JP2007037568A - Medical treatment appliance and medical treatment device - Google Patents

Medical treatment appliance and medical treatment device Download PDF

Info

Publication number
JP2007037568A
JP2007037568A JP2005221765A JP2005221765A JP2007037568A JP 2007037568 A JP2007037568 A JP 2007037568A JP 2005221765 A JP2005221765 A JP 2005221765A JP 2005221765 A JP2005221765 A JP 2005221765A JP 2007037568 A JP2007037568 A JP 2007037568A
Authority
JP
Japan
Prior art keywords
impedance
jaws
medical treatment
unit
living tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005221765A
Other languages
Japanese (ja)
Other versions
JP4734058B2 (en
Inventor
Koji Iida
浩司 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2005221765A priority Critical patent/JP4734058B2/en
Publication of JP2007037568A publication Critical patent/JP2007037568A/en
Application granted granted Critical
Publication of JP4734058B2 publication Critical patent/JP4734058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical treatment appliance capable of accurately detecting the state of coagulation or the state of coagulated incision of a living tissue at a low cost while the living tissue is coagulated or coagulated/incised with the heat of a heater, and efficiently coagulating or coagulating/incising the living tissue by adjusting the heating temperature of the heater to temperatures corresponding to the respective medical treatments. <P>SOLUTION: The medical treatment device with the medical treatment appliance for coagulating or coagulating/incising the living tissue held by a pair of openable/closable jaws 13 and 18 by heating the living tissue is provided with a heater element 26 and a support part 40. The heater element 26 is disposed in at least either one jaw for applying heat by the heating to the living tissue held by the pair of jaws 13 and 18. The support part 40 is disposed in at least one jaw for measuring the impedance of the living tissue held by the pair of jaws 13 and 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具、医療用処置装置に関する。   The present invention relates to a medical treatment tool and a medical treatment apparatus for heating a treatment target tissue grasped by a pair of openable and closable jaws and performing coagulation or coagulation incision of the treatment target tissue.

従来、開閉自在な一対のジョーで把持した処置対象組織(以下、生体組織と称す)を、少なくとも一方のジョーに設けられた発熱素子等の発熱体により加熱して生体組織の凝固または凝固切開を行う発熱処置具等の医療用処置具が種々提案されている。   Conventionally, a tissue to be treated (hereinafter referred to as a living tissue) grasped by a pair of openable and closable jaws is heated by a heating element such as a heating element provided on at least one of the jaws to coagulate or incise the living tissue. Various medical treatment tools such as an exothermic treatment tool to be performed have been proposed.

例えば特許文献1では、一対のジョーの内、一方のジョーの生体組織への処置面に平面部を設けることで、一対のジョーと生体組織との接触面積を確保して、生体組織を効率的に凝固させることができるとともに、凝固切開の際、熱により生体組織を乾燥させ、生体組織を脆弱にすることにより、ジョーが平面部を有していても生体組織を確実に切開することができる凝固切開システムが開示されている。   For example, in Patent Document 1, by providing a flat portion on the treatment surface of one jaw of the pair of jaws to the living tissue, a contact area between the pair of jaws and the living tissue is ensured, and the living tissue is efficiently processed. When the coagulation incision is performed, the living tissue is dried by heat to weaken the living tissue, so that even if the jaw has a flat surface, the living tissue can be reliably incised. A coagulation and incision system is disclosed.

また、特許文献2では、医療用処置具を用いた生体組織の凝固、凝固切開に際し、発熱体の発熱温度を検出することにより、発熱体の発熱温度を、各処置に応じた所望の温度に制御することができる発熱処置装置が開示されている。   Further, in Patent Document 2, when the living tissue is coagulated and coagulated and incised using a medical treatment instrument, the heating temperature of the heating element is detected, so that the heating temperature of the heating element is set to a desired temperature corresponding to each treatment. An exothermic treatment device that can be controlled is disclosed.

さらに、特許文献3では、医療用処置具を用いた生体組織の凝固に際し、一対のジョーの処置部に設置された電極を介して、生体組織に高周波を通電することで、生体組織を熱して凝固するとともに、生体組織のインピーダンスを測定することにより、生体組織の凝固状態を判別する発熱処置装置が開示されている。
特許3349139号公報 特開2001−269352号公報 米国特許5817093号公報
Furthermore, in Patent Document 3, when a living tissue is coagulated using a medical treatment instrument, the living tissue is heated by energizing the living tissue through electrodes disposed on the treatment portion of the pair of jaws. An exothermic treatment apparatus is disclosed that determines the coagulation state of a living tissue by coagulating and measuring the impedance of the living tissue.
Japanese Patent No. 3349139 JP 2001-269352 A U.S. Pat.

しかしながら、特許文献1に開示された凝固切開システムにおいては、発熱体を用いた凝固、凝固切開処置の最中に、生体組織の凝固、または凝固切開状態、言い換えれば、生体組織の温度を判別する手段が無いため、発熱体の発熱を一旦開始してしまうと、生体組織の状態に応じて発熱体の温度調整をすることができないことから、処置効率が悪いといった問題がある。   However, in the coagulation and incision system disclosed in Patent Document 1, during the coagulation using the heating element and the coagulation / incision treatment, the coagulation of the living tissue or the coagulation / incision state, in other words, the temperature of the living tissue is determined. Since there is no means, once the heating of the heating element is started, the temperature of the heating element cannot be adjusted according to the state of the living tissue, so that there is a problem that the treatment efficiency is poor.

また、特許文献2に開示された医療用処置具では、発熱体の温度を測定することにより、生体組織の温度を測定しているが、測定した発熱体の温度は、必ずしも生体組織の温度とは一致しないため、発熱体の温度を測定するのみでは、生体組織の正確な温度、状態を測定することはできないといった問題がある。   Further, in the medical treatment instrument disclosed in Patent Document 2, the temperature of the living tissue is measured by measuring the temperature of the heating element. However, the measured temperature of the heating element is not necessarily the same as the temperature of the living tissue. Therefore, there is a problem that the accurate temperature and state of the living tissue cannot be measured only by measuring the temperature of the heating element.

さらに、特許文献3に開示された医療用処置具では、生体組織の凝固の際、生体組織が凝固する温度まで、相当量の高周波電流を生体組織に印加する必要があるため、高周波電流を印加する電源は、容量の大きいものが必要となることから製品コストが高くなってしまうといった問題がある。   Furthermore, in the medical treatment instrument disclosed in Patent Document 3, it is necessary to apply a considerable amount of high-frequency current to the living tissue up to the temperature at which the living tissue coagulates when solidifying the living tissue. There is a problem that the cost of the product increases because the power source to be used requires a large capacity.

本発明の目的は、上記問題点に鑑みてなされたものであり、発熱体の加熱による生体組織の凝固または凝固切開中に、生体組織の凝固、または凝固切開状態を低コストにて正確に検出することができるとともに、各処置に応じた温度に、発熱体の加熱温度を調整することにより、効率良く凝固または凝固切開ができる医療用処置具、医療用処置装置を提供するにある。   The object of the present invention has been made in view of the above problems, and accurately detects the coagulation or coagulation incision state of a living tissue at low cost during the coagulation or coagulation incision of the living tissue by heating a heating element. It is another object of the present invention to provide a medical treatment tool and a medical treatment apparatus that can efficiently coagulate or coagulate and incise by adjusting the heating temperature of the heating element to a temperature corresponding to each treatment.

上記目的を達成するために本発明による医療用処置具は、開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具において、少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、を具備していることを特徴とする。   In order to achieve the above object, a medical treatment instrument according to the present invention is a medical treatment instrument that heats a treatment target tissue grasped by a pair of openable and closable jaws and performs coagulation or coagulation incision of the treatment target tissue. A heating element provided on one of the jaws to apply heat to the treatment target tissue held by the pair of jaws by heat generation, and provided on at least one of the jaws and held by the pair of jaws. And an impedance measuring unit that measures the impedance of the tissue to be treated.

さらに、上記目的を達成するために本発明による医療用処置装置は、開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具を有する医療用処置装置において、少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、前記インピーダンス測定部により測定された前記インピーダンスに応じて、前記発熱素子の発熱量を制御する制御手段と、を具備していることを特徴とする。   Furthermore, in order to achieve the above object, a medical treatment apparatus according to the present invention provides a medical treatment instrument that heats a treatment target tissue grasped by a pair of openable and closable jaws and performs coagulation or coagulation incision of the treatment target tissue. In the medical treatment apparatus, the heating element is provided in at least one of the jaws and applies heat to the treatment target tissue held by the pair of jaws by heat generation, and is provided in at least one of the jaws. An impedance measuring unit that measures the impedance of the tissue to be treated held by the pair of jaws, and a control unit that controls the amount of heat generated by the heating element according to the impedance measured by the impedance measuring unit; It is characterized by comprising.

本発明によれば、発熱体の加熱による生体組織の凝固または凝固切開中に、生体組織の凝固状態または凝固切開状態を低コストにて正確に検出することができるとともに、各処置に応じた温度に、発熱体の加熱温度を調整することにより、効率良く凝固または凝固切開ができる医療用処置具、医療用処置装置を提供することができる。   According to the present invention, the coagulation state or coagulation incision state of the living tissue can be accurately detected at low cost during the coagulation or coagulation incision of the living tissue by heating the heating element, and the temperature corresponding to each treatment. Furthermore, by adjusting the heating temperature of the heating element, it is possible to provide a medical treatment tool and a medical treatment device that can efficiently coagulate or coagulate and incise.

以下、図面を参照して本発明の実施の形態を説明する。
(第1実施の形態)
図1は、本発明の第1実施を示す医療用処置装置の正面図、図2は、図1の医療用処置具の上面図、図3は、図1のヒータユニットの正面図、図4は、図3のヒータユニットの先端側の部分上面図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
1 is a front view of a medical treatment apparatus showing a first embodiment of the present invention, FIG. 2 is a top view of the medical treatment instrument of FIG. 1, FIG. 3 is a front view of the heater unit of FIG. FIG. 4 is a partial top view of the front end side of the heater unit in FIG. 3.

また、図5は、図2中のV-V線に沿う医療用処置具の処置部の断面図、図6は、図5中のVI-VI線に沿う医療用処置具の処置部の断面図、図7は、図5中のVII-VII線に沿う医療用処置具の処置部の断面図、図8は、図5中のVIII-VIII線に沿う医療用処置具の処置部の断面図、図9は、図5の発熱素子の拡大斜視図、図10は、図1の医療用処置装置の電気回路の構成の概略を示す図である。   5 is a cross-sectional view of the treatment portion of the medical treatment tool along the line VV in FIG. 2, and FIG. 6 is a cross-sectional view of the treatment portion of the medical treatment tool along the line VI-VI in FIG. 7 is a cross-sectional view of the treatment portion of the medical treatment tool along the line VII-VII in FIG. 5, FIG. 8 is a cross-sectional view of the treatment portion of the medical treatment tool along the line VIII-VIII in FIG. FIG. 9 is an enlarged perspective view of the heating element of FIG. 5, and FIG. 10 is a diagram schematically showing the configuration of the electric circuit of the medical treatment apparatus of FIG.

尚、本実施においては、医療用処置具は、開閉する一対のジョーで把持した生体組織を、少なくとも一方のジョーに設けられた発熱体により加熱して生体組織の凝固または凝固切開を行う発熱処置具である開腹手術用熱凝固切開鉗子(以下、単に鉗子と称す)を例に挙げて説明する。よって、医療用処置装置は、鉗子を有する発熱処置装置(以下、単に処置装置と称す)を例に挙げて説明する。   In this embodiment, the medical treatment instrument is a heat treatment for coagulating or incising a living tissue by heating a living tissue grasped by a pair of jaws to be opened and closed by a heating element provided on at least one of the jaws. A thermocoagulation incision forceps for open surgery (hereinafter simply referred to as forceps), which is a tool, will be described as an example. Accordingly, the medical treatment apparatus will be described by taking a heat treatment apparatus having forceps (hereinafter simply referred to as a treatment apparatus) as an example.

図1に示すように、処置装置1は、供給された電力により発生する熱を利用して体腔内の生体組織Mに対し凝固または凝固切開等の各種処置を行う鉗子2と、該鉗子2に電力を供給して鉗子2の熱駆動を制御する電源3と、鉗子2と電源3とを接続するケーブル4と、電源3の電力のON/OFFの制御を行う電源3に接続されたフットスイッチ5とにより主要部が構成されている。   As shown in FIG. 1, a treatment apparatus 1 includes a forceps 2 that performs various treatments such as coagulation or coagulation incision on a living tissue M in a body cavity using heat generated by supplied electric power, and a forceps 2. A power source 3 for supplying electric power to control the thermal drive of the forceps 2, a cable 4 for connecting the forceps 2 and the power source 3, and a foot switch connected to the power source 3 for controlling ON / OFF of the power of the power source 3 5 constitutes the main part.

鉗子2は、ハンドルユニット6と、該ハンドルユニット6に対し着脱自在なヒータユニット7とにより主要部が構成されている。   The forceps 2 includes a handle unit 6 and a heater unit 7 detachably attached to the handle unit 6.

鉗子2は、それぞれ棒状部材により構成された第1本体8と、第2本体9とにより主要部が構成されている。尚、第1本体8、第2本体9は、強度上の理由から、ステンレスやチタン等の金属により構成されている。   The forceps 2 has a main part composed of a first main body 8 and a second main body 9 each formed of a rod-shaped member. The first main body 8 and the second main body 9 are made of a metal such as stainless steel or titanium for reasons of strength.

鉗子2の中央部11において、第2本体9は、第1本体8に形成された中央溝12(図2参照)に嵌入しており、第2の本体9は、枢支部である支点10を介して第1本体8に回動自在に取り付けられている。よって、第1本体8と第2本体9とは、中央部11の支点10に軸支されて互いに開閉自在となる。   In the central portion 11 of the forceps 2, the second main body 9 is fitted in a central groove 12 (see FIG. 2) formed in the first main body 8, and the second main body 9 has a fulcrum 10 that is a pivot portion. The first main body 8 is rotatably attached to the first main body 8. Therefore, the first main body 8 and the second main body 9 are pivotally supported by the fulcrum 10 of the central portion 11 and can be opened and closed with respect to each other.

第1本体8の先端側に、例えば自由曲面形状である弯曲形状を長手方向(以下、主軸と称す)に有する形状に形成された第1のジョー13が設けられており、第2本体9の先端側にも、弯曲形状を主軸に有する形状に形成された第2のジョー18が設けられている。また、第1のジョー13の第2のジョー18に対向する面に、ヒータユニット7の先端側が係合される溝15が、第1のジョー13の主軸に沿って凹状に形成されている。   A first jaw 13 formed in a shape having, for example, a curved shape that is a free-form surface in the longitudinal direction (hereinafter referred to as a main shaft) is provided on the distal end side of the first main body 8. A second jaw 18 formed in a shape having a curved shape as a main axis is also provided on the distal end side. In addition, a groove 15 that engages the front end side of the heater unit 7 is formed in a concave shape along the main axis of the first jaw 13 on the surface of the first jaw 13 that faces the second jaw 18.

尚、第1のジョー13と、第2のジョー18とは、対を成して生体組織Mを把持し処置する処置部150を構成している。また、ジョー13,18が弯曲形状に形成されているのは、鉗子2の処置部150における生体組織Mの剥離操作を行いやすくするためである。さらに、ジョー13,18も強度上の理由から、ステンレスやチタン等の金属により構成されている。   The first jaw 13 and the second jaw 18 constitute a treatment unit 150 that forms a pair and grips and treats the living tissue M. The reason why the jaws 13 and 18 are formed in a curved shape is to facilitate the peeling operation of the living tissue M in the treatment portion 150 of the forceps 2. Further, the jaws 13 and 18 are also made of a metal such as stainless steel or titanium for reasons of strength.

第1本体8の基端側に、手指挿入用の第1の指掛け14が設けられている。また、第1本体8の第1の指掛け14の近傍に、ヒータユニット7の基端側が係合されるヒータユニット受け16と、第2本体9と第1本体8とが閉成された際、第1本体8に対する第2本体9の閉成位置を規定するストッパー17とが設けられている。   A first finger hook 14 for inserting a finger is provided on the proximal end side of the first main body 8. Further, when the heater unit receiver 16 with which the proximal end side of the heater unit 7 is engaged, the second body 9 and the first body 8 are closed in the vicinity of the first finger hook 14 of the first body 8, A stopper 17 that defines the closed position of the second main body 9 with respect to the first main body 8 is provided.

さらに、第2本体9の基端側に、手指挿入用の第2の指掛け19が設けられている。また、第2本体9の第2の指掛け19の近傍に、接点20A,20Bが配設されたコネクタ20が設けられている。尚、接点20Aと接点20Bとは、互いに絶縁されている。コネクタ20の接点20A,20Bに、ケーブル4から分岐したケーブル4Bが接続されている。尚、ケーブル4Bは、コネクタ20に対し着脱自在である。   Furthermore, a second finger hook 19 for inserting a finger is provided on the proximal end side of the second main body 9. Further, a connector 20 in which contacts 20A and 20B are disposed is provided in the vicinity of the second finger hook 19 of the second main body 9. Note that the contact 20A and the contact 20B are insulated from each other. A cable 4B branched from the cable 4 is connected to the contacts 20A and 20B of the connector 20. The cable 4B is detachable from the connector 20.

図3、図4に示すように、ヒータユニット7は、棒状の本体部21を有し、一端となる先端側に、第1のジョー13に形成された溝15に係合される処置部22が、細長な連結部材24を介して接続されている。尚、本体部21の先端に、ハンドルユニット6の図1中裏面側において、支点10に設けられた係合部(図示せず)と係合する係合穴25が形成されている。   As shown in FIGS. 3 and 4, the heater unit 7 has a rod-shaped main body portion 21, and a treatment portion 22 that is engaged with a groove 15 formed in the first jaw 13 on the distal end side that is one end. Are connected via an elongated connecting member 24. An engagement hole 25 that engages with an engagement portion (not shown) provided at the fulcrum 10 is formed at the front end of the main body portion 21 on the back surface side of the handle unit 6 in FIG.

処置部22及び連結部材24は、第1のジョー13と同様に、弯曲形状を主軸に有する形状に形成されている。また、処置部22及び連結部材24は、溝15に対し係脱自在である。   Similar to the first jaw 13, the treatment portion 22 and the connecting member 24 are formed in a shape having a curved shape as a main axis. Further, the treatment portion 22 and the connecting member 24 are detachable with respect to the groove 15.

ヒータユニット7の他端となる基端側に、ケーブル4から分岐したケーブル4Aが接続されるとともに、ヒータユニット受け16に係合される円筒部23が設けられている。尚、円筒部23は、ヒータユニット受け16に対し係脱自在であり、また、ケーブル4Aは、円筒部23に対し着脱自在である。   A cable 4 </ b> A branched from the cable 4 is connected to the base end side that is the other end of the heater unit 7, and a cylindrical portion 23 that is engaged with the heater unit receiver 16 is provided. The cylindrical portion 23 is detachable with respect to the heater unit receiver 16, and the cable 4 </ b> A is detachable with respect to the cylindrical portion 23.

図5に示すように、処置部22は、発熱体である発熱素子26と該発熱素子26を内周面において保持する断面形状が略U字状の断熱枠27とを有している。尚、断熱枠27の先端側は、図6に示すように、断面形状が環状を有している。   As shown in FIG. 5, the treatment section 22 includes a heating element 26 that is a heating element, and a heat insulating frame 27 having a substantially U-shaped cross-section that holds the heating element 26 on the inner peripheral surface. In addition, as shown in FIG. 6, the front end side of the heat insulation frame 27 has an annular cross-sectional shape.

断熱枠27は、該断熱枠27の基端が、連結部材24の先端側に対し、パイプ37、ピン38で接続されることにより、第1のジョー13に対し固定されている。尚、断熱枠27を構成する材料としては、耐熱性が高いことが要求されるため、耐熱性の高い樹脂やセラミックスが適当である。   The heat insulating frame 27 is fixed to the first jaw 13 by connecting the base end of the heat insulating frame 27 to the distal end side of the connecting member 24 with a pipe 37 and a pin 38. In addition, as a material which comprises the heat insulation frame 27, since heat resistance is requested | required, resin and ceramics with high heat resistance are suitable.

発熱素子26は、生体組織Mに対し発熱により熱エネルギを与えるものであり、図9に示すように、例えばモリブデンなどの熱伝導性の良い金属により構成された基板46により、第1のジョー13と同様に、弯曲形状を主軸に有する形状であって、断面形状が下向きの略凸状に形成されている。   The heat generating element 26 gives heat energy to the living tissue M by heat generation. As shown in FIG. 9, for example, the first jaw 13 is formed by a substrate 46 made of a metal having good heat conductivity such as molybdenum. In the same manner as above, the main body has a curved shape, and the cross-sectional shape is formed in a substantially convex shape downward.

基板46の上面、即ち断熱枠27に対向する面に、図示しない絶縁層が形成されており、該絶縁層上に、薄膜抵抗からなるU字形状の発熱部47、48が、例えば基板46の主軸に沿って形成されている。尚、発熱部47、48を構成する薄膜抵抗は、例えばモリブデンからなる。   An insulating layer (not shown) is formed on the upper surface of the substrate 46, that is, the surface facing the heat insulating frame 27, and U-shaped heat generating portions 47 and 48 made of thin film resistors are formed on the insulating layer, for example, on the substrate 46. It is formed along the main axis. The thin film resistors constituting the heat generating portions 47 and 48 are made of, for example, molybdenum.

U字状の発熱部47、48の各端であって、基板46の絶縁層上に、リード線31の後述する金属ワイヤ33の先端が接続される、表面が金等のめっきで構成された電極49が、発熱部47,48毎に、2つずつ形成されている。尚、リード線31の金属ワイヤ33の先端と電極49との接続方法としては、高融点はんだ、溶接、熱圧着、ワイヤボンディング、導電ペースト等が挙げられる。   At each end of the U-shaped heat generating portions 47 and 48, the tip of a metal wire 33 (described later) of the lead wire 31 is connected to the insulating layer of the substrate 46, and the surface is configured by plating such as gold. Two electrodes 49 are formed for each of the heat generating portions 47 and 48. Examples of the method for connecting the tip of the metal wire 33 of the lead wire 31 and the electrode 49 include high melting point soldering, welding, thermocompression bonding, wire bonding, and conductive paste.

電極49は、ワイヤリングに適した部材、例えば銅から構成されており、電源3からリード線31を介して供給された電力を発熱部47,48に伝達する。尚、リード線31は、銅合金などの金属ワイヤ33と該金属ワイヤ33を被覆する電気絶縁のためのチューブ34とから構成されている。尚、チューブ34を構成する材料としては、耐熱性が高いことが要求されるため、耐熱性の高い樹脂やセラミックスが適当である。   The electrode 49 is made of a material suitable for wiring, for example, copper, and transmits power supplied from the power source 3 via the lead wire 31 to the heat generating portions 47 and 48. The lead wire 31 is composed of a metal wire 33 such as a copper alloy and a tube 34 for electrical insulation that covers the metal wire 33. In addition, since the material which comprises the tube 34 is requested | required that heat resistance is high, resin and ceramics with high heat resistance are suitable.

発熱素子26の基板46の周面であって、第2のジョー18に対向する位置は、例えば生体組織Mを処置する際の処置面28となっている。即ち、処置面28は、生体組織Mを把持するため第2のジョー18と第1のジョー13とが閉成された際に、生体組織Mに接触する面となる。処置面28は、非鋭利な形状を有しており、例えば自由曲面形状である部分円弧状に構成されている。   A position on the peripheral surface of the substrate 46 of the heating element 26 and facing the second jaw 18 is a treatment surface 28 when treating the living tissue M, for example. That is, the treatment surface 28 is a surface that comes into contact with the living tissue M when the second jaw 18 and the first jaw 13 are closed in order to grasp the living tissue M. The treatment surface 28 has a non-sharp shape, and is configured, for example, in a partial arc shape that is a free-form surface shape.

図5に戻って、発熱素子26の一端、即ち先端に、断熱枠27と係合する係合部29が設けられている。また、発熱素子26の他端、即ち基端に、連結部材24の先端と係合する係合部30が設けられている。また、係合部30は連結部材24の前端39で固定されている。   Returning to FIG. 5, an engaging portion 29 that engages with the heat insulating frame 27 is provided at one end of the heat generating element 26, that is, at the tip. Further, an engaging portion 30 that engages with the distal end of the connecting member 24 is provided at the other end, that is, the base end of the heat generating element 26. Further, the engaging portion 30 is fixed at the front end 39 of the connecting member 24.

尚、断熱枠27に発熱素子26が保持された状態において、発熱素子26に給電するためのリード線31を挿通する空間32が断熱枠27に形成されている。空間32に挿通されたリード線31の基端は、連結部材24に設けられた図示しない溝に挿通された後、円筒部23においてケーブル4Aに接続されている。   In the state where the heat generating element 26 is held by the heat insulating frame 27, a space 32 through which the lead wire 31 for supplying power to the heat generating element 26 is inserted is formed in the heat insulating frame 27. The proximal end of the lead wire 31 inserted into the space 32 is inserted into a groove (not shown) provided in the connecting member 24 and then connected to the cable 4 </ b> A at the cylindrical portion 23.

また、図7に示すように、空間32に、チューブ34を発熱素子26の発熱から保護する、断面略U字形状のスペーサ部材35が配設されている。尚、スペーサ部材35を構成する材料としては、耐熱性が高いことが要求されるため、耐熱性の高い樹脂やセラミックスが適当である。   As shown in FIG. 7, a spacer member 35 having a substantially U-shaped cross section that protects the tube 34 from the heat generated by the heating element 26 is disposed in the space 32. In addition, as a material which comprises the spacer member 35, since heat resistance is requested | required high, resin and ceramics with high heat resistance are suitable.

スペーサ部材35は、発熱素子26の上部と断熱枠27の内周面との間に密に嵌合されており、スペーサ部材35と断熱枠27との間に形成された溝部36に、リード線31の先端側が挿通されている。尚、スペーサ部材35は、発熱素子26が、固定位置から断熱枠27側へずれることを防止する、即ち発熱素子26の固定位置を規定する。   The spacer member 35 is closely fitted between the upper portion of the heat generating element 26 and the inner peripheral surface of the heat insulating frame 27, and a lead wire is inserted into a groove portion 36 formed between the spacer member 35 and the heat insulating frame 27. The tip end side of 31 is inserted. The spacer member 35 prevents the heating element 26 from shifting from the fixed position to the heat insulating frame 27 side, that is, defines the fixing position of the heating element 26.

さらに、空間32、発熱素子26と連結部材24との間、または溝36の内部に、隙間をなくすための充填剤が充填されている。尚、充填材を構成する材料としては、耐熱性の良い材料が要求されることから、耐熱性の高い樹脂やセラミックス等が適当である。   Further, a filler for eliminating a gap is filled in the space 32, between the heating element 26 and the connecting member 24, or in the groove 36. As a material constituting the filler, since a material having good heat resistance is required, a resin or ceramic having high heat resistance is suitable.

発熱素子26の処置面28、断熱枠27の外表面及び発熱素子と断熱枠27との境界部に、図示しない非粘着性のコーティング材が加工されている。非粘着性のコーティング材の材質としては、耐熱性の良い樹脂、例えばPTFEやPFA等を含むフッ素樹脂に添加剤が添加されたものが挙げられる。   A non-adhesive coating material (not shown) is processed on the treatment surface 28 of the heat generating element 26, the outer surface of the heat insulating frame 27, and the boundary between the heat generating element and the heat insulating frame 27. Examples of the material for the non-adhesive coating material include a resin having a good heat resistance, for example, a fluororesin containing PTFE, PFA, or the like to which an additive is added.

第2のジョー18の第1のジョー13に対向する位置に、第2のジョー18と第1のジョー13とが閉成された際、第1のジョー13の発熱素子26の処置面28が接触する発熱素子受け部(以下、単に受け部と称す)40が、第2のジョー18の主軸に沿って、高さ方向に所定の厚さを有して肉厚に設けられている。   When the second jaw 18 and the first jaw 13 are closed at a position facing the first jaw 13 of the second jaw 18, the treatment surface 28 of the heating element 26 of the first jaw 13 is changed. A heating element receiving portion (hereinafter simply referred to as a receiving portion) 40 that contacts is provided with a predetermined thickness in the height direction along the main axis of the second jaw 18 so as to be thick.

受け部40は、第2のジョー18と同様に、弯曲形状を主軸に有する形状に形成されている。また、受け部40は、図6、図7に示すように、受け部40A,40B,40Cから構成されている。尚、受け部40A〜40Cの上面は、図5〜図7に示すように、第2のジョー18の第1のジョー13に対向する面と略同一面となっている。   Similarly to the second jaw 18, the receiving portion 40 is formed in a shape having a curved shape as a main axis. Moreover, the receiving part 40 is comprised from receiving part 40A, 40B, 40C, as shown in FIG. 6, FIG. The upper surfaces of the receiving portions 40A to 40C are substantially the same as the surface of the second jaw 18 facing the first jaw 13 as shown in FIGS.

即ち、受け部40A〜40Cの上面は、一対のジョー13,18が閉成された際、発熱素子26の処置面28の受け面を構成するとともに、生体組織Mを把持する際、生体組織Mに接触する処置面となる。   That is, the upper surfaces of the receiving portions 40A to 40C constitute a receiving surface of the treatment surface 28 of the heat generating element 26 when the pair of jaws 13 and 18 are closed, and when the living tissue M is gripped, the living tissue M It becomes the treatment surface that comes into contact with.

さらに、受け部40は、一対のジョー13,18が生体組織Mを把持した際、受け部40Aと受け部40Bとの間において微弱な高周波電流K(図7参照)を流すことにより、生体組織Mの後述するインピーダンスを測定する。よって、受け部40は、本実施におけるインピーダンス測定部を構成している。   Furthermore, when the pair of jaws 13 and 18 grip the living tissue M, the receiving unit 40 causes a weak high-frequency current K (see FIG. 7) to flow between the receiving unit 40A and the receiving unit 40B, thereby causing the living tissue. The impedance of M described later is measured. Therefore, the receiving part 40 comprises the impedance measurement part in this implementation.

受け部40A,40Bは、電気伝導性を有する柔軟性部材、例えば炭素等が配合された特殊なシリコンゴムから構成されている。また、受け部40Cは、受け部40Aと受け部40Bとを絶縁するとともに、第2のジョー18と受け部40A,40Bとの間も隔絶する、絶縁性を有するシリコンゴム等の柔軟部材から構成されている。   The receiving portions 40A and 40B are made of a flexible member having electrical conductivity, for example, a special silicon rubber compounded with carbon or the like. The receiving portion 40C is composed of a flexible member such as an insulating silicone rubber that insulates the receiving portion 40A and the receiving portion 40B and isolates the second jaw 18 from the receiving portions 40A and 40B. Has been.

受け部40A,40Bは、第2のジョー18の基端側において、各々リード線41A,41Bの先端に接続されている。リード線41A,41Bは、図8に示すように、第2本体9の内部に挿通され、各々の基端が、コネクタ20に設けられた接点20A,20Bにそれぞれ接続されている。尚、リード線41Aと41Bとは互いに絶縁されている。リード線41A,41Bは、電源3から供給された微弱な高周波電流Kを、受け部40A,40Bに通電させる。   The receiving portions 40A and 40B are connected to the distal ends of the lead wires 41A and 41B on the proximal end side of the second jaw 18, respectively. As shown in FIG. 8, the lead wires 41 </ b> A and 41 </ b> B are inserted into the second main body 9, and their base ends are connected to contacts 20 </ b> A and 20 </ b> B provided on the connector 20, respectively. The lead wires 41A and 41B are insulated from each other. The lead wires 41A and 41B energize the weak high-frequency current K supplied from the power supply 3 to the receiving portions 40A and 40B.

次に、処置装置1の電気回路の構成を概略的に説明する。図10に示すように、電源3に、制御演算部50と、発熱設定部51と、フットスイッチ入力部52と、抵抗値検出部53と、出力部54と、インピーダンス検出部55と、高周波出力部56と、告知部57と、設定スイッチ100と、表示部101とが配設されている。尚、設定スイッチ100と表示部101とは、図1に示すように、電源3の外表面に一部が露呈している。   Next, the configuration of the electric circuit of the treatment apparatus 1 will be schematically described. As shown in FIG. 10, the power supply 3 includes a control calculation unit 50, a heat generation setting unit 51, a foot switch input unit 52, a resistance value detection unit 53, an output unit 54, an impedance detection unit 55, and a high frequency output. A unit 56, a notification unit 57, a setting switch 100, and a display unit 101 are provided. The setting switch 100 and the display unit 101 are partially exposed on the outer surface of the power source 3 as shown in FIG.

制御演算部50に、発熱設定部51とフットスイッチ入力部52と抵抗値検出部53と出力部54とインピーダンス検出部55と高周波出力部56と告知部57とが接続されている。   A heat generation setting unit 51, a foot switch input unit 52, a resistance value detection unit 53, an output unit 54, an impedance detection unit 55, a high frequency output unit 56, and a notification unit 57 are connected to the control calculation unit 50.

また、発熱設定部51に、設定スイッチ100が接続され、フットスイッチ入力部52に、フットスイッチ5が接続されている。よって、フットスイッチ入力部52に、フットスイッチ5による発熱操作信号が入力される。   Further, the setting switch 100 is connected to the heat generation setting unit 51, and the foot switch 5 is connected to the foot switch input unit 52. Therefore, a heat generation operation signal from the foot switch 5 is input to the foot switch input unit 52.

発熱設定部51は、設定スイッチ100から各種操作信号が入力されることにより、発熱素子26に印加される電圧や電流、温度などの設定値を変更する。尚、発熱設定部51が設定変更できる各種操作信号のパラメータは、電源の制御方式により異なる。   The heat generation setting unit 51 changes set values such as voltage, current, and temperature applied to the heat generating element 26 when various operation signals are input from the setting switch 100. The parameters of various operation signals that can be set and changed by the heat generation setting unit 51 differ depending on the power supply control method.

抵抗値検出部53と出力部54とに、発熱素子26がケーブル4A及びリード線31を介して接続されており、またインピーダンス検出部55と高周波出力部56とに、ケーブル4B及びリード線41を介して、受け部40A,40Bが接続されている。   The heating element 26 is connected to the resistance detection unit 53 and the output unit 54 via the cable 4A and the lead wire 31, and the cable 4B and the lead wire 41 are connected to the impedance detection unit 55 and the high frequency output unit 56. The receiving portions 40A and 40B are connected to each other.

出力部54は、制御演算部50の駆動制御により、発熱素子26に、電圧及び電流を印加する。即ち、発熱素子26を発熱駆動させるための発熱電力を出力する。よって、出力部54は、本発明における電力供給部を構成している。   The output unit 54 applies a voltage and a current to the heating element 26 under the drive control of the control calculation unit 50. That is, the generated heat power for driving the heat generating element 26 is output. Therefore, the output part 54 comprises the electric power supply part in this invention.

抵抗値検出部53は、出力部54から発熱素子26に印加された電圧と電流とを検出し、発熱素子26の温度を測定する。よって、抵抗値検出部53は、本発明における温度測定部を構成している。   The resistance value detection unit 53 detects the voltage and current applied to the heating element 26 from the output unit 54 and measures the temperature of the heating element 26. Therefore, the resistance value detection unit 53 constitutes a temperature measurement unit in the present invention.

制御演算部50は、抵抗値検出部53において検出された電圧と電流とを除算することで、発熱素子26の抵抗値を求める。発熱素子26の抵抗値の増減は、発熱素子26の発熱温度の高低と連動していることから、制御演算部50で演算された抵抗値から発熱素子26の温度を算出することができる。この発熱素子26の温度は、出力部54から発熱素子26に出力する電力量の制御に利用されている。   The control calculation unit 50 determines the resistance value of the heating element 26 by dividing the voltage and current detected by the resistance value detection unit 53. Since the increase / decrease in the resistance value of the heating element 26 is linked to the level of the heating temperature of the heating element 26, the temperature of the heating element 26 can be calculated from the resistance value calculated by the control calculation unit 50. The temperature of the heat generating element 26 is used to control the amount of power output from the output unit 54 to the heat generating element 26.

高周波出力部56は、制御演算部50の駆動制御により、微弱な高周波電流Kを、受け部40A,40Bに印加し、受け部40A,40Bに接触している生体組織Mに、微弱な高周波電流Kを通電する。よって、高周波出力部56は、本発明における高周波電流印加部を構成している。尚、高周波出力部56は、微弱な高周波電流Kを受け部40A,40Bに印加するだけの回路であるため、安価な回路により構成されている。   The high-frequency output unit 56 applies a weak high-frequency current K to the receiving units 40A and 40B by driving control of the control calculation unit 50, and applies a weak high-frequency current to the living tissue M in contact with the receiving units 40A and 40B. Energize K. Therefore, the high frequency output part 56 comprises the high frequency current application part in this invention. Note that the high-frequency output unit 56 is a circuit that only applies the weak high-frequency current K to the units 40A and 40B, and thus is configured by an inexpensive circuit.

インピーダンス検出部55は、生体組織Mに印加された電圧と電流とを検出し、生体組織Mのインピーダンスを検出する。   The impedance detector 55 detects the voltage and current applied to the living tissue M, and detects the impedance of the living tissue M.

制御演算部50は、インピーダンス検出部55において検出された電圧と電流とを除算することで、生体組織Mのインピーダンスを求める。制御演算部50は、フットスイッチ入力部52からの発熱操作信号と、発熱設定部51からの各種操作信号との入力を基に、出力部54と告知部57とを駆動制御する。さらに、制御演算部50は、出力部54の出力に連動して、インピーダンス検出部55、高周波出力部56を駆動するよう制御する。   The control calculation unit 50 calculates the impedance of the living tissue M by dividing the voltage and current detected by the impedance detection unit 55. The control calculation unit 50 drives and controls the output unit 54 and the notification unit 57 based on inputs of the heat generation operation signal from the foot switch input unit 52 and various operation signals from the heat generation setting unit 51. Further, the control calculation unit 50 controls to drive the impedance detection unit 55 and the high frequency output unit 56 in conjunction with the output of the output unit 54.

即ち、制御演算部50は、発熱素子26が発熱している間、受け部40Aと40Bとの間で生体組織に通電を行うよう制御することにより、処置面28と受け部40の間で把持した生体組織Mのインピーダンスを測定し、発熱処置を行っている際の生体組織Mの凝固状態を常に測定することが可能である。   That is, the control calculation unit 50 controls the energization of the living tissue between the receiving units 40A and 40B while the heat generating element 26 is generating heat, thereby gripping between the treatment surface 28 and the receiving unit 40. By measuring the impedance of the living tissue M, it is possible to always measure the coagulation state of the living tissue M during the heat treatment.

また、制御演算部50は、測定したインピーダンスと測定して生体組織Mの温度を基に、出力部54の出力を制御するよう、随時出力部54の駆動制御を行う。よって、制御演算部50は、本発明における制御手段を構成している。   In addition, the control calculation unit 50 performs drive control of the output unit 54 as needed to control the output of the output unit 54 based on the measured impedance and the temperature of the living tissue M. Therefore, the control calculation part 50 comprises the control means in this invention.

尚、制御演算部50は、インピーダンス検出部55が検出したインピーダンスの値が大きいほど、生体組織Mの凝固が進行したと判定し、インピーダンスの値が低いほど、生体組織Mが未凝固状態であると判定する。これは、インピーダンスの値が低いほど、生体組織Mは良く通電する状態であることから、生体組織Mに水分が残留している状態であると判定されるためである。   The control calculation unit 50 determines that the coagulation of the living tissue M has progressed as the impedance value detected by the impedance detection unit 55 increases, and the living tissue M is in an uncoagulated state as the impedance value decreases. Is determined. This is because, as the impedance value is lower, the living tissue M is more energized, and therefore, it is determined that the moisture remains in the living tissue M.

告知部57は、制御演算部50の駆動制御により、表示部101に、発熱素子26が発熱中であることの旨の表示を行う。さらに告知部57には、制御演算部50の発熱素子26の発熱量の制御の変化に応じて、使用者が制御状態を視認できる旨の表示を行ってもよい。尚、表示部101は、使用者が各種情報を認識できる手段であれば、例えばブザー等の音響手段を伴う物により構成されていても構わない。   The notification unit 57 displays on the display unit 101 that the heating element 26 is generating heat under the drive control of the control calculation unit 50. Further, the notification unit 57 may display that the user can visually recognize the control state in accordance with the change in the control of the heat generation amount of the heat generating element 26 of the control calculation unit 50. As long as the display unit 101 is a unit that allows the user to recognize various types of information, for example, the display unit 101 may be configured by an object accompanied by an acoustic unit such as a buzzer.

次に、このように構成された本実施の作用について、図1〜図10及び図11を用いて説明する。図11(a)〜(c)は、図10の制御演算部の出力制御図である。   Next, the effect | action of this embodiment comprised in this way is demonstrated using FIGS. 1-10 and FIG. FIGS. 11A to 11C are output control diagrams of the control calculation unit of FIG.

第2本体9と第1本体8とが閉成操作され、即ち、第2のジョー18と第1のジョー13とが閉成されることにより、処置部150において、発熱素子26の処置面28と受け部40との間で生体組織Mが把持された後、フットスイッチ5が操作されると、上述したように、制御演算部50の駆動制御の下、出力部54により、ケーブル4A、リード線31、発熱部47,48を介して、発熱素子26に電圧及び電流が印加される。このことにより、発熱素子26が発熱される。その後、発熱素子の発熱は、処置面28により、生体組織Mに伝熱され、該熱により、生体組織Mは、凝固または凝固切開される。   When the second main body 9 and the first main body 8 are closed, that is, the second jaw 18 and the first jaw 13 are closed, the treatment surface 28 of the heating element 26 is treated in the treatment section 150. When the foot switch 5 is operated after the living tissue M is gripped between the cable 4A and the receiving unit 40, the output unit 54 controls the cable 4A and the lead under the drive control of the control calculation unit 50 as described above. A voltage and a current are applied to the heating element 26 via the line 31 and the heating portions 47 and 48. As a result, the heating element 26 generates heat. Thereafter, the heat generated by the heating element is transferred to the living tissue M by the treatment surface 28, and the living tissue M is coagulated or coagulated and cut by the heat.

この生体組織Mの凝固切開において、発熱素子26に一定電力を印加する場合は、制御演算部50は、図11(a)に示すように、先ず、発熱素子26に一定電力W2を印加するよう制御する(*1)。尚、この電力W2は、生体組織Mの凝固状態が良くなり、凝固処置時間が短縮できる設定値、即ち生体組織Mの凝固に適した電力値である。   When applying a constant power to the heating element 26 in the coagulation and incision of the living tissue M, the control calculation unit 50 first applies the constant power W2 to the heating element 26 as shown in FIG. Control (* 1). The power W2 is a set value that can improve the coagulation state of the living tissue M and shorten the coagulation treatment time, that is, a power value suitable for coagulation of the living tissue M.

電力W2の印加と略同時に、制御演算部50は、受け部40A,40B及びインピーダンス検出部55を用いて、組織Mのインピーダンスを求め始める(*2)。検出した組織Mのインピーダンスが、閾値Z1以上に到達すると(*3)、制御演算部50は、切開する前に凝固を充分にするため、一旦、電力をW1に下げるよう制御する(*4)。尚、この際電力をW1に下げるのは、W2の電力を持続すると、生体組織Mの凝固前に、生体組織Mが切開されてしまうためである。   At substantially the same time as the application of the electric power W2, the control calculation unit 50 starts to obtain the impedance of the tissue M using the receiving units 40A and 40B and the impedance detection unit 55 (* 2). When the detected impedance of the tissue M reaches the threshold value Z1 or more (* 3), the control calculation unit 50 controls to reduce the power to W1 once in order to sufficiently coagulate before cutting (* 4). . In this case, the power is reduced to W1 if the power of W2 is maintained because the living tissue M is incised before the living tissue M is solidified.

次いで、インピーダンスが凝固に充分なZ2に到達後(*5)、制御演算部50は、電力をW3に上げるよう制御し(*6)、生体組織Mを切開する。尚、電力W3は、凝固した生体組織Mを短時間で切開できる電力値である。   Next, after the impedance reaches Z2 sufficient for coagulation (* 5), the control calculation unit 50 performs control to increase the power to W3 (* 6), and incises the living tissue M. The electric power W3 is an electric power value that can cut the solidified biological tissue M in a short time.

また、この場合、発熱素子26の温度情報を発熱素子26の温度制御に利用してもよい。図11(b)に示すように、インピーダンスが凝固に充分なZ2に到達後(*5)、発熱素子26の耐久性を確保するために、発熱素子26の上限温度を決めて、発熱素子26の温度を設定温度Tに維持するよう(*7)、制御演算部50は制御してもよい。   In this case, the temperature information of the heating element 26 may be used for temperature control of the heating element 26. As shown in FIG. 11B, after the impedance reaches Z2 sufficient for solidification (* 5), in order to ensure the durability of the heating element 26, the upper limit temperature of the heating element 26 is determined, and the heating element 26 The control calculation unit 50 may control the temperature so as to maintain the temperature at the set temperature T (* 7).

生体組織Mの凝固切開において、発熱素子26に一定電圧を印加する場合は、制御演算部50は、図11(c)に示すように、先ず、発熱素子26に一定電圧V2を印加するよう制御する(*8)。尚、この電圧V2は、生体組織Mの凝固状態が良くなり、処置時間が短くなる設定値、即ち生体組織Mの凝固に適した電圧値である。   When applying a constant voltage to the heating element 26 in the coagulation and incision of the living tissue M, the control calculation unit 50 first controls to apply the constant voltage V2 to the heating element 26 as shown in FIG. (* 8). The voltage V2 is a set value that improves the coagulation state of the living tissue M and shortens the treatment time, that is, a voltage value suitable for coagulation of the living tissue M.

電圧V2の印加と略同時に、制御演算部50は、受け部40A,40B及びインピーダンス検出部55を用いて、組織Mのインピーダンスを求め始める(*9)。検出した組織Mのインピーダンスが、閾値Z1以上に到達すると(*10)、制御演算部50は、切開する前に凝固を充分にするため、一旦、電圧をV1に下げるよう制御する(*11)。尚、この際電圧をV1に下げるのは、V2の電力を持続すると、生体組織Mの凝固前に、生体組織Mが切開されてしまうためである。   At substantially the same time as the application of the voltage V2, the control calculation unit 50 starts obtaining the impedance of the tissue M using the receiving units 40A and 40B and the impedance detection unit 55 (* 9). When the detected impedance of the tissue M reaches the threshold value Z1 or more (* 10), the control calculation unit 50 controls to lower the voltage to V1 once in order to sufficiently coagulate before cutting (* 11). . In this case, the voltage is lowered to V1 because the living tissue M is incised before the living tissue M is solidified if the electric power of V2 is maintained.

次いで、インピーダンスが凝固に充分なZ2に到達後(*12)、制御演算部50は、電圧をV3に上げるよう制御し(*13)、生体組織Mを切開する。   Next, after the impedance reaches Z2 sufficient for coagulation (* 12), the control calculation unit 50 performs control to increase the voltage to V3 (* 13), and incises the living tissue M.

尚、以上の制御演算部50の駆動制御例は、生体組織Mのインピーダンス情報を、発熱素子の発熱量の制御に利用した場合を示すものであり、この制御に限定されないことは云うまでもない。   The drive control example of the control calculation unit 50 described above shows a case where the impedance information of the living tissue M is used for controlling the amount of heat generated by the heat generating element, and it goes without saying that the present invention is not limited to this control. .

このように、本実施においては、第2のジョー18に、生体組織Mを把持した際、生体組織Mに接触し、電源3から印加された微弱な高周波電流Kを生体組織に印加する受け部40A,40Bを設けた。   As described above, in this embodiment, when the living tissue M is gripped by the second jaw 18, the receiving portion that contacts the living tissue M and applies the weak high-frequency current K applied from the power source 3 to the living tissue. 40A and 40B were provided.

また、制御演算部50は、受け部40A,40B及びインピーダンス検出部55において測定、検出された生体組織Mのインピーダンスと、抵抗値検出部53を用いた生体組織Mの温度情報とを基に、出力部54を介して、発熱素子26の発熱量を制御する構成とした。   Further, the control calculation unit 50 is based on the impedance of the biological tissue M measured and detected by the receiving units 40A and 40B and the impedance detection unit 55 and the temperature information of the biological tissue M using the resistance value detection unit 53. The heat generation amount of the heat generating element 26 is controlled via the output unit 54.

このことによれば、発熱素子26の加熱による生体組織Mの凝固または凝固切開中に、生体組織の凝固状態を、生体組織Mのインピーダンスを検出することで、応答性良く正確に検出することができるとともに、各処置に応じた温度に、発熱素子26の発熱量を調整することができることから、処置効率良く凝固または凝固切開ができる鉗子、処置装置を提供することができる。   According to this, during the coagulation or coagulation incision of the living tissue M due to the heating of the heat generating element 26, the coagulation state of the living tissue can be accurately detected with good responsiveness by detecting the impedance of the living tissue M. In addition, since the amount of heat generated by the heat generating element 26 can be adjusted to a temperature corresponding to each treatment, a forceps and a treatment device capable of coagulation or coagulation incision can be provided.

また、高周波出力部56を用いて生体組織Mに通電する高周波電流は、微弱なものでよいため、高周波出力部56を構成する回路を安価にすることができることから、従来の一般的な電気メス、即ち高周波処置具の駆動電源に比べて、製造コストを安くして、電源3を製造することができる。   In addition, since the high-frequency current that is applied to the living tissue M using the high-frequency output unit 56 may be weak, the circuit that constitutes the high-frequency output unit 56 can be made inexpensive. That is, the power supply 3 can be manufactured at a lower manufacturing cost than the drive power supply of the high-frequency treatment instrument.

尚、本実施においては、受け部40は、第2のジョー18に設けると示したが、これに限らず、第1のジョー13に設けてもよい。また、発熱素子26も、第1のジョー13に限らず、第2のジョー18に設けても構わないし、第1のジョー13と第2のジョー18との両方に設けても構わない。   In the present embodiment, the receiving portion 40 is described as being provided on the second jaw 18, but the present invention is not limited thereto, and the receiving portion 40 may be provided on the first jaw 13. Further, the heat generating element 26 is not limited to the first jaw 13 but may be provided on the second jaw 18 or may be provided on both the first jaw 13 and the second jaw 18.

(第2実施の形態)
図12は、図5の鉗子の処置部の変形例の構成を示す断面図、図13は、図12中のXIII-XIII線に沿う鉗子の処置部の断面図、図14は、図12中のXIV-XIV線に沿う鉗子の処置部の断面図、図15は、図12中のXV-XV線に沿う鉗子の処置部の断面図である。
(Second Embodiment)
12 is a cross-sectional view showing a configuration of a modified example of the treatment part of the forceps in FIG. 5, FIG. 13 is a cross-sectional view of the treatment part of the forceps along the line XIII-XIII in FIG. 12, and FIG. FIG. 15 is a cross-sectional view of the treatment portion of the forceps along the XV-XV line in FIG. 12.

尚、本実施の形態においても、上述した第1実施の形態と同様に、医療用処置具は、開閉する一対のジョーで把持した生体組織を、少なくとも一方のジョーに設けられた発熱素子により加熱して生体組織の凝固または凝固切開を行う発熱処置具である開腹手術用熱凝固切開鉗子を例に挙げて説明する。よって、医療用処置装置は、開腹手術用熱凝固切開鉗子を有する処置装置を例に挙げて説明する。   In this embodiment as well, as in the first embodiment described above, the medical treatment tool heats a living tissue grasped by a pair of jaws that are opened and closed by a heating element provided on at least one of the jaws. A thermocoagulation incision forceps for abdominal surgery that is a fever treatment tool for coagulating or incising a living tissue will be described as an example. Therefore, the medical treatment apparatus will be described using a treatment apparatus having a thermocoagulation incision forceps for laparotomy as an example.

また、本実施の構成は、上述した第1実施と比して、生体組織Mのインピーダンスを、受け部40以外で測定する点のみが異なる。よって、この相違点のみを説明し、第2実施の形態と同様の構成には同じ符号を付し、その説明は省略する。   Further, the configuration of the present embodiment is different from the first embodiment described above only in that the impedance of the living tissue M is measured except for the receiving unit 40. Therefore, only this difference will be described, the same reference numerals are given to the same components as those in the second embodiment, and the description thereof will be omitted.

図12〜図15に示すように、第1のジョー13の発熱素子26の処置面28に対向する第2のジョー28の対向面に、絶縁性を有するシリコンゴム等の柔軟部材から構成された受け部140が形成されている。   As shown in FIGS. 12 to 15, the opposing surface of the second jaw 28 that opposes the treatment surface 28 of the heating element 26 of the first jaw 13 is made of a flexible member such as silicon rubber having insulation properties. A receiving portion 140 is formed.

尚、受け部140は、第2のジョー18と第1のジョー13とが閉成された際、発熱素子26の処置面28の受け部となるとともに、生体組織Mを把持する際、生体組織Mに接触する処置面を構成している。   The receiving portion 140 serves as a receiving portion for the treatment surface 28 of the heat generating element 26 when the second jaw 18 and the first jaw 13 are closed, and when holding the living tissue M, the living tissue. A treatment surface in contact with M is configured.

第2のジョー18の対向面であって、受け部140を対向面において挟む領域に、第2のジョー18の主軸に沿って、電気伝導性部材である電極59A,59Bが形成されている。   Electrodes 59 </ b> A and 59 </ b> B, which are electrically conductive members, are formed along the main axis of the second jaw 18 in a region facing the second jaw 18 and sandwiching the receiving portion 140 on the facing surface.

尚、電極59A,59Bは、一対のジョー13,18を閉成した際、発熱素子26の処置面28が接触しない位置に形成されている。また、一対のジョー13,18を閉成した際、電極59A、59Bは、生体組織Mに接触する。   The electrodes 59A and 59B are formed at positions where the treatment surface 28 of the heating element 26 does not come into contact when the pair of jaws 13 and 18 are closed. Further, when the pair of jaws 13 and 18 are closed, the electrodes 59A and 59B come into contact with the living tissue M.

電極59A,59Bは、各々凹状の絶縁部材60により保持されており、電極59Aと59Bとは互いに絶縁されている。また、電極59A,59Bは、基端側でリード線41A、41Bに接続されている。   The electrodes 59A and 59B are each held by a concave insulating member 60, and the electrodes 59A and 59B are insulated from each other. The electrodes 59A and 59B are connected to the lead wires 41A and 41B on the base end side.

電極59A,59Bは、一対のジョー13,18が生体組織Mを把持した際、電極59Aと電極59Bとの間において微弱な高周波電流Kを流すことにより、生体組織Mのインピーダンスを測定する。よって、電極59A,59Bは、本実施におけるインピーダンス測定部を構成している。   The electrodes 59A and 59B measure the impedance of the living tissue M by flowing a weak high-frequency current K between the electrodes 59A and 59B when the pair of jaws 13 and 18 grips the living tissue M. Therefore, the electrodes 59A and 59B constitute an impedance measuring unit in the present embodiment.

尚、本実施の作用は、上述した第1実施と同様である。このような構成を有していても上述した第1実施と同様の効果を得ることができる。また、本実施においても、生体組織Mのインピーダンスを測定する電極59A,59Bを、第2のジョー18に限らず、第1のジョー13に設けてもよい。   The operation of this embodiment is the same as that of the first embodiment described above. Even if it has such a structure, the same effect as 1st execution mentioned above can be acquired. Also in this embodiment, the electrodes 59 </ b> A and 59 </ b> B for measuring the impedance of the living tissue M may be provided not only on the second jaw 18 but also on the first jaw 13.

(第3実施の形態)
図16は、本発明の第3実施を示す医療用処置装置の正面図、図17は、図16の医療用処置具の先端側の部分上面図、図18は、図17中のXVIII-XVIII線に沿う医療用処置具の処置部の断面図、図19は、図18中のXVIX-XVIX線に沿う医療用処置具の処置部の断面図、図20は、図18中のIIX-IIX線に沿う医療用処置具の処置部の断面図、図21は、図18中のIIXI-IIXI線に沿う医療用処置具の処置部の断面図、図22は、図18中のIIXII-IIXII線に沿う医療用処置具の処置部の断面図である。
(Third embodiment)
16 is a front view of a medical treatment apparatus showing a third embodiment of the present invention, FIG. 17 is a partial top view of the distal end side of the medical treatment instrument of FIG. 16, and FIG. 18 is XVIII-XVIII in FIG. FIG. 19 is a cross-sectional view of the treatment portion of the medical treatment tool along the line XVIX-XVIX in FIG. 18, and FIG. 20 is a cross-sectional view of IIX-IIX in FIG. FIG. 21 is a cross-sectional view of the treatment portion of the medical treatment instrument along the line IIXI-IIXI in FIG. 18, and FIG. 22 is a cross-sectional view of IIXII-IIXII in FIG. It is sectional drawing of the treatment part of the medical treatment tool along a line.

尚、本実施においては、医療用処置具は、内視鏡下手術用処置具、具体的には、開閉する一対のジョーで把持した生体組織を、少なくとも一方のジョーに設けられた発熱体により加熱して生体組織の凝固または凝固切開を行う発熱処置具である内視鏡下手術用熱凝固切開鉗子(以下、単に鉗子と称す)を例に挙げて説明する。よって、医療用処置装置は、鉗子を有する発熱処置装置(以下、単に処置装置と称す)を例に挙げて説明する。   In this embodiment, the medical treatment tool is an endoscopic treatment tool, specifically, a living tissue grasped by a pair of jaws that are opened and closed by a heating element provided on at least one jaw. An explanation will be given by taking, as an example, a thermocoagulation incision forceps for endoscopic surgery (hereinafter simply referred to as forceps), which is a heat-generating treatment tool for coagulating or incising a living tissue. Accordingly, the medical treatment apparatus will be described by taking a heat treatment apparatus having forceps (hereinafter simply referred to as a treatment apparatus) as an example.

また、本実施の鉗子及び処置装置の構成は、上述した第1及び第2実施の形態を比して、鉗子が、内視鏡下手術用熱凝固切開鉗子である点と、処置装置が、内視鏡下手術用熱凝固切開鉗子を有する処置装置である点のみが異なる。よって、この相違点のみを説明し、第1及び第2実施と同様の構成には同じ符号を付し、その説明は省略する。   In addition, the configuration of the forceps and the treatment device of the present embodiment is different from the first and second embodiments described above in that the forceps are thermocoagulation incision forceps for endoscopic surgery, and the treatment device includes: The only difference is the treatment device having thermocoagulation incision forceps for endoscopic surgery. Therefore, only this difference will be described, the same reference numerals are given to the same components as those in the first and second embodiments, and the description thereof will be omitted.

図16に示すように、処置装置61は、鉗子62と電源63と、鉗子62と電源63とを接続するケーブルユニット64と、電源63の電力のON/OFFの制御を行う電源63に接続されたフットスイッチ65とにより主要部が構成されている。尚、電源63の内部の電気回路の構成は、上述した第1実施の電源3の構成と同じであるため、その説明は省略する。   As shown in FIG. 16, the treatment device 61 is connected to a forceps 62 and a power source 63, a cable unit 64 that connects the forceps 62 and the power source 63, and a power source 63 that controls ON / OFF of the power of the power source 63. The main part is composed of the foot switch 65. The configuration of the electric circuit inside the power source 63 is the same as the configuration of the power source 3 of the first embodiment described above, and therefore the description thereof is omitted.

鉗子62は、電源63からケーブルユニット64を介して供給された電力により発生する熱を利用して体腔内の生体組織に対し凝固または凝固切開等の各種処置を行うものである。   The forceps 62 performs various treatments such as coagulation or coagulation incision on the living tissue in the body cavity using heat generated by the power supplied from the power source 63 via the cable unit 64.

また、鉗子62に、細長い挿入部67と、該挿入部67の先端側に配設された処置部66と、挿入部67の基端側に配設されたハンドル部68とが設けられている。   The forceps 62 is provided with an elongated insertion portion 67, a treatment portion 66 disposed on the distal end side of the insertion portion 67, and a handle portion 68 disposed on the proximal end side of the insertion portion 67. .

図16、図17に示すように、処置部66は、開閉自在な一対の処置部である、例えば自由曲面形状である弯曲形状を主軸に有する形状に形成された固定ジョー69と、弯曲形状を主軸に有する形状に形成された可動ジョー70とによる一対のジョーにより構成されている。   As shown in FIGS. 16 and 17, the treatment portion 66 is a pair of treatment portions that can be opened and closed, for example, a fixed jaw 69 formed in a shape having a curved shape that is a free-form surface as a main axis, and a curved shape. It comprises a pair of jaws with a movable jaw 70 formed in the shape of the main shaft.

尚、固定ジョー69、可動ジョー70は、ステンレス、チタン等から構成されている。また、ジョー69,70が弯曲形状に形成されているのは、鉗子62を用いた処置部66における生体組織Mの剥離操作を行いやすくするためである。   The fixed jaw 69 and the movable jaw 70 are made of stainless steel, titanium, or the like. The reason why the jaws 69 and 70 are formed in a curved shape is to facilitate the peeling operation of the living tissue M in the treatment section 66 using the forceps 62.

挿入部67は、細長いパイプ71により形成されており、パイプ71の基端側に、処置部66と挿入部67との軸心を回転中心として処置部66と挿入部67とを軸回りに方向に回転操作する回転操作部72が設けられている。   The insertion portion 67 is formed by an elongated pipe 71, and the treatment portion 66 and the insertion portion 67 are arranged around the axis around the axis of the treatment portion 66 and the insertion portion 67 on the proximal end side of the pipe 71. A rotation operation unit 72 is provided for rotating the operation.

ハンドル部68は、ハンドル本体73と、該ハンドル本体73と一体に設けられた固定ハンドル74と、該固定ハンドル74に枢支軸212を介して回動自在に取り付けられた可動ハンドル75とにより主要部が構成されている。尚、可動ハンドル75は、後述する操作軸87を介して、可動ジョー70を固定ジョー69に対して開閉操作する。また、ハンドル本体73の基端側に、ケーブルユニット64が着脱自在となっている。   The handle portion 68 includes a handle main body 73, a fixed handle 74 provided integrally with the handle main body 73, and a movable handle 75 rotatably attached to the fixed handle 74 via a pivot shaft 212. The part is composed. The movable handle 75 opens and closes the movable jaw 70 with respect to the fixed jaw 69 via an operation shaft 87 described later. Further, the cable unit 64 is detachable on the proximal end side of the handle main body 73.

図18〜図22に示すように、パイプ71の先端に、固定ジョー69が設けられており、可動ジョー70は、枢支部である支点76において固定ジョー69に対して開閉自在となるようパイプ71の先端に軸支されている。   As shown in FIGS. 18 to 22, a fixed jaw 69 is provided at the tip of the pipe 71, and the movable jaw 70 can be opened and closed with respect to the fixed jaw 69 at a fulcrum 76 that is a pivotal support portion. It is pivotally supported at the tip.

固定ジョー69の可動ジョー70に対向する側に、凹状の断熱枠78が固定されており、該断熱枠78の内周に、発熱体である発熱素子77が嵌入されている。発熱素子77は、図18〜図20に示すように、ピン79により、固定ジョー69に固定されており、発熱素子77と固定ジョー69との間の隙間に、図示しない充填剤が充填されている。   A concave heat insulating frame 78 is fixed to the side of the fixed jaw 69 facing the movable jaw 70, and a heat generating element 77, which is a heating element, is fitted into the inner periphery of the heat insulating frame 78. As shown in FIGS. 18 to 20, the heat generating element 77 is fixed to the fixed jaw 69 by a pin 79, and a gap (not shown) is filled in the gap between the heat generating element 77 and the fixed jaw 69. Yes.

発熱素子77は、生体組織Mに対し発熱により熱エネルギを与えるものであり、処置部66と同様に、弯曲形状を主軸に有する形状であって、断面形状が略凸状に形成されている。   The heat generating element 77 gives heat energy to the living tissue M by heat generation. Like the treatment section 66, the heat generating element 77 has a curved shape as a main axis and has a substantially convex cross section.

発熱素子77の周面であって、可動ジョー70に対向する位置は、例えば生体組織Mを処置する際の処置面85となっている。即ち、処置面85は、生体組織Mを把持するため、固定ジョー69に対して可動ジョー70が閉成された際の生体組織Mに接触する面となる。処置面85は、非鋭利な形状を有しており、例えば自由曲面形状である部分円弧状に構成されている。   A position on the peripheral surface of the heat generating element 77 and facing the movable jaw 70 is a treatment surface 85 for treating the living tissue M, for example. That is, the treatment surface 85 is a surface that comes into contact with the living tissue M when the movable jaw 70 is closed with respect to the fixed jaw 69 in order to grasp the living tissue M. The treatment surface 85 has a non-sharp shape, and is configured in, for example, a partial arc shape that is a free-form surface shape.

発熱素子77の基端側に、リード線80が接続されている。尚、リード線80は、図21に示すように、銅合金などからなる金属ワイヤ81に、電気絶縁のためのチューブ82が被覆されることにより形成されている。   A lead wire 80 is connected to the base end side of the heating element 77. As shown in FIG. 21, the lead wire 80 is formed by covering a metal wire 81 made of a copper alloy or the like with a tube 82 for electrical insulation.

発熱素子77、断熱枠78、固定ジョー69の外周面及びそれらの境界部に、図示しない非粘着性のコーティング材が形成されている。尚、非粘着性のコーティング材としては、耐熱性の良い、PTFEやPFA等を含むフッ素樹脂に添加剤が添加されたもの等が挙げられる。   A non-adhesive coating material (not shown) is formed on the outer peripheral surfaces of the heat generating element 77, the heat insulating frame 78, the fixed jaw 69, and the boundary between them. Examples of the non-adhesive coating material include heat-resistant materials obtained by adding an additive to a fluororesin containing PTFE, PFA, or the like.

尚、断熱枠78、チューブ82、充填剤は、耐熱性が要求されるため、耐熱性の高い樹脂やセラミックス等から構成されていることが好ましい。   In addition, since the heat insulation frame 78, the tube 82, and the filler are required to have heat resistance, it is preferable that the heat insulating frame 78, the tube 82, and the filler are made of resin, ceramics, or the like having high heat resistance.

可動ジョー70の基端に、図18、図21に示すように、可動ハンドル75から延出した操作軸87の一端が、支点ピン88により接続されている。固定ジョー69、可動ジョー70の先端に、滑り止め用の歯89が設けられている。   As shown in FIGS. 18 and 21, one end of an operation shaft 87 extending from the movable handle 75 is connected to the base end of the movable jaw 70 by a fulcrum pin 88. Anti-slip teeth 89 are provided at the tips of the fixed jaw 69 and the movable jaw 70.

可動ジョー70に、所定の厚さを有する発熱素子受け部である受け部90が形成されている。受け部90は、可動ジョー70と同様に、弯曲形状を主軸に有する形状に形成されている。   The movable jaw 70 is formed with a receiving portion 90 that is a heat generating element receiving portion having a predetermined thickness. Similarly to the movable jaw 70, the receiving portion 90 is formed in a shape having a curved shape as a main axis.

受け部90は、図22に示すように、受け部90A,90B,90Cから構成されている。尚、受け部90A〜90Cの下面となる固定ジョー69への対向面は、可動ジョー70の固定ジョー69への対向面と略同一面となっている。   As shown in FIG. 22, the receiving unit 90 includes receiving units 90 </ b> A, 90 </ b> B, and 90 </ b> C. In addition, the opposing surface to the fixed jaw 69 which becomes the lower surface of the receiving portions 90A to 90C is substantially the same surface as the opposing surface of the movable jaw 70 to the fixed jaw 69.

即ち、受け部90A〜90Cの対向面は、一対のジョー69,70が閉成された際、発熱素子77の処置面85の受け面を構成するとともに、生体組織Mを把持する際、生体組織Mに接触する処置面となる。   That is, the opposing surfaces of the receiving portions 90A to 90C constitute the receiving surface of the treatment surface 85 of the heat generating element 77 when the pair of jaws 69 and 70 are closed, and when the living tissue M is grasped, The treatment surface comes into contact with M.

さらに、受け部90は、一対のジョー69,70が生体組織Mを把持した際、受け部90Aと受け部90Bとの間において微弱な高周波電流を流すことにより、生体組織Mのインピーダンスを測定する。よって、受け部90は、本実施におけるインピーダンス測定部を構成している。   Further, the receiving unit 90 measures the impedance of the living tissue M by flowing a weak high-frequency current between the receiving unit 90A and the receiving unit 90B when the pair of jaws 69 and 70 grip the living tissue M. . Therefore, the receiving part 90 comprises the impedance measurement part in this implementation.

受け部90A,90Bは、電気伝導性を有する柔軟性部材、例えば炭素等が配合された特殊なシリコンゴムから構成されている。また、受け部90Cは、受け部90Aと受け部90Bとを絶縁するとともに、可動ジョー70と受け部90A,90Bとの間も隔絶する、絶縁性を有するシリコンゴム等の柔軟部材から構成されている。   The receiving portions 90A and 90B are made of a flexible member having electrical conductivity, for example, a special silicon rubber compounded with carbon or the like. The receiving portion 90C is made of a flexible member such as insulating silicon rubber that insulates the receiving portion 90A and the receiving portion 90B and also isolates the movable jaw 70 from the receiving portions 90A and 90B. Yes.

受け部90A,90Bは、可動ジョー70の基端側にて、各々リード線91の先端に接続されている。リード線91は、図18に示すように、パイプ71の内部に挿通され、基端が、ケーブルユニット64に接続されている。リード線91は、電源3から供給された微弱な高周波電流を受け部90A,90Bに通電させる。   The receiving portions 90 </ b> A and 90 </ b> B are connected to the distal end of the lead wire 91 on the proximal end side of the movable jaw 70. As shown in FIG. 18, the lead wire 91 is inserted into the pipe 71, and the base end is connected to the cable unit 64. The lead wire 91 receives the weak high-frequency current supplied from the power supply 3 and energizes the portions 90A and 90B.

次に、このように構成された本実施の作用について説明する。
可動ハンドル75が固定ハンドル74に対して閉成操作され、即ち、固定ジョー69に対して可動ジョー70が閉成されることにより、処置部66において、発熱素子77の処置面85と受け部90との間で組織が把持され、さらに、フットスイッチ65が操作されると、電源63から発熱素子77に電圧及び電流が印加される。このことにより、発熱素子77が発熱される。その後、発熱素子の発熱は、処置面28により、生体組織Mに伝熱され、該熱により、生体組織Mは、凝固または凝固切開される。
Next, the effect | action of this embodiment comprised in this way is demonstrated.
When the movable handle 75 is closed with respect to the fixed handle 74, that is, the movable jaw 70 is closed with respect to the fixed jaw 69, the treatment surface 85 and the receiving portion 90 of the heat generating element 77 in the treatment portion 66. When the tissue is gripped between the two and the foot switch 65 is further operated, voltage and current are applied from the power source 63 to the heating element 77. As a result, the heat generating element 77 generates heat. Thereafter, the heat generated by the heating element is transferred to the living tissue M by the treatment surface 28, and the living tissue M is coagulated or coagulated and cut by the heat.

このことと略同時に、受け部90A,90Bに、電源63から微弱な高周波電流が供給され、該高周波電流が生体組織Mに通電された後、受け部90において、生体組織のインピーダンスが測定される。   At substantially the same time, a weak high-frequency current is supplied from the power source 63 to the receiving portions 90A and 90B. After the high-frequency current is passed through the living tissue M, the receiving portion 90 measures the impedance of the living tissue. .

その結果、電源63内に配設された図示しない制御演算部は、各処置に応じた温度に、発熱素子77の発熱量を調整する。尚、その他の作用は、上述した第1実施と同一であるため、その説明を省略する。   As a result, a control calculation unit (not shown) disposed in the power supply 63 adjusts the heat generation amount of the heat generating element 77 to a temperature corresponding to each treatment. Since other operations are the same as those in the first embodiment described above, description thereof is omitted.

よって、このように、内視鏡下手術用熱凝固切開鉗子及び該鉗子を有する処置装置に、上述した第1実施を適用しても、第1実施と同様の効果を得ることができる。   Therefore, even when the first embodiment described above is applied to the thermocoagulation incision forceps for endoscopic surgery and the treatment device having the forceps in this way, the same effect as the first embodiment can be obtained.

尚、本実施においても、上述した第2実施同様、固定ジョー69の受け部90以外に、生体組織Mのインピーダンスを測定する電極を設け、該電極により、生体組織Mのインピーダンスを測定してもよい。   In this embodiment, as in the second embodiment described above, an electrode for measuring the impedance of the living tissue M is provided in addition to the receiving portion 90 of the fixed jaw 69, and the impedance of the living tissue M can be measured using the electrode. Good.

また、受け部90は、可動ジョー70に限らず、固定ジョー69に固定されていても構わない。   Further, the receiving portion 90 is not limited to the movable jaw 70 but may be fixed to the fixed jaw 69.

ところで、上述した第1実施では、発熱素子26の処置面28、断熱枠27の外表面及び発熱素子26と断熱枠27との境界部に、耐熱性の良い樹脂、例えばPTFEやPFA等を含むフッ素樹脂に添加剤が添加されたものから構成された非粘着性のコーティング材が加工されていると示した。   By the way, in the first embodiment described above, the treatment surface 28 of the heat generating element 26, the outer surface of the heat insulating frame 27, and the boundary between the heat generating element 26 and the heat insulating frame 27 include a resin having good heat resistance, such as PTFE or PFA. It was shown that non-adhesive coating material composed of fluororesin with additives was processed.

このコーティング材の劣化状態を、コーティング材に微弱な高周波電流を通電させることで判定してもよい。以下、コーティング材の劣化判定のための構成を図23〜図30を用いて説明する、尚、上述した第1実施と同様の構成には同じ符号を付し、その説明は省略する。   The deterioration state of the coating material may be determined by passing a weak high-frequency current through the coating material. Hereinafter, the configuration for determining the deterioration of the coating material will be described with reference to FIGS. 23 to 30. The same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

また、以下、上述した第1実施同様、医療用処置具は、開閉する一対のジョーで把持した生体組織を、少なくとも一方のジョーに設けられた発熱体により加熱して生体組織の凝固または凝固切開を行う発熱処置具である開腹手術用熱凝固切開鉗子を例に挙げて説明する。よって、医療用処置装置は、鉗子を有する処置装置を例に挙げて説明する。   Hereinafter, as in the first embodiment described above, the medical treatment tool heats the living tissue grasped by the pair of jaws to be opened and closed by a heating element provided on at least one of the jaws, thereby coagulating or incising the living tissue. An example of a thermocoagulation incision forceps for laparotomy, which is a fever treatment tool for performing the above, will be described. Therefore, the medical treatment apparatus will be described using a treatment apparatus having forceps as an example.

図23は、図1の処置装置の変形例を示す正面図、図24は、図23の鉗子の上面図、図25は、図24中のIIXV-IIXV線に沿う鉗子の処置部の断面図、図26は、図25中のIIXVI-IIXVI線に沿う鉗子の処置部の断面図、図27は、図25中のIIXVII-IIXVII線に沿う鉗子の処置部の断面図である。   23 is a front view showing a modification of the treatment apparatus of FIG. 1, FIG. 24 is a top view of the forceps of FIG. 23, and FIG. 25 is a cross-sectional view of the treatment part of the forceps along the line IIXV-IIXV in FIG. 26 is a cross-sectional view of the treatment portion of the forceps along the line IIXVI-IIXVI in FIG. 25, and FIG. 27 is a cross-sectional view of the treatment portion of the forceps along the line IIXVII-IIXVII in FIG.

また、図28は、図25中のIIXVIII-IIXVIII線に沿う鉗子の処置部の断面図、図29は、図23の処置装置の電気回路の構成の概略を示す図、図30は、図25の発熱素子の拡大斜視図である。   28 is a cross-sectional view of the treatment portion of the forceps along the line IIXVIII-IIXVIII in FIG. 25, FIG. 29 is a diagram showing a schematic configuration of the electric circuit of the treatment device in FIG. 23, and FIG. It is an expansion perspective view of the heater element.

図23、図24に示すように、処置装置1の構成は、上述した第1実施と略同一であり、図23に示すように、電源3に、上述した第1実施の電源3の構成要素に加え、非粘着性コーティング材202の劣化状態を測定するための信号を電源3に入力するチェックスイッチ200が設けられている。   As shown in FIGS. 23 and 24, the configuration of the treatment device 1 is substantially the same as that of the first embodiment described above. As shown in FIG. 23, the power supply 3 includes the components of the power source 3 of the first embodiment described above. In addition, a check switch 200 for inputting a signal for measuring the deterioration state of the non-adhesive coating material 202 to the power supply 3 is provided.

また、図25〜図28に示すように、鉗子2の処置部150の先端側の内部の構成も上述した第1実施と略同一であるが、図25〜図27に示すように、第1実施の受け部40に相当する発熱素子26の受け部240が、電気伝導性を有する柔軟性部材、例えば炭素等が配合された特殊なシリコンゴム等のみから構成されている点が第1実施と異なる。   Moreover, as shown in FIGS. 25 to 28, the internal configuration of the distal end side of the treatment portion 150 of the forceps 2 is also substantially the same as that of the first embodiment described above. However, as shown in FIGS. The first embodiment is that the receiving portion 240 of the heating element 26 corresponding to the receiving portion 40 is composed of only a flexible member having electrical conductivity, such as special silicon rubber blended with carbon or the like. Different.

受け部240の基端側に、図25、図28に示すように、リード線201の先端が接続されている。リード線201は、図28に示すように、第2本体9の内部に挿通され、基端が、コネクタ20に接続されている。リード線201は、電源3から供給された微弱な高周波電流を、受け部240に通電させる。   As shown in FIGS. 25 and 28, the distal end of the lead wire 201 is connected to the proximal end side of the receiving portion 240. As shown in FIG. 28, the lead wire 201 is inserted into the second main body 9, and the base end is connected to the connector 20. The lead wire 201 energizes the receiving portion 240 with a weak high-frequency current supplied from the power supply 3.

受け部240は、一対のジョー13,18が生体組織Mを把持した際、コーティング材202に微弱な高周波電流を流すことにより、コーティング材202のインピーダンスを測定する。   The receiving unit 240 measures the impedance of the coating material 202 by passing a weak high-frequency current through the coating material 202 when the pair of jaws 13 and 18 grips the living tissue M.

発熱素子26の処置面28に、非粘着性コーティング材(以下、単にコーティング材と称す)202が加工されている。コーティング材202は、耐熱性の良い樹脂、例えばPTFEやPFA等を含むフッ素樹脂に添加剤が添加されたものから構成されている。また、コーティング材202は、絶縁性を有している。   A non-adhesive coating material (hereinafter simply referred to as a coating material) 202 is processed on the treatment surface 28 of the heating element 26. The coating material 202 is composed of a resin having good heat resistance, for example, a fluororesin containing PTFE, PFA, or the like to which an additive is added. Further, the coating material 202 has an insulating property.

図29に示すように、電源3の内部の構成も上述した第1実施と略同一であるが、インピーダンス検出部55は、ケーブル4Aを介して、発熱素子26につながるリード線31の内、リード線31Aに接続され、高周波出力部56は、ケーブル4B、リード線201を介して、受け部240に接続されている。さらに、制御演算部50に、チェックスイッチ200が接続されている。   As shown in FIG. 29, the internal configuration of the power source 3 is also substantially the same as that of the first embodiment described above, but the impedance detection unit 55 is connected to the lead wire 31 connected to the heating element 26 via the cable 4A. The high-frequency output unit 56 is connected to the wire 31 </ b> A and is connected to the receiving unit 240 via the cable 4 </ b> B and the lead wire 201. Further, a check switch 200 is connected to the control calculation unit 50.

また、図30に示すように、発熱素子26の構成も上述した第1実施と略同一であるが、4つの電極49の内、発熱部48の電極49Aの直下部分のみ絶縁層が削除されており、4本のリード線31の内、リード線31Aのみは、基板46と電気的に接続されている。このことにより、発熱素子26の基板46に、リード線31Aを介して通電することができるようになっている。   Further, as shown in FIG. 30, the configuration of the heating element 26 is substantially the same as that of the first embodiment described above, but the insulating layer is deleted only in the portion directly below the electrode 49A of the heating portion 48 out of the four electrodes 49. Of the four lead wires 31, only the lead wire 31A is electrically connected to the substrate 46. As a result, the substrate 46 of the heating element 26 can be energized via the lead wire 31A.

次に、このような構成を有する処置装置の作用を説明する。尚、上述した第1実施と同じ作用の説明は省略する。   Next, the operation of the treatment apparatus having such a configuration will be described. The description of the same operation as in the first embodiment described above is omitted.

第2本体9と第1本体8とが閉成操作され、即ち、第2のジョー18と第1のジョー13とが閉成されることにより、処置部150において、発熱素子26の処置面28と受け部240との間で組織が把持され、さらに、フットスイッチ5が操作されると、制御演算部50の駆動制御の下、出力部54により、ケーブル4A、リード線31、発熱部47,48を介して、発熱素子26に電圧及び電流が印加される。このことにより、発熱素子26が発熱される。その後、発熱素子の発熱は、処置面28により、コーティング材202を介して生体組織Mに伝熱され、該熱により、生体組織Mは、凝固または凝固切開される。   When the second main body 9 and the first main body 8 are closed, that is, the second jaw 18 and the first jaw 13 are closed, the treatment surface 28 of the heating element 26 is treated in the treatment section 150. When the tissue is grasped between the receiving portion 240 and the foot switch 5 is further operated, the cable 4A, the lead wire 31, the heating portion 47, A voltage and a current are applied to the heating element 26 via 48. As a result, the heating element 26 generates heat. Thereafter, the heat generated by the heating element is transferred by the treatment surface 28 to the living tissue M through the coating material 202, and the living tissue M is coagulated or coagulated and cut by the heat.

また、この凝固または凝固切開を行う前に、以下の方法でコーティング材202の劣化状態を事前に判定できる。
先ず、第2本体9と第1本体8とが閉成操作され、即ち、第2のジョー18と第1のジョー13とが閉成されることにより、処置部150において、発熱素子26の処置面28と受け部240との間で組織が把持される。
Moreover, before performing this coagulation or coagulation incision, the deterioration state of the coating material 202 can be determined in advance by the following method.
First, the second main body 9 and the first main body 8 are closed, that is, the second jaw 18 and the first jaw 13 are closed, whereby the treatment section 150 treats the heating element 26. Tissue is grasped between the surface 28 and the receiving part 240.

次いで、チェックスイッチ200から操作信号が入力されると、制御演算部50は、高周波出力部56に、微弱な高周波電流を出力するよう指示する。高周波出力部56により出力された高周波電流は、受け部240から、コーティング材202、発熱素子26、リード線31、インピーダンス検出部55へ流れ、インピーダンス検出部55で電圧と電流とが検出される。その後、制御演算部50において、インピーダンス検出部55で検出された電圧と電流が除算することで、電流経路のインビーダンスが求められる。   Next, when an operation signal is input from the check switch 200, the control calculation unit 50 instructs the high frequency output unit 56 to output a weak high frequency current. The high-frequency current output from the high-frequency output unit 56 flows from the receiving unit 240 to the coating material 202, the heating element 26, the lead wire 31, and the impedance detection unit 55, and the voltage and current are detected by the impedance detection unit 55. Thereafter, the control calculation unit 50 divides the voltage and current detected by the impedance detection unit 55, thereby obtaining the impedance of the current path.

発熱素子26の処置面28に、絶縁性のコーティング材202が加工されているため、コーティング材202が正常な状態であれば、インピーダンスは所定以上の値を示す。しかしながら、非粘着性コーティング材202が劣化していると、厚みが薄くなるなどして絶縁性が低下し、求められるインピーダンスが低下する。   Since the insulating coating material 202 is processed on the treatment surface 28 of the heating element 26, the impedance exhibits a value greater than or equal to a predetermined value if the coating material 202 is in a normal state. However, if the non-adhesive coating material 202 is deteriorated, the insulation is lowered due to a decrease in thickness and the required impedance is lowered.

このことにより、制御演算部50は、コーティング材202の劣化状態を判別することができる。尚、コーティング材202の劣化状態は、制御演算部50の告知部57に対する駆動制御により、インピーダンスの値が、表示部101に表示される、またはインピーダンスの値が、所定値を超えているか否かが表示部101に表示されることにより、使用者は、コーティング材202の劣化状態を容易に認識することができる。   Thus, the control calculation unit 50 can determine the deterioration state of the coating material 202. It should be noted that the deterioration state of the coating material 202 is determined by whether the impedance value is displayed on the display unit 101 or the impedance value exceeds a predetermined value by drive control of the control calculation unit 50 to the notification unit 57. Is displayed on the display unit 101, the user can easily recognize the deterioration state of the coating material 202.

尚、これらの構成は、開腹手術用熱凝固切開鉗子に限定されず、内視鏡下手術用熱凝固切開鉗子に適用してもよい。また、受け部240は、コーティング材202が形成された発熱素子26が、第2のジョー18に固定されている場合は、第1のジョー13に固定されていても構わない。   These configurations are not limited to the thermocoagulation / incision forceps for laparotomy, but may be applied to thermocoagulation / incision forceps for endoscopic surgery. Further, the receiving portion 240 may be fixed to the first jaw 13 when the heating element 26 on which the coating material 202 is formed is fixed to the second jaw 18.

尚、以下、コーティング材の劣化状態を検知する処置装置の構成の変形例を、図31、図32を用いて説明する。図31は、図23の装置本体の変形例を示す正面図、図32は、図31の電源に接続されたチェック部材の拡大斜視図である。   Hereinafter, modified examples of the configuration of the treatment device that detects the deterioration state of the coating material will be described with reference to FIGS. 31 and 32. FIG. 31 is a front view showing a modified example of the apparatus main body of FIG. 23, and FIG. 32 is an enlarged perspective view of a check member connected to the power source of FIG.

図23〜図30に示した処置装置では、コーティング材202の劣化状態を、受け部240で測定すると示した。これに限らず、鉗子2以外に配設された部材で測定してもよい。   In the treatment apparatus shown in FIGS. 23 to 30, the degradation state of the coating material 202 is measured by the receiving portion 240. The measurement is not limited to this, and a member other than the forceps 2 may be used for measurement.

図31に示すように、電源3に、ケーブル340を介して、チェック部材204が接続されている。チェック部材204は、コーティング材202を損傷しないよう、耐熱性の良い樹脂、例えばPTFEやPFA等を含むフッ素樹脂に添加剤が添加されたものから構成されている。   As shown in FIG. 31, a check member 204 is connected to the power supply 3 via a cable 340. The check member 204 is composed of a resin having good heat resistance such as a fluororesin containing PTFE, PFA or the like so as not to damage the coating material 202.

また、図32に示すように、チェック部材204の長手方向の形状は湾曲している。さらに、チェック部材204には、断面がU字状の溝204mがあり、この溝204mにより発熱素子26のコーティング材202の全体を、チェック部材204の溝204mに接触させることができる。   Further, as shown in FIG. 32, the shape of the check member 204 in the longitudinal direction is curved. Furthermore, the check member 204 has a groove 204m having a U-shaped cross section, and the groove 204m allows the entire coating material 202 of the heating element 26 to contact the groove 204m of the check member 204.

このように構成された処置装置では、チェックスイッチ200が操作され、チェック部材204が発熱素子26の処置面28と受け部240とで把持された状態で、コーティング材202の劣化状態を判別する。尚、この際の制御演算部50のチェック部材204の駆動制御は、受け部240の駆動制御と同一であるため、説明を省略する。   In the treatment apparatus configured as described above, the deterioration state of the coating material 202 is determined in a state where the check switch 200 is operated and the check member 204 is gripped by the treatment surface 28 of the heat generating element 26 and the receiving portion 240. Note that the drive control of the check member 204 of the control calculation unit 50 at this time is the same as the drive control of the receiving unit 240, and thus description thereof is omitted.

このような構成を有すれば、コーティング材202の劣化をチェックする部材を、鉗子2と別途に設けることが可能となるため、鉗子2の構成を簡略にすることができるとともに、コーティング材202の全体の劣化状態を確認することができる。   With such a configuration, a member for checking the deterioration of the coating material 202 can be provided separately from the forceps 2, so that the configuration of the forceps 2 can be simplified and the coating material 202 The overall deterioration state can be confirmed.

尚、上述した第1〜第3実施においては、医療用処置具には、開腹手術用熱凝固切開鉗子、内視鏡下手術用熱凝固切開鉗を例に挙げて説明したが、これに限定されず、一対のジョーにより把持した生体組織を、発熱を用いて凝固または凝固切開を行う発熱処置具であれば、どのようなものであっても構わない。   In the first to third embodiments described above, the medical treatment instrument has been described by taking thermocoagulation incision forceps for open surgery and thermocoagulation incision forceps for endoscopic surgery as examples, but the present invention is not limited thereto. However, any heat treatment device may be used as long as it can coagulate or coagulate / dissect the living tissue grasped by the pair of jaws using heat.

[付記]
以上詳述した如く、本発明の実施形態によれば、以下の如き構成を得ることができる。即ち、
(1)開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具において、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、
を具備していることを特徴とする医療用処置具。
[Appendix]
As described in detail above, according to the embodiment of the present invention, the following configuration can be obtained. That is,
(1) In a medical treatment instrument that heats a treatment target tissue grasped by a pair of openable and closable jaws and performs coagulation or coagulation incision of the treatment target tissue,
A heating element that is provided in at least one of the jaws and applies heat to the treatment target tissue held by the pair of jaws by heat generation;
An impedance measuring unit that is provided on at least one of the jaws and measures the impedance of the tissue to be treated held by the pair of jaws;
A medical treatment instrument comprising:

(2)前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子の受け部となる、柔軟性を有する2つの電気伝導性部材と、該各電気伝導性部材を絶縁する柔軟性を有する絶縁部材とを具備していることを特徴とする付記1に記載の医療用処置具。 (2) The impedance measuring unit includes two flexible electrically conductive members that serve as receiving portions of the heating elements when the pair of jaws are closed, and a flexible material that insulates the electrically conductive members. The medical treatment instrument according to appendix 1, wherein the medical treatment instrument comprises an insulating member having a property.

(3)前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子が接触しない位置に形成されていることを特徴とする付記1に記載の医療用処置具。 (3) The medical treatment instrument according to appendix 1, wherein the impedance measurement unit is formed at a position where the heating element does not contact when the pair of jaws are closed.

(4)前記発熱素子の外表面に、非粘着性コーティング材が加工されていることを特徴とする付記1〜3のいずれか1つの記載の医療用処置具。 (4) The medical treatment instrument according to any one of appendices 1 to 3, wherein a non-adhesive coating material is processed on an outer surface of the heating element.

(5)前記一対のジョーに把持された前記非粘着性コーティング材のインピーダンスを測定する、少なくとも一方の前記ジョーに設けられた第2のインピーダンス測定部を具備していることを特徴とする付記4に記載の医療用処置具。 (5) The supplementary note 4 further comprising a second impedance measuring unit provided on at least one of the jaws for measuring the impedance of the non-adhesive coating material held by the pair of jaws. The medical treatment tool described in 1.

(6)開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具を有する医療用処置装置において、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、
前記インピーダンス測定部により測定された前記インピーダンスに応じて、前記発熱素子の発熱量を制御する制御手段と、
を具備していることを特徴とする医療用処置装置。
(6) In a medical treatment apparatus having a medical treatment instrument that heats a treatment target tissue grasped by a pair of openable and closable jaws and performs coagulation or coagulation incision of the treatment target tissue,
A heating element that is provided in at least one of the jaws and applies heat to the treatment target tissue held by the pair of jaws by heat generation;
An impedance measuring unit that is provided on at least one of the jaws and measures the impedance of the tissue to be treated held by the pair of jaws;
Control means for controlling the amount of heat generated by the heating element in accordance with the impedance measured by the impedance measuring unit;
A medical treatment device comprising:

(7)前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子の受け部となる、柔軟性を有する2つの電気伝導性部材と、該各電気伝導性部材を絶縁する柔軟性を有する絶縁部材とを具備していることを特徴とする付記6に記載の医療用処置装置。 (7) The impedance measuring unit is configured to receive two flexible electrically conductive members that serve as receiving portions of the heating element when the pair of jaws are closed, and to flexibly insulate the electrically conductive members. The medical treatment device according to appendix 6, further comprising an insulating member having a property.

(8)前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子が接触しない位置に形成されていることを特徴とする付記6に記載の医療用処置具。 (8) The medical treatment instrument according to appendix 6, wherein the impedance measuring unit is formed at a position where the heating element does not contact when the pair of jaws are closed.

(9)前記発熱素子に電力を供給して前記発熱素子を発熱させる電力供給部と、前記発熱素子の温度を測定する温度測定部とをさらに具備していることを特徴とする付記6〜8のいずれか1つに記載の医療用処置装置。 (9) Additional notes 6-8, further comprising: a power supply unit that supplies power to the heat generating element to generate heat, and a temperature measuring unit that measures the temperature of the heat generating element. The medical treatment device according to any one of the above.

(10)前記インピーダンス測定部を介して前記処置対象組織に高周波電流を印加する高周波電流印加部と、前記インピーダンス測定部により測定された前記インピーダンスを検出するインピーダンス検出部とをさらに具備していることを特徴とする付記6〜9のいずれかに記載の医療用処置装置。 (10) The apparatus further includes a high-frequency current application unit that applies a high-frequency current to the treatment target tissue via the impedance measurement unit, and an impedance detection unit that detects the impedance measured by the impedance measurement unit. The medical treatment device according to any one of appendices 6 to 9, characterized in that:

(11)前記制御手段は、前記高周波電流印加部に、前記処置対象組織に高周波電流を印加する制御を行うとともに、前記インピーダンス検出部により検出された前記インピーダンスと、前記温度測定部により測定された前記発熱素子の温度とに応じて、前記発熱素子の発熱量を前記電力供給部の電力供給量を調整する制御を行うことを特徴とする付記10に記載の医療用処置装置。 (11) The control means controls the high-frequency current application unit to apply a high-frequency current to the treatment target tissue, and is measured by the impedance detected by the impedance detection unit and the temperature measurement unit. 11. The medical treatment apparatus according to appendix 10, wherein control is performed to adjust the amount of heat generated by the heat generating element in accordance with the temperature of the heat generating element.

(12)前記制御手段は、前記発熱素子に第1の電力を印加して発熱素子を発熱させる制御を行った後、前記インピーダンス検出部より検出された前記インピーダンスが、前記処置対象組織が凝固をはじめる第1の閾値に達すると、前記発熱素子に第1の電力よりも低い第2の電力を印加することを特徴とする付記11に記載の医療用処置装置。 (12) The control means performs control to apply the first power to the heat generating element to generate heat, and then the impedance detected by the impedance detection unit indicates that the tissue to be treated is coagulated. 12. The medical treatment apparatus according to appendix 11, wherein a second power lower than the first power is applied to the heating element when the first threshold value is reached.

(13)前記制御手段は、さらに、前記インピーダンス検出部より検出された前記インピーダンスが、前記処置対象組織が凝固する第2の閾値に達すると、前記発熱素子に第2の電力よりも高い第3の電力を印加することを特徴とする付記12に記載の医療用処置装置。 (13) When the impedance detected by the impedance detection unit reaches a second threshold value at which the treatment target tissue is coagulated, the control means further includes a third higher power than the second power in the heating element. The medical treatment device as set forth in appendix 12, wherein the power of

(14)前記制御手段は、前記インピーダンス検出部より検出された前記インピーダンスが、前記処置対象組織が凝固する第2の閾値に達すると、発熱素子26の温度を特定温度Tに維持することを特徴とする付記13に記載の医療用処置装置。 (14) The control means maintains the temperature of the heating element 26 at a specific temperature T when the impedance detected by the impedance detection unit reaches a second threshold value at which the tissue to be treated coagulates. The medical treatment apparatus according to Supplementary Note 13.

(15)前記制御手段は、前記発熱素子に第1の電圧を印加して発熱素子を発熱させる制御を行った後、前記インピーダンス検出部より検出された前記インピーダンスが、前記処置対象組織が凝固をはじめる第1の閾値に達すると、前記発熱素子に第1の電圧よりも低い第2の電圧を印加することを特徴とする付記11に記載の医療用処置装置。 (15) The control means performs control to apply the first voltage to the heat generating element to generate heat, and then the impedance detected by the impedance detection unit indicates that the treatment target tissue is coagulated. The medical treatment apparatus according to appendix 11, wherein a second voltage lower than the first voltage is applied to the heating element when the first threshold value is reached.

(16)前記制御手段は、さらに、前記インピーダンス検出部より検出された前記インピーダンスが、前記処置対象組織が凝固する第2の閾値に達すると、前記発熱素子に第2の電圧よりも高い第3の電圧を印加することを特徴とする付記15に記載の医療用処置装置。 (16) When the impedance detected by the impedance detection unit reaches a second threshold value at which the treatment target tissue is coagulated, the control means further includes a third voltage higher than a second voltage on the heating element. The medical treatment device according to supplementary note 15, wherein a voltage of 2 is applied.

(17)前記発熱素子の外表面に、非粘着性コーティング材が加工されていることを特徴とする付記6〜16のいずれか1つの記載の医療用処置装置。 (17) The medical treatment apparatus according to any one of appendices 6 to 16, wherein a non-adhesive coating material is processed on an outer surface of the heating element.

(18)前記一対のジョーに把持された前記非粘着性コーティング材のインピーダンスを測定する、少なくとも一方の前記ジョーに設けられた第2のインピーダンス測定部を具備していることを特徴とする付記17に記載の医療用処置装置。 (18) The supplementary note 17 further comprising a second impedance measuring unit provided on at least one of the jaws for measuring the impedance of the non-adhesive coating material held by the pair of jaws. The medical treatment device described in 1.

(19)前記第2のインピーダンス測定部を介して前記非粘着性コーティング材に高周波電流を印加する高周波電流印加部と、前記第2のインピーダンス測定部により測定された前記インピーダンスを検出するインピーダンス検出部とをさらに具備していることを特徴とする付記18に記載の医療用処置装置。 (19) A high frequency current application unit that applies a high frequency current to the non-adhesive coating material via the second impedance measurement unit, and an impedance detection unit that detects the impedance measured by the second impedance measurement unit The medical treatment device according to appendix 18, further comprising:

(20)前記制御手段は、前記高周波電流印加部に、前記非粘着性コーティング材に高周波電流を印加する制御を行うとともに、前記第2のインピーダンス測定部を介して前記インピーダンス検出部により検出された前記インピーダンスから、前記非粘着性コーティング材の劣化状態を判定することを特徴とする付記19に記載の医療用処置装置。 (20) The control means controls the high-frequency current application unit to apply a high-frequency current to the non-adhesive coating material, and is detected by the impedance detection unit via the second impedance measurement unit. The medical treatment apparatus according to appendix 19, wherein a deterioration state of the non-adhesive coating material is determined from the impedance.

(21)前記一対のジョーに把持された前記非粘着性コーティング材のインピーダンスを測定する第3のインピーダンス測定部が、前記制御手段に接続されていることを特徴とする付記17に記載の医療用処置装置。 (21) The medical impedance according to appendix 17, wherein a third impedance measuring unit that measures the impedance of the non-adhesive coating material held by the pair of jaws is connected to the control means. Treatment device.

(22)前記第3のインピーダンス測定部は、前記一対のジョーに把持されることを特徴とする付記21に記載の医療用処置装置。 (22) The medical treatment apparatus according to appendix 21, wherein the third impedance measurement unit is held by the pair of jaws.

(23)前記制御手段は、前記高周波電流印加部に、前記非粘着性コーティング材に高周波電流を印加する制御を行うとともに、前記第3のインピーダンス測定部を介して前記インピーダンス検出部により検出された前記インピーダンスから、前記非粘着性コーティング材の劣化状態を判定することを特徴とする付記22に記載の医療用処置装置。 (23) The control means controls the high-frequency current application unit to apply a high-frequency current to the non-adhesive coating material, and is detected by the impedance detection unit via the third impedance measurement unit. 23. The medical treatment apparatus according to appendix 22, wherein a deterioration state of the non-adhesive coating material is determined from the impedance.

本発明の第1実施を示す医療用処置装置の正面図。The front view of the medical treatment apparatus which shows 1st implementation of this invention. 図1の医療用処置具の上面図。The top view of the medical treatment tool of FIG. 図1のヒータユニットの正面図。The front view of the heater unit of FIG. 図3のヒータユニットの先端側の部分上面図。The partial top view of the front end side of the heater unit of FIG. 図2中のV-V線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the VV line in FIG. 5中のVI-VI線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool in alignment with the VI-VI line in 5. FIG. 図5中のVII-VII線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the VII-VII line in FIG. 図5中のVIII-VIII線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the VIII-VIII line in FIG. 図5の発熱素子の拡大斜視図。FIG. 6 is an enlarged perspective view of the heating element in FIG. 5. 図1の医療用処置装置の電気回路の構成の概略を示す図。The figure which shows the outline of a structure of the electric circuit of the medical treatment apparatus of FIG. 図10の制御演算部の出力制御図。The output control figure of the control calculating part of FIG. 図5の鉗子の処置部の変形例の構成を示す断面図。Sectional drawing which shows the structure of the modification of the treatment part of the forceps of FIG. 図12中のXIII-XIII線に沿う鉗子の処置部の断面図。Sectional drawing of the treatment part of the forceps in alignment with the XIII-XIII line | wire in FIG. 図12中のXIV-XIV線に沿う鉗子の処置部の断面図。Sectional drawing of the treatment part of the forceps in alignment with the XIV-XIV line | wire in FIG. 図12中のXV-XV線に沿う鉗子の処置部の断面図。Sectional drawing of the treatment part of the forceps in alignment with the XV-XV line | wire in FIG. 本発明の第3実施を示す医療用処置装置の正面図。The front view of the medical treatment apparatus which shows 3rd implementation of this invention. 図16の医療用処置具の先端側の部分上面図。The fragmentary top view of the front end side of the medical treatment tool of FIG. 図17中のXVIII-XVIII線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the XVIII-XVIII line in FIG. 図18中のXVIX-XVIX線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the XVIX-XVIX line in FIG. 図18中のIIX-IIX線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the IIX-IIX line | wire in FIG. 図18中のIIXI-IIXI線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the IIXI-IIXI line in FIG. 図18中のIIXII-IIXII線に沿う医療用処置具の処置部の断面図。Sectional drawing of the treatment part of the medical treatment tool which follows the IIXII-IIXII line | wire in FIG. 図1の処置装置の変形例を示す正面図。The front view which shows the modification of the treatment apparatus of FIG. 図23の鉗子の上面図。The top view of the forceps of FIG. 図24中のIIXV-IIXV線に沿う鉗子の処置部の断面図。FIG. 25 is a cross-sectional view of the treatment portion of the forceps along the line IIXV-IIXV in FIG. 24. 図25中のIIXVI-IIXVI線に沿う鉗子の処置部の断面図。FIG. 26 is a cross-sectional view of the treatment portion of the forceps along the line IIXVI-IIXVI in FIG. 25. 図25中のIIXVII-IIXVII線に沿う鉗子の処置部の断面図。FIG. 26 is a cross-sectional view of the treatment portion of the forceps along the line IIXVII-IIXVII in FIG. 25. 図25中のIIXVIII-IIXVIII線に沿う鉗子の処置部の断面図。Sectional drawing of the treatment part of the forceps which follows the IIXVIII-IIXVIII line in FIG. 図23の処置装置の電気回路の構成の概略を示す図。The figure which shows the outline of a structure of the electric circuit of the treatment apparatus of FIG. 図25の発熱素子の拡大斜視図。FIG. 26 is an enlarged perspective view of the heating element in FIG. 25. 図23の装置本体の変形例を示す正面図。The front view which shows the modification of the apparatus main body of FIG. 図31の電源に接続されたチェック部材の拡大斜視図。The expansion perspective view of the check member connected to the power supply of FIG.

符号の説明Explanation of symbols

1…医療用処置装置
2…開腹手術用熱凝固切開鉗子
13…第1のジョー
18…第2のジョー
26…発熱素子
40…受け部
40A…受け部
40B…受け部
40C…受け部
50…制御演算部
53…抵抗値検出部
54…出力部
55…インピーダンス検出部
56…高周波出力部
59A…電極
59B…電極
60…絶縁部材
61…医療用処置装置
62…内視鏡下手術用熱凝固切開鉗子
69…固定ジョー
70…可動ジョー
77…発熱素子
90…受け部
90A…受け部
90B…受け部
90C…受け部
K…高周波電流
M…生体組織
DESCRIPTION OF SYMBOLS 1 ... Medical treatment apparatus 2 ... Thermocoagulation incision forceps for laparotomy 13 ... 1st jaw 18 ... 2nd jaw 26 ... Heating element 40 ... Receiving part 40A ... Receiving part 40B ... Receiving part 40C ... Receiving part 50 ... Control Calculation unit 53 ... Resistance value detection unit 54 ... Output unit 55 ... Impedance detection unit 56 ... High frequency output unit 59A ... Electrode 59B ... Electrode 60 ... Insulating member 61 ... Medical treatment device 62 ... Thermocoagulation forceps for endoscopic surgery 69 ... fixed jaw 70 ... movable jaw 77 ... heating element 90 ... receiving portion 90A ... receiving portion 90B ... receiving portion 90C ... receiving portion K ... high frequency current M ... biological tissue

Claims (7)

開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具において、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、
を具備していることを特徴とする医療用処置具。
In a medical treatment instrument that heats a treatment target tissue grasped by a pair of openable and closable jaws and performs coagulation or coagulation incision of the treatment target tissue,
A heating element that is provided in at least one of the jaws and applies heat to the treatment target tissue held by the pair of jaws by heat generation;
An impedance measuring unit that is provided on at least one of the jaws and measures the impedance of the tissue to be treated held by the pair of jaws;
A medical treatment instrument comprising:
前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子の受け部となる、柔軟性を有する2つの電気伝導性部材と、該各電気伝導性部材を絶縁する柔軟性を有する絶縁部材とを具備していることを特徴とする請求項1に記載の医療用処置具。   The impedance measuring unit has two flexible electrically conductive members that serve as receiving portions of the heat generating elements when the pair of jaws are closed, and a flexibility to insulate the electrically conductive members. The medical treatment instrument according to claim 1, further comprising an insulating member. 開閉自在な一対のジョーで把持した処置対象組織を加熱し、該処置対象組織の凝固または凝固切開を行う医療用処置具を有する医療用処置装置において、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織に対し発熱により熱を付与する発熱素子と、
少なくとも一方の前記ジョーに設けられて、前記一対のジョーに把持された前記処置対象組織のインピーダンスを測定するインピーダンス測定部と、
前記インピーダンス測定部により測定された前記インピーダンスに応じて、前記発熱素子の発熱量を制御する制御手段と、
を具備していることを特徴とする医療用処置装置。
In a medical treatment apparatus having a medical treatment tool for heating a treatment target tissue grasped by a pair of openable and closable jaws and coagulating or incising the treatment target tissue,
A heating element that is provided in at least one of the jaws and applies heat to the treatment target tissue held by the pair of jaws by heat generation;
An impedance measuring unit that is provided on at least one of the jaws and measures the impedance of the tissue to be treated held by the pair of jaws;
Control means for controlling the amount of heat generated by the heating element in accordance with the impedance measured by the impedance measuring unit;
A medical treatment device comprising:
前記インピーダンス測定部は、前記一対のジョーを閉成した際、前記発熱素子の受け部となる、柔軟性を有する2つの電気伝導性部材と、該各電気伝導性部材を絶縁する柔軟性を有する絶縁部材とを具備していることを特徴とする請求項3に記載の医療用処置装置。   The impedance measuring unit has two flexible electrically conductive members that serve as receiving portions of the heat generating elements when the pair of jaws are closed, and a flexibility to insulate the electrically conductive members. The medical treatment device according to claim 3, further comprising an insulating member. 前記発熱素子に電力を供給して前記発熱素子を発熱させる電力供給部と、前記発熱素子の温度を測定する温度測定部とをさらに具備していることを特徴とする請求項3または4に記載の医療用処置装置。   5. The apparatus according to claim 3, further comprising: a power supply unit that supplies electric power to the heat generating element to generate heat, and a temperature measuring unit that measures a temperature of the heat generating element. Medical treatment equipment. 前記インピーダンス測定部を介して前記処置対象組織に高周波電流を印加する高周波電流印加部と、前記インピーダンス測定部により測定された前記インピーダンスを検出するインピーダンス検出部とをさらに具備していることを特徴とする請求項3〜5のいずれか1つに記載の医療用処置装置。   It further comprises a high frequency current application unit that applies a high frequency current to the treatment target tissue via the impedance measurement unit, and an impedance detection unit that detects the impedance measured by the impedance measurement unit. The medical treatment device according to any one of claims 3 to 5. 前記制御手段は、前記高周波電流印加部に、前記処置対象組織に高周波電流を印加する制御を行うとともに、前記インピーダンス検出部により検出された前記インピーダンスと、前記温度測定部により測定された前記発熱素子の温度とに応じて、前記発熱素子の発熱量を前記電力供給部の電力供給量を調整する制御を行うことを特徴とする請求項6に記載の医療用処置装置。   The control means controls the high-frequency current application unit to apply a high-frequency current to the tissue to be treated, the impedance detected by the impedance detection unit, and the heating element measured by the temperature measurement unit The medical treatment device according to claim 6, wherein the heat generation amount of the heating element is controlled to adjust the power supply amount of the power supply unit in accordance with the temperature of the medical device.
JP2005221765A 2005-07-29 2005-07-29 Medical treatment device Expired - Fee Related JP4734058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221765A JP4734058B2 (en) 2005-07-29 2005-07-29 Medical treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221765A JP4734058B2 (en) 2005-07-29 2005-07-29 Medical treatment device

Publications (2)

Publication Number Publication Date
JP2007037568A true JP2007037568A (en) 2007-02-15
JP4734058B2 JP4734058B2 (en) 2011-07-27

Family

ID=37796095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221765A Expired - Fee Related JP4734058B2 (en) 2005-07-29 2005-07-29 Medical treatment device

Country Status (1)

Country Link
JP (1) JP4734058B2 (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247893A (en) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp Treatment system for therapy
WO2012043469A1 (en) * 2010-09-27 2012-04-05 オリンパス株式会社 Therapeutic treatment device
US8500736B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
US8500735B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
WO2016080147A1 (en) * 2014-11-18 2016-05-26 オリンパス株式会社 Treatment tool and treatment system
WO2017037907A1 (en) * 2015-09-02 2017-03-09 オリンパス株式会社 Medical treatment apparatus, method for operating medical treatment apparatus, and treatment method
WO2017043120A1 (en) * 2015-09-09 2017-03-16 オリンパス株式会社 Medical device
JP2017510361A (en) * 2014-03-31 2017-04-13 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Control of impedance rise in electrosurgical medical devices.
WO2017122345A1 (en) * 2016-01-15 2017-07-20 オリンパス株式会社 Energy control device and treatment system
WO2019102551A1 (en) * 2017-11-22 2019-05-31 オリンパス株式会社 Medical instrument and method for manufacturing medical instrument
CN109906331A (en) * 2016-11-16 2019-06-18 伊格尔工业股份有限公司 Mechanical sealing member
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229050A (en) * 1994-12-22 1996-09-10 Ethicon Endo Surgery Inc Electric surgical device,electric surgical method,electric surgical processing method of tissue and electric surgical impedance feedback controller
JPH08317935A (en) * 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Hemostatic device for electric surgery with selectable multiple electrode
US5817093A (en) * 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
JP2001269352A (en) * 2000-03-23 2001-10-02 Olympus Optical Co Ltd Power supply for heating treatment apparatus
JP3349139B2 (en) * 2000-01-20 2002-11-20 オリンパス光学工業株式会社 Coagulation incision system
JP2004089719A (en) * 2003-10-01 2004-03-25 Ya Man Ltd Body fat meter
JP2005160733A (en) * 2003-12-02 2005-06-23 Olympus Corp Treating instrument for surgery
JP2005185657A (en) * 2003-12-26 2005-07-14 Olympus Corp Surgical treatment instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817093A (en) * 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
JPH08229050A (en) * 1994-12-22 1996-09-10 Ethicon Endo Surgery Inc Electric surgical device,electric surgical method,electric surgical processing method of tissue and electric surgical impedance feedback controller
JPH08317935A (en) * 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Hemostatic device for electric surgery with selectable multiple electrode
JP3349139B2 (en) * 2000-01-20 2002-11-20 オリンパス光学工業株式会社 Coagulation incision system
JP2001269352A (en) * 2000-03-23 2001-10-02 Olympus Optical Co Ltd Power supply for heating treatment apparatus
JP2004089719A (en) * 2003-10-01 2004-03-25 Ya Man Ltd Body fat meter
JP2005160733A (en) * 2003-12-02 2005-06-23 Olympus Corp Treating instrument for surgery
JP2005185657A (en) * 2003-12-26 2005-07-14 Olympus Corp Surgical treatment instrument

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
JP2009247893A (en) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp Treatment system for therapy
US10098688B2 (en) 2008-04-01 2018-10-16 Olympus Corporation Treatment system, and treatment method for living tissue using energy
US8500736B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
US8500735B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
US9642669B2 (en) 2008-04-01 2017-05-09 Olympus Corporation Treatment system, and treatment method for living tissue using energy
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9186205B2 (en) 2010-09-27 2015-11-17 Olympus Corporation Surgical treatment system
JP2012070779A (en) * 2010-09-27 2012-04-12 Olympus Corp Therapeutical treatment device
WO2012043469A1 (en) * 2010-09-27 2012-04-05 オリンパス株式会社 Therapeutic treatment device
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
JP2017510361A (en) * 2014-03-31 2017-04-13 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Control of impedance rise in electrosurgical medical devices.
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
CN107072709A (en) * 2014-11-18 2017-08-18 奥林巴斯株式会社 Treatment tool and treatment system
WO2016080147A1 (en) * 2014-11-18 2016-05-26 オリンパス株式会社 Treatment tool and treatment system
JPWO2016080147A1 (en) * 2014-11-18 2017-04-27 オリンパス株式会社 Treatment tool and treatment system
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
WO2017037907A1 (en) * 2015-09-02 2017-03-09 オリンパス株式会社 Medical treatment apparatus, method for operating medical treatment apparatus, and treatment method
US10617462B2 (en) 2015-09-09 2020-04-14 Olympus Corporation Medical device
JPWO2017043120A1 (en) * 2015-09-09 2017-09-07 オリンパス株式会社 Medical equipment
WO2017043120A1 (en) * 2015-09-09 2017-03-16 オリンパス株式会社 Medical device
EP3332724A4 (en) * 2015-09-09 2019-04-10 Olympus Corporation Medical device
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
JP6234652B1 (en) * 2016-01-15 2017-11-22 オリンパス株式会社 Energy control device and treatment system
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129671B2 (en) 2016-01-15 2021-09-28 Olympus Corporation Energy control device, treatment system and actuating method of energy control device
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
WO2017122345A1 (en) * 2016-01-15 2017-07-20 オリンパス株式会社 Energy control device and treatment system
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
CN108463181A (en) * 2016-01-15 2018-08-28 奥林巴斯株式会社 Energy control apparatus and disposal system
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
CN109906331A (en) * 2016-11-16 2019-06-18 伊格尔工业股份有限公司 Mechanical sealing member
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
WO2019102551A1 (en) * 2017-11-22 2019-05-31 オリンパス株式会社 Medical instrument and method for manufacturing medical instrument
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system

Also Published As

Publication number Publication date
JP4734058B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734058B2 (en) Medical treatment device
EP2868283B1 (en) Therapeutic treatment device with heat transfer units and with means for control based on their temperatures
JP4624697B2 (en) Surgical instrument
US7938779B2 (en) Treating apparatus and treating device for treating living-body tissue
JP3523839B2 (en) Surgical instruments
JP5544046B2 (en) Treatment system and method of operating a treatment system
US7717914B2 (en) Treatment device
AU2007200415B2 (en) Energy-based medical treatment system and method
JP2003116871A (en) Surgical tool
EP1905374A1 (en) Smart return electrode pad
JP6064104B1 (en) Heating treatment apparatus and control apparatus therefor
JP5814685B2 (en) Therapeutic treatment device
US9504515B2 (en) Treatment device
JP5820649B2 (en) Therapeutic treatment device
JP2001190561A (en) Coagulation treatment tool
US9629677B2 (en) Treatment device for medical treatment
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
JP3831233B2 (en) Surgical tools
JP2001340349A (en) Surgical instrument
JP5933768B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
JP2021030092A (en) Ultrasonic system and method with tissue resistance sensing
JP2003093402A (en) Operation apparatus
JP6000717B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
JP2005160733A (en) Treating instrument for surgery
JP2005230189A (en) Treatment apparatus for surgery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4734058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees