JP2007039314A - Raw material for ceramic and ceramic fired article - Google Patents

Raw material for ceramic and ceramic fired article Download PDF

Info

Publication number
JP2007039314A
JP2007039314A JP2006171662A JP2006171662A JP2007039314A JP 2007039314 A JP2007039314 A JP 2007039314A JP 2006171662 A JP2006171662 A JP 2006171662A JP 2006171662 A JP2006171662 A JP 2006171662A JP 2007039314 A JP2007039314 A JP 2007039314A
Authority
JP
Japan
Prior art keywords
ceramic
component
clay
fired body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006171662A
Other languages
Japanese (ja)
Other versions
JP4966596B2 (en
Inventor
Takayoshi Katou
高福 加藤
Yasuo Shibazaki
靖雄 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUISHI YOGYO GENRYO KK
Original Assignee
MARUISHI YOGYO GENRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUISHI YOGYO GENRYO KK filed Critical MARUISHI YOGYO GENRYO KK
Priority to JP2006171662A priority Critical patent/JP4966596B2/en
Publication of JP2007039314A publication Critical patent/JP2007039314A/en
Application granted granted Critical
Publication of JP4966596B2 publication Critical patent/JP4966596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base material for a ceramic which can basically suppress the softening of a formed body while firing, and does not cause the lack of the strength of a fired article. <P>SOLUTION: The base material for ceramic comprises 3 components of a plastic clay where feldspars and quartz containing an alkali component are removed by classification, lime and a magnesia component and an alumina component. The base material for ceramic contains each component by at least 10 wt.% or more relative to 100% of the total weight. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セラミック用素地と、その素地を用いたセラミック焼成体とに関する。   The present invention relates to a ceramic substrate and a ceramic fired body using the substrate.

陶磁器における素地の調合組成と焼成温度とを表1に示す(非特許文献1参照)。ここで明らかなように本焼成は1000℃以上で行われるのが通常である。その目的は焼成体の強度を重視するためであり、その結果、焼成体の組織は緻密になり、多くのガラス相と結晶相からなる傾向になっている。   Table 1 shows the composition and firing temperature of the base material in the ceramic (see Non-Patent Document 1). As is apparent here, the main firing is usually performed at 1000 ° C. or higher. The purpose is to place importance on the strength of the fired body. As a result, the structure of the fired body becomes dense and tends to be composed of many glass phases and crystal phases.

従来の日本の陶磁器は、カオリナイト質及び陶石質粘土、長石、石英(珪石)の3成分で素地が構成され、可塑性が良好な為に各種成形法を自在に用いて成形体を作成している。その焼成後の焼成体に強度、美的な透光性を付与するには、焼成中に石英、長石を中心に溶化する反応が求められ、少なくとも1150℃以上の高温が必要とされているが、過剰な粉砕の素地の場合には1100℃前後の焼成により、急激に軟化(熔化現象含む)する場合が多く、通常陶磁器業界では焼成幅が狭いといわれている。
一方、石灰、苦土系の素地は、表1に示すように1100±50℃の焼成で石灰・白雲陶器として工業化していたが、さらに、磁器にしたいとの要望が1960年代に強くなり、磁器化を目指した素地調合試験は行われた。しかし、焼成幅を越えた熱量を受けた成形体中に急激に溶融体(ガラス相)が生成して、焼成体の軟化・変形歪が大きく進行するために工業化は困難との判断に至っている(非特許文献2〜4)。
Conventional ceramics in Japan are made up of three components: kaolinite and porcelain clay, feldspar, and quartz (silica), and because of their good plasticity, they can be molded using various molding methods. ing. In order to impart strength and aesthetic translucency to the fired body after the firing, a reaction for solubilizing mainly quartz and feldspar is required during firing, and a high temperature of at least 1150 ° C. is required. In the case of an excessively pulverized substrate, it is often softened (including melting phenomenon) by firing at around 1100 ° C., and it is usually said that the firing width is narrow in the ceramic industry.
On the other hand, as shown in Table 1, lime and bitter earth bases were industrialized as lime / white cloud ceramics by firing at 1100 ± 50 ° C. Furthermore, the desire to make porcelain became stronger in the 1960s, A substrate preparation test aimed at porcelain was conducted. However, it has been judged that industrialization is difficult because a melt (glass phase) is suddenly generated in a molded body that has received a heat quantity exceeding the firing width, and the softening / deformation distortion of the fired body proceeds greatly. (Non-patent documents 2 to 4).

Figure 2007039314
Figure 2007039314

セラミック工学ハンドブック第5編陶磁器(1989)Ceramic Engineering Handbook Volume 5 Ceramics (1989) 川村資三・黒川利一「カオリン−石灰石系素地の磁器化過程に関する研究」 窯業協会誌(88)703〜712(1980)Seizo Kawamura and Toshikazu Kurokawa “Studies on the porcelainization of kaolin-limestone bodies” Journal of the Ceramic Industry Association (88) 703-712 (1980) 川村資三・黒川利一「カオリン−石灰石系素地の構造と機械的強度」 名古屋工業技術試験所報告(31)111〜116(1982)Seizo Kawamura and Toshikazu Kurokawa “Structure and Mechanical Strength of Kaolin-Limestone Base” Nagoya Industrial Technology Laboratory (31) 111-116 (1982) 伊藤政己・名和正博・矢野強・榊原晴勝・田中愛造「石灰質系素地の応用化」愛知県瀬戸窯業技術センター報告(15)28〜34(1986)Masami Ito, Masahiro Nawa, Tsuyoshi Yano, Harukatsu Sakakibara, and Aizo Tanaka “Application of calcareous materials” Report from Aichi Prefectural Seto Ceramics Technology Center (15) 28-34 (1986)

従来のセラミック用素地においては、構成素材中の石英に骨材及びガラス形成剤としての役目を、長石に溶剤としての役割を夫々担わせているため、融点の低い長石が溶けると同時に少量のアルカリ及びアルカリ土類成分や雰囲気ガスと石英との反応が1100℃前後で急激に進行し、その反応生成物である溶融体が大量に形成されて、熔化現象に伴う焼成体の軟化が始まり、その結果、焼成体の変形や歪みを大きくしている。表1に列記した市販陶磁器も、最適焼成温度を中心に±50℃で焼成されるが、それより低すぎる場合は強度が不足し、これより高すぎる場合は焼成体の溶化により軟化(腰砕け)の問題があった。この軟化を防いで耐熱性を高めるためにアルミナ成分を添加する方策も採られているが、十分な軟化抑制には至っていない。   In the conventional ceramic substrate, quartz in the component material functions as an aggregate and a glass forming agent, and feldspar functions as a solvent, respectively. In addition, the reaction between the alkaline earth component or atmospheric gas and quartz rapidly proceeds at around 1100 ° C., and a large amount of the reaction product melt is formed, and the fired body is softened due to the melting phenomenon. As a result, deformation and distortion of the fired body are increased. The commercial ceramics listed in Table 1 are also fired at ± 50 ° C centering on the optimum firing temperature. However, if it is too low, the strength is insufficient, and if it is too high, it is softened by melting of the fired body (crushed). There was a problem. In order to prevent this softening and increase the heat resistance, a measure of adding an alumina component has also been taken, but it has not yet sufficiently suppressed softening.

そこで、本発明は、焼成体に強度不足を生じさせることなく燃焼中の成形体の軟化を根本的に抑制し、耐熱性の高いセラミック用素地と、そのセラミック用素地を用いた高強度のセラミック焼成体を提供することを目的としたものである。   Therefore, the present invention fundamentally suppresses softening of the molded body during combustion without causing insufficient strength in the fired body, and has a high-heat-resistant ceramic substrate and a high-strength ceramic using the ceramic substrate. The object is to provide a fired body.

まず発明者は、焼成中の成形体の軟化を根本的に押えるには、素地の構成素材中の溶融体形成剤である石英及び長石の存在を極力避け、耐火度の高いアルミナ成分やアルカリ土類成分を増加させることが有効であることに着目した。
これは、アルカリ成分のないAl2O3−CaO(MgO)―SiO2組成系の結晶相の融点が比較的高いこと、及び、可塑性粘土原土中の石英を水簸精製除去するのに使用した分散剤の水ガラス(添加量:1000分の3重量%)の微量アルカリ分や、分散した粘土粒子分を集める為に用いる凝集剤のにがりからのアルカリ土類の共存の下での反応により、焼成中に多量の溶融体を形成することが無いこと、の知見に基づくものである。
First, in order to fundamentally suppress the softening of the molded body during firing, the inventor avoids the presence of quartz and feldspar, which are melt forming agents, in the material constituting the substrate as much as possible. We focused on the fact that it is effective to increase the similar components.
This is because the melting point of the crystalline phase of Al 2 O 3 -CaO (MgO) -SiO 2 composition system without alkali component is relatively high, and used for purification and removal of quartz in plastic clay By the reaction under the coexistence of alkaline earth from the bittern of the flocculant used to collect the minute amount of alkali in the water glass (added amount: 3% by weight 1000%) of the dispersed dispersant and the dispersed clay particles This is based on the knowledge that a large amount of melt is not formed during firing.

そこで、上記目的を達成するために、請求項1に記載の発明は、分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、の3成分からなり、且つ各成分が全体重量100%に対して夫々少なくとも10重量%以上含有されてなるセラミック用素地としたものである。
請求項2に記載の発明は、請求項1の目的に加えて、より耐熱性を向上させるために、素地全体重量の1000分の3重量%以下でアルカリ系泥漿調整剤が添加されたセラミック用素地としたものである。
Therefore, in order to achieve the above object, the invention according to claim 1 is characterized in that a plastic clay from which feldspar and quartz containing alkali components are removed by classification, lime and a bitter earth component, and an alumina component. The ceramic substrate is composed of components and each component is contained at least 10% by weight or more with respect to 100% of the total weight.
In addition to the object of claim 1, the invention described in claim 2 is for ceramics to which an alkaline slurry adjusting agent is added at 3% by weight or less of 1000% of the total weight of the substrate to further improve heat resistance. It is a basic material.

また、上記目的を達成するために、請求項3に記載の発明は、請求項1又は2に記載のセラミック用素地を成形、乾燥後、600℃〜1400℃の範囲内で選択した温度で焼成したセラミック焼成体であって、曲げ強度が略20Mpa以上、焼成収縮率が略18%以下であることを特徴とするものである。
請求項4に記載の発明は、請求項3の目的に加えて、融点の高い多くの結晶相を得てより高強度とするために、結晶相に、メタカオリン、CaO、MgO、多孔質な−Al2O3、α―Al2O3、ムライトCa3Al2Si3O12、CaAl2Si2O8, Ca2Al2SiO7、CaAl2O4、Ca12Al14O33、Ca3Al2O6、アルミナセメント系結晶及びその結晶にMgO成分を固溶した1以上の結晶、を含み、ガラス相が微量存在するセラミック焼成体としたものである。
Moreover, in order to achieve the said objective, invention of Claim 3 is a ceramic body of Claim 1 or 2, after shaping | molding and drying, it bakes at the temperature selected within the range of 600 to 1400 degreeC. The ceramic fired body has a bending strength of about 20 Mpa or more and a firing shrinkage rate of about 18% or less.
In addition to the object of claim 3, the invention described in claim 4 is characterized in that metakaolin, CaO, MgO, porous − Al 2 O 3 , α-Al 2 O 3 , Mullite Ca 3 Al 2 Si 3 O 12 , CaAl 2 Si 2 O 8 , Ca 2 Al 2 SiO 7 , CaAl 2 O 4 , Ca 12 Al 14 O 33 , Ca 3 The ceramic fired body contains Al 2 O 6 , an alumina cement-based crystal, and one or more crystals in which the MgO component is dissolved in the crystal, and contains a small amount of glass phase.

請求項1に記載のセラミック用素地によれば、焼成体に強度不足を生じさせることがなく、広い焼成温度幅で、焼成収縮率が小さく、耐熱性のあるセラミックを工業的に作ることができる。
請求項2に記載のセラミック用素地によれば、請求項1の効果に加えて、アルカリ系泥漿調整剤の添加により、一層の強度の向上が期待できる。
請求項3に記載のセラミック焼成体によれば、請求項1又は2のセラミック用素地を用いたことで、曲げ強度や焼成収縮率において良好な特性を得ることができる。特にここでは、微細組織が均質な多孔体となるので、耐熱衝撃性にも優れ、軽量骨材やフィルタ等の広範囲な産業分野に有用となる。
請求項4に記載のセラミック焼成体によれば、融点の高い結晶相の存在によってより耐熱性のある高強度の焼成体となる。
According to the ceramic substrate of claim 1, it is possible to industrially produce a heat-resistant ceramic with a wide firing temperature range, a small firing shrinkage rate, and without causing insufficient strength in the fired body. .
According to the ceramic substrate of the second aspect, in addition to the effect of the first aspect, a further improvement in strength can be expected by adding an alkaline slurry adjusting agent.
According to the ceramic fired body of claim 3, by using the ceramic substrate of claim 1 or 2, good characteristics in bending strength and firing shrinkage can be obtained. In particular, here, since the fine structure is a homogeneous porous body, it has excellent thermal shock resistance and is useful in a wide range of industrial fields such as lightweight aggregates and filters.
According to the ceramic fired body of the fourth aspect, a high-strength fired body having higher heat resistance is obtained due to the presence of a crystalline phase having a high melting point.

《可塑性粘土の分析》
本発明で使用する可塑性粘土は、木節粘土、蛙目粘土、カオリナイト質粘土、ボーキサイト質粘土、陶石質粘土及び各種人工粘土から1種以上が選択される。
一例として、愛知県瀬戸地区で各種粘土原土を工業的に水簸分級した木節粘土、蛙目粘土、中国広東省茶山県東莞産の日本名黒泥の可塑性粘土粉末のX線回析図を図1に示す(名古屋工業技術試験所・咸陽非金属鉱研究所共同研究報告書「中国粘土鉱物の有効利用に関する研究−陶磁器用高嶺土、粘土の評価及び分級法の開拓」(1990.3)より抜粋、図2,3も同じ)。以下図と共に木節粘土を(K)、蛙目粘土を(G)、黒泥を(B)と略記する。ここで明らかなように、主成分のカオリナイトと石英(Qtz)とが共存しており、石英(Qtz)の残量はG≧K>Bの関係がある。
温帯産の日本の(K,G)には、前記カオリナイト、石英以外には結晶相は認められないが、亜熱帯産の(B)には、ギプサイト(Al(OH)3)及びCa及びAl−モンモリロナイト(m)の痕跡があった。
さらに図2に示す細部の配向資料の粉末X線回析図から、(K)と(B)との比較に於いて、水簸に用いた水ガラス(Wgで図示)とギプサイト(gで図示)が確認できた。これより可塑性粘土中の産地間の差は、風化作用が進行して、母岩中のアルカリ分及びSiO2成分が溶脱してアルミナ成分が多く存在するボーキサイト質粘土(Bに相当)と、カオリナイト質粘土(K,Gに相当)が広く陶磁器産業に於いて使用されていると判断できる。
《Analysis of plastic clay》
The plastic clay used in the present invention is selected from at least one selected from Kibushi clay, Sasame clay, Kaolinite clay, bauxite clay, porcelain clay, and various artificial clays.
As an example, X-ray diffraction pattern of plastic clay powder of Kibushi clay, Sasame clay, Japanese name black mud produced in Dongshan, Guangdong Province, China, which is a variety of clay clays industrially mined in the Seto district of Aichi Prefecture. Figure 1 (Extracted from the joint research report of Nagoya Institute of Industrial Science and Shenyang Non-Metal Mining Research Institute "Study on the Effective Use of Clay Minerals in China-Evaluation of Porcelain for Ceramics, Evaluation of Clay and Categorization" (1990.3)) The same applies to FIGS. Along with the figures, Kibushi clay is abbreviated as (K), Sasame clay as (G), and Black mud as (B). As is apparent here, the main components kaolinite and quartz (Qtz) coexist, and the remaining amount of quartz (Qtz) has a relationship of G ≧ K> B.
In Japan (K, G) produced in temperate zone, no crystal phase other than the above kaolinite and quartz is observed, but in subtropical (B), gypsite (Al (OH) 3 ) and Ca and Al -There was a trace of montmorillonite (m).
Furthermore, from the powder X-ray diffraction pattern of the detailed orientation data shown in FIG. 2, in comparison between (K) and (B), the water glass used for water tank (illustrated by Wg) and the gypsite (illustrated by g) ) Was confirmed. The difference between the origin of this from plastic in the clay, the weathering progresses, bauxite clay that alkali content and the SiO 2 component of the host rock exists many leaching to alumina component (corresponding to B), Kaori It can be judged that knightly clay (equivalent to K and G) is widely used in the ceramic industry.

《可塑性粘土の焼成試験》
上記B,G,K及びS(愛知県枝下産の木節粘土)の水簸粘土粉をプレス成形後、900℃から50℃おきに1350℃までの各温度で焼成した。その全焼成収縮率を図3に示す。縦軸が焼成収縮率を示し、横軸が焼成温度(℃)を示す。成形体の焼成時間は設定温度2時間で行ったものである。ここで明らかなように、(B)は日本産の可塑性粘土とは異なり、焼成収縮は小さくて耐火性が良いことがわかる。この耐火性向上の原因としては、図1に見られるように、石英が少量である一方、Al(OH)3並びにCa及びAl−モンモリロナイトなどの他にカオリナイトを中心とするアルミナ成分を多く含むカオリナイト質粘土(俗に言うボーキサイト質粘土)であるためと推測できる。
《Baking test of plastic clay》
The above-mentioned B, G, K, and S (Kinashiki clay from Aichi Prefecture) were pressed and then fired at temperatures from 900 ° C. to 50 ° C. to 1350 ° C. The total firing shrinkage is shown in FIG. The vertical axis represents the firing shrinkage rate, and the horizontal axis represents the firing temperature (° C.). The firing time of the compact was performed at a set temperature of 2 hours. As is clear from this, (B) is different from plastic clay made in Japan, and it is understood that the firing shrinkage is small and the fire resistance is good. As shown in FIG. 1, the cause of this improvement in fire resistance is a small amount of quartz, while Al (OH) 3 and Ca and Al-montmorillonite contain a large amount of alumina components centered on kaolinite. It can be inferred that it is kaolinite clay (commonly called bauxite clay).

よって、本発明のセラミック用素地では、可塑性粘土において、アルカリ成分を含む長石類及び石英、必要に応じて雲母を、水簸又は工業的遠心分離機を用いて除去する。図1に示すように、工業的水簸粘土中には石英が残存するが、これらを実験室的に解膠、分散後、遠心分離により分級度を高めれば、石英を除去することは可能であることが知られている。このことは図4のグラフで容易に理解できる。図4は、工業的に水簸した木節粘土(K)、蛙目粘土(G)の実験室的分級におけるSiO2/Al2O3のモル比と分級度との関係を示すグラフで(芝崎靖雄・前田武久「水簸木節粘土、蛙目粘土中の不純物(鉄、チタン)の存在状態」名古屋工業技術試験所報告 28(8)270-274(1979)より抜粋)、一点鎖線は理想のカオリナイト組成SiO2/Al2O3のモル比2を表している。
なお、図5は、灼熱減量(Ig.loss)、カオリナイト結晶の厚み(t)、粉末X線回析におけるカオリナイトと石英のピーク比(Hk/Hg)と比表面積S(m2/g)の関係を示すグラフで(前田武久・渡村信治・水田博之・芝崎靖雄「窯業用粘土質原料の強熱減量による品質評価法の検討」粘土科学、27(3)135-146(1987)より抜粋)、カオリナイトの理想Ig.lossは13.98%であるが、両者には有機物(腐植)が存在する。更に、黒泥中のAl(OH)3のIg.lossは、34.6%であるため図5-aのIg.loss曲線はカオリナイト質粘土(図5-b)のそれより多目に出ている。
Therefore, in the ceramic substrate of the present invention, feldspar and quartz containing an alkali component and, if necessary, mica are removed from the plastic clay using a water tank or an industrial centrifuge. As shown in FIG. 1, quartz remains in industrial Minamata clay, but it is possible to remove quartz if the degree of classification is increased by centrifugation after peptization and dispersion in the laboratory. It is known that there is. This can be easily understood from the graph of FIG. FIG. 4 is a graph showing the relationship between the SiO 2 / Al 2 O 3 molar ratio and the degree of classification in laboratory classification of industrially dredged Kibushi clay (K) and Sasame clay (G) ( Ikuo Shibazaki and Takehisa Maeda "Existence of Impurities (Iron, Titanium) in Minamata Kibushi Clay and Sasame Clay" (Nagoya Industrial Technology Laboratory Report 28 (8) 270-274 (1979)) This represents an ideal kaolinite composition SiO 2 / Al 2 O 3 molar ratio of 2.
FIG. 5 shows ignition loss (Ig.loss), thickness of kaolinite crystal (t), peak ratio of kaolinite to quartz (Hk / Hg) and specific surface area S (m 2 / g) in powder X-ray diffraction. ) (Takehisa Maeda, Shinji Watamura, Hiroyuki Mizuta, Ikuo Shibazaki “Examination of quality evaluation method by loss of ignition of ceramic clay materials” Clay Science, 27 (3) 135-146 (1987) (Excerpt) Kaolinite's ideal Ig.loss is 13.98%, but organic matter (humus) exists in both. Furthermore, the Ig.loss of Al (OH) 3 in black mud is 34.6%, so the Ig.loss curve in Fig. 5-a appears more frequently than that of kaolinitic clay (Fig. 5-b). Yes.

次に、本発明のセラミック用素地では、アルミナ成分を使用する。アルミナ成分は、多孔質Al2O3、水酸化物、炭酸基・アンモニウム基・水酸基からなる塩及び複塩類から選ばれる1種以上であればよい。
但し、耐火度向上策としてNaイオン等のアルカリ成分の少ない原料を使用するのが望ましい。例えば、アルミナ成分としてはサッシ工場からの産業廃棄物Al(OH)3スラッジ等が活用できるが、このAl(OH)3にはNaイオン類等のアルカリ成分が多く含まれるため、pHが8になるくらいまで水洗いを行ったものを使用する。
Next, an alumina component is used in the ceramic substrate of the present invention. The alumina component may be one or more selected from porous Al 2 O 3 , hydroxide, a salt composed of a carbonate group / ammonium group / hydroxyl group and a double salt.
However, it is desirable to use raw materials with few alkali components such as Na ions as a measure for improving the fire resistance. For example, industrial waste Al (OH) 3 sludge from the sash factory can be used as the alumina component, but since this Al (OH) 3 contains a lot of alkaline components such as Na ions, the pH is set to 8. Use water that has been thoroughly washed.

こうして得られた可塑性粘土と、アルミナ成分と、石灰及び苦土成分(これらの水酸化物、炭酸塩、複塩類であってもよい)とを夫々10重量%以上含有させて素地組成物を調合する。好ましくは、可塑性粘土を素地組成物に対して10〜60重量%、アルミナ成分を素地組成物に対して10〜60重量%、石灰及び苦土成分を10〜40重量%で夫々選択して合計で100重量%となるように調合する。なお、必要に応じて、アルカリ系泥漿調整剤として水ガラス等を、素地全体重量の1000分の3重量%以下で添加してもよい。
そして、調合したセラミック用素地を任意の形状に成形し、乾燥させた後、600℃〜1400℃の範囲で焼成温度を選択して焼成する。焼成中においては、カオリナイトが熱分解して生成するメタカオリンやムライト(3Al2O3・2SiO2)と、分解生成物のSiO2成分に対してすぐに反応する微量のアルカリ成分の介在のもと、CaO及びMgO成分とアルミナ成分とが反応して液相の生成を極力抑制して、比較的に融点の高い多くの結晶相を生成させる。
A base composition is prepared by containing 10% by weight or more of the plastic clay thus obtained, an alumina component, and lime and a clay component (these hydroxides, carbonates, and double salts may be used). To do. Preferably, the plastic clay is selected from 10 to 60% by weight based on the base composition, the alumina component is selected from 10 to 60% by weight based on the base composition, and the lime and the clay component are selected from 10 to 40% by weight. To be 100% by weight. If necessary, water glass or the like may be added as an alkaline sludge adjusting agent at 3% by weight or less of 1000% of the total weight of the substrate.
And after shape | molding the ceramic base | substrate prepared into an arbitrary shape and making it dry, it calcinates by selecting a calcination temperature in the range of 600 to 1400 degreeC. During firing, metakaolin and mullite (3Al 2 O 3 · 2SiO 2 ) produced by the thermal decomposition of kaolinite and trace amounts of alkali components that react immediately with the SiO 2 component of the decomposition products Then, the CaO and MgO components react with the alumina component to suppress the generation of the liquid phase as much as possible, and generate many crystal phases having a relatively high melting point.

表2に代表的な構成鉱物並びに分析値及びそれに基づいたノルム計算値を示す。右端の耐熱セラミックスの項が本発明のセラミック用素地に相当する。ノルム計算値からもわかるように焼成体中にはSiO2成分はほぼ0に近いことが計算でき、SiO2系のガラス(溶融体)の形成はないと推定できる。 Table 2 shows typical constituent minerals, analytical values, and norm calculation values based on them. The term of the heat-resistant ceramic at the right end corresponds to the ceramic substrate of the present invention. As can be seen from the norm calculation value, it can be calculated that the SiO 2 component is almost zero in the fired body, and it can be estimated that there is no formation of SiO 2 glass (melt).

Figure 2007039314
Figure 2007039314

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

《石灰石系素地の調合と焼成及びその評価》
石灰石を16重量%、Al(OH)3を47重量%、カオリナイト質粘土を37重量%でセラミック用素地を調合し、水ガラスを素地全体重量1000に対して3.0重量%で添加した泥漿で、鋳込み成形法でルツボ(高さ70mm×直径81.5mm)及び棒状試験体(10cm×直径2cm)を5本作成した。これを風乾後、電気炉内に設置して、図6に示す焼成曲線のように300℃まで加熱して1時間保持し、さらに昇温して設定温度に達した後に1時間維持後、自然放冷する形式で、600℃〜1400℃まで50℃ごとに各温度で焼成した。その結果、焼成体のルツボ形状は図7に示すように1400℃まで十分に維持できた。また、1200℃焼成のルツボをバーナーで赤色になるまで灼熱した直後に水中(室温)に投下したが変化はなかった。
<< Composition and firing of limestone base and its evaluation >>
The ceramic base was prepared with 16% by weight of limestone, 47% by weight of Al (OH) 3 and 37% by weight of kaolinitic clay, and water glass was added at 3.0% by weight based on the total weight of the base body of 1000. Five crucibles (height 70 mm × diameter 81.5 mm) and rod-shaped specimens (10 cm × diameter 2 cm) were prepared from the slurry by a casting method. This was air-dried, installed in an electric furnace, heated to 300 ° C. and held for 1 hour as shown in the firing curve shown in FIG. 6, and further heated to reach the set temperature and maintained for 1 hour. It baked at each temperature for every 50 degreeC to 600 degreeC-1400 degreeC in the form to cool. As a result, the crucible shape of the fired body was sufficiently maintained up to 1400 ° C. as shown in FIG. In addition, the crucible fired at 1200 ° C. was heated to red with a burner and immediately dropped in water (room temperature), but there was no change.

棒状試験体の各温度での焼成体の5本の平均の焼成収縮率は、図8及び表3に示すように6%〜17.6%になった。   The average firing shrinkage ratio of the five fired bodies at each temperature of the rod-shaped specimen was 6% to 17.6% as shown in FIG.

Figure 2007039314
Figure 2007039314

また、5本の棒状試験体の各温度での3点曲げ強度の平均値は図9のグラフに示すようになった。更に焼成時間を2時間に延ばせば、700℃の焼成体強度は20Mpa、800℃の焼成体強度は35Mpaになった。   Further, the average value of the three-point bending strength at each temperature of the five rod-shaped specimens was as shown in the graph of FIG. Further, when the firing time was extended to 2 hours, the fired body strength at 700 ° C. was 20 Mpa, and the fired body strength at 800 ° C. was 35 Mpa.

図10,11に900℃と1200℃焼成体の粉末X線回析図を例示する。各温度で焼成した焼成体の粉末X線回析図より同定した結晶相を表4に示す。   FIGS. 10 and 11 illustrate powder X-ray diffraction patterns of the 900 ° C. and 1200 ° C. fired bodies. Table 4 shows the crystal phases identified from the powder X-ray diffraction pattern of the fired body fired at each temperature.

Figure 2007039314
Figure 2007039314

表4より、焼成中の反応を推定すれば、600℃以下でカオリナイトの脱水と分解生成物のメタカオリン等が生成、水酸化アルミナAl(OH)3が分解し、多孔質のAl2O3(α―Al2O3以外)が生成、炭酸カルシウムが800℃手前で分解する。次に、多孔質のCaOの生成のもと、カオリナイトの分解物のAl2O3−SiO2系のSiO2成分と、1000分の3重量%以下のアルカリ(分散剤の水ガラス)との反応が始まる。850℃でCa2Al2SiO7が多く生成し、つづいてCaAl2SiO8が生成することを示している。
昇温にしたがって固相焼結反応は進行し、過剰のAl2O3成分は自らα―Al2Oになると同時にCaOとの反応により、CaAl12O19が生成したものと推定できる。
調合割合からすれば,Al(OH)3を減少させれば、α―Al2Oの生成量は減少し、CaO成分の多いCa12Al14O33やCa3Al12O6等の結晶相が析出し、カオリナイト質粘土を増加させればCa3Al2Si3O12などの結晶相が析出すると想定する。
From Table 4, if the reaction during calcination is estimated, dehydration of kaolinite and decomposition products such as metakaolin are generated at a temperature of 600 ° C. or lower, alumina hydroxide Al (OH) 3 is decomposed, and porous Al 2 O 3 (Other than α-Al 2 O 3 ) is formed, and calcium carbonate decomposes before 800 ° C. Next, under the formation of porous CaO, an Al 2 O 3 —SiO 2 -based SiO 2 component of the decomposition product of kaolinite, and an alkali (water glass of a dispersant) of 3/1000% by weight or less, The reaction starts. It shows that a large amount of Ca 2 Al 2 SiO 7 is produced at 850 ° C., and subsequently CaAl 2 SiO 8 is produced.
It can be presumed that the solid-phase sintering reaction proceeds as the temperature rises, and that the excess Al 2 O 3 component itself becomes α-Al 2 O 3 and at the same time CaAl 12 O 19 is produced by reaction with CaO.
In terms of the mixing ratio, if Al (OH) 3 is decreased, the amount of α-Al 2 O 3 produced decreases, and crystal phases such as Ca 12 Al 14 O 33 and Ca 3 Al 12 O6 with a large amount of CaO component are present. It is assumed that crystal phases such as Ca 3 Al 2 Si 3 O 12 are precipitated if kaolinite clay is increased.

《白雲石系(ドロマイト立て)素地の調合と焼成及びその評価》
白雲石を16重量%、Al(OH)を47重量%、カオリナイト質粘土を37重量%で素地を調合し、水ガラスを素地全体重量1000に対して3.0重量%で添加した泥漿を、鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で600℃〜1400℃まで焼成した。焼成体の焼成収縮率は図12に示すように7.3%以下と石灰石系素地よりも小さめになった。
《Preparation, firing and evaluation of dolomite-based (dolomite standing) substrate》
A slurry prepared by adding 16% by weight of dolomite, 47% by weight of Al (OH) 3 , 37% by weight of kaolinite clay and adding 3.0% by weight of water glass to 1000% of the total weight of the substrate. Was molded into the same rod-shaped test body as in Example 1 by a casting method. This was air-dried and then placed in an electric furnace and baked to 600 ° C. to 1400 ° C. in the same manner as in Example 1. As shown in FIG. 12, the firing shrinkage ratio of the fired body was 7.3% or less, which was smaller than the limestone base material.

この結果、上記のCaO成分を含む結晶相に、MgO成分が固溶した結晶相からなる焼成体においてもガラス相を多量に生成せずに結晶相の析出制御は可能と類推する。   As a result, it is presumed that the precipitation control of the crystal phase is possible without forming a large amount of glass phase even in the fired body composed of the crystal phase containing the MgO component in the crystal phase containing the CaO component.

Al(OH)、蛙目粘土、石灰石を、表5に示す001〜006の6パターンの割合で素地を調合し、泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、700℃、900℃、1100℃の各温度で焼成した。各焼成体の収縮率及び吸水率の測定結果、耐熱衝撃試験の結果を表6に示す。 Al (OH) 3 , Sakaime clay, and limestone were mixed at a ratio of 6 patterns 001 to 006 shown in Table 5 and molded into a rod-like test body similar to that of Example 1 by a mud casting method. This was air-dried, placed in an electric furnace, and fired at temperatures of 700 ° C., 900 ° C., and 1100 ° C. Table 6 shows the measurement results of the shrinkage rate and water absorption rate of each fired body and the results of the thermal shock test.

Figure 2007039314
Figure 2007039314

Figure 2007039314
Figure 2007039314

表6より、収縮率では、001,002,005,006は何れも各温度で10%を下回り、特に001,005では各温度で8%以下となっている。001,003,004,006については、焼成温度によっては性能が他よりも落ちるものがあるが、調合自体は実際に採用できる範囲と言える。   From Table 6, as for the shrinkage rate, 001, 002, 005, 006 are all less than 10% at each temperature, and in particular, at 001,005, they are 8% or less at each temperature. With regard to 001,003,004,006, the performance may be lower than others depending on the firing temperature, but the formulation itself can be said to be a practical range.

このように、本形態のセラミック用素地によれば、3成分のうちの一部が10重量%で調合される場合でも、焼成体の焼成収縮率が小さくて焼成幅が広く、耐熱性のある各種セラミックを工業的に作ることができる。
また、本形態のセラミック焼成体によれば、上記セラミック用素地を用いたことで、曲げ強度や焼成収縮率において良好な特性を得ることができる。特にここでは、500℃以下で分解して生成した活性な多孔質Al2O3とカオリナイトの分解生成物のメタカオリナイトによる多孔質構造的骨格が形成され、微細組織が均質な多孔体となるので、耐熱衝撃性にも優れ、軽量骨材やフィルタ等の広範囲な産業分野に有用となる。ちなみに、各実施例の900℃焼成体については30m/g以上の比表面積が得られることが確認された。これにより各実施例で得られる焼成体はセラミックフィルタとして十分な細孔比表面積を持つといえる。
As described above, according to the ceramic substrate of the present embodiment, even when a part of the three components is blended at 10% by weight, the firing shrinkage rate of the fired body is small, the firing width is wide, and the heat resistance is high. Various ceramics can be made industrially.
Further, according to the ceramic fired body of the present embodiment, good characteristics in bending strength and firing shrinkage can be obtained by using the ceramic substrate. In particular, a porous structural skeleton is formed by active porous Al 2 O 3 produced by decomposition at 500 ° C. or lower and metakaolinite, which is a decomposition product of kaolinite. Therefore, it has excellent thermal shock resistance and is useful in a wide range of industrial fields such as lightweight aggregates and filters. Incidentally, it was confirmed that a specific surface area of 30 m 2 / g or more was obtained for the 900 ° C. fired body of each example. Thereby, it can be said that the fired body obtained in each example has a sufficient pore specific surface area as a ceramic filter.

工業的に水簸した黒泥、木節、蛙目粘土の粉末X線回折図である。It is a powder X-ray diffraction pattern of industrially drowned black mud, Kibushi, and Sasame clay. 工業的に水簸した黒泥)及び木節粘土の配向試料の粉末X線回折図である。It is a powder X-ray diffraction pattern of an oriented sample of industrially watered black mud) and Kibushi clay. 工業的に水簸した粘土の焼成収縮率(%)曲線である。It is a baking shrinkage | contraction rate (%) curve of the clay laid industrially. 工業的に水簸した木節粘土、蛙目粘土の実験室的分級におけるSiO2/Al2O3のモル比と分級度の関係を示すグラフである。Is a graph showing the industrially elutriation was kibushi clay, classification of the relationship between the molar ratio of SiO 2 / Al 2 O 3 in the laboratory classification gairome clay. 灼熱減量、カオリナイト結晶の厚み、粉末X線回析におけるカオリナイトと石英のピーク比と比表面積との関係を示すグラフである。It is a graph which shows the relationship between the ignition loss, the thickness of a kaolinite crystal, the peak ratio of kaolinite and quartz and the specific surface area in powder X-ray diffraction. 石灰石系素地の焼成曲線を示すグラフである。It is a graph which shows the baking curve of a limestone base. 石灰石系素地から成形体(ルツボ)の各温度での焼成体の模式図である。It is a schematic diagram of the sintered body at each temperature of a molded object (crucible) from a limestone base. 石灰石系素地の焼成収縮率を示すグラフである。It is a graph which shows the baking shrinkage rate of a limestone base. 石灰石系素地の焼成体の曲げ強度を示すグラフである。It is a graph which shows the bending strength of the sintered body of a limestone base. 石灰石系素地の焼成体(900℃)の粉末X線回析図である。It is a powder X-ray diffraction pattern of the calcination body (900 ° C) of a limestone system base. 石灰石系素地の焼成体(1200℃)の粉末X線回析図である。It is a powder X-ray diffraction pattern of the calcination body (1200 ° C) of a limestone base. 白雲石系素地の焼成収縮率を示すグラフである。It is a graph which shows the baking shrinkage rate of a dolomite base.

Claims (4)

分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、の3成分からなり、且つ各成分が全体重量100%に対して夫々少なくとも10重量%以上含有されてなるセラミック用素地。   It is composed of three components: a plastic clay from which feldspar and quartz containing alkali components are removed, lime and a bitter earth component, and an alumina component, and each component is at least 10% with respect to 100% of the total weight. A ceramic substrate containing at least%. 素地全体重量の1000分の3重量%以下でアルカリ系泥漿調整剤が添加された請求項1に記載のセラミック用素地。   2. The ceramic substrate according to claim 1, wherein an alkaline sludge adjusting agent is added at 3/1000% by weight or less of the total weight of the substrate. 請求項1又は2に記載のセラミック用素地を成形、乾燥後、600℃〜1400℃の範囲内で選択した温度で焼成したセラミック焼成体であって、曲げ強度が略20Mpa以上、焼成収縮率が略18%以下であることを特徴とするセラミック焼成体。   A ceramic fired body obtained by molding and drying the ceramic substrate according to claim 1 at a temperature selected within a range of 600 ° C to 1400 ° C, having a bending strength of approximately 20 Mpa or more and a firing shrinkage ratio. A ceramic fired body characterized by being about 18% or less. 結晶相に、メタカオリン、CaO、MgO、多孔質な−Al2O3、α―Al2O3、ムライトCa3Al2Si3O12、CaAl2Si2O8, Ca2Al2SiO7、CaAl2O4、Ca12Al14O33、Ca3Al2O6、アルミナセメント系結晶及びその結晶にMgO成分を固溶した1以上の結晶、を含み、ガラス相が微量存在する請求項3に記載のセラミック焼成体。
The crystalline phase, metakaolin, CaO, MgO, porous -Al 2 O 3, α-Al 2 O 3, mullite Ca 3 Al 2 Si 3 O 12 , CaAl 2 Si 2 O 8, Ca 2 Al 2 SiO 7, The glass phase contains CaAl 2 O 4 , Ca 12 Al 14 O 33 , Ca 3 Al 2 O 6 , an alumina cement crystal and one or more crystals in which the MgO component is dissolved in the crystal, and a glass phase is present in a trace amount. The ceramic fired body described in 1.
JP2006171662A 2005-06-30 2006-06-21 Ceramic substrate and ceramic fired body Active JP4966596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171662A JP4966596B2 (en) 2005-06-30 2006-06-21 Ceramic substrate and ceramic fired body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005191047 2005-06-30
JP2005191047 2005-06-30
JP2006171662A JP4966596B2 (en) 2005-06-30 2006-06-21 Ceramic substrate and ceramic fired body

Publications (2)

Publication Number Publication Date
JP2007039314A true JP2007039314A (en) 2007-02-15
JP4966596B2 JP4966596B2 (en) 2012-07-04

Family

ID=37797636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171662A Active JP4966596B2 (en) 2005-06-30 2006-06-21 Ceramic substrate and ceramic fired body

Country Status (1)

Country Link
JP (1) JP4966596B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047012B1 (en) 2009-05-21 2011-07-06 한화숙 Combustion furnace with combustion plate made of ceramic fired body
CN102173836A (en) * 2011-01-27 2011-09-07 宜兴摩根热陶瓷有限公司 Method for producing thermal insulation material with high thermal shock resistance through induction of mullite crystal seeds
CN107352967A (en) * 2016-05-10 2017-11-17 Toto株式会社 Large size ceramic plate and its manufacture method
CN108147779A (en) * 2017-12-01 2018-06-12 中山市武汉理工大学先进工程技术研究院 A kind of preparation method of light porous domestic ceramics
CN112624736A (en) * 2020-12-29 2021-04-09 景德镇乐华陶瓷洁具有限公司 Low-water-absorption FFC slurry and preparation method of FFC product using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931726B2 (en) 2018-09-11 2024-03-19 Tokyo Metropolitan University Gold-supporting catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156569A (en) * 1982-03-05 1983-09-17 共立窯業原料株式会社 Manufacture of pottery clay
WO1997026223A1 (en) * 1996-01-18 1997-07-24 Toto Ltd. Ceramic whiteware, ceramic body, processes for producing these, sanitary ware, and process for producing the sanitary ware

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156569A (en) * 1982-03-05 1983-09-17 共立窯業原料株式会社 Manufacture of pottery clay
WO1997026223A1 (en) * 1996-01-18 1997-07-24 Toto Ltd. Ceramic whiteware, ceramic body, processes for producing these, sanitary ware, and process for producing the sanitary ware

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047012B1 (en) 2009-05-21 2011-07-06 한화숙 Combustion furnace with combustion plate made of ceramic fired body
CN102173836A (en) * 2011-01-27 2011-09-07 宜兴摩根热陶瓷有限公司 Method for producing thermal insulation material with high thermal shock resistance through induction of mullite crystal seeds
CN107352967A (en) * 2016-05-10 2017-11-17 Toto株式会社 Large size ceramic plate and its manufacture method
CN108147779A (en) * 2017-12-01 2018-06-12 中山市武汉理工大学先进工程技术研究院 A kind of preparation method of light porous domestic ceramics
CN112624736A (en) * 2020-12-29 2021-04-09 景德镇乐华陶瓷洁具有限公司 Low-water-absorption FFC slurry and preparation method of FFC product using same

Also Published As

Publication number Publication date
JP4966596B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
Tchakouté et al. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study
Johari et al. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia)
Raupp-Pereira et al. Ceramic formulations prepared with industrial wastes and natural sub-products
Ke et al. Dolomite, wollastonite and calcite as different CaO sources in anorthite-based porcelain
JP4966596B2 (en) Ceramic substrate and ceramic fired body
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
KR101601779B1 (en) The composition of construction materials using waterworks sludge
JP6350703B2 (en) Large ceramic plate and manufacturing method thereof
RU2374206C1 (en) Raw mixture for making ceramic objects
NO305548B1 (en) Stable refractory material with low cement content and method of manufacture and installation thereof
Zawrah et al. Recycling and utilization of some waste clays for production of sintered ceramic bodies
JP6873427B2 (en) Manufacturing method of porous ceramics
Albhilil et al. Thermal and microstructure stability of cordierite–mullite ceramics prepared from natural raw materials
Albhilil et al. Thermal and microstructure stability of cordierite–mullite ceramics prepared from natural raw materials-part II
Sokolar et al. Sintering of anorthite ceramic body based on interstratified illite-smectite clay
KR100477333B1 (en) Glass Composition and Crystallized Glass Composition Having Low Melting Temperature Using Fly Ash of Power Station, and Method for Making the Same
Bhattacharyya et al. Effect of titania on fired characteristics of triaxial porcelain
Rundans et al. Effect of sintering process and additives on the properties of cordierite based ceramics
KR20160146116A (en) Method of Preparing Artificial Light-Weight Aggregates
Abdel Salam et al. Preparation of Geo-polymer Bricks from Alum Waste
Sornlar et al. Characterization of alumina crucible made from aluminum industrial waste
Yu Refractory clay raw materials of republic of belarus for production of the porcelain tile
Chandrasekaran et al. The effect of temperature on ceramic bricks with replacing waste glass in low volume ratio
Ariyajinno et al. Characterization and properties of cordierite–mullite refractories from raw materials and Narathiwat clay (in Thailand)
Bou et al. Production of pulverised fuel ash tiles using conventional ceramic production processes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4966596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250