JP2007037227A - Control circuit of battery pack - Google Patents

Control circuit of battery pack Download PDF

Info

Publication number
JP2007037227A
JP2007037227A JP2005213887A JP2005213887A JP2007037227A JP 2007037227 A JP2007037227 A JP 2007037227A JP 2005213887 A JP2005213887 A JP 2005213887A JP 2005213887 A JP2005213887 A JP 2005213887A JP 2007037227 A JP2007037227 A JP 2007037227A
Authority
JP
Japan
Prior art keywords
cell
time
control circuit
assembled battery
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213887A
Other languages
Japanese (ja)
Inventor
Atsushi Kawase
篤史 川瀬
Shinsuke Nakazawa
慎介 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005213887A priority Critical patent/JP2007037227A/en
Publication of JP2007037227A publication Critical patent/JP2007037227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a control circuit of a battery pack for automatically removing an oxide film and preventing a formation of the oxide film. <P>SOLUTION: The quantity of a self discharge in a cell is found from a difference between a cell voltage when a vehicle stops or a bypass circuit is turned off and a cell voltage when the vehicle is activated. A relationship between the quantity of the self discharge and an uncontrolled duration of the cell is previously acquired. A stop duration of the vehicle is found from the relationship and the quantity of the self discharge. When an integral value of the stop duration exceeds a predetermined time, a current is forcibly carried to the bypass circuit. The oxide film is removed, or prevented from being formed. In the battery pack having a plurality of batteries (cells) connected in series, the problems that the current is not carried to a bypass resistor, the oxide film is formed at a terminal for detecting the voltage of the cell to which the current is not carried for a long time and a characteristic of the cell can not be accurately controlled are overcome when a fluctuation in capacities between the cell having a lower voltage is adjusted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複数の単電池で構成された組電池における単電池間の充電状態(以下、SOCと略記;State of Charge)を管理のための制御回路に関する。   The present invention relates to a control circuit for managing a state of charge (hereinafter abbreviated as SOC) in a battery pack composed of a plurality of single cells.

複数の単電池(以下、セルと略記)を直列に接続した組電池において、各セルは電圧検出用のセル電圧検出端子を有しており、このセル電圧検出端子を介して各セルには、これら各セルの電圧を検出するための電圧検出手段と、各セルからの放電電流を流すための放電抵抗(バイパス回路)とがそれぞれ並列に接続されている。さらに、上記の各電圧検出手段によって検出された電池の電圧に基づいて、各放電抵抗にセルから電流を流してセルの電力をそれぞれ適宜放電することによって複数のセル間におけるセル容量のばらつきを補正する組電池の制御回路が下記「特許文献1」において開示されている。   In an assembled battery in which a plurality of single cells (hereinafter abbreviated as cells) are connected in series, each cell has a cell voltage detection terminal for voltage detection. A voltage detection means for detecting the voltage of each cell and a discharge resistor (bypass circuit) for flowing a discharge current from each cell are connected in parallel. Furthermore, based on the battery voltage detected by each of the voltage detection means described above, the current from the cell is supplied to each discharge resistor to appropriately discharge the cell power, thereby correcting cell capacity variations among multiple cells. An assembled battery control circuit is disclosed in the following “Patent Document 1”.

このような組電池の制御回路においては、例えば複数のセルのうち最も電圧が低いセルの電圧(以下、最低電圧)を検出して、この最低電圧を目標電圧として、最低電圧以外のセルの電力を放電抵抗を介して放電し、複数のセルのセル容量のばらつきを調整する装置(下記特許文献2)、あるいは、最も電圧の高いセルの電力を放電抵抗を介して放電してセル容量のばらつきを調整する組電池(下記特許文献3)の制御回路が開示されている。   In such an assembled battery control circuit, for example, the voltage of the cell having the lowest voltage (hereinafter referred to as the lowest voltage) among a plurality of cells is detected, and the power of the cells other than the lowest voltage is determined using this lowest voltage as the target voltage. Which discharges through a discharge resistor and adjusts the variation in cell capacity of a plurality of cells (Patent Document 2 below), or discharges the power of the cell with the highest voltage through the discharge resistor to vary the cell capacity A control circuit of an assembled battery (Patent Document 3 below) that adjusts the power is disclosed.

ところで、このような組電池の制御回路においては、例えば電池の劣化や特性のばらつき等によって常に最低電圧となるセルが存在した場合には、そのセルに接続されている放電抵抗に対しては電流が流れず、セル電圧検出端子に酸化膜が発生し、電圧検出手段においてセルの電圧が正確に検出し得ない、あるいは、セルから放電抵抗への放電電流が減少するという問題があった。
特開2002−343171号公報 特開2002−10512号公報 特開2002−354684号公報
By the way, in such an assembled battery control circuit, when there is a cell that always has the lowest voltage due to, for example, deterioration of the battery or variation in characteristics, a current is not supplied to the discharge resistance connected to the cell. Does not flow, an oxide film is generated at the cell voltage detection terminal, and the voltage detection means cannot accurately detect the cell voltage, or the discharge current from the cell to the discharge resistor is reduced.
JP 2002-343171 A JP 2002-10512 A JP 2002-354684 A

上記のように、従来の組電池充電制御装置においては、常に最低電圧となるセルが存在する場合、このセルに対しては充電に際しても電流がほとんど流れず、このためセル電圧検出端子に酸化膜が形成されることになり、電圧測定の精度が低下する、あるいは、放電に際して放電電流が減少する等の問題があった。また、この酸化膜形成を防止するためセルの各端子に金メッキを施す方法もあり得るが、内燃機関と電動機とを原動機として搭載しているハイブリッド車両においてはセルの数が多く、その全ての端子に金メッキを施すことはコスト増加の点で問題となる。   As described above, in the conventional assembled battery charge control device, when there is a cell that always has the lowest voltage, current hardly flows even when charging to this cell, and therefore an oxide film is formed at the cell voltage detection terminal. As a result, the accuracy of voltage measurement is reduced, or the discharge current is reduced during discharge. In addition, in order to prevent this oxide film formation, there may be a method in which each terminal of the cell is plated with gold. However, in a hybrid vehicle equipped with an internal combustion engine and an electric motor as a prime mover, the number of cells is large and all of the terminals are Applying gold plating to the metal is a problem in terms of cost increase.

このため本発明においては、組電池において特定のセルのセル電圧検出端子に酸化膜が発生することを防止する組電池の制御回路の提供を目的としている。   Therefore, an object of the present invention is to provide a control circuit for an assembled battery that prevents an oxide film from being generated at a cell voltage detection terminal of a specific cell in the assembled battery.

上記目的を達成するために本発明においては、組電池における各セルの容量ばらつきを補正し揃えるために、各セルに接続されて、各セルの電圧を検出する電圧検出手段と、各セルに選択的に接続されて、各セルからの放電電流が流れるバイパス回路と、前記電圧検出手段により検出された電圧値に基づいてバイパス回路と各セルとの接続を制御して、バイパス回路に流す電流を制御するセルコントローラCPUとを有する回路構成を用い、各セルについて当該セルのバイパス回路との接続を最後にオフ状態にした時点からの経過時間が、予め設定された時間以上セルとバイパス回路との接続がオンされない状態が継続した場合は、当該セルのバイパス回路に強制的に放電電流を流すようにする回路構成とした。   In order to achieve the above object, in the present invention, voltage correction means connected to each cell to detect the voltage of each cell and select each cell in order to correct and arrange the capacity variation of each cell in the assembled battery. A bypass circuit through which a discharge current from each cell flows, and a connection between the bypass circuit and each cell based on the voltage value detected by the voltage detection means to control a current flowing through the bypass circuit. Using a circuit configuration having a cell controller CPU to control, the elapsed time from the time when the connection with the bypass circuit of the cell is finally turned off for each cell is longer than a preset time between the cell and the bypass circuit. When the state where the connection is not turned on continues, the circuit configuration is such that the discharge current is forced to flow through the bypass circuit of the cell.

本発明により、長時間通電されることがなく電池端子に酸化膜が形成されたりあるいは形成される可能性がある場合に、自動的に酸化膜を除去あるいは酸化膜形成抑止の処理を、ソフトウエアの変更で容易に実行出来、コスト増を抑え、簡単な構造で実現可能としている。   According to the present invention, when the oxide film is formed or may be formed on the battery terminal without being energized for a long time, the process of automatically removing the oxide film or suppressing the formation of the oxide film is performed by software. It can be easily implemented by changing the cost, and it can be realized with a simple structure while suppressing an increase in cost.

(実施の形態1)
図1に本発明において使用する組電池の制御回路のブロック図を示す。セル(単電池)C1〜Cnで構成された組電池1の電力は車両負荷2に供給される。各セルのセル電圧検出端子3にはそれぞれセルコントローラ41〜4nが接続されている。各セルC1〜Cnにおいては、セル放電用の抵抗で構成されたバイパス回路5と電圧検出手段6とが並列接続されている。電圧検出手段6で検出された電圧値はセルコントローラCPU(処理装置)7に入力され、セルコントローラCPU7では入力された電圧値が予め設定された電圧値よりも低い状態が長時間継続すると、バイパス回路5とセルとを接続(バイパス回路をオン)を介して当該セルの強制放電を行わせ、セル電圧検出端子3の酸化膜対策処理を行う。また、セルコントローラCPU7の動作はメインCPU8により制御されている。
(Embodiment 1)
FIG. 1 shows a block diagram of a control circuit for an assembled battery used in the present invention. The electric power of the assembled battery 1 composed of cells (cells) C1 to Cn is supplied to the vehicle load 2. Cell controllers 41 to 4n are connected to the cell voltage detection terminals 3 of the respective cells. In each of the cells C1 to Cn, a bypass circuit 5 constituted by a cell discharge resistor and a voltage detection means 6 are connected in parallel. The voltage value detected by the voltage detection means 6 is input to the cell controller CPU (processing device) 7, and the cell controller CPU 7 bypasses if the input voltage value is lower than the preset voltage value for a long time. The cell 5 is forcibly discharged through connection between the circuit 5 and the cell (bypass circuit is turned on), and the oxide film countermeasure process for the cell voltage detection terminal 3 is performed. The operation of the cell controller CPU 7 is controlled by the main CPU 8.

以下、セルコントローラ41〜4nにおける処理の内容をセルコントローラ41を例に具体的に説明する。いま、図1において、セルC1のセル電圧がセルC1〜Cnのセルのうちで最も低いためにセルコントローラ41のバイパス回路5に電流が流れない状態が続いているとする。この状態が継続している間、セルコントローラCPU7においては電圧検出手段6により計測した「前回車両停止時のセル電圧(V1)」と「今回起動時のセル電圧(V2)」とを用いて、電池の自己放電量ΔVを次式で求めることが出来る。   Hereinafter, the contents of processing in the cell controllers 41 to 4n will be specifically described with the cell controller 41 as an example. In FIG. 1, it is assumed that a state in which no current flows in the bypass circuit 5 of the cell controller 41 continues because the cell voltage of the cell C1 is the lowest among the cells C1 to Cn. While this state continues, the cell controller CPU 7 uses the “cell voltage (V1) at the time of previous vehicle stop” and “cell voltage (V2) at the time of starting this time” measured by the voltage detection means 6, The self-discharge amount ΔV of the battery can be obtained by the following equation.

V1−V2=ΔV (1)
ここで、図示しないが、それぞれのセルC1〜Cnに対する「放置期間に対する自己放電量」の関係を予め測定しマップ化して、セルコントローラ7またはメインCPU8に登録しておく。式(1)により得られた自己放電量ΔVと、このマップのデータとからセルコントローラCPU7により「車両を停止していた時間」を求めることが出来る。一方、メインCPU8においては毎回の「車両を起動していた時間」を記録しておき、セルコントローラCPU7に送信する。セルコントローラCPU7においては、先にセルコントローラCPU7で求めた「車両を停止していた時間」と、メインCPU8から受信した「車両を起動していた時間」とをそれぞれ積算しておき、バイパス回路5に前回車両起動以前で、且つ最後にバイパス電流を流した時点からの車両停止時間の総計を推定し、バイパス回路とセルとの接続を切断(バイパス回路をオフ)にしていた時間の総計が予め定められた時間を超えている場合、バイパス回路5をオンにしてセル電圧検出端子3にバイパス電流を強制的に流すことで酸化膜の除去および酸化膜発生の防止を行っている。
V1-V2 = ΔV (1)
Here, although not shown in the figure, the relationship of the “self-discharge amount with respect to the leaving period” for each of the cells C1 to Cn is measured and mapped in advance and registered in the cell controller 7 or the main CPU 8. From the self-discharge amount ΔV obtained by the equation (1) and the data of this map, the “time during which the vehicle is stopped” can be obtained by the cell controller CPU 7. On the other hand, the main CPU 8 records the “time during which the vehicle has been started” every time and sends it to the cell controller CPU 7. In the cell controller CPU 7, the “time during which the vehicle has been stopped” previously obtained by the cell controller CPU 7 and the “time during which the vehicle has been started” received from the main CPU 8 are respectively integrated, and the bypass circuit 5. Estimate the total vehicle stop time before the last vehicle start-up and the last time the bypass current flowed, and the total time when the connection between the bypass circuit and the cell was disconnected (bypass circuit off) When the predetermined time is exceeded, the bypass circuit 5 is turned on and a bypass current is forced to flow through the cell voltage detection terminal 3 to remove the oxide film and prevent the generation of the oxide film.

すなわち、本発明においては、各セルについての当該セルのバイパス回路5を最後にオフ状態にした時点から経過した時間が、予め設定された時間以上バイパス回路5がオンされない状態が継続する場合は、当該セルのバイパス回路5を強制的にオンとしてバイパス電流を流すことによりセル電圧検出端子3の酸化膜対策を行うことを特徴としているものである。以下、図2にこの処理手順をフロー図として示す。   That is, in the present invention, when the time elapsed since the time when the bypass circuit 5 of the cell for each cell was last turned off is continued for a preset time or longer, the bypass circuit 5 is not turned on. The cell voltage detection terminal 3 is provided with an oxide film countermeasure by forcibly turning on the bypass circuit 5 of the cell and allowing a bypass current to flow. FIG. 2 is a flowchart showing this processing procedure.

まず、組電池1を構成している各セルC1〜Cnの電圧検出を、各セルコントローラ41〜4nに搭載されている電圧検出手段6により行う(ステップS01)。セル電圧検出後、前記式(1)の計算を実行してセルの自己放電量ΔVを算出する(ステップS02)。この自己放電量ΔVとマップ化された「車両放置時間に対する自己放電量」のデータとから車両の停止していた時間を求める(ステップS03)。続いて、メインCPU8から前回車両を起動していた時間を受信する(ステップS04)。次に、前回の車両起動以前において、バイパス回路5を最後にオフにしてから前回車両起動までの経過時間Tと、上記ステップS03で得られた「車両を停止していた時間T」と、前回車両を起動していた時間Tとの3者の和を求め、前回以前を含め、最後にバイパス回路5をオフにしてからセルC1に通電していなかった経過時間Tを求める(ステップS05)。 First, voltage detection of the cells C1 to Cn constituting the assembled battery 1 is performed by the voltage detection means 6 mounted on the cell controllers 41 to 4n (step S01). After detecting the cell voltage, the calculation of the equation (1) is executed to calculate the self-discharge amount ΔV of the cell (step S02). From this self-discharge amount ΔV and the mapped data of “self-discharge amount with respect to vehicle leaving time”, the time during which the vehicle has been stopped is obtained (step S03). Subsequently, the time when the vehicle was last activated is received from the main CPU 8 (step S04). Then, in the last vehicle start earlier, the elapsed time T 1 of the bypass circuit 5 finally off until the last vehicle start, obtained in the step S03 and "time had stopped the vehicle T 2" obtains the sum of the three parties of the time T 3, which has been started last vehicle, including previously last, finally the bypass circuit 5 to turn off determining the elapsed time T 4 which has not been energized cell C1 from ( Step S05).

次に、セル電圧検出端子3に通電がなかった場合に酸化膜が形成すると推定される時間Tと、この電極に通電しなかった時間Tとを比較し、無通電時間Tが上記時間Tよりも大きい時、すなわち、酸化膜が形成される可能性がある時間に達すると(ステップS06/YES)、バイパス回路5をオンにし(ステップS07)、このバイパス回路5がオンになっている時間を計測する(ステップS08)。この計測した時間が酸化膜除去用または酸化膜形成防止用として設定された所定時間Tを経過したか否かを判定する。ここで所定時間経過した場合(ステップS09/YES)は、バイパス回路5をオフ(ステップS10)し、通常制御に戻る(ステップS11)。また、所定時間経過していない場合(ステップS09/NO)は、ステップS08に戻り時間計測を所定時間に達するまで継続する。また、上記の無通電時間Tが、セル電圧検出端子3に酸化膜が形成すると推定される時間Tに達していない場合(ステップS06/NO)はバイパス回路5を外し、通常制御に戻る。 Then, the cell voltage detection time T 5 the oxide film is estimated to be formed if no current to terminal 3, compares the time T 4 did not energized the electrode, the non-energized time T 4 is the when greater than the time T 5, i.e., to reach the time that might oxide film is formed (step S06 / YES), the bypass circuit 5 is turned on (step S07), the bypass circuit 5 is turned on Is measured (step S08). The measured time is determined whether a predetermined time has elapsed T 6 that is set for preventing oxidation film removal or oxide film formation. If the predetermined time has elapsed (step S09 / YES), the bypass circuit 5 is turned off (step S10), and the normal control is resumed (step S11). If the predetermined time has not elapsed (step S09 / NO), the process returns to step S08 and the time measurement is continued until the predetermined time is reached. The above-mentioned non-energization time T 4 is, if not reached the time T 5 the oxide film on the cell voltage detection terminal 3 is presumed to form (step S06 / NO), remove the bypass circuit 5, returns to the normal control .

なお、本回路において、例えば、バッテリを取り外す等の要因により、電気系統全体が遮断され、これによりバイパス回路5をオフしてから経過した積算時間の記録がリセットされた場合には、次に車両の起動を行う時に全セルのバイパス回路5を強制的に所定の時間オンにし、このオン処理終了時点から改めてバイパス回路5のオフ時間の計測を行う。これにより、酸化膜対策として実施されるべき通電処理の時期が、本来実施されるべき時間以上に経過し、遅延してしまうのを防ぐことが出来る。なお、バイパス回路4をオンにして通電する場合に、車両での充電以外の余剰電力である回生電力の発生時にバイパス回路5に通電することも可能である。これにより、車両で発生する電力の利用効率を向上することが出来る。   In this circuit, for example, when the entire electrical system is shut down due to factors such as removing the battery, and the recording of the accumulated time after the bypass circuit 5 is turned off is reset, the vehicle When the activation is started, the bypass circuits 5 of all the cells are forcibly turned on for a predetermined time, and the OFF time of the bypass circuit 5 is measured again from the end of the ON process. As a result, it is possible to prevent the time of the energization process to be performed as a countermeasure against the oxide film from being delayed beyond the time that should be originally performed. When the bypass circuit 4 is turned on and energized, the bypass circuit 5 can be energized when regenerative power that is surplus power other than charging in the vehicle is generated. Thereby, the utilization efficiency of the electric power generated by the vehicle can be improved.

(実施の形態2)
実施の形態1に記載の組電池の制御回路おいて、車両の停止していた時間を算出するため前記マップ化された「車両放置時間に対する自己放電量」の関係において、自己放電量として各セル毎に求められている自己放電量の平均値を用いることも出来る。図3にこの場合のフロー図を示す。図3は図2におけるS01〜S03をS12〜S15の処理に置き換えたものである。本実施の形態2においては全セルに対して自己放電量を求め、さらにその平均値を求め(S14)、この平均値を用いて車両の停止していた時間を算出している。この方法によれば、各セルの自己放電量を平均値からの偏差分内に収めることが出来るため、算出された「車両の停止していた時間」のばらつきを小さくすることが出来、より精度よく車両の停止していた時間を求めることが可能となる。
(Embodiment 2)
In the control circuit for an assembled battery according to the first embodiment, each cell is used as a self-discharge amount in the relationship of the mapped “self-discharge amount with respect to vehicle leaving time” for calculating the time during which the vehicle is stopped. The average value of the self-discharge amount obtained every time can also be used. FIG. 3 shows a flowchart in this case. FIG. 3 is obtained by replacing S01 to S03 in FIG. 2 with the processing of S12 to S15. In the second embodiment, the self-discharge amount is obtained for all the cells, the average value thereof is further obtained (S14), and the time during which the vehicle is stopped is calculated using this average value. According to this method, since the amount of self-discharge of each cell can be kept within the deviation from the average value, the variation in the calculated “time during which the vehicle is stopped” can be reduced, and the accuracy can be improved. It is possible to obtain the time during which the vehicle is stopped frequently.

(実施の形態3)
実施の形態1に記載の組電池の制御回路おいて、各セル毎に各セル電圧の自己放電量から求めた「車両の停止していた時間」の平均値を求め、この平均値を「車両の停止していた時間」として使用することも出来る。図4にこの場合のフロー図を示す。この場合は、図2におけるS01〜S03の処理をS16〜S19に置き換えたもので、この手順で車両の停止していた時間およびその平均値を求めている(S18およびS19)。これにより、各セル毎の自己放電量のばらつきによる影響を抑制することが出来る。
(Embodiment 3)
In the battery pack control circuit according to the first embodiment, an average value of “time when the vehicle is stopped” obtained from the self-discharge amount of each cell voltage is obtained for each cell. It can also be used as “the time during which it was stopped”. FIG. 4 shows a flowchart in this case. In this case, the processing of S01 to S03 in FIG. 2 is replaced with S16 to S19, and the time during which the vehicle is stopped and the average value are obtained in this procedure (S18 and S19). Thereby, the influence by the dispersion | variation in the self-discharge amount for every cell can be suppressed.

(実施の形態4)
実施の形態1に記載の組電池の制御回路おいて、「車両の停止していた時間」を求めるためのセル電圧として組電池の総電圧を使用することも出来る。この方法によっても、個々のセルにおける自己放電量のばらつきの影響を抑制することが出来る。
(Embodiment 4)
In the assembled battery control circuit according to the first embodiment, the total voltage of the assembled battery can also be used as the cell voltage for obtaining the “time during which the vehicle is stopped”. This method can also suppress the influence of variations in the amount of self-discharge in individual cells.

(実施の形態5)
セル電圧検出端子6における酸化膜形成を抑制するための通電を、車両の毎起動時に行う、すなわち酸化膜対策として十分な時間として予め設定されている時間だけバイパス回路5を強制的に通電することも有効である。図5にこの場合の処理手順のフロー図を示す。図5において、車両起動直後に、バイパス回路5を先ずオンにする(S21)。ここでバイパス回路5のオンしている時間(通電時間)の計測を開始する(S22)。次に、この通電時間が予め設定した時間(酸化膜対策として十分な時間)経過したか否かを判定する。予め設定した時間に達するまではS23/NOのループを循環し、予め設定した時間に達したところ(S23/YES)でバイパス回路をオフにして通常制御に移行する(S24)。この強制的な通電処理により、セル電圧低下により長期間に渉ってバイパス回路5がオフ状態を持続し、これによりセル電圧検出端子3における酸化膜が形成されるのを防止し得る。
(Embodiment 5)
The energization for suppressing the formation of the oxide film at the cell voltage detection terminal 6 is performed every time the vehicle is started, that is, the bypass circuit 5 is forcibly energized only for a time set in advance as a sufficient time for the oxide film countermeasure. Is also effective. FIG. 5 shows a flowchart of the processing procedure in this case. In FIG. 5, immediately after the vehicle is started, the bypass circuit 5 is first turned on (S21). Here, measurement of the time during which the bypass circuit 5 is on (energization time) is started (S22). Next, it is determined whether or not this energization time has elapsed in advance (a time sufficient as an oxide film countermeasure). The loop of S23 / NO is circulated until the preset time is reached, and when the preset time is reached (S23 / YES), the bypass circuit is turned off and normal control is entered (S24). By this forced energization process, it is possible to prevent the bypass circuit 5 from being kept off for a long time due to the cell voltage drop, thereby preventing the formation of an oxide film at the cell voltage detection terminal 3.

本発明における組電池の制御装置構成のブロック図。The block diagram of the control apparatus structure of the assembled battery in this invention. 本発明における処理過程フロー図。The process flow figure in this invention. 実施の形態2における処理を説明するフロー図。FIG. 9 is a flowchart for explaining processing in the second embodiment. 実施の形態3における処理を説明するフロー図。FIG. 10 is a flowchart for explaining processing in the third embodiment. 実施の形態5における処理を説明するフロー図。FIG. 6 is a flowchart for explaining processing in the fifth embodiment.

符号の説明Explanation of symbols

1:メインCPU 2:セルコントローラCPU 3:電圧検出手段
4:バイパス回路 5:セル電圧検出端子
6:車両負荷 7:組電池
1: Main CPU 2: Cell controller CPU 3: Voltage detection means 4: Bypass circuit 5: Cell voltage detection terminal 6: Vehicle load 7: Assembly battery

Claims (8)

単電池を直列に接続して形成されている組電池の各単電池の容量ばらつきを補正するため、前記各単電池に接続されて、各単電池の電圧を検出する電圧検出手段と、前記各単電池に選択的に接続されて、各単電池からの放電電流が流れるバイパス回路と、前記電圧検出手段により検出された電圧値に基づいて前記バイパス回路と各単電池との接続を制御して、バイパス回路に流す電流を制御するセルコントローラCPUとを有する組電池の制御回路において、
各単電池について当該単電池と前記バイパス回路との接続を最後にオフ状態にした時点から経過した時間が、予め設定された時間以上単電池と該バイパス回路との接続がオンされない状態が継続した場合は、当該単電池の該バイパス回路に強制的に放電電流を流すことを特徴とする組電池制御回路。
In order to correct the capacity variation of each unit cell of the assembled battery formed by connecting the unit cells in series, voltage detection means connected to each unit cell and detecting the voltage of each unit cell, A bypass circuit that is selectively connected to the unit cell and through which a discharge current flows from each unit cell, and controls the connection between the bypass circuit and each unit cell based on the voltage value detected by the voltage detection means; In a control circuit for an assembled battery having a cell controller CPU for controlling a current flowing through the bypass circuit,
For each single cell, the time elapsed since the connection between the single cell and the bypass circuit was last turned off was continued for a preset time or longer and the connection between the single cell and the bypass circuit was not turned on. In the case, the battery pack control circuit is characterized in that a discharge current is forced to flow through the bypass circuit of the unit cell.
請求項1に記載の組電池制御回路は、
単電池の自己放電量と単電池放置期間との関係を示すデータを予めマップとして有しており、
前記バイパス回路と前記単電池との接続を最後にオフ状態にした時点での単電池電圧と今回起動時の単電池電圧との差電圧と、前記マップに記載の前記データとから前記車両の停止していた時間を算出する計算手段を有することを特徴とする組電池制御回路。
The assembled battery control circuit according to claim 1,
Data that shows the relationship between the self-discharge amount of the unit cell and the unit cell leaving period is previously stored as a map,
The vehicle is stopped from the difference voltage between the unit cell voltage at the time when the connection between the bypass circuit and the unit cell is finally turned off and the unit cell voltage at the time of starting this time, and the data described in the map. An assembled battery control circuit comprising a calculating means for calculating the time that has been spent.
請求項1に記載の組電池制御回路において、
電源部が取り外され、当該時刻以前の前記バイパス回路と前記単電池との接続がオフ状態にされた時点からの経過時間の記録がリセットされた場合、次に車両の起動を行う時に全単電池の前記バイパス回路との接続を強制的に所定の時間オンにした後に再度オフとし、このオフ処理終了時点から改めてバイパス回路と単電池との接続がオフとされている時間の計測を行うことを特徴とする組電池制御回路。
The assembled battery control circuit according to claim 1,
When the record of the elapsed time from the time when the power supply unit is removed and the connection between the bypass circuit and the unit cell before the time is turned off is reset, The connection with the bypass circuit is forcibly turned on for a predetermined time and then turned off again, and the time when the connection between the bypass circuit and the unit cell is turned off is measured again from the end of the off process. A battery pack control circuit.
請求項1に記載の組電池制御回路において、
車両での回生電力、すなわち充電以外の余剰電力が前記組電池に充電される際に前記バイパス回路に対して強制的に通電することを特徴とする組電池制御回路。
The assembled battery control circuit according to claim 1,
An assembled battery control circuit for forcibly energizing the bypass circuit when regenerative power in a vehicle, that is, surplus power other than charging is charged in the assembled battery.
請求項1または請求項2に記載の組電池制御回路において、
前記車両の停止していた時間を算出するための自己放電量として、前記全単電池の自己放電量の平均値を使用することを特徴とする組電池制御回路。
In the assembled battery control circuit according to claim 1 or 2,
An assembled battery control circuit using an average value of self-discharge amounts of all the single cells as a self-discharge amount for calculating the time during which the vehicle is stopped.
請求項1または請求項2に記載の組電池制御回路において、
前記車両の停止していた時間として、前記各単電池毎に求めた単電池電圧の前記自己放電から算出した前記車両の停止していた時間の平均値を用いることを特徴とする組電池制御回路。
In the assembled battery control circuit according to claim 1 or 2,
An assembled battery control circuit using an average value of the vehicle stop time calculated from the self-discharge of the cell voltage obtained for each cell as the vehicle stop time. .
請求項1または請求項2に記載の組電池制御回路において、
前記車両の停止していた時間を求めるための前記単電池電圧として前記組電池の総電圧を使用することを特徴とする組電池制御回路。
In the assembled battery control circuit according to claim 1 or 2,
An assembled battery control circuit, wherein a total voltage of the assembled battery is used as the unit cell voltage for obtaining a time during which the vehicle is stopped.
請求項1乃至請求項7の何れかに記載の組電池制御回路において、
前記バイパス回路と単電池との接続をオンして通電する時間は、前記単電池の電圧検出端子に形成された酸化膜の除去あるいは酸化膜形成抑止を行うに十分な所定の時間であることを特徴とする組電池制御回路。
The assembled battery control circuit according to any one of claims 1 to 7,
The time for turning on the connection between the bypass circuit and the unit cell and energizing is a predetermined time sufficient for removing the oxide film formed on the voltage detection terminal of the unit cell or suppressing the formation of the oxide film. A battery pack control circuit.
JP2005213887A 2005-07-25 2005-07-25 Control circuit of battery pack Pending JP2007037227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213887A JP2007037227A (en) 2005-07-25 2005-07-25 Control circuit of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213887A JP2007037227A (en) 2005-07-25 2005-07-25 Control circuit of battery pack

Publications (1)

Publication Number Publication Date
JP2007037227A true JP2007037227A (en) 2007-02-08

Family

ID=37795802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213887A Pending JP2007037227A (en) 2005-07-25 2005-07-25 Control circuit of battery pack

Country Status (1)

Country Link
JP (1) JP2007037227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114734A1 (en) * 2007-03-15 2008-09-25 Mitsubishi Heavy Industries, Ltd. Accumulation system
JP2010172122A (en) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd Apparatus and method for replacing battery
CN102640383A (en) * 2010-10-14 2012-08-15 三菱重工业株式会社 Battery system
WO2015141500A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Degradation estimation method, degradation estimation system, and degradation estimation program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114734A1 (en) * 2007-03-15 2008-09-25 Mitsubishi Heavy Industries, Ltd. Accumulation system
JP2008228518A (en) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd Power storage system
US8217624B2 (en) 2007-03-15 2012-07-10 Mitsubishi Industries, Ltd. Power storage system
JP2010172122A (en) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd Apparatus and method for replacing battery
CN102640383A (en) * 2010-10-14 2012-08-15 三菱重工业株式会社 Battery system
US8652670B2 (en) 2010-10-14 2014-02-18 Mitsubishi Heavy Industries, Ltd. Battery system
WO2015141500A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Degradation estimation method, degradation estimation system, and degradation estimation program
JPWO2015141500A1 (en) * 2014-03-18 2017-04-06 株式会社東芝 Deterioration estimation method, deterioration estimation system, and deterioration estimation program

Similar Documents

Publication Publication Date Title
CN108474824B (en) Power storage element management device, power storage element module, vehicle, and power storage element management method
TWI762522B (en) Control device, balance correction device, and power storage system
JP5782803B2 (en) Battery charging device and battery charging method
JP6151852B2 (en) Method and apparatus for charging a rechargeable battery
JP5573818B2 (en) Battery equalization apparatus and method
US7646172B2 (en) Staggered backup battery charging system
JP6891421B2 (en) Power storage device for starting the engine, control method of the power storage device for starting the engine, vehicle
JP2007098977A (en) Controller for secondary battery and output control method for secondary battery
WO2015072510A1 (en) Storage battery, storage battery control method and program
JP6997955B2 (en) Control method of power storage device and power storage element
JP2006352970A (en) Controller of power supply device
JP2022532120A (en) Operation control device and method for secondary batteries using the relative degree of electrode degradation
JP2018050373A (en) Battery system
JP2007037227A (en) Control circuit of battery pack
JP6434798B2 (en) Power supply unit
JP6930572B2 (en) Power storage element management device, power storage element module, vehicle and power storage element management method
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
CN111211381B (en) Method and device for controlling discharge of lithium battery at low temperature
JP2019041497A (en) Power source management device
JP6036521B2 (en) Power storage device
JP4360046B2 (en) Battery capacity judgment device
JP2005020866A (en) Battery charger
JP2021190384A (en) Internal resistance estimation device
KR101047651B1 (en) Power system short circuit detection device of fuel cell vehicle
JP6627567B2 (en) Power supply device, storage device, and power supply control method