JP2007039496A - Fluid dynamic bearing unit and lubricating oil composition for bearing - Google Patents

Fluid dynamic bearing unit and lubricating oil composition for bearing Download PDF

Info

Publication number
JP2007039496A
JP2007039496A JP2005222780A JP2005222780A JP2007039496A JP 2007039496 A JP2007039496 A JP 2007039496A JP 2005222780 A JP2005222780 A JP 2005222780A JP 2005222780 A JP2005222780 A JP 2005222780A JP 2007039496 A JP2007039496 A JP 2007039496A
Authority
JP
Japan
Prior art keywords
lubricating oil
bearing
oil
impregnated
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005222780A
Other languages
Japanese (ja)
Other versions
JP4987264B2 (en
Inventor
Yoshihiko Daijo
義彦 大條
Katsumi Nagano
克己 長野
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
NTN Corp
Nippon Steel Chemical Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nippon Steel Chemical Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005222780A priority Critical patent/JP4987264B2/en
Publication of JP2007039496A publication Critical patent/JP2007039496A/en
Application granted granted Critical
Publication of JP4987264B2 publication Critical patent/JP4987264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricating oil for bearing having excellent durability and excellent torque reducing capabilities and to provide a fluid dynamic type bearing, a porous oil-impregnated bearing, and a fluid dynamic type porous oil-impregnated bearing suited for small spindle motors related to information machines and equipment. <P>SOLUTION: The lubricating oil composition comprises (A) a major proportion of an ester synthesized from an 8C monohydric alcohol and a 6C dicarboxylic acid and (B) 1 to 5 wt.% diester having a kinematic viscosity (at 40°C) of not less than 10 mm<SP>2</SP>/s and a total carbon number of 23 to 28. The fluid dynamic type bearing unit and the porous oil-impregnated bearing unit using the lubricating oil composition are provided. A spindle motor fitted with the bearing unit is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軸受用潤滑油として適した潤滑油組成物及びそれを使用した流体動圧軸受ユニット、多孔質含油軸受ユニット及びこの軸受ユニットを使用したスピンドルモータに関する。   The present invention relates to a lubricating oil composition suitable as a lubricating oil for bearings, a fluid dynamic pressure bearing unit using the same, a porous oil-impregnated bearing unit, and a spindle motor using the bearing unit.

軸外周面とスリーブ内周面の隙間に介在する潤滑油の油膜圧力によって、回転軸を支持する流体軸受において、軸外周面あるいはスリーブ内周面の少なくともいずれか一方に動圧溝を設け、その動圧効果によって形成された潤滑油膜によって回転軸の摺動面を浮上支持する流体動圧軸受や、焼結金属などから構成される多孔質体に、潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせ、回転軸を支持する多孔質含油軸受、更に多孔質含油軸受の軸受面に動圧溝を設けた動圧型多孔質含油軸受が知られている。これらは、レーザビームプリンタ(LBP)のポリゴンスキャナモータや磁気ディスクドライブ装置(HDD)用のスピンドルモータのように、高速下で高回転精度が要求される機種や、DVD−ROM、DVD−RAMなどの光ディスク装置あるいはMOなどの光磁気ディスク装置用のスピンドルモータのように、ディスクが載ることによってアンバランス荷重が加わる条件下で高速で駆動する機器などに適している。   In the fluid bearing that supports the rotating shaft by the oil film pressure of the lubricating oil interposed in the gap between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, a dynamic pressure groove is provided on at least one of the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve. Self-lubricating by impregnating a porous body composed of a fluid dynamic pressure bearing that floats and supports the sliding surface of the rotating shaft with a lubricating oil film formed by the dynamic pressure effect, or sintered metal, with lubricating oil or lubricating grease A porous oil-impregnated bearing having a function and supporting a rotating shaft, and a dynamic pressure type porous oil-impregnated bearing in which a dynamic pressure groove is provided on a bearing surface of the porous oil-impregnated bearing are known. These include models that require high rotational accuracy at high speeds, such as polygon scanner motors for laser beam printers (LBP) and spindle motors for magnetic disk drive devices (HDD), DVD-ROMs, DVD-RAMs, etc. It is suitable for a device that is driven at a high speed under a condition in which an unbalance load is applied when the disk is mounted, such as a spindle motor for an optical disk apparatus or a magneto-optical disk apparatus such as MO.

情報機器関連の小型スピンドルモータ用軸受の低トルク化要求に対応するため、流体動圧軸受、多孔質含油軸受、動圧型多孔質含油軸受などには比較的低粘度で低蒸発性を示す潤滑油が選択される。かかる用途に使用される潤滑油としては、特許文献1にはPAO(ポリ-α-オレフィン)等の炭化水素系が、特許文献2にはジエステルが、特許文献3にはポリオールエステルが、特許文献4にはモノエステルなどが提案されてきた。   Lubricating oils with relatively low viscosity and low evaporability in fluid dynamic pressure bearings, porous oil-impregnated bearings, dynamic pressure-type porous oil-impregnated bearings, etc. to meet the demand for lower torque of small spindle motor bearings related to information equipment Is selected. As lubricating oils used for such applications, Patent Document 1 discloses hydrocarbons such as PAO (poly-α-olefin), Patent Document 2 discloses diesters, Patent Document 3 includes polyol esters, and Patent Documents. 4 has been proposed as monoester.

特許2676767号公報Japanese Patent No. 2676767 特開平4-357318号公報JP-A-4-357318 特開平2001-316687公報JP 2001-316687 特開2000-63860公報JP 2000-63860 特開平2003-193075公報Japanese Patent Laid-Open No. 2003-193075

AV・OA機器の高性能化に伴い、それらの回転部に使用される小型スピンドルモータには、高速化、省電力化の要求が強く、そのため、回転支持部に用いられる軸受には常に低トルク化の要求がある。また、最近では特に、モバイル機器としての利用を考慮して、様々な環境(温度)にも適用できる性能が求められる。軸受のトルクに影響を及ぼす因子には、軸受すきま、軸径などがあるが、取りわけ低温環境では潤滑油の粘度が一つの大きな要因となる。   With the high performance of AV and OA equipment, small spindle motors used in these rotating parts are strongly demanded for high speed and low power consumption. Therefore, the bearings used for rotating support parts always have low torque. There is a demand for conversion. In recent years, in particular, performance that can be applied to various environments (temperatures) is demanded in consideration of use as a mobile device. Factors affecting bearing torque include bearing clearance and shaft diameter, but the viscosity of lubricating oil is one major factor in low temperature environments.

潤滑油は一般的に低粘度になるほど蒸発しやすい傾向にある。潤滑油が蒸発等によって減少すると、適切な油膜圧力が得られず、回転精度が著しく低下し寿命とみなされるため、潤滑油の蒸発特性は軸受の耐久性を左右する重要な特性である。したがって、流体動圧軸受、多孔質含油軸受、動圧型多孔質含油軸受などすべり軸受の潤滑には、低粘度でしかも低温域でも極端な粘度上昇がなく、比較的蒸発特性に優れる潤滑油を選択する必要がある。そして多くの場合、エステル系の潤滑油が使用される。   Lubricating oil generally tends to evaporate as the viscosity becomes lower. If the lubricating oil is reduced by evaporation or the like, an appropriate oil film pressure cannot be obtained, and the rotational accuracy is remarkably lowered and regarded as the service life. Therefore, the evaporation characteristic of the lubricating oil is an important characteristic that affects the durability of the bearing. Therefore, for lubrication of sliding bearings such as fluid dynamic pressure bearings, porous oil-impregnated bearings, and dynamic pressure-type porous oil-impregnated bearings, select a lubricating oil that has low viscosity and does not have an extremely high viscosity increase even in a low temperature range and has relatively excellent evaporation characteristics. There is a need to. In many cases, ester-based lubricating oil is used.

エステル油においても他の潤滑油同様、低粘度になるにしたがって蒸発特性が劣る傾向にある。したがって、軸受のトルクを低減するために、単に現行より低粘度のエステル油を選択するだけでは、蒸発特性を損なうことになり、軸受の耐久性を低下させることになる。また、常温で低粘度であっても低温域で粘度が急激に上昇したり、流動性を失えば、急激なトルクの上昇や機器の停止に繋がる。例えば、40℃粘度が8mm2/s未満のモノエステルなどの低粘度油のみからなる潤滑油組成物では、低分子量化に伴い蒸発量が多くなると共に、分子量が均一なゆえに蒸発がほぼ一斉に生じるため、一定条件下を境として急激に耐久性が落ちる。 Ester oil also tends to have poor evaporation characteristics as the viscosity becomes lower, as with other lubricating oils. Therefore, simply selecting an ester oil having a lower viscosity than the current one in order to reduce the torque of the bearing will impair the evaporation characteristics and reduce the durability of the bearing. Further, even if the viscosity is low at room temperature, if the viscosity suddenly rises in the low temperature range or loses fluidity, it will lead to a sudden increase in torque or equipment shutdown. For example, in a lubricating oil composition consisting only of a low viscosity oil such as a monoester having a viscosity of less than 8 mm 2 / s at 40 ° C., the amount of evaporation increases as the molecular weight decreases, and the evaporation is almost uniform due to the uniform molecular weight. As a result, the durability is drastically reduced at certain conditions.

また、特許文献5に記載のセバシン酸ジオクチルを基油とする潤滑油は40℃粘度が11〜12mm2/s程度でかつ低蒸発性を示すため、流体動圧軸受の潤滑油として優れていることが知られている。しかし、低温域での粘度が比較的高いため、特に低温領域でのトルクが重要視されるモバイル搭載用のスピンドルモータとしての要求性能を満たすことは困難である。 Moreover, since the lubricating oil based on dioctyl sebacate described in Patent Document 5 has a viscosity at 40 ° C. of about 11 to 12 mm 2 / s and low evaporation, it is excellent as a lubricating oil for fluid dynamic pressure bearings. It is known. However, since the viscosity in the low temperature region is relatively high, it is difficult to satisfy the required performance as a mobile-mounted spindle motor where torque in the low temperature region is regarded as important.

本発明は、常温において低粘度でしかも低温域でも極端な粘度上昇がなく、比較的蒸発特性に優れる潤滑油を提供すると共に、これを使用することで低トルクかつ長寿命な軸受装置を提供することを課題とする。   The present invention provides a lubricating oil that has a low viscosity at room temperature and does not have an excessive increase in viscosity even in a low temperature range, and has a relatively excellent evaporation characteristic, and also provides a bearing device that uses this and has a low torque and a long life. This is the issue.

上記課題を解決するには、炭素数8の一価アルコールと炭素数6の二価カルボン酸からなるエステルを主成分とし、40℃での動粘度が10mm2/s以上で分子の総炭素数が23〜28のジエステルを副成分とした潤滑油組成物が優れることを見出した。 In order to solve the above problems, the main component is an ester composed of a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms, the kinematic viscosity at 40 ° C. is 10 mm 2 / s or more, and the total number of carbon atoms in the molecule. Was found to be excellent in a lubricating oil composition having a diester of 23 to 28 as a minor component.

本発明は、(A)炭素数8の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルを主成分とし、(B)主成分を除くもので40℃での動粘度が10mm2/s以上で分子の総炭素数が23〜28のジエステルを1〜5重量%含む潤滑油組成物である。ここで、前記一価アルコールとしては、イソオクチルアルコールが好ましく例示される。 The present invention comprises (A) an ester synthesized from a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms as a main component, and (B) a kinematic viscosity at 40 ° C. of 10 mm, excluding the main component. A lubricating oil composition comprising 1 to 5% by weight of a diester having a molecular weight of 23 to 28 and a molecular weight of 2 / s or more. Here, as said monohydric alcohol, isooctyl alcohol is illustrated preferably.

更に、本発明は、軸外周面とスリーブ内周面の何れか一方に動圧発生溝を設け、潤滑剤として前記の潤滑油組成物を用いたことを特徴とする流体動圧軸受ユニットである。また、本発明は、前記の潤滑油組成物を含浸したことを特徴とする多孔質含油軸受ユニット又は多孔質含油軸受である。ここで、多孔質含油軸受としては、動圧型多孔質含油軸受が好ましく例示される。また、本発明は、前記の軸受ユニットを備えたスピンドルモータである。   Furthermore, the present invention is a fluid dynamic pressure bearing unit characterized in that a dynamic pressure generating groove is provided on either one of the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, and the lubricating oil composition is used as a lubricant. . The present invention also provides a porous oil-impregnated bearing unit or a porous oil-impregnated bearing impregnated with the lubricating oil composition. Here, the porous oil-impregnated bearing is preferably exemplified by a dynamic pressure type porous oil-impregnated bearing. Moreover, this invention is a spindle motor provided with the said bearing unit.

以下、本発明の潤滑油組成物について説明する。
潤滑油組成物の主成分は、炭素数8の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルである(A成分)。炭素数9以上の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルあるいは炭素数7以上の二価カルボン酸から合成されるエステルでは回転時のトルクが高くなり、必要性能を得ることができない。一方、炭素数7以下の一価アルコールから合成されるエステルあるいは炭素数6以下の二価カルボン酸から合成されるエステルでは急激に蒸発量が増え、スピンドルモータの長寿命化を図ることができない。したがって、炭素数8の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルを主成分とする必要がある。炭素数8の一価アルコールとしてはイソオクチルアルコールが好適である。
上記エステルは、二価カルボン酸のジエステルであるため、比較的直鎖状であり、ポリオールエステルのような大きな分岐がないため、高粘度指数、高引火点及び優れた低温流動性を有している。
Hereinafter, the lubricating oil composition of the present invention will be described.
The main component of the lubricating oil composition is an ester synthesized from a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms (component A). An ester synthesized from a monohydric alcohol with 9 or more carbon atoms and a divalent carboxylic acid with 6 carbon atoms or an ester synthesized from a divalent carboxylic acid with 7 or more carbon atoms increases the torque during rotation and obtains the required performance. I can't. On the other hand, in the ester synthesized from a monohydric alcohol having 7 or less carbon atoms or the ester synthesized from a divalent carboxylic acid having 6 or less carbon atoms, the amount of evaporation increases rapidly and the life of the spindle motor cannot be extended. Therefore, it is necessary to have an ester synthesized from a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms as a main component. As the monohydric alcohol having 8 carbon atoms, isooctyl alcohol is preferred.
Since the above ester is a diester of a divalent carboxylic acid, it is relatively linear and does not have large branches like a polyol ester, so it has a high viscosity index, a high flash point, and excellent low temperature fluidity. Yes.

主成分エステルに配合するジエステル(B成分)は、潤滑油組成物の副成分であり、その役割としては、A成分単独では満足できない蒸発特性の向上にある。このジエステルとしては、40℃での動粘度が10mm2/s以上でかつ分子中の総炭素数が23〜28であるが、A成分とは異なるジエステルである。40℃での粘度が10mm2/s未満のものを混合しても主成分の蒸発特性の向上には寄与せず、逆に蒸発量が増加する傾向になる。それは分子中の総炭素数が23未満のジエステルについても同じことが言える。また、分子中の総炭素数が29以上のジエステルを混合すると軸受のトルク特性に低温域での低トルク化が図れない。 The diester (component B) blended with the main component ester is a subcomponent of the lubricating oil composition, and its role is to improve evaporation characteristics that cannot be satisfied by the component A alone. This diester is a diester having a kinematic viscosity at 40 ° C. of 10 mm 2 / s or more and a total carbon number of 23 to 28 in the molecule, but different from the component A. Mixing with a viscosity of less than 10 mm 2 / s at 40 ° C. does not contribute to the improvement of the evaporation characteristics of the main component, but tends to increase the evaporation amount. The same is true for diesters with less than 23 total carbons in the molecule. In addition, when diester having a total carbon number of 29 or more in the molecule is mixed, the torque characteristics of the bearing cannot be reduced at low temperatures.

すなわち、副成分として使用するB成分は主成分のA成分と相溶性が高く、低温流動性に優れ、低蒸発性を示すものであることが望ましい。言い換えれば、B成分はA成分より炭素数(分子量)が大きく、蒸発しにくく、粘度が高いものであることが望ましい。具体的にはA成分の粘度が8.5〜9.5mm2/sの範囲であるのに対し、B成分の粘度が10〜20mm2/sの範囲であるジエステルがより望ましい。このような特性を有するB成分として用いるジエステルとしては、例えば、DOZ(アゼライン酸ジオクチル)やDOS(セバシン酸ジオクチル)、DIDA(アジピン酸ジイソデシル)などがある。 That is, it is desirable that the B component used as an auxiliary component is highly compatible with the main component A component, has excellent low-temperature fluidity, and exhibits low evaporation. In other words, it is desirable that the B component has a larger carbon number (molecular weight) than the A component, is difficult to evaporate, and has a high viscosity. While specifically a range viscosity of 8.5 to 9.5 mm 2 / s of the A component, diesters viscosity of component B is in the range of 10 to 20 mm 2 / s is more preferable. Examples of the diester used as the B component having such characteristics include DOZ (dioctyl azelate), DOS (dioctyl sebacate), and DIDA (diisodecyl adipate).

また、主成分であるA成分と副成分であるB成分との構成割合は潤滑油組成物全体に対して、B成分が1〜5重量%の範囲でなければならない。B成分の含有割合が5重量%を越えると、B成分の影響が強く現れA成分の低粘度性や低温流動性といった特長が失われ、軸受トルクが増大してしまう。更に、B成分の含有割合が1重量%未満では、A成分の蒸発性改善などに顕著な混合効果が得られない。
つまり、本発明は、主成分であるエステルに副成分であるジエステルを最適量混合することで、低粘度と低蒸発性を両立させるものである。また、その混合により主成分の良好な性能を維持しつつ、オイルの低蒸発性と軸受の低トルク化を実現し、スピンドルモータの長寿命化をもたらすのである。なお、主成分であるA成分のエステル及び副成分であるB成分のジエステルは潤滑油基油を構成する。
Further, the constituent ratio of the A component as the main component and the B component as the subcomponent must be in the range of 1 to 5% by weight of the B component with respect to the entire lubricating oil composition. When the content ratio of the B component exceeds 5% by weight, the influence of the B component is strong, and the characteristics such as the low viscosity and low temperature fluidity of the A component are lost, and the bearing torque increases. Furthermore, when the content ratio of the B component is less than 1% by weight, a remarkable mixing effect cannot be obtained for improving the evaporation property of the A component.
That is, the present invention achieves both low viscosity and low evaporability by mixing an optimal amount of the diester as the accessory component with the ester as the main component. In addition, the mixing maintains the good performance of the main component while realizing low oil evaporation and low torque of the bearing, thereby extending the life of the spindle motor. The ester of component A as the main component and the diester of component B as the auxiliary component constitute a lubricating base oil.

本発明の潤滑油組成物には、必要に応じて、酸化防止剤、極圧剤、耐摩耗剤、防錆剤、金属不活性剤、油性向上剤等の公知の添加剤を混合することができる。   The lubricating oil composition of the present invention may be mixed with known additives such as antioxidants, extreme pressure agents, antiwear agents, rust inhibitors, metal deactivators, oiliness improvers as necessary. it can.

そして本発明の潤滑油組成物は、動圧型焼結含油軸受油用、流体動圧軸受用、多孔質含油軸受用、動圧型多孔質含油軸受用に好適に使用することができる。   The lubricating oil composition of the present invention can be suitably used for hydrodynamic sintered oil-impregnated bearing oils, fluid dynamic pressure bearings, porous oil-impregnated bearings, and dynamic pressure-type porous oil-impregnated bearings.

流体動圧軸受、多孔質含油軸受、動圧型多孔質含油軸受等に、本発明の潤滑油組成物を使用することで、情報機器関連の小型スピンドルモータ用軸受の耐久性を損なうことなく、低トルク化を実現することができる。   By using the lubricating oil composition of the present invention for fluid dynamic pressure bearings, porous oil-impregnated bearings, dynamic pressure-type porous oil-impregnated bearings, etc., the durability of small spindle motor bearings related to information equipment can be reduced. Torque can be realized.

本発明の潤滑油組成物を適用する形態について、図面を参照して詳細に説明する。
図2及び図3は、焼結含油軸受装置及び動圧型焼結含油軸受装置の断面図であり、図中、1はシール、2は多孔質含油軸受、3はラジアル軸受部、4は軸、5はハウジング、6はシール隙間、7はフランジ軸、8はスラスト軸受部、9はハウジング円筒部及び10はハウジングスラスト受部である。
The form which applies the lubricating oil composition of this invention is demonstrated in detail with reference to drawings.
2 and 3 are sectional views of the sintered oil-impregnated bearing device and the hydrodynamic sintered oil-impregnated bearing device, in which 1 is a seal, 2 is a porous oil-impregnated bearing, 3 is a radial bearing, 4 is a shaft, 5 is a housing, 6 is a seal gap, 7 is a flange shaft, 8 is a thrust bearing portion, 9 is a housing cylindrical portion, and 10 is a housing thrust receiving portion.

そこで、図3のc-1に示すような構造の軸受装置を考える。本構造では、ハウジング内部空間は潤滑油で満たされた状態で使用される。
定常状態のシール部の拡大図を図4のc-4に示す。潤滑油面はシールの内周部にあり、使用環境温度、姿勢等の想定される条件において、潤滑油面は常にシール内周部にあるように設計される。仮に潤滑油面がシール上側端面より上になった場合は、当然潤滑油が軸受装置外部へ漏れてしまう。また、潤滑油面がシール下側端面より下がった場合、軸受面へ供給される潤滑油に空気が混入し、回転精度を低下させると共に、空気の熱膨張によって、内部の潤滑油を軸受装置外部へ押し出し、潤滑油漏れを引き起こす原因となる。潤滑油が蒸発することによって、後者のような現象が発生する。したがって、具体的な設計としては、軸受装置の使用最低温度(つまり潤滑油体積が最も小さく、面位置が最低の状態)にて、潤滑油面位置が図4のc-4の状態から蒸発によってc-5の状態になるまでの時間が、装置全体に求められる耐久時間より長くなるように、設計する必要がある。
Therefore, consider a bearing device having a structure as shown in FIG. In this structure, the inner space of the housing is used in a state filled with lubricating oil.
An enlarged view of the seal portion in the steady state is shown as c-4 in FIG. The lubricating oil surface is on the inner peripheral portion of the seal, and the lubricating oil surface is always designed to be on the inner peripheral portion of the seal under the assumed conditions such as operating environment temperature and posture. If the lubricating oil surface is above the upper end surface of the seal, the lubricating oil naturally leaks outside the bearing device. In addition, when the lubricating oil surface falls below the seal lower end surface, air is mixed into the lubricating oil supplied to the bearing surface, reducing the rotational accuracy and causing the internal lubricating oil to flow outside the bearing device due to the thermal expansion of the air. This will cause the oil to leak out. The latter phenomenon occurs when the lubricating oil evaporates. Therefore, as a specific design, at the minimum operating temperature of the bearing device (that is, the state where the lubricating oil volume is the smallest and the surface position is the lowest), the lubricating oil surface position is evaporated from the state of c-4 in FIG. It is necessary to design so that the time until the state of c-5 becomes longer than the durability time required for the entire apparatus.

仮に、軸受装置の使用最低温度の環境で、図4のc-4の状態から潤滑油の蒸発によってc-5の状態になる場合の、潤滑油全体に占める体積減少率を3重量%とし、軸受装置に求められる耐久時間を10000hとすると、図5に示すように、10000hの放置で蒸発率が3重量%未満の潤滑油を選定しなければ、耐久性を満足することはできない。このように、潤滑油の蒸発特性と軸受装置(又はそれを組みこむモータ)の耐久性には相関があり、蒸発特性の良好な潤滑油を選択することは、軸受装置の長寿命化につながる。   Temporarily, in the environment of the minimum temperature of use of the bearing device, when the state of c-4 in FIG. Assuming that the endurance time required for the bearing device is 10000h, as shown in FIG. 5, the durability cannot be satisfied unless a lubricating oil having an evaporation rate of less than 3% by weight is selected after leaving for 10000h. Thus, there is a correlation between the evaporation characteristics of the lubricating oil and the durability of the bearing device (or the motor incorporating the same), and selecting a lubricating oil with good evaporation characteristics leads to a longer life of the bearing device. .

一方、軸受のトルクに影響を及ぼす因子には、軸受すきま、軸径などがあるが、潤滑油の粘度もひとつの大きな要因となる。より低粘度の潤滑油を使用することで、攪拌抵抗(粘性抵抗)を小さくすることができ、その結果トルクも低くなる。   On the other hand, factors affecting bearing torque include bearing clearance and shaft diameter, but the viscosity of the lubricating oil is also one major factor. By using a lower viscosity lubricating oil, the stirring resistance (viscous resistance) can be reduced, resulting in a lower torque.

動粘度の異なる潤滑油を用意し、図3のc-1に示す構造の軸受装置にてトルクを測定した結果を図6に示す。図6に示すように、潤滑油の動粘度とトルクには比例関係があり、潤滑油粘度の低減は、直接軸受トルクの低減につながることがわかる。
以上のように、低トルクで長寿命な軸受装置を提供するという課題は、低粘度で蒸発特性に優れた潤滑油を選択することによって、解決することができる。
FIG. 6 shows the results of preparing the lubricating oils having different kinematic viscosities and measuring the torque with the bearing device having the structure shown by c-1 in FIG. As shown in FIG. 6, there is a proportional relationship between the kinematic viscosity of the lubricating oil and the torque, and it can be seen that a reduction in the lubricating oil viscosity directly leads to a reduction in the bearing torque.
As described above, the problem of providing a bearing device having a low torque and a long service life can be solved by selecting a lubricating oil having a low viscosity and excellent evaporation characteristics.

以下、実施例及び比較例を挙げて本発明を説明する。
主成分(A成分)及び副成分(B成分)のエステルを表1に示す。A成分、B成分及びその他の添加剤を表2〜表5に示す割合で配合して潤滑油組成物とした。この潤滑油組成物について、蒸発率と軸受トルクの評価結果を併せて表2〜表5に示す。表2は比較例1〜10の潤滑油の蒸発率と軸受トルク(室温及び-20℃)の評価結果を示す。表3〜表5は、A成分にジイソオクチルアジペートを用い、B成分の混合割合を変えた潤滑油を数種類用意し、蒸発率と軸受トルクを評価した結果を示している。なお、表2〜5に示す比較例と実施例には、公知の酸化防止剤であるアルキルジフェニルアミン(ADPA)と金属不活性剤であるベンゾトリアゾール(BTA)を同一量添加している。なお、表2〜5において、配合量は重量%であり、残は潤滑油組成物全体を100重量%としたときの残余を示す。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
Table 1 shows the main component (component A) and subcomponent (component B) esters. A component, B component and other additives were blended in the proportions shown in Tables 2 to 5 to obtain lubricating oil compositions. About this lubricating oil composition, the evaluation results of evaporation rate and bearing torque are shown together in Tables 2 to 5. Table 2 shows the evaluation results of the evaporation rate and bearing torque (room temperature and −20 ° C.) of the lubricating oils of Comparative Examples 1 to 10. Tables 3 to 5 show the results of evaluating the evaporation rate and the bearing torque by preparing several types of lubricating oil using diisooctyl adipate as the A component and changing the mixing ratio of the B component. In addition, in the comparative examples and examples shown in Tables 2 to 5, the same amount of alkyldiphenylamine (ADPA) which is a known antioxidant and benzotriazole (BTA) which is a metal deactivator are added. In Tables 2 to 5, the blending amount is% by weight, and the remainder indicates the remainder when the entire lubricating oil composition is 100% by weight.

Figure 2007039496
Figure 2007039496

Figure 2007039496
Figure 2007039496

Figure 2007039496
Figure 2007039496

Figure 2007039496
Figure 2007039496

Figure 2007039496
Figure 2007039496

蒸発率の測定方法は以下の通り。
容器:φ37×50
潤滑油量:3g
放置温度:120℃(恒温槽)
放置時間:3000h
初期重量からの重量減少率を測定し、5重量%未満を合格とした。
判定基準
◎:2.0重量%未満(合格)
○:2.0重量%以上5重量%未満(合格)
×:5.0重量%以上(不合格)
The method of measuring the evaporation rate is as follows.
Container: φ37 × 50
Lubricating oil amount: 3g
Leaving temperature: 120 ° C (constant temperature bath)
Leaving time: 3000h
The weight reduction rate from the initial weight was measured, and less than 5% by weight was accepted.
Judgment criteria A: Less than 2.0% by weight (pass)
○: 2.0% by weight or more and less than 5% by weight (pass)
×: 5.0% by weight or more (failed)

軸受トルク評価条件
回転速度:3600rpm
雰囲気温度:-20℃,25℃
モータ姿勢:正立
判定基準
◎:-20℃ 210mA未満、25℃ 25mA未満(合格)
○:-20℃ 210mA以上 230mA未満、25℃ 25mA以上 30mA未満(合格)
×:-20℃ 230mA以上、25℃ 30mA以上(不合格)
Bearing torque evaluation conditions Rotational speed: 3600rpm
Ambient temperature: -20 ℃, 25 ℃
Motor posture: Upright judgment criteria ◎: -20 ℃ less than 210mA, 25 ℃ less than 25mA (pass)
○: -20 ℃ 210mA or more, less than 230mA, 25 ℃ 25mA or more, less than 30mA (pass)
×: -20 ℃ 230mA or more, 25 ℃ 30mA or more (failed)

表2より、ジエステルを構成する二価カルボン酸部の炭素数が6の場合、アルコール部の炭素数が9以上になると低温における粘度上昇に伴い軸受トルクの上昇が認められる。また、ジエステルを構成するアルコール部の炭素数が8の場合であっても、二価カルボン酸部の炭素数が6以上になると同様に軸受トルクの上昇が認められる。また、DBSのように分子内の総炭素数が少ないと、分子の極性が増大するため、-20℃の低温領域では流動性を失ってしまう。一方、油の蒸発率は40℃での動粘度が9mm2/s付近を境界にそれ以下では急激に増大する傾向となる。したがって、本発明では低温での軸受トルクに優れ、かつ、蒸発率も単独では要求性能を満足しないものの、40℃での動粘度が9mm2/s付近にあり、他種油との混合で改善可能となる炭素数8の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルを主成分として選択した。そして、その主成分のエステルにそれよりも高粘度の潤滑油である副成分潤滑油を混合することで、主成分の低温流動性は維持しつつ蒸発率を更に低減できるよう調整する。なお、主成分となる炭素数6の二価カルボン酸に用いる炭素数8のアルコール成分としては、1価のアルコールであれば何ら差し支えないが、粘度、安定性の面から考えるとイソオクチルアルコールが好ましい。 From Table 2, when the carbon number of the divalent carboxylic acid part constituting the diester is 6, when the carbon number of the alcohol part is 9 or more, an increase in bearing torque is observed with an increase in viscosity at low temperature. Further, even when the carbon number of the alcohol part constituting the diester is 8, when the carbon number of the divalent carboxylic acid part becomes 6 or more, an increase in the bearing torque is recognized similarly. In addition, when the total number of carbon atoms in the molecule is small as in DBS, the polarity of the molecule increases, so that fluidity is lost in a low temperature region of −20 ° C. On the other hand, the evaporation rate of oil tends to increase abruptly when the kinematic viscosity at 40 ° C. is about 9 mm 2 / s as a boundary. Therefore, in the present invention, the bearing torque at low temperature is excellent and the evaporation rate alone does not satisfy the required performance, but the kinematic viscosity at 40 ° C is around 9 mm 2 / s, which is improved by mixing with other oils. An ester synthesized from a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms was selected as the main component. Then, by mixing the main component ester with a secondary component lubricating oil which is a lubricating oil having a higher viscosity than that of the main component ester, the evaporation rate can be further reduced while maintaining the low temperature fluidity of the main component. The alcohol component having 8 carbon atoms used for the main component divalent carboxylic acid having 6 carbon atoms may be any monovalent alcohol, but from the viewpoint of viscosity and stability, isooctyl alcohol may be used. preferable.

表3より、副成分として用いる潤滑油は、混合油の蒸発率を低減するため、上記主成分となるエステルの粘度より高粘度なもの、具体的には40℃での動粘度が10mm2/s以上でなければならない。更に、低温での粘度上昇を抑制するため分子内の総炭素数が23〜28の範囲のものを選択することが好ましい。分子内の総炭素数が22以下のものを使用すると、最適量の混合を行っても蒸発を助長してしまう。また、分子内の総炭素数が29以上のものを使用すると、低温あるいは常温での粘度上昇のため、軸受のトルクが増大してしまう。 From Table 3, the lubricating oil used as an auxiliary component has a viscosity higher than that of the ester as the main component in order to reduce the evaporation rate of the mixed oil, specifically, the kinematic viscosity at 40 ° C. is 10 mm 2 / Must be greater than or equal to s. Furthermore, in order to suppress an increase in viscosity at a low temperature, it is preferable to select one having a total carbon number in the range of 23 to 28. If the total number of carbon atoms in the molecule is 22 or less, evaporation will be promoted even if the optimum amount of mixing is performed. In addition, if the number of carbon atoms in the molecule is 29 or more, the torque of the bearing will increase due to the increase in viscosity at low or normal temperature.

表4〜表5の結果より、副成分である低粘度潤滑油の種類にもよるが、その割合が5重量%を越えると、低温の軸受トルクが増大することがわかる。その場合、副成分潤滑油の構成割合が大きいため、その影響が強く現れ、低温の粘度が大きくなったと考えられる。したがって、副成分潤滑油の構成割合は5重量%以下でなければならない。また、副成分潤滑油の構成割合が1重量%未満では、その混合の影響はほとんど認められず、主成分の蒸発率を抑制する効果は認められない。副成分潤滑油の構成割合が1重量%の場合、1重量%未満の粘度と特に差はないが、混合する副成分潤滑油により蒸発特性を満たすものがある。わずか1重量%ではあるが、主成分のジエステルの低温特性を維持しつつ、蒸発特性を満足させる効果は大きい。特に、ジエステルであるDOZ、DOS、DIDAは低蒸発性、相溶性、潤滑性の面からも副成分として好ましい。
以上より、主成分である炭素数8の一価アルコールと炭素数6の二価カルボン酸からなるエステルに副成分として40℃における動粘度が10mm2/s以上の潤滑油を混合した場合、混合する副成分の潤滑油全体における構成割合は1重量%以上5重量%以下とすることが望ましい。
From the results of Tables 4 to 5, it can be seen that the bearing torque at low temperature increases when the ratio exceeds 5% by weight, although it depends on the type of low-viscosity lubricating oil that is a subcomponent. In that case, since the component ratio of the auxiliary component lubricating oil is large, the influence appears strongly, and it is considered that the viscosity at low temperature is increased. Therefore, the component ratio of the auxiliary component lubricating oil must be 5% by weight or less. Further, when the component ratio of the auxiliary component lubricating oil is less than 1% by weight, the influence of the mixing is hardly observed, and the effect of suppressing the evaporation rate of the main component is not recognized. When the component ratio of the subcomponent lubricant is 1% by weight, there is no particular difference from the viscosity of less than 1% by weight, but there are some that satisfy the evaporation characteristics with the subcomponent lubricant to be mixed. Although it is only 1% by weight, it has a great effect of satisfying the evaporation characteristics while maintaining the low temperature characteristics of the main component diester. In particular, diesters such as DOZ, DOS, and DIDA are preferable as subcomponents from the viewpoint of low evaporation, compatibility, and lubricity.
From the above, when lubricating oil with a kinematic viscosity at 40 ° C of 10 mm 2 / s or more is mixed as an auxiliary component with an ester composed of a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms as the main components, It is desirable that the composition ratio of the subcomponents in the entire lubricating oil is 1% by weight or more and 5% by weight or less.

本発明による潤滑油を使用する軸受装置としては、以下のものが挙げられる。
図1のaは流体動圧軸受の一例を示す断面図である。図中11はスリーブであり、同一番号を付したものは図2及び図3と同一である。本流体動圧軸受は、軸外周面とスリーブ内周面の少なくともいずれか一方に動圧溝を設け、その軸外周面とスリーブ内周面のすきま(軸受すきま部)へ潤滑油を注入あるいは真空含浸等の方法によって充填することで、軸の回転に伴って発生する潤滑油の動圧によって軸をラジアル方向に回転支持するものである。図1のbは上記aにさらにスラスト軸受部8を設け、ラジアル、スラスト両方向を回転支持するタイプの流体動圧軸受の一例を示す断面図である。スラスト軸受部は、軸のフランジ部12と、それに相対する形状に加工・組み立てられたスリーブ11及び底板によって形成され、フランジ面とスリーブの相対部及びフランジ面と底板の相対部それぞれの少なくともいずれか一方に動圧溝が設けられており、ラジアル、スラスト軸受部両方へaに示す流体動圧軸受と同様に潤滑油を注入することによって、軸の回転に伴って発生する潤滑油の動圧効果でラジアル、スラスト両方向に軸を支持することができる。なお、図1のa及びbは動圧溝を設けているが、動圧溝を有さない流体軸受であってもよい。
The following is mentioned as a bearing apparatus using the lubricating oil by this invention.
FIG. 1a is a cross-sectional view showing an example of a fluid dynamic pressure bearing. In the figure, 11 is a sleeve, and the same reference numerals are the same as those in FIGS. In this fluid dynamic pressure bearing, a dynamic pressure groove is provided on at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, and lubricating oil is injected or vacuumed into the clearance (bearing clearance) between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve. By filling by a method such as impregnation, the shaft is rotationally supported in the radial direction by the dynamic pressure of the lubricating oil generated with the rotation of the shaft. FIG. 1b is a cross-sectional view showing an example of a fluid dynamic pressure bearing of the type in which a thrust bearing portion 8 is further provided in the above a and the radial and thrust directions are rotationally supported. The thrust bearing portion is formed by a shaft flange portion 12 and a sleeve 11 and a bottom plate processed and assembled in a shape corresponding to the shaft flange portion. A dynamic pressure groove is provided on one side, and by injecting lubricating oil into both the radial and thrust bearings in the same manner as the fluid dynamic pressure bearing shown in a, the dynamic pressure effect of the lubricating oil generated as the shaft rotates The shaft can be supported in both radial and thrust directions. In addition, although a and b of FIG. 1 have provided the dynamic pressure groove, the fluid bearing which does not have a dynamic pressure groove may be sufficient.

図2は多孔質含油軸受ユニットの一例を示す断面図である。図2のaは軸受面が真円形状である真円軸受、図2のb、図3のc-1,c-2及びc-3は動圧型多孔質含油軸受である。図2のa及びbは軸受面がラジアルのみのタイプで、これらは、軸受体内にあらかじめ潤滑油を含浸した多孔質含油軸受2を、ハウジング部材5に圧入、かしめ、接着などの方法で固定した軸受ユニットの状態でモータに固定され、ロータを固定した軸4を軸受内径部に挿入して使用される。必要であれば軸挿入の前に軸受内径面に潤滑油を適量注入する。ハウジング部材の反ロータ側はオイル漏れ防止のため、バックアップ等で封止される。あらかじめ底部がコップ型をしたハウジング部材を使用してもよい。   FIG. 2 is a sectional view showing an example of a porous oil-impregnated bearing unit. 2a is a perfect circle bearing having a perfect circular bearing surface, and b in FIG. 2, c-1, c-2 and c-3 in FIG. 3 are dynamic pressure type porous oil-impregnated bearings. FIGS. 2a and 2b are types in which the bearing surface is radial only, and these are a porous oil-impregnated bearing 2 impregnated with lubricating oil in advance in the bearing body and fixed to the housing member 5 by a method such as press-fitting, caulking, or bonding. The shaft 4 is fixed to the motor in the state of the bearing unit, and the shaft 4 to which the rotor is fixed is inserted into the bearing inner diameter portion. If necessary, an appropriate amount of lubricating oil is injected into the inner surface of the bearing before inserting the shaft. The non-rotor side of the housing member is sealed with a backup or the like to prevent oil leakage. A housing member having a cup shape at the bottom may be used in advance.

一方、図3のc-1及びc-2は動圧型焼結含油軸受の内径面と片側端面、更にハウジング底部にそれぞれ軸受部を有し、フランジ付軸7をラジアル・アキシアル方向に完全に非接触で回転支持するものであり、このタイプは、ハウジングに軸、軸受、シールをAss'yした後にユニット内に潤滑油を含浸し、モータに組まれ使用される。ユニットの空間内に完全に潤滑油が含浸され、ユニット内における空気の残留がなくなるため、運転中は軸受部に連続した油膜が形成され、高回転精度を保つと共に、空気の熱膨張によるオイル漏れの心配が無くなる。このタイプでは、あらゆる使用姿勢において高回転精度を発揮することができるため、HDDやハンディビデオカメラ等、スピンドルモータの使用姿勢が横や倒立、あるいは一定しないような用途の回転支持に好適である。このタイプの軸受ユニットはそのままモータに固定され、フランジ付軸の先端にロータを固定することで使用される。なお、c-2に示すように、ハウジングを円筒部9とスラスト受け部10の2体に分離させたハウジング分離タイプでもよい。   On the other hand, c-1 and c-2 in FIG. 3 have bearings at the inner diameter surface and one end surface of the hydrodynamic sintered oil-impregnated bearing, and at the bottom of the housing, and the flanged shaft 7 is completely non-radial in the radial and axial directions. This type supports rotation by contact, and this type is used by assembling a motor by impregnating the unit with lubricating oil after assembling the shaft, bearings and seals in the housing. The unit's space is completely impregnated with lubricating oil and no air remains in the unit, so a continuous oil film is formed on the bearing during operation, maintaining high rotational accuracy and oil leakage due to thermal expansion of air. No worries. Since this type can exhibit high rotation accuracy in any use posture, it is suitable for rotation support in applications where the use posture of the spindle motor is horizontal, upside down, or not constant, such as an HDD or a handy video camera. This type of bearing unit is fixed to the motor as it is, and is used by fixing the rotor to the tip of the flanged shaft. In addition, as shown in c-2, a housing separation type in which the housing is separated into two bodies of the cylindrical portion 9 and the thrust receiving portion 10 may be used.

更に、図3のc-3は動圧型焼結含油軸受の内径面と片側端面、更にハウジング端面にそれぞれ軸受部を有し、軸7,軸にネジ止めにて固定したネジのフランジ部12及びハブ13をラジアル・アキシアル方向に完全に非接触で回転支持するものであり、このタイプは、ハウジングに軸、軸受、ハブ、ネジ、底板をAss'yした後にユニット内に潤滑油を含浸し、モータに組まれ使用される。なお、ハブと軸は一体で加工するか、別体で組立て時にAss'yするか、いずれを選択しても良い。ハブと軸が別体の場合、軸とネジを一体化させたフランジ付き軸としても良い。   Further, c-3 in FIG. 3 has bearing portions on the inner diameter surface and one end surface of the hydrodynamic sintered oil-impregnated bearing, and further on the end surface of the housing. The hub 13 is rotationally supported without contact completely in the radial and axial directions, and this type impregnates the unit with lubricating oil after assembling the shaft, bearings, hub, screws and bottom plate to the housing, Used in a motor. It should be noted that either the hub and the shaft can be processed integrally or can be assembled separately when assembled. When the hub and the shaft are separate bodies, a flanged shaft in which the shaft and the screw are integrated may be used.

前述の通り、潤滑油の粘度、蒸発特性は、その潤滑油を使用した軸受装置を組み込んだモータのトルク、耐久性とそれぞれ相関があるため、本発明による低粘度で蒸発特性に優れた潤滑剤を軸受装置に使用することで、モータの低トルク化、長寿命化を両立することができることは明らかであるが、ここではその確認として、上記軸受装置を使用したスピンドルモータでの耐久試験結果の一例を示す。図7は、図2のbに示す動圧型焼結含油軸受を使用した軸受装置をポリゴンスキャナモータに搭載した例である。また、図8は、図3のc-1に示す軸受装置をHDDスピンドルモータに搭載した例である。図9には、図7に示すポリゴンスキャナモータを下記条件にて耐久試験を行った結果を示す。   As described above, the viscosity and evaporation characteristics of the lubricating oil are correlated with the torque and durability of the motor incorporating the bearing device using the lubricating oil, respectively. Although it is clear that the torque can be reduced and the life of the motor can be increased by using the bearing device in the bearing device, here, as a confirmation, the result of the durability test with the spindle motor using the bearing device is used. An example is shown. FIG. 7 shows an example in which a bearing device using the hydrodynamic sintered oil-impregnated bearing shown in FIG. 2b is mounted on a polygon scanner motor. FIG. 8 shows an example in which the bearing device indicated by c-1 in FIG. 3 is mounted on an HDD spindle motor. FIG. 9 shows the results of endurance testing of the polygon scanner motor shown in FIG. 7 under the following conditions.

耐久試験条件
潤滑油:比較例2又は実施例1
回転速度:30000rpm
雰囲気温度:60℃
モータ姿勢:40°傾斜
試験時間:50万サイクル(市場での要求は30万サイクル)
運転条件:ON/OFF(1サイクル36秒)
図9に示す通り、実施例の潤滑油組成物は、比較例の潤滑油組成物を使用した場合に比べ低トルク(電流値が低い)であり、耐久性も十分市場の要求を満たしている。
Endurance test conditions Lubricating oil: Comparative Example 2 or Example 1
Rotation speed: 30000rpm
Ambient temperature: 60 ℃
Motor orientation: 40 ° tilt Test time: 500,000 cycles (market requirement is 300,000 cycles)
Operating conditions: ON / OFF (1 cycle 36 seconds)
As shown in FIG. 9, the lubricating oil compositions of the examples have lower torque (lower current value) than the case where the lubricating oil compositions of the comparative examples are used, and the durability sufficiently satisfies the market requirements. .

流体動圧軸受装置の断面図Cross section of fluid dynamic bearing device 焼結含油軸受装置及び動圧型焼結含油軸受装置の断面図Sectional view of sintered oil-impregnated bearing device and dynamic pressure type sintered oil-impregnated bearing device 焼結含油軸受装置及び動圧型焼結含油軸受装置の断面図Sectional view of sintered oil-impregnated bearing device and dynamic pressure type sintered oil-impregnated bearing device 焼結含油軸受装置及び動圧型焼結含油軸受装置の断面図Sectional view of sintered oil-impregnated bearing device and dynamic pressure type sintered oil-impregnated bearing device 潤滑油組成物の蒸発特性と耐久時間の関係を示すグラフA graph showing the relationship between evaporation characteristics and durability of lubricating oil compositions 動粘度とトルクの関係を示すグラフGraph showing the relationship between kinematic viscosity and torque ポリゴンスキャナモータの断面図Cross section of polygon scanner motor HDDスピンドルモータの断面図Cross section of HDD spindle motor ポリゴンスキャナモータでの耐久試験結果を示すグラフGraph showing the durability test results with a polygon scanner motor

符号の説明Explanation of symbols

1 シール
2 多孔質含油軸受
3 ラジアル軸受部
4 軸
5 ハウジング
6 シール隙間
7 フランジ付軸
8 スラスト軸受部
9 ハウジング円筒
10 ハウジングスラスト受け部
11 スリーブ
12 フランジ部
13 ハブ
DESCRIPTION OF SYMBOLS 1 Seal 2 Porous oil-impregnated bearing 3 Radial bearing part 4 Shaft 5 Housing 6 Seal clearance 7 Shaft with flange 8 Thrust bearing part 9 Housing cylinder 10 Housing thrust receiving part 11 Sleeve 12 Flange part 13 Hub

Claims (9)

(A)炭素数8の一価アルコールと炭素数6の二価カルボン酸から合成されるエステルを主成分とし、(B)主成分とは異なるジエステルであって、40℃での動粘度が10mm2/s以上で分子の総炭素数が23〜28のジエステルを1〜5重量%含む潤滑油組成物。 (A) The main component is an ester synthesized from a monohydric alcohol having 8 carbon atoms and a divalent carboxylic acid having 6 carbon atoms, and (B) a diester that is different from the main component and has a kinematic viscosity at 40 ° C. of 10 mm. A lubricating oil composition comprising 1 to 5% by weight of a diester having a molecular weight of 23 to 28 and a molecular weight of 2 / s or more. 炭素数8の一価アルコールがイソオクチルアルコールである請求項1記載の潤滑油組成物。   The lubricating oil composition according to claim 1, wherein the monohydric alcohol having 8 carbon atoms is isooctyl alcohol. 軸外周面とスリーブ内周面の隙間に介在する潤滑油の油膜圧力によって回転軸を支持する軸受部を設け、潤滑剤として請求項1又は2に記載の潤滑油組成物を用いたことを特徴とする流体軸受ユニット。   A bearing portion that supports the rotating shaft by oil film pressure of lubricating oil interposed in a gap between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve is provided, and the lubricating oil composition according to claim 1 or 2 is used as a lubricant. Fluid bearing unit. 軸外周面とスリーブ内周面の何れか一方に動圧発生溝を設け、潤滑剤として請求項1又は2に記載の潤滑油組成物を用いたことを特徴とする流体動圧軸受ユニット。   A fluid dynamic pressure bearing unit characterized in that a dynamic pressure generating groove is provided on one of the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, and the lubricating oil composition according to claim 1 is used as a lubricant. 請求項1又は2に記載の潤滑油組成物を含浸した多孔質含油軸受を有することを特徴とする多孔質含油軸受ユニット。   A porous oil-impregnated bearing unit comprising a porous oil-impregnated bearing impregnated with the lubricating oil composition according to claim 1. 多孔質含油軸受が、動圧型多孔質含油軸受である請求項5に記載の多孔質含油軸受ユニット。   The porous oil-impregnated bearing unit according to claim 5, wherein the porous oil-impregnated bearing is a dynamic pressure type porous oil-impregnated bearing. 請求項1又は2に記載の潤滑油組成物を含浸したことを特徴とする多孔質含油軸受。   A porous oil-impregnated bearing impregnated with the lubricating oil composition according to claim 1. 多孔質含油軸受が、動圧型多孔質含油軸受である請求項7に記載の多孔質含油軸受。   The porous oil-impregnated bearing according to claim 7, wherein the porous oil-impregnated bearing is a dynamic pressure type porous oil-impregnated bearing. 請求項3〜6の何れかに記載の軸受ユニットを備えたスピンドルモータ。   A spindle motor comprising the bearing unit according to claim 3.
JP2005222780A 2005-08-01 2005-08-01 Fluid bearing unit and lubricating oil composition for bearing Expired - Fee Related JP4987264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222780A JP4987264B2 (en) 2005-08-01 2005-08-01 Fluid bearing unit and lubricating oil composition for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222780A JP4987264B2 (en) 2005-08-01 2005-08-01 Fluid bearing unit and lubricating oil composition for bearing

Publications (2)

Publication Number Publication Date
JP2007039496A true JP2007039496A (en) 2007-02-15
JP4987264B2 JP4987264B2 (en) 2012-07-25

Family

ID=37797788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222780A Expired - Fee Related JP4987264B2 (en) 2005-08-01 2005-08-01 Fluid bearing unit and lubricating oil composition for bearing

Country Status (1)

Country Link
JP (1) JP4987264B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125842A1 (en) 2010-03-31 2011-10-13 新日鐵化学株式会社 Lubricating oil composition
WO2012133183A1 (en) 2011-03-30 2012-10-04 出光興産株式会社 Ester compound, lubricant base oil, lubricant, grease base oil, and grease
KR101301343B1 (en) 2011-05-06 2013-08-29 삼성전기주식회사 Lubricating oil composition
US8889608B2 (en) 2010-03-31 2014-11-18 Nippon Steel & Sumikin Chemical Co., Ltd. Lubricating oil composition
WO2023074698A1 (en) * 2021-10-25 2023-05-04 ミネベアミツミ株式会社 Fluid dynamic pressure bearing oil, spindle motor, and disk drive device
WO2024122448A1 (en) * 2022-12-05 2024-06-13 ミネベアミツミ株式会社 Fluid dynamic bearing, spindle motor, and disk drive device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073078A (en) * 1998-08-31 2000-03-07 New Japan Chem Co Ltd Metalworking fluid composition
JP2001003076A (en) * 1999-04-22 2001-01-09 Canon Inc Kinetic pressure bearing apparatus and deflection scanning apparatus having same
JP2001146918A (en) * 1999-11-22 2001-05-29 Canon Inc Fluid bearing device and polygon mirror scanner unit
JP2002097482A (en) * 2000-09-25 2002-04-02 New Japan Chem Co Ltd Bearing lubricating oil
JP2003193075A (en) * 2001-12-27 2003-07-09 Nippon Steel Chem Co Ltd Hydrodynamic bearing unit and lubricant oil composition for bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073078A (en) * 1998-08-31 2000-03-07 New Japan Chem Co Ltd Metalworking fluid composition
JP2001003076A (en) * 1999-04-22 2001-01-09 Canon Inc Kinetic pressure bearing apparatus and deflection scanning apparatus having same
JP2001146918A (en) * 1999-11-22 2001-05-29 Canon Inc Fluid bearing device and polygon mirror scanner unit
JP2002097482A (en) * 2000-09-25 2002-04-02 New Japan Chem Co Ltd Bearing lubricating oil
JP2003193075A (en) * 2001-12-27 2003-07-09 Nippon Steel Chem Co Ltd Hydrodynamic bearing unit and lubricant oil composition for bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125842A1 (en) 2010-03-31 2011-10-13 新日鐵化学株式会社 Lubricating oil composition
CN102939364A (en) * 2010-03-31 2013-02-20 新日铁化学株式会社 Lubricating oil composition
US8889607B2 (en) 2010-03-31 2014-11-18 Nippon Steel & Sumikin Chemical Co., Ltd. Lubricating oil composition
US8889608B2 (en) 2010-03-31 2014-11-18 Nippon Steel & Sumikin Chemical Co., Ltd. Lubricating oil composition
WO2012133183A1 (en) 2011-03-30 2012-10-04 出光興産株式会社 Ester compound, lubricant base oil, lubricant, grease base oil, and grease
US9273264B2 (en) 2011-03-30 2016-03-01 Idemitsu Kosan Co., Ltd. Ester compound, lubricant base oil, lubricant, grease base oil, and grease
KR101301343B1 (en) 2011-05-06 2013-08-29 삼성전기주식회사 Lubricating oil composition
WO2023074698A1 (en) * 2021-10-25 2023-05-04 ミネベアミツミ株式会社 Fluid dynamic pressure bearing oil, spindle motor, and disk drive device
WO2024122448A1 (en) * 2022-12-05 2024-06-13 ミネベアミツミ株式会社 Fluid dynamic bearing, spindle motor, and disk drive device

Also Published As

Publication number Publication date
JP4987264B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4028982B2 (en) Fluid bearing unit and lubricating oil composition for bearing
JP5202830B2 (en) Lubricating oil for fluid bearing, fluid bearing using the same, and lubrication method for fluid bearing
US10280382B2 (en) Lubricating oil for fluid dynamic bearing and spindle motor equipped with the lubricating oil
EP1094104A1 (en) Conductive lubricant for fluid dynamic bearing
CN1786495B (en) Hydrodynamic bearing device, and spindle motor and information device using the same
JP4987264B2 (en) Fluid bearing unit and lubricating oil composition for bearing
KR20130038539A (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated by using the same
US20060171613A1 (en) Hydrodynamic bearing device, and spindle motor and information device using the same
JP4374090B2 (en) Hydrodynamic bearing, spindle motor, and rotating body device
JP5145696B2 (en) Rolling device
JP4213714B2 (en) Sintered oil-impregnated bearing
JP2002195252A (en) Fluid bearing device and scanner motor for image forming apparatus using bearing device
JP2010037490A (en) Lubricating oil composition for hydrodynamic bearing device, and fluid bearing device using the same
US20110109995A1 (en) Bearing lubricant, bearing and disk drive device
JP2006064151A (en) Fluid bearing, spindle motor using it, and magnetic disc unit
KR20130072547A (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated by using the same
KR20140009675A (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated by using the same
JP3911133B2 (en) Sintered oil-impregnated bearing
JP2000337380A (en) Sintered oil retaining bearing
JP4751151B2 (en) Lubricating oil for fluid bearing motor and bearing motor using the same
US20130090275A1 (en) Lubricating oil composition for fluid dynamic bearings and hdd motor fabricated using the same
WO2023243496A1 (en) Fluid dynamic pressure bearing lubricant oil composition, fluid dynamic pressure bearing, and fluid dynamic pressure bearing apparatus
JP2010138316A (en) Bearing lubricant, bearing and disc driving unit
JP2007186710A (en) Lubricant for fluid bearing, fluid bearing and motor
JP2023182538A (en) Lubricant composition for fluid dynamic pressure bearing, fluid dynamic pressure bearing, and fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees