JP6855665B2 - Pile foundation structure and how to reinforce existing piles - Google Patents

Pile foundation structure and how to reinforce existing piles Download PDF

Info

Publication number
JP6855665B2
JP6855665B2 JP2016134626A JP2016134626A JP6855665B2 JP 6855665 B2 JP6855665 B2 JP 6855665B2 JP 2016134626 A JP2016134626 A JP 2016134626A JP 2016134626 A JP2016134626 A JP 2016134626A JP 6855665 B2 JP6855665 B2 JP 6855665B2
Authority
JP
Japan
Prior art keywords
reinforcing body
pile
reinforcing
piles
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016134626A
Other languages
Japanese (ja)
Other versions
JP2018003523A (en
Inventor
和彦 浦野
和彦 浦野
永井 裕之
裕之 永井
勇 三反畑
勇 三反畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2016134626A priority Critical patent/JP6855665B2/en
Publication of JP2018003523A publication Critical patent/JP2018003523A/en
Application granted granted Critical
Publication of JP6855665B2 publication Critical patent/JP6855665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Description

本願発明は、杭基礎の補強に関する技術であり、より具体的には、杭周辺を地盤改良することで杭基礎を補強する技術に関するものである。 The present invention relates to a technique for reinforcing a pile foundation, and more specifically, to a technique for reinforcing a pile foundation by improving the ground around the pile.

橋脚や橋台、擁壁といった土木構造物、あるいは集合住宅やオフィスビルといった建築構造物は、極めて大きな重量であるうえに供用後の沈下が原則として許されない。したがってこのような構造物は、岩盤や締まった砂層など相当の地耐力が期待できる支持層の上に構築される。 Civil engineering structures such as piers, abutments, and retaining walls, or building structures such as apartment buildings and office buildings are extremely heavy and, in principle, are not allowed to sink after operation. Therefore, such a structure is constructed on a support layer such as a bedrock or a compact sand layer, which can be expected to have a considerable bearing capacity.

支持層が比較的浅い位置にある場合は、所定の深度まで掘削して支持層を表出させ、この支持層上に構造物の基礎を直接構築することができる(いわゆる、「直接基礎」)。他方、支持層が比較的深い位置にある場合、支持層を表出させるためには相当量の掘削を要するうえ、さらに大規模な基礎の構築が必要となり、直接基礎は現実的ではない。したがってこの場合、直接基礎ではなく「杭基礎」が採用されるのが一般的である。 If the support layer is in a relatively shallow position, it can be excavated to a predetermined depth to expose the support layer and the foundation of the structure can be built directly on this support layer (so-called "direct foundation"). .. On the other hand, when the support layer is located at a relatively deep position, a considerable amount of excavation is required to expose the support layer, and a larger-scale foundation needs to be constructed, so that the direct foundation is not realistic. Therefore, in this case, a "pile foundation" is generally adopted instead of a direct foundation.

杭基礎は、地中に構築される柱状の杭を基礎とするものであり、1本の太径杭そのものを杭基礎とすることもあるが、通常は複数の杭によって杭基礎が構成される。また杭基礎を構成する杭は、摩擦杭のような特殊な杭を除き、支持地盤に一部貫入されるか、あるいは支持地盤上に載置される。 The pile foundation is based on a columnar pile constructed in the ground, and one large-diameter pile itself may be used as the pile foundation, but usually the pile foundation is composed of a plurality of piles. .. In addition, the piles that make up the pile foundation, except for special piles such as friction piles, are partially penetrated into the supporting ground or placed on the supporting ground.

ここまで説明したとおり、杭基礎は支持地盤が深いケースで採用され、そして杭はその深い支持地盤まで到達している。言い換えれば、支持地盤上には地盤強度が比較的小さい「中間層」があり、しかもその中間層は相当厚く、杭のほとんどがこの中間層の中にあるわけである。 As explained so far, pile foundations are used in cases where the supporting ground is deep, and the piles reach that deep supporting ground. In other words, there is an "intermediate layer" on the supporting ground, which has a relatively low ground strength, and the intermediate layer is considerably thick, and most of the piles are in this intermediate layer.

杭基礎は、いわば地上構造物の荷重を支持地盤に伝達するものであり、したがって杭の設計では軸力に対する検討が重要になる。そして常時の設計では、原則として大きな水平力を杭に与えることはないが、地震時の設計では、当然ながら地震時荷重として相当の水平力が加えられる。長尺の杭(通常は杭頭)に水平力を与えると、杭には曲げモーメントやせん断力(断面力)が生じ、特に中間層が軟弱地盤(泥炭や、有機質粘土、シルト、あるいは未固結の沖積層など)である場合、著しく大きな断面力が発生する傾向にある。 The pile foundation transfers the load of the above-ground structure to the supporting ground, so it is important to consider the axial force in the design of the pile. In principle, a large horizontal force is not applied to the pile in the usual design, but in the design at the time of an earthquake, a considerable horizontal force is naturally applied as a load at the time of an earthquake. When a horizontal force is applied to a long pile (usually the pile head), bending moment and shear force (section force) are generated in the pile, and especially the intermediate layer is soft ground (peat, organic clay, silt, or unconsolidated). In the case of the offshore stacking of Yui), a significantly large cross-sectional force tends to be generated.

ところで、土木工学は経験工学ともいわれるように、これまでも大きな自然災害を経験するたび、より適切な構造物となるよう設計思想が改善されてきた。特に、平成7年に発生した兵庫県南部地震では、高架橋が倒壊するなど地震荷重によって多くの重要構造物が損傷を受けたことから、平成8年に「道路橋示方書・同解説(社団法人日本道路協会)」(以下、「道路橋示方書」)が大幅に見直された。 By the way, as civil engineering is also called empirical engineering, the design concept has been improved so that it becomes a more appropriate structure every time a major natural disaster is experienced. In particular, in the 1995 Hyogoken Nanbu Earthquake, many important structures were damaged by the seismic load such as the collapse of the viaduct. Japan Road Association) ”(hereinafter,“ Road Bridge Specification ”) has been significantly revised.

平成8年の道路橋示方書の改訂では耐震設計法が変更されており、その結果、これまでの設計法では地震時にも耐えると評価されていた構造物が、新たな基準では地震時荷重に耐えられないというケースも生じることとなった。すなわち新たな経験に基づくと、既に供用されている構造物が実は地震時には耐えられない、つまり何らかの補強が必要であると評価されるケースもあるわけである。もちろん杭基礎も例外ではなく、新基準の下では補強を必要としている既設の杭基礎も少なくない。 The 1996 revision of the Road Bridge Specification changed the seismic design method, and as a result, structures that were evaluated to withstand earthquakes under the previous design methods became load during earthquakes under the new standard. In some cases, it was unbearable. In other words, based on new experience, there are cases where it is evaluated that the structures already in service cannot actually withstand an earthquake, that is, some kind of reinforcement is required. Of course, pile foundations are no exception, and there are many existing pile foundations that require reinforcement under the new standards.

従来、既設の杭基礎を補強するに当たっては、新規の杭を増設するいわゆる「増し杭工法」が主流であった。この増し杭工法は、杭基礎を構成する既設杭を直接補強するという思想ではなく、杭の数を増やすことで杭基礎全体を補強するという設計思想であり、具体的には、フーチングといった上部基礎構造を現状よりも拡幅するとともに、その拡幅部分の下に新たな杭を構築するものである。 Conventionally, the so-called "additional pile construction method" in which new piles are added has been the mainstream for reinforcing existing pile foundations. This additional pile construction method is not the idea of directly reinforcing the existing piles that make up the pile foundation, but the design idea of reinforcing the entire pile foundation by increasing the number of piles. Specifically, the upper foundation such as footing. The structure will be wider than it is now, and a new pile will be constructed under the widened part.

上記のとおり、増し杭工法はフーチングの拡幅や杭の増設が必要であり、相当の工期を要する上、多大な工事費が必要となるといった問題が指摘されていた。特に都市高速道路などの基礎となっている場合、補強工事の長期化は社会経済にまで大きな影響を及ぼすこととなる。さらに、増設する杭のためにフーチングを拡幅するわけであるが、用地上の問題がある場合にはフーチングの拡幅を行うことができず、そもそも増し杭工法を採用できないという問題もあった。 As mentioned above, it has been pointed out that the additional pile construction method requires widening of the footing and addition of piles, requires a considerable construction period, and requires a large construction cost. Especially when it is the foundation of urban expressways, the lengthening of reinforcement work will have a great impact on socioeconomics. Further, although the footing is widened for the additional piles, there is also a problem that the footing cannot be widened when there is a problem on the ground, and the additional pile method cannot be adopted in the first place.

そこで本願の出願人は、上記問題を解決するCPR工法(Confining Pile Reinforcement Method)を開発し、特許文献1で本工法を提示している。 Therefore, the applicant of the present application has developed a CPR method (Confining Pile Reinforcement Method) that solves the above problems, and presents this method in Patent Document 1.

特許第3643571号公報Japanese Patent No. 3643571

特許文献1に示すCPR工法は、既設杭の周辺を地盤改良することによって補強体を形成するものであり、既設杭を直接補強するという設計思想に基づくものであって、増し杭工法のように新たな杭の構築を必要としない。杭の新設が必要ないことから、増し杭工法に比べ施工も早く、全体工費も軽減され、原則として用地の問題も生じないといった多くの利点があり、CPR工法は従来工法に比べ優れた工法といえる。 The CPR method shown in Patent Document 1 forms a reinforcing body by improving the ground around the existing piles, and is based on the design concept of directly reinforcing the existing piles, like the additional pile method. No need to build new piles. Since there is no need to install new piles, the construction is faster than the additional pile construction method, the overall construction cost is reduced, and in principle there are no land problems, so the CPR construction method is superior to the conventional construction method. I can say.

しかしながら、従来のCPR工法には改善の余地があった。図10は、従来のCPR工法による杭基礎の補強構造を示す断面図である。これまでの解析等により、補強体を中間層内に設けると、補強体と中間層の境界である補強体下端部分には極めて大きな断面力(曲げモーメントやせん断力)が発生する場合があることが確認されている。したがって、補強体は図10に示すように、原則として支持地盤までに到達するように構築されていた。つまり、補強体の深度方向の寸法t(以下、「厚さ」という。)が大きくなる傾向にあり、その分コストを押し上げるという問題があった。すなわちこの点が、改善の余地があると考えられていたわけである。 However, there was room for improvement in the conventional CPR method. FIG. 10 is a cross-sectional view showing a reinforcing structure of a pile foundation by a conventional CPR method. According to the analysis so far, if the reinforcing body is provided in the intermediate layer, an extremely large cross-sectional force (bending moment or shearing force) may be generated at the lower end of the reinforcing body, which is the boundary between the reinforcing body and the intermediate layer. Has been confirmed. Therefore, as shown in FIG. 10, the reinforcing body was constructed so as to reach the supporting ground in principle. That is, the dimension t (hereinafter, referred to as “thickness”) of the reinforcing body in the depth direction tends to increase, and there is a problem that the cost is pushed up by that amount. In other words, this point was thought to have room for improvement.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、従来の増し杭工法が持つ問題点を解消するCPR工法の利点を生かしつつ、補強体の厚さを軽減することができる新たなCPR工法を提供することである。 The object of the present invention is to solve the problems of the prior art, that is, to reduce the thickness of the reinforcing body while taking advantage of the CPR method that solves the problems of the conventional additional pile method. It is to provide a new CPR method that can be done.

本願発明は、補強体を2層からなるものとし、上層よりも下層の剛性を低減する、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。 The present invention has been made focusing on the point that the reinforcing body is composed of two layers and the rigidity of the lower layer is reduced as compared with that of the upper layer, and is an invention made based on an unprecedented idea. ..

本願発明の杭基礎構造は、杭と補強体を備えた構造である。この補強体は、杭の深度方向の一部に設けられるとともに、「本補強体」と「緩衝補強体」で構成される。ただし、緩衝補強体の剛性は、本補強体の剛性よりも低い。 The pile foundation structure of the present invention is a structure including a pile and a reinforcing body. This reinforcing body is provided in a part of the pile in the depth direction, and is composed of a "main reinforcing body" and a "buffer reinforcing body". However, the rigidity of the buffer reinforcing body is lower than the rigidity of the main reinforcing body.

本願発明の杭基礎構造は、補強体が上層の本補強体と下層の緩衝補強体の2層である構造とすることもできるし、上下2層の緩衝補強体で本補強体が挟まれる3層である構造とすることもできる。 The pile foundation structure of the present invention may have a structure in which the reinforcing body has two layers, the main reinforcing body in the upper layer and the cushioning reinforcing body in the lower layer, or the reinforcing body is sandwiched between the upper and lower two layers of the buffer reinforcing body3. It can also be a layered structure.

本願発明の杭基礎構造は、杭と補強体が一体化された構造とすることもできる。この場合、補強体は複数の杭を連結することができる。 The pile foundation structure of the present invention may be a structure in which a pile and a reinforcing body are integrated. In this case, the reinforcing body can connect a plurality of piles.

本願発明の杭基礎構造は、平面視(水平断面視)で中空形状の補強体を備えた構造とすることもできる。この場合の補強体は、杭の外周であって杭から離れた位置(杭と接触しない位置)に配置される。 The pile foundation structure of the present invention may be a structure provided with a hollow reinforcing body in a plan view (horizontal cross-sectional view). The reinforcing body in this case is arranged at a position on the outer circumference of the pile and away from the pile (a position not in contact with the pile).

本願発明の杭基礎構造は、上下に重なる複数の「分割層」からなる緩衝補強体を備えた構造とすることもできる。ただし、下層の分割層の剛性は、その上層の分割層の剛性よりも低い。 The pile foundation structure of the present invention may also have a structure including a cushioning reinforcement body composed of a plurality of "divided layers" that are vertically overlapped. However, the rigidity of the lower partition layer is lower than the rigidity of the upper partition layer.

本願発明の杭基礎構造は、本補強体と緩衝補強体の平面形状を異なる形状とすることで、本補強体より緩衝補強体の剛性を低くした構造とすることもできる。 The pile foundation structure of the present invention can also have a structure in which the rigidity of the cushioning reinforcement is lower than that of the present reinforcing by making the planar shapes of the reinforcing body and the cushioning reinforcement different.

本願発明の杭基礎構造は、緩衝補強体を多層構造とすることで、本補強体より緩衝補強体の剛性を低くした構造とすることもできる。この場合の緩衝補強体は、地盤改良した「改良層」と地盤改良しない「非改良層」を上下に複数重ねた構成とする。 The pile foundation structure of the present invention can also have a structure in which the rigidity of the cushioning reinforcement is lower than that of the present reinforcing by forming the cushioning reinforcement into a multi-layer structure. In this case, the cushioning reinforcement body has a structure in which a plurality of "improved layers" with improved ground and "non-improved layers" without ground improvement are stacked one above the other.

本願発明の既設杭の補強方法は、既設杭を補強する方法であり、緩衝補強体形成工程と本補強体形成工程を備えた方法である。このうち緩衝補強体形成工程では、既設杭の深度方向の一部の杭周辺地盤を改良することで、緩衝補強体が形成される。一方、本補強体形成工程では、緩衝補強体の直上の杭周辺地盤を改良することで、本補強体が形成される。ただし緩衝補強体は、本補強体の剛性よりも低い剛性となるよう形成される。 The method for reinforcing the existing pile of the present invention is a method for reinforcing the existing pile, and is a method including a buffer reinforcing body forming step and the present reinforcing body forming step. Of these, in the buffer reinforcing body forming step, the buffer reinforcing body is formed by improving the ground around a part of the existing pile in the depth direction. On the other hand, in the present reinforcing body forming step, the present reinforcing body is formed by improving the ground around the pile directly above the cushioning reinforcing body. However, the cushioning reinforcing body is formed so as to have a rigidity lower than the rigidity of the main reinforcing body.

本願発明の杭基礎構造、及び既設杭の補強方法には、次のような効果がある。
(1)増し杭工法に比べ、施工が早く、しかも全体工費が軽減される。
(2)従来のCPR工法に比べ、補強体の厚さを軽減することができることから、より施工が早く、しかもより全体工費が軽減される。
(3)用地問題による制約を受けることがないため、多くの既設の杭基礎で採用することができる。
The pile foundation structure of the present invention and the method of reinforcing existing piles have the following effects.
(1) Compared to the additional pile construction method, the construction is faster and the overall construction cost is reduced.
(2) Compared with the conventional CPR construction method, the thickness of the reinforcing body can be reduced, so that the construction is faster and the overall construction cost is further reduced.
(3) Since it is not restricted by land problems, it can be used in many existing pile foundations.

本願発明の杭基礎構造を示す断面図。The cross-sectional view which shows the pile foundation structure of this invention. ジェットグラウト工法を用いて補強体を構築する施工状況を示す説明図。Explanatory drawing which shows the construction situation of constructing a reinforcing body using a jet grout method. 複数の改良体で形成された補強体の有効断面を示す平面図。The plan view which shows the effective cross section of the reinforcing body formed by a plurality of improved bodies. (a)は領域内全てが地盤改良された連結形式の補強体を示す平面図、(b)は領域内の一部を除いて地盤改良された連結形式の補強体を示す平面図。(A) is a plan view showing a connected type reinforcing body in which the entire area is improved, and (b) is a plan view showing a connected type reinforcing body in which the ground is improved except for a part in the area. 独立形式の補強体を示す平面図。Top view showing a stand-alone reinforcement. 本補強体が上下2層の緩衝補強体に挟まれた3層構造の補強体300を示す断面図。FIG. 5 is a cross-sectional view showing a reinforcing body 300 having a three-layer structure in which the reinforcing body is sandwiched between upper and lower two-layer cushioning reinforcing bodies. (a)は断面形状が異なる本補強体と衝補強体を示す断面図、(b)はA−A矢視の平面図、(c)はB−B矢視の平面図。(A) is a cross-sectional view showing the main reinforcing body and the impact reinforcing body having different cross-sectional shapes, (b) is a plan view of the arrow AA, and (c) is a plan view of the arrow BB. (a)は非改良層を設けた緩衝補強体を含む全体断面図、(b)は非改良層を設けた緩衝補強体を示す部分断面図。(A) is an overall sectional view including a buffer reinforcing body provided with a non-improved layer, and (b) is a partial sectional view showing a buffer reinforcing body provided with a non-improved layer. 橋脚の杭基礎に対して地震時の応答解析を行った結果図。The result of the response analysis at the time of the earthquake for the pile foundation of the pier. 従来のCPR工法による杭基礎の補強構造を示す断面図。The cross-sectional view which shows the reinforcement structure of the pile foundation by the conventional CPR method.

本願発明の杭基礎構造、及び既設杭の補強方法の一例を、図に基づいて説明する。なお、「杭基礎構造」と「既設杭の補強方法」に分け、それぞれ構成する要素ごとに詳述することとし、杭基礎構造と既設杭の補強方法に共通する内容については杭基礎構造の例で説明する。したがって既設杭の補強方法では、当該方法特有の内容についてのみ説明することとする。 An example of the pile foundation structure of the present invention and the method of reinforcing the existing pile will be described with reference to the drawings. In addition, it is divided into "pile foundation structure" and "reinforcement method of existing piles", and each component will be described in detail. For the contents common to the pile foundation structure and the reinforcement method of existing piles, an example of the pile foundation structure It will be explained in. Therefore, in the method of reinforcing existing piles, only the contents peculiar to the method will be explained.

1.杭基礎構造
図1は、本願発明の杭基礎構造100を示す断面図である。この図に示すように杭基礎構造100は、杭200とこれを補強する補強体300からなり、上部の構造物400を支持層上で支持している。この杭200は、その先端(下端)の一部が支持層に貫入され、杭頭(上端)の一部は(図示しないが)構造物400の基礎部であるフーチング410に埋め込まれている。そして補強体300は、上層の本補強体310と下層の緩衝補強体320の2層構造となっている。
1. 1. Pile foundation structure FIG. 1 is a cross-sectional view showing the pile foundation structure 100 of the present invention. As shown in this figure, the pile foundation structure 100 is composed of a pile 200 and a reinforcing body 300 for reinforcing the pile 200, and supports the upper structure 400 on a support layer. A part of the tip (lower end) of the pile 200 is penetrated into the support layer, and a part of the pile head (upper end) is embedded in the footing 410 which is the foundation of the structure 400 (not shown). The reinforcing body 300 has a two-layer structure consisting of a main reinforcing body 310 in the upper layer and a cushioning reinforcing body 320 in the lower layer.

ここでは、上部の構造物300を橋脚として例示しているが、もちろんこれに限らず擁壁や集合住宅など他の構造物300であってもよい。また、図1では2本の杭200を示しているが、任意の数や配置(n本×m列など)の杭200で支持する構造であっても、本願発明を実施することができる。もちろん、場所打ちコンクリート杭、既設コンクリート杭、鋼管杭など種々の杭200を採用することができ、さらに既設の杭200に限らず、杭200を新設する場合であっても補強体300で補強することができる。 Here, the upper structure 300 is illustrated as a pier, but of course, the structure 300 may be another structure 300 such as a retaining wall or an apartment house. Further, although two piles 200 are shown in FIG. 1, the present invention can be implemented even if the structure is supported by piles 200 of an arbitrary number and arrangement (n rows × m rows, etc.). Of course, various piles 200 such as cast-in-place concrete piles, existing concrete piles, and steel pipe piles can be adopted, and further, not only the existing piles 200 but also the piles 200 are reinforced by the reinforcing body 300 even when newly installed. be able to.

(補強体)
補強体300は、杭200周辺の中間層を地盤改良することで構築することができる。この地盤改良は比較的深い位置で行われることから、その工法としては高圧噴射撹拌工法(ジェットグラウト工法)を採用すると好適である。もちろん現場状況に応じて従来から用いられている他の工法を採用してもよい。図2は、ジェットグラウト工法を用いて補強体300を構築する施工状況を示す説明図である。以下、ジェットグラウト工法について簡単に説明する。
(Reinforcement body)
The reinforcing body 300 can be constructed by improving the ground in the intermediate layer around the pile 200. Since this ground improvement is performed at a relatively deep position, it is preferable to adopt the high-pressure injection stirring method (jet grout method) as the method. Of course, other conventional construction methods may be adopted depending on the site conditions. FIG. 2 is an explanatory view showing a construction situation in which the reinforcing body 300 is constructed by using the jet grout method. The jet grout method will be briefly described below.

はじめに地盤改良機BMを地上の所定位置に設置し、ロッドを地中に挿入して削孔を行う。目的の深さまで削孔できると、ロッド先端の側面からセメント系硬化材と圧縮空気を同時に噴射する。そして、ロッドを回転しながら徐々に引き上げていくことで、概ね円柱状の改良体が構築される。したがってジェットグラウト工法で構築される改良体は、図3の平面図に示すように断面視では略円形となる。補強体300を所望の形状にするためには、その一部をラップさせつつ複数の改良体を構築するとよい。例えば図3では、24本の改良体をラップさせながら周回するように構築し、水平断面視(平面視)で中空の矩形の補強体300を構築している。なお、この図のように改良体のラップ幅を考慮したうえで、補強体300の有効断面(斜線部)を設計するとよい。 First, the ground improvement machine BM is installed at a predetermined position on the ground, and a rod is inserted into the ground to drill a hole. When the hole can be drilled to the desired depth, the cement-based hardener and compressed air are simultaneously injected from the side surface of the rod tip. Then, by gradually pulling up the rod while rotating it, a substantially columnar improved body is constructed. Therefore, the improved body constructed by the jet grout method has a substantially circular shape in a cross-sectional view as shown in the plan view of FIG. In order to make the reinforcing body 300 into a desired shape, it is preferable to construct a plurality of improved bodies while wrapping a part of the reinforcing body 300. For example, in FIG. 3, 24 improved bodies are constructed so as to wrap and orbit, and a hollow rectangular reinforcing body 300 is constructed in a horizontal cross-sectional view (plan view). As shown in this figure, it is advisable to design the effective cross section (hatched portion) of the reinforcing body 300 in consideration of the lap width of the improved body.

ところで、図1ではフーチング410の下端と補強体300の上端が接触するよう、つまりフーチング410の直下に補強体300を構築して杭頭を補強しているが、構造条件や施工条件によっては、図2に示すようにフーチング410の下端から離隔を設けて、つまりフーチング410と補強体300の間に中間層が介在するように補強体300を構築してもよい。いずれにしろ、図1や図2に示すように補強体300の下端が支持層まで到達する必要はなく、換言すれば補強体300は杭200の深度方向の一部に構築すれば足り、したがって補強体300の厚さ(補強体の深度方向の寸法)を小さくすることができるわけである。 By the way, in FIG. 1, the lower end of the footing 410 and the upper end of the reinforcing body 300 are in contact with each other, that is, the reinforcing body 300 is constructed directly under the footing 410 to reinforce the pile head, but depending on the structural conditions and construction conditions, the pile head is reinforced. As shown in FIG. 2, the reinforcing body 300 may be constructed so that a distance is provided from the lower end of the footing 410, that is, an intermediate layer is interposed between the footing 410 and the reinforcing body 300. In any case, it is not necessary for the lower end of the reinforcing body 300 to reach the support layer as shown in FIGS. 1 and 2, in other words, it is sufficient to construct the reinforcing body 300 in a part of the pile 200 in the depth direction. The thickness of the reinforcing body 300 (dimension in the depth direction of the reinforcing body) can be reduced.

補強体300は、杭200と一体化する形式(以下、「連結形式」という。)と、杭200から離れた位置に配置される形式(以下、「独立形式」という。)に大別することができる。図4は、連結形式の補強体300を示す平面図(水平断面図)であり、(a)は領域内全てが地盤改良された補強体300を示し、(b)は領域内の一部を除いて地盤改良された補強体300を示している。この図に示すように、連結形式の補強体300は杭200と一体化(密着)するように構築され、しかも複数の杭200どうしを相互に連結している。なお図4(a)のように、所定領域内全てを地盤改良し、当該領域内にある全ての杭200を補強体300で連結することもできるし、図4(b)のように、水平断面視で中空の形状として補強体300を構築し、外周の杭200どうし(図では12本)を連結することもできる。 The reinforcing body 300 is roughly classified into a type integrated with the pile 200 (hereinafter referred to as "connected type") and a type arranged at a position away from the pile 200 (hereinafter referred to as "independent type"). Can be done. FIG. 4 is a plan view (horizontal cross-sectional view) showing the reinforcing body 300 of the connected type, (a) shows the reinforcing body 300 in which the entire area is improved, and (b) shows a part of the area. Except for the ground-improved reinforcing body 300. As shown in this figure, the connecting type reinforcing body 300 is constructed so as to be integrated (closely adhered) to the pile 200, and moreover, the plurality of piles 200 are connected to each other. It should be noted that, as shown in FIG. 4A, the ground can be improved in the entire predetermined area, and all the piles 200 in the area can be connected by the reinforcing body 300, or horizontally as shown in FIG. 4B. It is also possible to construct the reinforcing body 300 as a hollow shape in a cross-sectional view, and to connect the outer peripheral piles 200 (12 in the figure).

一方、補強体300を独立形式とした場合、杭200から離れた位置で補強体300は構築される。図5は、独立形式の補強体300を示す平面図(水平断面図)である。この図に示すように独立形式の補強体300は、杭200の外周に配置され、しかも杭200から離れた位置でこれら杭200を取り囲むように構築される。独立形式の補強体300は、連結形式の補強体300のように杭200を直接補強するものではないが、外部の中間層の挙動を遮断するとともに、補強体300内にある中間層を通じて杭200の変形を抑制することができるため、独立形式であっても補強効果としては有効に機能する。 On the other hand, when the reinforcing body 300 is an independent type, the reinforcing body 300 is constructed at a position away from the pile 200. FIG. 5 is a plan view (horizontal sectional view) showing the independent type reinforcing body 300. As shown in this figure, the independent type reinforcing body 300 is arranged on the outer periphery of the piles 200, and is constructed so as to surround the piles 200 at a position away from the piles 200. The independent type reinforcing body 300 does not directly reinforce the pile 200 like the connected type reinforcing body 300, but blocks the behavior of the external intermediate layer and the pile 200 through the intermediate layer inside the reinforcing body 300. Since it is possible to suppress the deformation of the body, it functions effectively as a reinforcing effect even if it is an independent type.

既述のとおり、補強体300は本補強体310と緩衝補強体320の2層構造であり、上層の本補強体310と下層の緩衝補強体320が連続して構築されることで、補強体300は形成される(図1や図2)。あるいは、図6に示すように本補強体310が上下2層の緩衝補強体320に挟まれた3層構造として、補強体300を形成することもできる。特に、フーチング410の下端から離隔を設けて(つまりフーチング410と補強体300の間に中間層が介在するように)補強体300を構築する場合、この3層構造は有効である。そして、本補強体310よりも低い剛性で緩衝補強体320は構築される。ここで剛性とは、せん断剛性や曲げ剛性を含む概念であり、断面積、断面二次モーメント、弾性係数(ヤング率)などによって決定される力学的な物理量である。例えばジェットグラウト工法で構築される補強体300の場合、使用するセメント系硬化材の配合を変えることで、補強体300の剛性を変えることができる。 As described above, the reinforcing body 300 has a two-layer structure of the main reinforcing body 310 and the cushioning reinforcing body 320, and the reinforcing body is constructed by continuously constructing the main reinforcing body 310 in the upper layer and the cushioning reinforcing body 320 in the lower layer. 300 is formed (FIGS. 1 and 2). Alternatively, as shown in FIG. 6, the reinforcing body 300 can be formed as a three-layer structure in which the reinforcing body 310 is sandwiched between the upper and lower two-layer cushioning reinforcing bodies 320. In particular, when the reinforcing body 300 is constructed by providing a distance from the lower end of the footing 410 (that is, an intermediate layer is interposed between the footing 410 and the reinforcing body 300), this three-layer structure is effective. Then, the cushioning reinforcing body 320 is constructed with a rigidity lower than that of the main reinforcing body 310. Here, the rigidity is a concept including shear rigidity and flexural rigidity, and is a mechanical physical quantity determined by the cross-sectional area, the moment of inertia of area, the elastic modulus (Young's modulus), and the like. For example, in the case of the reinforcing body 300 constructed by the jet grout method, the rigidity of the reinforcing body 300 can be changed by changing the composition of the cement-based curing material used.

ところが、ジェットグラウト工法で円柱状の改良体を構築する場合、途中でセメント系硬化材を変えるとなると、実際には大きな段取り替えが生じてしまう。つまり、下層の緩衝補強体320部分の改良体(円柱状体)を構築した後、一旦段取り替えを行ったうえで上層の本補強体310部分の改良体を構築することになり、やや手間がかかる。もちろんこのような手法を採ってもよいが、図7に示すように本補強体310と緩衝補強体320の大きさ(断面積)を変えることで、緩衝補強体320の剛性を低減することもできる。図7は、断面形状が異なる本補強体310と緩衝補強体320を示す図であり、(a)は断面図、(b)はA−A矢視(図4(a)中に示す)の平面図、(c)はB−B矢視(図4(a)中に示す)の平面図である。 However, when constructing a columnar improved body by the jet grout method, if the cement-based curing material is changed in the middle, a large setup change actually occurs. In other words, after constructing the improved body (cylindrical body) of the lower cushioning reinforcement body 320 part, the setup is once changed and then the improved body of the upper layer main reinforcing body 310 part is constructed, which is a little time-consuming. It takes. Of course, such a method may be adopted, but the rigidity of the buffer reinforcing body 320 can be reduced by changing the size (cross-sectional area) of the main reinforcing body 310 and the buffer reinforcing body 320 as shown in FIG. it can. 7A and 7B are views showing the main reinforcing body 310 and the cushioning reinforcing body 320 having different cross-sectional shapes. FIG. 7A is a cross-sectional view, and FIG. 7B is an arrow view of AA (shown in FIG. 4A). A plan view, (c) is a plan view taken along the line BB (shown in FIG. 4 (a)).

図7(a)を見ると、本補強体310の方が緩衝補強体320よりも外形寸法(幅)が大きいことが分かる。また、図7(b)(c)に示すように、緩衝補強体320の方が本補強体310よりも中空部分が大きい。つまり、水平断面視の断面積は、緩衝補強体320の方が本補強体310よりも小さく、したがって全体で見ると緩衝補強体320の方が本補強体310よりも剛性が低くなるわけである。なお、本補強体310と緩衝補強体320の断面積を変えるためには、本補強体310のみの改良体(円柱状体)をいくつか構築すれば(つまり、緩衝補強体320より多くの改良体で本補強体310を構成すれば)よい。 Looking at FIG. 7A, it can be seen that the main reinforcing body 310 has a larger external dimension (width) than the cushioning reinforcing body 320. Further, as shown in FIGS. 7 (b) and 7 (c), the buffer reinforcing body 320 has a larger hollow portion than the main reinforcing body 310. That is, the cross-sectional area of the cushion reinforcing body 320 in the horizontal cross-sectional view is smaller than that of the main reinforcing body 310, and therefore, the cushion reinforcing body 320 has lower rigidity than the main reinforcing body 310 as a whole. .. In addition, in order to change the cross-sectional area of the main reinforcing body 310 and the buffer reinforcing body 320, it is necessary to construct some improved bodies (columnar bodies) of only the main reinforcing body 310 (that is, more improvements than the buffer reinforcing body 320). The main reinforcing body 310 may be formed by the body).

緩衝補強体320の剛性を本補強体310の剛性よりも小さい値とするには、緩衝補強体320の一部に改良しない層を設けることもできる。図8(a)は、非改良層を設けた緩衝補強体320を示す図であり、(a)は全体断面図、(b)は部分断面図である。この図に示す緩衝補強体320は、地盤改良を行った「改良層321」と地盤改良を行わない「非改良層322」が交互に重ねられており、非改良層322を設けることで緩衝補強体320全体の剛性を低減している。なお、非改良層322を設けるには、例えばジェットグラウト工法の場合、セメント系硬化材を噴射することなくロッドを引き上げる区間を設けるとよい。 In order to make the rigidity of the buffer reinforcing body 320 smaller than the rigidity of the main reinforcing body 310, an unimproved layer may be provided as a part of the cushion reinforcing body 320. 8 (a) is a view showing a buffer reinforcing body 320 provided with a non-improved layer, FIG. 8 (a) is an overall sectional view, and FIG. 8 (b) is a partial sectional view. In the cushioning reinforcement body 320 shown in this figure, an "improved layer 321" with ground improvement and a "non-improved layer 322" without ground improvement are alternately stacked, and the cushioning reinforcement is provided by providing the non-improved layer 322. The rigidity of the entire body 320 is reduced. In order to provide the non-improved layer 322, for example, in the case of the jet grout method, it is preferable to provide a section for pulling up the rod without injecting a cement-based curing material.

緩衝補強体320は、1層のみの構成とすることもできるし、2層以上の構成とすることもできる。つまり、緩衝補強体320を構成する部分的な層(以下、「分割層」という。)を複数重ねることで、2層以上の緩衝補強体320を形成するわけである。この場合、上方から下方に向けて分割層の剛性を低減するとよい。例えば緩衝補強体320が、上方から第1の分割層、第2の分割層、第3の分割層の順で形成されていれば、第2の分割層は第1の分割層よりその剛性を低くし、さらに第3の分割層は第2の分割層よりその剛性を低くする。 The buffer reinforcing body 320 may have only one layer, or may have two or more layers. That is, two or more layers of the buffer reinforcing body 320 are formed by stacking a plurality of partial layers (hereinafter, referred to as "divided layers") constituting the buffer reinforcing body 320. In this case, it is preferable to reduce the rigidity of the divided layer from the upper side to the lower side. For example, if the buffer reinforcing body 320 is formed in the order of the first divided layer, the second divided layer, and the third divided layer from the top, the second divided layer has a higher rigidity than the first divided layer. It is made lower, and the rigidity of the third partition layer is lower than that of the second partition layer.

(解析結果)
以下、本願発明の効果を確認するために本願発明者らが実施した解析結果について説明する。
(Analysis result)
Hereinafter, the analysis results carried out by the inventors of the present application in order to confirm the effect of the invention of the present application will be described.

図9は、橋脚の杭基礎に対して地震時の応答解析を行った結果であり、左から杭基礎を補強しないケース、従来のCPR工法で補強(1層のみの補強体)したケース、本願発明によって補強したケース、それぞれで杭に生じた断面力を示している。この解析では、本願発明における本補強体310の剛性を従来CPR工法の補強体と同程度とし、緩衝補強体320の剛性を本補強体310の1/10としている。この結果、杭基礎を補強しないケースに比べ、従来CPR工法、本願発明ともに杭頭部の断面力が大幅に低減されていることが分かる。さらに、従来CPR工法では補強体の下端面(中間層との境界面)で断面力のピークを示しているが、本願発明の緩衝補強体320の下端面では杭頭部よりも断面力が低減されていることが分かる。なお図9では、緩衝補強体320の剛性を本補強体310の1/10とした場合でその効果を示しているが、1/10に限らず補強体320の剛性を本補強体310より小さい値とすれば、相当の効果があることを本願発明者らは確認している。 FIG. 9 shows the results of an earthquake response analysis of the pile foundation of the pier. From the left, a case where the pile foundation is not reinforced, a case where the pile foundation is reinforced by the conventional CPR method (a reinforcing body with only one layer), and the present application. The cross-sectional force generated in the pile is shown for each case reinforced by the invention. In this analysis, the rigidity of the present reinforcing body 310 in the present invention is set to be about the same as that of the reinforcing body of the conventional CPR method, and the rigidity of the buffer reinforcing body 320 is set to 1/10 of the present reinforcing body 310. As a result, it can be seen that the cross-sectional force of the pile head is significantly reduced in both the conventional CPR method and the present invention as compared with the case where the pile foundation is not reinforced. Further, in the conventional CPR method, the peak of the cross-sectional force is shown at the lower end surface (boundary surface with the intermediate layer) of the reinforcing body, but the cross-sectional force is reduced at the lower end surface of the buffer reinforcing body 320 of the present invention as compared with the pile head. You can see that it has been done. Note that FIG. 9 shows the effect when the rigidity of the buffer reinforcing body 320 is set to 1/10 of the main reinforcing body 310, but the rigidity of the reinforcing body 320 is smaller than that of the main reinforcing body 310, not limited to 1/10. The inventors of the present application have confirmed that the value has a considerable effect.

2.既設杭の補強方法
本願発明の既設杭の補強方法を、ジェットグラウト工法を採用した例で説明する。はじめに、図2に示すように地盤改良機BMを地上の所定位置に設置し、ロッドを地中に挿入して削孔を行い、ロッドを引き上げながら所定区間に緩衝補強体320部分の改良体(円柱状体)を構築する。そして、そのままロッドを引き上げながら、今度は所定区間に本補強体310部分の改良体を構築する。1本の改良体が構築できると、平面的に位置を変えて隣接する改良体を構築し、これを繰り返し行うことで緩衝補強体320と本補強体310を完成させ、すなわち補強体300を完成させる。なお、緩衝補強体320の剛性を本補強体310よりも小さい値とするため、本補強体310部分のみの(緩衝補強体320を設けない)改良体を構築するか、無噴射のロッド引上げ区間を設けることで改良層321と非改良層322を交互に重ねるか、あるいは本補強体310と緩衝補強体320で使用するセメント系硬化材の配合を変えるのは、これまでに説明したとおりである。
2. Reinforcement method of existing piles The reinforcement method of existing piles of the present invention will be described with an example of adopting the jet grout method. First, as shown in FIG. 2, the ground improvement machine BM is installed at a predetermined position on the ground, the rod is inserted into the ground to make a hole, and the improved body of the buffer reinforcing body 320 part in the predetermined section while pulling up the rod ( Cylindrical body) is constructed. Then, while pulling up the rod as it is, this time, an improved body of the main reinforcing body 310 part is constructed in a predetermined section. When one improved body can be constructed, the position of the improved body is changed in a plane to construct adjacent improved bodies, and by repeating this, the buffer reinforcing body 320 and the main reinforcing body 310 are completed, that is, the reinforcing body 300 is completed. Let me. In addition, in order to make the rigidity of the buffer reinforcing body 320 smaller than that of the main reinforcing body 310, an improved body of only the main reinforcing body 310 portion (without the buffer reinforcing body 320) is constructed, or a non-injection rod pulling section is constructed. As described above, the improved layer 321 and the non-improved layer 322 are alternately stacked by providing the above, or the composition of the cement-based hardening material used in the present reinforcing body 310 and the cushioning reinforcing body 320 is changed. ..

本願発明の杭基礎構造、及び既設杭の補強方法は、道路橋や、鉄道橋、水管橋といった橋梁の杭基礎、又は擁壁や一般家屋の杭基礎、あるいは既設杭の再利用など幅広く利用することができる。本願発明が、供用中の構造物を効果的かつ経済的に補強でき、しかも用地の問題で補強対象とはならなかった構造物も補強し得ることを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる The pile foundation structure of the present invention and the method for reinforcing existing piles are widely used such as pile foundations for bridges such as road bridges, railway bridges, and water pipe bridges, pile foundations for retaining walls and general houses, and reuse of existing piles. be able to. Considering that the invention of the present application can effectively and economically reinforce a structure in service, and can also reinforce a structure that was not subject to reinforcement due to land problems, it is not only industrially usable but also social. It can be said that this is an invention that can be expected to make a great contribution.

100 本願発明の杭基礎構造
200 (杭基礎構造の)杭
300 (杭基礎構造の)補強体
310 (補強体の)本補強体
320 (補強体の)緩衝補強体
321 (緩衝補強体の)改良層
322 (緩衝補強体の)非改良層
400 構造物
410 (構造物の)フーチング
BM 地盤改良機
100 Pile foundation structure of the present invention 200 (pile foundation structure) pile 300 (pile foundation structure) reinforcement 310 (reinforcement) main reinforcement 320 (reinforcement) cushion reinforcement 321 (buffer reinforcement) improvement Layer 322 Non-improved layer (of buffer reinforcement) 400 Structure 410 (Structure) Footing BM Ground improvement machine

Claims (4)

杭と、該杭を補強する補強体と、を備え、
地盤改良によって形成された前記補強体は、前記杭の深度方向の一部に設けられるとともに、上層の本補強体と下層の緩衝補強体で構成され、
前記緩衝補強体を、地盤改良した改良層と地盤改良しない非改良層とを上下に複数重ねた構成とすることで、前記本補強体の剛性より前記緩衝補強体の剛性を低くした、
ことを特徴とする杭基礎構造。
A pile and a reinforcing body for reinforcing the pile are provided.
The reinforcing body formed by the ground improvement is provided in a part of the pile in the depth direction, and is composed of a main reinforcing body in the upper layer and a cushioning reinforcing body in the lower layer.
The rigidity of the buffer reinforcing body is made lower than the rigidity of the main reinforcing body by forming a configuration in which a plurality of improved layers with improved ground and non-improved layers without ground improvement are stacked one above the other.
The pile foundation structure is characterized by this.
前記補強体は、前記杭と一体化されるとともに、複数の杭を連結する、
ことを特徴とする請求項1記載の杭基礎構造。
The reinforcing body is integrated with the pile and connects a plurality of piles.
The pile foundation structure according to claim 1.
前記補強体は、平面視で中空の形状であり、前記杭から離れた位置であって杭の外周に配置される、
ことを特徴とする請求項1記載の杭基礎構造。
The reinforcing body has a hollow shape in a plan view, is located at a position away from the pile, and is arranged on the outer circumference of the pile.
The pile foundation structure according to claim 1.
既設杭を補強する方法において、
前記既設杭の深度方向の一部の杭周辺地盤を改良することで、緩衝補強体を形成する緩衝補強体形成工程と、
前記緩衝補強体の直上の杭周辺地盤を改良することで、本補強体を形成する本補強体形成工程と、を備え、
前記緩衝補強体形成工程では、地盤改良した改良層と地盤改良しない非改良層とを上下に複数重ねた構成の前記緩衝補強体を形成することによって、前記本補強体の剛性より前記緩衝補強体の剛性を低くする、
ことを特徴とする既設杭の補強方法。
In the method of reinforcing existing piles
A step of forming a buffer reinforcing body by improving a part of the ground around the pile in the depth direction of the existing pile, and a step of forming the buffer reinforcing body.
By improving the ground around the pile directly above the buffer reinforcing body, the main reinforcing body forming step of forming the main reinforcing body is provided.
In the buffer reinforcing body forming step, the cushion reinforcing body is formed by vertically stacking a plurality of improved layers with improved ground and non-improved layers without ground improvement, thereby increasing the rigidity of the main reinforcing body. To reduce the rigidity of
A method of reinforcing existing piles, which is characterized by this.
JP2016134626A 2016-07-06 2016-07-06 Pile foundation structure and how to reinforce existing piles Active JP6855665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016134626A JP6855665B2 (en) 2016-07-06 2016-07-06 Pile foundation structure and how to reinforce existing piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016134626A JP6855665B2 (en) 2016-07-06 2016-07-06 Pile foundation structure and how to reinforce existing piles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020168301A Division JP7019905B2 (en) 2020-10-05 2020-10-05 Pile foundation structure and reinforcement method for existing piles

Publications (2)

Publication Number Publication Date
JP2018003523A JP2018003523A (en) 2018-01-11
JP6855665B2 true JP6855665B2 (en) 2021-04-07

Family

ID=60946021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016134626A Active JP6855665B2 (en) 2016-07-06 2016-07-06 Pile foundation structure and how to reinforce existing piles

Country Status (1)

Country Link
JP (1) JP6855665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214106A (en) * 2018-09-26 2019-01-15 江南大学 A kind of Pile Foundations in Liquefaction Ground dynamic response centrifuge test method for numerical simulation
CN110184952B (en) * 2019-06-26 2024-01-16 中铁八局集团第二工程有限公司 Modification structure of existing bridge abutment and construction method thereof
CN113463518B (en) * 2021-06-21 2022-12-09 中铁十九局集团第五工程有限公司 Anti-leakage construction method for soil between piles of existing bridge pile foundation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643571B2 (en) * 2002-05-30 2005-04-27 株式会社間組 Pile foundation reinforcement structure
JP4179944B2 (en) * 2003-08-06 2008-11-12 西松建設株式会社 Pile damage prevention method
JP4713277B2 (en) * 2005-08-30 2011-06-29 株式会社間組 Pile foundation reinforcement structure
TWM432666U (en) * 2011-12-16 2012-07-01 xiao-ming Jin Earthquake resistant ground base structure
JP5077857B1 (en) * 2012-02-28 2012-11-21 独立行政法人土木研究所 Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology

Also Published As

Publication number Publication date
JP2018003523A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP4281567B2 (en) Reinforcement structure of existing pier foundation and reinforcement method of existing pier foundation
JP2009167660A (en) Tower crane foundation structure and method of constructing the same
JP6855665B2 (en) Pile foundation structure and how to reinforce existing piles
JP5041838B2 (en) Pile foundation structure construction method
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
JP2011236705A (en) Foundation structure of structure and method of constructing the same
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP2000352296A (en) Method o constructing passage just under underground structure
JP5077857B1 (en) Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology
JP7019905B2 (en) Pile foundation structure and reinforcement method for existing piles
JP3448629B2 (en) Seismic retrofitting method for existing structure foundation
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP7338119B2 (en) Floating control structure and reversed construction method
KR101125173B1 (en) Pile for reducing negative skin friction, foundation structure using the same and construction method thereof
JP4329068B2 (en) Yamauchi composite wall and method for constructing Yamauchi composite wall
Dellaria et al. Combining multiple techniques to complete an urban deep excavation
JP6920885B2 (en) Ready-made concrete wall unit
JP7230312B2 (en) Foundation structure and foundation construction method
JP3832845B2 (en) Steel sheet pile combined direct foundation and construction method of steel sheet pile combined direct foundation
KR20210047481A (en) Core wall structure of composite cassion for offshore runway
JP6000414B2 (en) Pile foundation reconstruction method and pile foundation structure
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures
JP5190044B2 (en) Foundation structure
JP4183137B2 (en) Seismic structure
KR101253427B1 (en) Connecting structure with connecting reinforcement element of steel pipe sheet pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6855665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250