆率t/Dを4以上としたものである。 Moreover, the pile foundation structure which concerns on this invention sets the coverage t / D to 4 or more, when the diameter of the said pile is D and the thickness of the said coating | coated area | region is set to t.
また、本発明に係る杭基礎構造は、前記杭の径をD、前記被覆領域の厚みをtとしたとき、被覆率t/Dを2以上、又は1以上としたものである。
Moreover, the pile foundation structure which concerns on this invention makes the coverage t /
本出願人は、液状化防止対策として、広範囲を地盤改良するという非効率的な従来工法を見直すべく、さまざまな視点で研究開発を行った結果、液状化地盤を広範囲に地盤改良せずとも、杭の周囲だけを地盤改良すれば、所定の液状化防止を図ることができるというあらたな知見を見いだした。 As a result of research and development from various viewpoints in order to review the inefficient conventional method of improving the ground over a wide area as a measure to prevent liquefaction, the present applicant did not improve the ground of the liquefied ground over a wide area. We have found a new finding that the ground can be improved only by improving the ground around the pile.
すなわち、本発明に係る杭基礎構造においては、杭をその周面で当接するようにして取り囲む被覆領域のみを地盤改良するものであり、かかる部分的な地盤改良であっても液状化防止に対して十分な効果を得ることができることを実証試験で確認した。 That is, in the pile foundation structure according to the present invention, only the covering region surrounding the pile so as to abut on its peripheral surface is improved in the ground, and even with such partial ground improvement, liquefaction prevention is prevented. It was confirmed by a verification test that sufficient effects can be obtained.
被覆領域の厚みをどの程度に設定するかは任意であるが、請求項2に係る発明、すなわち群杭の場合においては、隣り合う一対の杭の被覆領域同士が非接触状態を維持できる厚みを限度とする。
It is arbitrary how much the thickness of the covering region is set, but in the case of the invention according to
一方、被覆領域の厚みの下限値については、どの程度の液状化が予想されるかによって適宜設定すればよいが、杭の径をD、被覆領域の厚みをtとしたとき、被覆率t/Dを4以上としたならば、完全液状化状態となった場合でも、杭の健全性を確保し、ひいては上部構造物の倒壊を未然に防止することができる。 On the other hand, the lower limit value of the thickness of the covering region may be set as appropriate depending on how much liquefaction is expected. When the diameter of the pile is D and the thickness of the covering region is t, the covering rate t / If D is set to 4 or more, the soundness of the pile can be ensured even if it is in a completely liquefied state, and the collapse of the upper structure can be prevented.
また、被覆率t/Dを2以上、又は1以上としたならば、中規模液状化状態の場合には、杭の健全性を十分確保することができる。 Moreover, if the coverage t / D is 2 or more, or 1 or more, the soundness of the pile can be sufficiently ensured in the case of a medium-scale liquefied state.
ここで、本明細書では、間隙水圧比(過剰間隙水圧Δu/初期上載圧σv′)がほぼ0.5〜0.7の状態を中規模液状化、間隙水圧比がほぼ1の状態を完全液状化と呼ぶこととする。 Here, in the present specification, the state where the pore water pressure ratio (excess pore water pressure Δu / initial upper loading pressure σv ′) is about 0.5 to 0.7 is liquefied in the medium scale, and the state where the pore water pressure ratio is almost 1 This is called liquefaction.
被覆領域を形成するための工法の具体例としては、薬液注入工法や深層混合処理工法がある。 Specific examples of the construction method for forming the coating region include a chemical solution injection method and a deep mixing treatment method.
深層混合処理工法は、セメントスラリー、粉末セメント等の固化剤を地盤中に供給して原位置で攪拌混合することにより地盤強度を高める工法であり、混合方式としては、アースオーガ等を用いた機械的攪拌混合と噴射混合とに大別されるが、いずれにしろ深層混合処理工法は多岐にわたっているため、被覆領域を形成しようとする地盤の土質性状等を勘案しつつ、適宜選択すればよい。 The deep mixing treatment method is a method of increasing the strength of the ground by supplying a solidifying agent such as cement slurry and powdered cement into the ground and stirring and mixing in situ. As a mixing method, a machine using an earth auger etc. In any case, the deep-mixing method is wide-ranging and can be selected as appropriate in consideration of the soil properties of the ground where the covered region is to be formed.
以下、本発明に係る杭基礎構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。 Hereinafter, an embodiment of a pile foundation structure according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
(第1実施形態)
図1は、本実施形態に係る杭基礎構造を示した図である。同図でわかるように、本実施形態に係る杭基礎構造1は、上部構造物としての高架橋2の一部を構成するフーチング3と、地盤としての液状化地盤4内に埋設されフーチング3に頭部が接合された杭5とから構成してある。
(First embodiment)
FIG. 1 is a view showing a pile foundation structure according to the present embodiment. As can be seen from the figure, the
ここで、液状化地盤4のうち、杭5をその周面で当接するようにして取り囲む被覆領域6のみを地盤改良してある。
Here, in the
本実施形態に係る杭基礎構造1を構築するには、既存構造物である高架橋2を支持する杭5の周囲に薬液を注入することにより、杭5の被覆領域6のみを地盤改良する。
In order to construct the
薬液については、液状化地盤を地盤改良する際に用いられる公知の薬剤から適宜選択すればよい。 About a chemical | medical solution, what is necessary is just to select suitably from the well-known chemical | medical agent used when improving a liquefied ground.
薬液を注入して被覆領域6のみを地盤改良するにあたっては、杭5の径をD、被覆領域6の厚みをtとしたとき、被覆率t/Dを1以上、望ましくは2以上、さらに望ましくは4以上に設定するのがよい。
In injecting the chemical solution and improving the ground only in the covering
被覆率t/Dの設定にあたっては、液状化地盤4がどの程度液状化しやすいか、あるいは設計地震動の大きさをどの程度に想定するかによるが、完全液状化状態が想定されるのであれば、被覆率t/Dを4以上とするのがよい。
In setting the coverage ratio t / D, depending on how easy the liquefied
一方、中規模液状化状態を想定すれば必要十分である場合には、被覆率t/Dを2以上、又は1以上とすればよい。 On the other hand, if it is necessary and sufficient if a medium-scale liquefied state is assumed, the coverage t / D may be 2 or more, or 1 or more.
ここで、完全液状化状態とは、間隙水圧比がほぼ1の状態を意味し、中規模液状化状態とは、間隙水圧比(過剰間隙水圧Δu/初期上載圧σv′)がほぼ0.5〜0.7の状態を意味する。 Here, the completely liquefied state means a state in which the pore water pressure ratio is substantially 1, and the medium-scale liquefied state means that the pore water pressure ratio (excess pore water pressure Δu / initial initial applied pressure σv ′) is about 0.5. It means a state of ˜0.7.
以上説明したように、本実施形態に係る杭基礎構造1によれば、杭5の被覆領域6のみを地盤改良するだけでも、液状化地盤4が液状化して高架橋2を支持できなくといった不測の事態を未然に防止することが可能となる。
As described above, according to the
また、本実施形態に係る杭基礎構造1によれば、被覆率t/Dを4以上とすることにより、完全液状化状態が想定される場合にも杭5の健全性ひいては高架橋2の倒壊を未然に防止することができるとともに、被覆率t/Dを2以上、又は1以上とすることにより、中規模液状化状態が想定される場合において杭5の健全性ひいては高架橋2の倒壊を未然に防止することができる。
Moreover, according to the
本実施形態では、本発明に係る被覆領域を、薬液注入によって地盤改良するようにしたが、これに代えて、深層混合処理工法によって地盤改良するようにしてもかまわない。 In the present embodiment, the covered region according to the present invention is improved by ground injection, but instead of this, the ground may be improved by a deep mixing treatment method.
(第2実施形態)
次に、第2実施形態について説明する。なお、第1実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described. Note that components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図2は、第2実施形態に係る杭基礎構造を示した図である。同図でわかるように、本実施形態に係る杭基礎構造21は、上部構造物としての高架橋22の一部を構成するフーチング23と、地盤としての液状化地盤4内に埋設されフーチング23に頭部が接合された複数本の杭25とから構成してある。
ここで、液状化地盤4は、各杭25をそれらの周面で当接するようにして取り囲む複数の被覆領域26と、該被覆領域の外側に拡がる中間領域27とに区分するとともに、複数の被覆領域26のみを地盤改良してある。
Here, the
本実施形態に係る杭基礎構造21を構築するには第1実施形態と同様、既存構造物である高架橋22を支持する杭25の周囲に薬液を注入することにより、各杭25の被覆領域26のみを地盤改良する。
In order to construct the
薬液については、液状化地盤を地盤改良する際に用いられる公知の薬剤から適宜選択すればよい。 About a chemical | medical solution, what is necessary is just to select suitably from the well-known chemical | medical agent used when improving a liquefied ground.
薬液を注入して被覆領域26のみを地盤改良するにあたっては、杭25の径をD、被覆領域26の厚みをtとしたとき、被覆率t/Dを1以上、望ましくは2以上、さらに望ましくは4以上に設定するとともに、各被覆領域26が互いに接触しないように被覆率t/Dの上限値を定める。
In injecting the chemical solution to improve the ground only in the
被覆率t/Dの設定にあたっては、液状化地盤4がどの程度液状化しやすいか、あるいは設計地震動の大きさをどの程度に想定するかによるが、完全液状化状態が想定されるのであれば、被覆率t/Dを4以上とするのがよい。
In setting the coverage ratio t / D, depending on how easy the
一方、中規模液状化状態を想定すれば必要十分である場合には、被覆率t/Dを2以上、又は1以上とすればよい。 On the other hand, if it is necessary and sufficient if a medium-scale liquefied state is assumed, the coverage t / D may be 2 or more, or 1 or more.
以上説明したように、本実施形態に係る杭基礎構造21によれば、複数本の杭25の被覆領域26のみをそれぞれ地盤改良するだけでも、液状化地盤4が液状化して高架橋22を支持できなくといった不測の事態を未然に防止することが可能となる。
As described above, according to the
また、本実施形態に係る杭基礎構造21によれば、被覆率t/Dを4以上とすることにより、完全液状化状態が想定される場合にも杭25の健全性ひいては高架橋22の倒壊を未然に防止することができるとともに、被覆率t/Dを2以上、又は1以上とすることにより、中規模液状化状態が想定される場合において杭25の健全性ひいては高架橋22の倒壊を未然に防止することができる。
Moreover, according to the
本実施形態では、本発明に係る被覆領域を、薬液注入によって地盤改良するようにしたが、これに代えて、深層混合処理工法によって地盤改良するようにしてもかまわない。 In the present embodiment, the covered region according to the present invention is improved by ground injection, but instead of this, the ground may be improved by a deep mixing treatment method.
次に、本発明に係る杭基礎構造の作用効果を確認すべく、室内模型試験を行ったので、以下にその概要を説明する。 Next, in order to confirm the effect of the pile foundation structure according to the present invention, an indoor model test was performed, and the outline thereof will be described below.
試験は、鉄道構造物の杭基礎周面近傍のみを薬液注入で地盤改良した場合を想定し、液状化の程度及び改良範囲の大きさをパラメータとして行った。
また、試験は、静的載荷実験と動的実験(振動実験)の両方を行った。
(1)静的載荷実験
(a) 実験概要
図3に示すように,実験は長方形せん断土槽(長さ2600mm、幅1000mm、高さ750mm)を用い、該せん断土槽内に単杭模型を4体配置して行った。地盤の相対密度は,Dr=55%として作成した。模型地盤には珪砂6号を使用し,水中落下法で作成した。
In the test, assuming that the ground was improved by chemical injection only in the vicinity of the pile foundation peripheral surface of the railway structure, the degree of liquefaction and the size of the improved range were used as parameters.
In addition, both static loading experiments and dynamic experiments (vibration experiments) were performed for the test.
(1) Static loading experiment
(a) Outline of the experiment As shown in Fig. 3, the experiment was conducted using a rectangular shear soil tank (length 2600mm, width 1000mm, height 750mm) and four single pile models placed in the shear soil tank. . The relative density of the ground was created with Dr = 55%. Silica sand No. 6 was used for the model ground, and it was created by the underwater dropping method.
入力波は、完全液状化状態までを模擬することを目的として、正弦波(最大加速度100gal)を用いた。
As the input wave, a sine wave (
計測機器については図3に示す通り、模型地盤内に間隙水圧計および加速度計を設置し、単杭模型にはひずみゲージを、土槽リングには加速度計および変位計を、地表面及びフーチング部には変位計をそれぞれ設置した。 As shown in Fig. 3, the measurement equipment is equipped with a pore water pressure meter and an accelerometer in the model ground, a strain gauge for the single pile model, an accelerometer and a displacement meter for the earthen ring, and the ground surface and footing section. Each was equipped with a displacement meter.
単杭模型は、アクリル系剛性樹脂材(ABS)を、杭径D=20mm、杭長750mm、曲げ剛性287000kN/m2 となるように形成し、下端をせん断土槽の底面に固定し、上端をフリーとした。 The single pile model is made of acrylic rigid resin material (ABS) with pile diameter D = 20mm, pile length 750mm, bending stiffness 287000kN / m 2, and the lower end is fixed to the bottom of the shear soil tank. Was made free.
単杭模型は、その周囲をポリマーで固めることで、薬液注入による杭周面近傍の地盤改良を模し、実スケールの杭強度と薬液注入による実強度の関係及び挙動が同様となる強度に設定した(E50=485kN/m2)。 The single pile model is solidified with polymer to imitate the ground improvement near the periphery of the pile by chemical injection, and the strength and relationship between the actual scale pile strength and the actual strength by chemical injection are set to the same strength (E50 = 485 kN / m 2 ).
単杭模型の水平断面図を図4に示す。同図でわかるように、単杭模型は、杭を模したABS樹脂のみ(以下、「無対策」と言う)、ABS樹脂の周囲を杭径Dに相当する厚みのポリマーで固めたもの(以下、「1D改良」と言う)、ABS樹脂の周囲を杭径2Dに相当する厚みのポリマーで固めたもの(以下、「2D改良」と言う)、ABS樹脂の周囲を杭径4Dに相当する厚みのポリマーで固めたもの(以下、「4D改良」と言う)の計4体とした。なお、改良深さ(ポリマーの長さ)は、全てのケースについてABS樹脂で形成した杭の全長とした。
A horizontal sectional view of the single pile model is shown in FIG. As can be seen in the figure, the single pile model is only ABS resin imitating a pile (hereinafter referred to as "no countermeasure"), and the periphery of the ABS resin is solidified with a polymer having a thickness corresponding to the pile diameter D (hereinafter referred to as , Referred to as “1D improvement”), the periphery of the ABS resin solidified with a polymer having a thickness corresponding to the
実験方法は、このような4体の単杭模型をせん断土槽内に配置し、水平荷重10.0kNをせん断土槽の短辺方向に静的に載荷した状態で加振を行った。加振方向は載荷方向と直角とし(せん断土槽の長辺方向)、単杭模型に慣性力が生じない方法とした。 In the experimental method, such four single pile models were placed in a shear soil tank, and a horizontal load of 10.0 kN was applied statically in the short side direction of the shear soil tank. The excitation direction was set to be perpendicular to the loading direction (long side direction of the shear soil tank), and the inertial force was not generated in the single pile model.
(b)実験結果
初期状態(液状化前であり、間隙水圧比≒0)、中規模状態(間隙水圧比≒0.5)及び完全液状化状態(間隙水圧比≒1.0)における曲げモーメント分布を図5乃至図7にそれぞれ示す。
(b) Experimental results Fig. 5 shows the bending moment distribution in the initial state (before liquefaction, pore water pressure ratio ≒ 0), medium-scale state (pore water pressure ratio ≒ 0.5) and complete liquefaction state (pore water pressure ratio ≒ 1.0). To FIG.
これらの図でわかるように、液状化状態に関わらず、改良径に応じて第1不動点が杭頭方向へ移動し、発生最大モーメントにおいても改良径が大きいほど小さくなる傾向があることがわかる。 As can be seen from these figures, regardless of the liquefaction state, it can be seen that the first fixed point moves in the direction of the pile head according to the improved diameter, and the generated maximum moment tends to decrease as the improved diameter increases. .
無対策を基準として各液状化状態毎に改良径別の発生断面力の低下程度を表1に示す。 Table 1 shows the degree of decrease in the generated sectional force for each improved liquefaction state for each liquefaction state on the basis of no measures taken.
同表でわかるように、初期状態では,杭改良径に応じて発生断面力が小さくなっており、中規模液状化状態では、無対策に対する低下程度が「1D改良」「2D改良」で2割、「4D改良」では3割となり、「1D改良」と「2D改良」では低下程度に大差がない。また、完全液状化状態では「4D改良」で2割程度低下しているが、「1D改良」「2D改良」については、無対策と大差なく対策工の効果がない。 As can be seen in the table, in the initial state, the generated cross-sectional force is reduced according to the pile improvement diameter, and in the medium-scale liquefaction state, the degree of decrease compared to no countermeasure is 20% for "1D improvement" and "2D improvement". , “4D improvement” is 30%, and “1D improvement” and “2D improvement” are not much different from each other. Further, in the completely liquefied state, “4D improvement” is reduced by about 20%, but “1D improvement” and “2D improvement” are not much different from no countermeasures, and there is no effect of countermeasure work.
すなわち、完全液状化状態でも対策効果を発揮させるためには、「4D改良」が必要である一方で、中規模液状化状態を対象とした対策を講じる場合には、「1D改良」あるいは「2D改良」程度で十分効果を発揮することがわかった。 That is, “4D improvement” is necessary to exert the countermeasure effect even in the completely liquefied state, while “1D improvement” or “2D” is necessary when taking measures for the medium-scale liquefied state. It was found that the “improvement” level is sufficiently effective.
(2)振動試験
前述した静的実験の実験結果を受け、実施工として常識的な範囲でかつ対策効果を発揮すると思われる「1D改良」で、対象となる杭を群杭として構造物全体系の挙動の把握を試みた。
(a)実験概要
実験に用いた円形大型せん断土槽(φ=1200mm,H=750mm)を図8に示す。同図でわかるように、本実験では、土槽中央に群杭(4 本杭)の杭基礎模型を配置して加振をおこなった。
(2) Vibration test Based on the results of the static experiment described above, the entire structure system is based on the target pile as a group pile in “1D improvement” that is considered to be effective within the scope of common sense as an implementation work. I tried to understand the behavior of the.
(a) Outline of experiment Figure 8 shows the circular large shear tank (φ = 1200mm, H = 750mm) used in the experiment. As can be seen from the figure, in this experiment, a pile foundation model of group piles (four piles) was placed in the center of the soil tank and vibration was applied.
杭基礎模型は、4本の杭に上部工として98Nの重量を杭頭に載せ、杭先端及び杭頭ともに剛結した。また、模型地盤は、相対密度をDr=60%として作成した。なお、その他の模型地盤及び杭基礎模型の製作仕様は、静的載荷試験と同様であるので、ここではその説明を省略する。 In the pile foundation model, 98N weight was placed on the pile head as superstructure on four piles, and both the pile tip and the pile head were rigidly connected. The model ground was prepared with a relative density of Dr = 60%. In addition, since the production specifications of other model grounds and pile foundation models are the same as in the static loading test, the description thereof is omitted here.
入力波は、加振中の各段階で入力波と構造物の共振状態が確認できるよう、図 9に示す0.5〜5.0Hz の広帯域波(ホワイトノイズ)を用いた。 As the input wave, a 0.5 to 5.0 Hz broadband wave (white noise) shown in FIG. 9 was used so that the resonance state of the input wave and the structure could be confirmed at each stage during excitation.
杭基礎模型及び模型地盤の実験ケースを表2に、それらの配置模式図を図10に示す。 Table 2 shows experimental cases of pile foundation models and model ground, and FIG.
同表でわかるように、C−1〜C−3は、地盤全層が液状化層となるよう、模型地盤の地表面まで水を満たしてある。一方、C−4〜C−5は、地表面から一定深さまで非液状化層となるよう、模型地盤の水位を模型地盤表面から30cmの深さにとどめてある。ここで、模型地盤の相対密度は、液状化層、非液状化層とも同一であり、上述したようにDr=60%として作成してある。 As can be seen from the table, C-1 to C-3 are filled with water up to the ground surface of the model ground so that the entire ground layer becomes a liquefied layer. On the other hand, in C-4 to C-5, the water level of the model ground is limited to a depth of 30 cm from the model ground surface so as to become a non-liquefied layer from the ground surface to a certain depth. Here, the relative density of the model ground is the same for both the liquefied layer and the non-liquefied layer, and it is created with Dr = 60% as described above.
なお、液状化層と非液状化層の境界部については、止水性があり剛性の小さい改良体層(5mm〜10mm)を配置し、地盤作成後の水の浸透を防ぐこととした。 In addition, about the boundary part of a liquefied layer and a non-liquefied layer, it decided to arrange | position the improvement body layer (5 mm-10 mm) with water-stopping and small rigidity, and to prevent permeation of the water after ground preparation.
なお、計測機器は図8に示すように、間隙水圧計及び加速度計を模型地盤内に設置するとともに、ひずみゲージを杭基礎模型に取り付け、さらに加速度計および変位計を土槽リングに設置した。また、模型地盤の地表面およびフーチング部には変位計を設置した。 In addition, as shown in FIG. 8, the measuring instrument installed a pore water pressure meter and an accelerometer in the model ground, attached a strain gauge to the pile foundation model, and further installed an accelerometer and a displacement meter on the earthen ring. A displacement meter was installed on the ground surface and footing part of the model ground.
(b)実験結果
i) 杭の加速度応答倍率
本実験では、入力加速度波形に広帯域波(ホワイトノイズ)を用いており、また各ケース、各時刻の最大入力加速度も異なるため、最大応答値そのものからは定量的な考察を行うことが困難である。
(b) Experimental results
i) Pile acceleration response magnification In this experiment, a broadband wave (white noise) is used for the input acceleration waveform, and the maximum input acceleration at each time and time is different. Is difficult to do.
そこで、図11に示すように,初期から過剰間隙水圧上昇中の中規模液状化状態と、完全液状化状態において、入力加速度と杭天端の応答加速度のフーリエ振幅を算出し、さらに区間内の周波数に対して積分することにより、各区間毎の入力エネルギーと構造物の応答エネルギーの比(応答倍率=構造物/入力波)を算定し、この値を応答倍率として検討をおこなった。応答倍率の算定結果を表3に示す。 Therefore, as shown in FIG. 11, in the medium-scale liquefaction state in which the excess pore water pressure is rising from the beginning and in the complete liquefaction state, the Fourier amplitude of the input acceleration and the response acceleration at the top of the pile is calculated, and the frequency within the section is further calculated. For each section, the ratio of the input energy to the response energy of the structure (response magnification = structure / input wave) was calculated, and this value was examined as the response magnification. Table 3 shows the calculation result of the response magnification.
同表でわかる通り、中規模液状化状態においては、加速度応答倍率は、全てのケースにおいてほぼ一定となっており、構造物の固有振動数変化に対し、大きな影響を及ぼしていないことがわかる。 As can be seen from the table, in the medium-scale liquefaction state, the acceleration response magnification is almost constant in all cases and does not significantly affect the natural frequency change of the structure.
それに対し、完全液状化状態においては、各ケース間で応答倍率にバラツキがあるとともに、非液状化層の有無に関わらず、C−2,C−3,C−5の加速度応答倍率は、無対策(C−1,C−4)と比べて、低下していることがわかる。 On the other hand, in the completely liquefied state, the response magnification varies among the cases, and the acceleration response magnifications of C-2, C-3, and C-5 are none regardless of the presence or absence of the non-liquefied layer. It turns out that it has fallen compared with the countermeasure (C-1, C-4).
これは、地盤抵抗がゼロに近くなることにより、構造物―地盤連成系の固有振動数が変化し、その影響を受けたことによるものと推測される。 This is presumably due to the fact that the natural frequency of the structure-ground coupled system changes and is affected by the ground resistance approaching zero.
ii) 全層液状化層の場合の杭挙動(C−1〜C−3)
杭のモーメントは、発生断面力が最大を示している時刻をピックアップして比較をおこなった。なお、単杭の挙動検討結果(静的載荷試験)から改良範囲1Dにおいて中規模液状化状態までは対策効果を発揮する傾向が見られたことから、ここでは中規模液状化状態に着目して検討した。
ii) Pile behavior in the case of all liquefied layers (C-1 to C-3)
The pile moment was compared by picking up the time when the generated cross-sectional force was maximum. From the results of single pile behavior study (static loading test) to the mid-scale liquefaction state in the improved range 1D, there was a tendency to exert countermeasures. investigated.
図12に中規模液状化状態の場合のモーメント分布及び間隙水圧比分布を示す。 FIG. 12 shows the moment distribution and pore water pressure ratio distribution in the medium-scale liquefied state.
同図でわかるように、無対策(C−1)では、杭頭で最大モーメントが発生しているのに対し、杭全長を改良したC−2については、杭中央付近の変曲点及び発生モーメントが、無対策のC−1とほぼ同様であるものの、杭頭においては発生断面力が抑制されており、対策工の効果が十分に発揮されていることがわかる。 As can be seen in the figure, in the case of no countermeasure (C-1), the maximum moment is generated at the pile head, whereas for C-2 with improved pile length, the inflection point and occurrence near the center of the pile Although the moment is almost the same as that of C-1 without countermeasures, it is understood that the generated cross-sectional force is suppressed at the pile head, and the effect of the countermeasure work is sufficiently exhibited.
なお、杭頭−30cm改良のC−3については、改良された杭頭付近において、C−2同様に発生断面力が抑制されているが、杭中央部における発生モーメントが大きくなっていることがわかる。 In addition, about C-3 of the pile head -30cm improvement, in the vicinity of the improved pile head, generated cross-sectional force is suppressed like C-2, but the generated moment in the center part of the pile is large. Recognize.
これにより、浅い範囲(GL−30cm)だけに改良を施すことは、杭の剛性に差を生じさせ、改良体の境界部で発生モーメントが大きくなり、後述する非液状化層を有する場合と類似したモードになったものと考えられる。 By doing this, applying the improvement only to the shallow range (GL-30cm) causes a difference in the stiffness of the pile, and the generated moment increases at the boundary of the improved body, similar to the case of having a non-liquefied layer to be described later. It is considered that the mode has been changed.
iii) 非液状化層を有する場合の杭挙動(C−4〜C−5)
図13に中規模液状化状態におけるモーメント分布図及び間隙水圧比分布図を示す。
iii) Pile behavior with non-liquefied layer (C-4 to C-5)
FIG. 13 shows a moment distribution diagram and a pore water pressure ratio distribution diagram in a medium-scale liquefaction state.
非液状化層を有する場合のモーメント分布は、層境界部に変曲点が生じることが特徴であるが、中規模液状化状態において対策工を施したC−5においては、発生断面力を抑制し、層境界部で明確な変曲点を生じていないことがわかる。 The moment distribution in the case of having a non-liquefied layer is characterized in that an inflection point occurs at the layer boundary, but the generated cross-sectional force is suppressed in C-5 where countermeasures are taken in the medium-scale liquefied state. And it turns out that the clear inflection point is not produced in the layer boundary part.
層境界部における変曲点は、液状化の有無(地盤の剛性比)が影響を及ぼすものと考えられるが、改良を施すことによって、液状化層と非液状化層の剛性の差を小さくすることになり、発生断面力を抑制することにつながったと考えられる。 The inflection point at the layer boundary is thought to be affected by the presence or absence of liquefaction (ground stiffness ratio), but by making improvements, the difference in stiffness between the liquefied layer and the non-liquefied layer is reduced. This is considered to have led to the suppression of the generated cross-sectional force.
以上のことより,非液状化層の地盤強度と構造物の剛性の関係、及び液状化層における改良体と構造物の剛性の関係を合致させた時に変曲点の影響を軽減できると考えられ、地盤強度と改良体強度の関係を勘案して対策工を講じる必要があると言える。 Based on the above, it is considered that the influence of the inflection point can be reduced when the relationship between the ground strength of the non-liquefied layer and the rigidity of the structure and the relationship between the improved body and the structure of the liquefied layer are matched. It can be said that it is necessary to take countermeasures in consideration of the relationship between ground strength and improved body strength.
1,21 杭基礎構造
2,22 高架橋(上部構造物)
3,23 フーチング(杭基礎構造)
4 液状化地盤(地盤)
5,25 杭(杭基礎構造)
6,26 被覆領域
1,21
3,23 Footing (pile foundation structure)
4 Liquefaction ground (ground)
5,25 Pile (Pile foundation structure)
6,26 Covered area
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005223632A JP4575858B2 (en) | 2005-08-02 | 2005-08-02 | Pile foundation structure and construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005223632A JP4575858B2 (en) | 2005-08-02 | 2005-08-02 | Pile foundation structure and construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007039927A true JP2007039927A (en) | 2007-02-15 |
JP4575858B2 JP4575858B2 (en) | 2010-11-04 |
Family
ID=37798171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005223632A Expired - Fee Related JP4575858B2 (en) | 2005-08-02 | 2005-08-02 | Pile foundation structure and construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4575858B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7267890B2 (en) * | 2019-09-26 | 2023-05-02 | ケミカルグラウト株式会社 | Structure foundation reinforcement method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212618A (en) * | 1993-01-13 | 1994-08-02 | Takenaka Komuten Co Ltd | Increasing method of horizontal resistance of pile |
JPH06316941A (en) * | 1993-05-10 | 1994-11-15 | Takenaka Komuten Co Ltd | Direct foundation method |
JP2003321846A (en) * | 2002-05-02 | 2003-11-14 | Tenox Corp | Foundation pile structure in liquefaction ground |
-
2005
- 2005-08-02 JP JP2005223632A patent/JP4575858B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212618A (en) * | 1993-01-13 | 1994-08-02 | Takenaka Komuten Co Ltd | Increasing method of horizontal resistance of pile |
JPH06316941A (en) * | 1993-05-10 | 1994-11-15 | Takenaka Komuten Co Ltd | Direct foundation method |
JP2003321846A (en) * | 2002-05-02 | 2003-11-14 | Tenox Corp | Foundation pile structure in liquefaction ground |
Also Published As
Publication number | Publication date |
---|---|
JP4575858B2 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120034723A (en) | Wind turbine foundation for variable water depth | |
JP2006336294A (en) | Reinforcing method of pile head section | |
CN109736343A (en) | Offshore wind power foundation, its installation method and wind power generating set | |
JP7404391B2 (en) | cladding for foundations | |
Yamashita et al. | Large-scale piled raft with grid-form deep mixing walls on soft ground | |
JP5382900B2 (en) | How to prevent underground structures from floating due to liquefaction | |
CN103898914A (en) | Method for using prefabricated square pile as concrete supporting upright post | |
Zhang et al. | Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water | |
Sahraeian et al. | A few critical aspects to rational design of piled raft foundation for oil storage tanks | |
JP4575858B2 (en) | Pile foundation structure and construction method | |
JP6855665B2 (en) | Pile foundation structure and how to reinforce existing piles | |
JP5077857B1 (en) | Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology | |
CN108532624B (en) | Chemical tank raft foundation reinforcing structure | |
Grajales et al. | Response of short monopiles for offshore wind turbine foundations: virgin and post-cyclic capacity | |
Shin et al. | Design of composite pile foundations for offshore wind turbines | |
JP4678675B2 (en) | Basic structure and construction method | |
JPH09296427A (en) | Structure in water area and construction method thereof | |
Shutova et al. | Analyzing efficiency of two-layer foundations for a power transmission line portal based on a numerical experiment | |
Templeton III et al. | Spud Can Fixity in Clay, First Findings of a 2003 IADC Study | |
JP2012021346A (en) | Friction pile foundation structure | |
Lee et al. | Centrifuge modeling of a self-supported double soldier-piled wall in sandy soil | |
Cocjin et al. | Continuous characterisation of near-surface soil strength | |
Abd-Alameer et al. | The Behavior of Braced Excavation in Silty Clay Soil under El-Centro Seismic | |
JP2005030132A (en) | Underwater foundation structure and underwater foundation construction method | |
Nuzhdin et al. | Strengthening of pile foundation under dynamic loads by high-pressure injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100820 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |