JP2007034249A - Carrier core material for electrophotographic development, carrier for electrophotographic development and method for manufacturing the same, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic development, carrier for electrophotographic development and method for manufacturing the same, and electrophotographic developer Download PDF

Info

Publication number
JP2007034249A
JP2007034249A JP2005285652A JP2005285652A JP2007034249A JP 2007034249 A JP2007034249 A JP 2007034249A JP 2005285652 A JP2005285652 A JP 2005285652A JP 2005285652 A JP2005285652 A JP 2005285652A JP 2007034249 A JP2007034249 A JP 2007034249A
Authority
JP
Japan
Prior art keywords
core material
carrier
carrier core
electrophotographic
electrophotographic developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005285652A
Other languages
Japanese (ja)
Other versions
JP4862181B2 (en
Inventor
Ryusuke Nakao
竜介 中尾
Takashi Kawachi
岳志 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005285652A priority Critical patent/JP4862181B2/en
Application filed by Dowa Holdings Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to US11/992,675 priority patent/US8652736B2/en
Priority to KR1020117012031A priority patent/KR20110067170A/en
Priority to KR1020087007651A priority patent/KR101121239B1/en
Priority to CN201110001876.4A priority patent/CN102081317B/en
Priority to EP06810470.2A priority patent/EP1990684B1/en
Priority to EP12000034.4A priority patent/EP2439594B1/en
Priority to PCT/JP2006/318902 priority patent/WO2007037182A1/en
Priority to CN2006800364660A priority patent/CN101283315B/en
Publication of JP2007034249A publication Critical patent/JP2007034249A/en
Priority to HK11112921.6A priority patent/HK1158769A1/en
Application granted granted Critical
Publication of JP4862181B2 publication Critical patent/JP4862181B2/en
Priority to HK12109449.4A priority patent/HK1168663A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier core material for manufacturing an electrophotographic developer which enables high-speed development with stable high image quality and ensures the long life of a magnetic carrier for replacement even when applied to an MFP (multifunction printer), etc., a method for manufacturing the carrier core material, a magnetic carrier containing the carrier core material, and an electrophotographic developer manufactured from the magnetic carrier. <P>SOLUTION: Resin particles, a binder, a dispersant, a wetting agent and water are added to raw material powder, wet-ground and dried to obtain granules, and the granules are calcined and fired to manufacture the carrier core material having an internal hollow structure. The carrier core material is coated with a resin to obtain the carrier for electrophotographic development. This carrier for electrophotographic development and a toner are mixed to manufacture the electrophotographic developer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

電子写真現像に用いられる電子写真現像用キャリアに含まれる電子写真現像用キャリア芯材、該電子写真現像用キャリア芯材を用いた電子写真現像用キャリア、およびそれらの製造方法、並びに該電子写真現像用キャリアを含む電子写真現像剤に関する。   Carrier core material for electrophotographic development contained in carrier for electrophotographic development used for electrophotographic development, carrier for electrophotographic development using carrier core material for electrophotographic development, production method thereof, and electrophotographic development The present invention relates to an electrophotographic developer containing a carrier for use.

電子写真の乾式現像法は、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等へ転写して現像する方法である。ここで、電子写真の乾式現像法は、トナーのみを含む1成分系現像剤を用いる1成分系現像法と、トナーと、磁性を有する電子写真現像用キャリア(以下、磁性キャリアと記載する場合がある。)とを含む2成分系現像剤を用いる2成分系現像法とに分けられる。そして、近年はトナーの荷電制御が容易で安定した高画質が得ることができ、高速現像が可能であることから、2成分系現像法が多く用いられている。   The electrophotographic dry development method is a method in which a powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner is transferred to a predetermined paper or the like for development. Here, the electrophotographic dry development method includes a one-component development method using a one-component developer containing only toner, a toner, and a carrier for electrophotographic development having magnetism (hereinafter sometimes referred to as a magnetic carrier). And a two-component development method using a two-component developer containing the same. In recent years, two-component development methods are often used because toner charge control is easy and stable high image quality can be obtained, and high-speed development is possible.

電子写真現像機は、フルカラー化、高画質化、高速化の傾向にあるが、その達成のためトナーとして小粒径の重合トナーが開発され、該小粒径の重合トナー粒径に合わせて磁性キャリアの粒径も小粒径化が進んでいる。一方、パソコンの普及とともに、電子写真現像機においても、いわゆるMFP(マルチ ファンクション プリンター)市場が拡大し、付属のアプリケーション等により機能が充実すると同時に、ドキュメント出力における出力能力だけでなく、ランニングコストも厳しく評価される様になってきている。   Electrophotographic developing machines tend to have full color, high image quality, and high speed. To achieve this, polymerized toner with a small particle size has been developed, and magnetic properties are matched to the small particle size of the polymerized toner. The carrier particle size is also being reduced. On the other hand, with the spread of personal computers, the so-called MFP (multifunction printer) market has expanded in electrophotographic developing machines, and functions have been enhanced by the attached applications, etc., and at the same time, not only the output capability for document output but also the running cost has become severe It has come to be evaluated.

電子写真現像機のランニングコストは、トナーや磁性キャリアなどの消耗品のコストに大きく依存する。そして磁性キャリアの多くは、電子写真現像用キャリア芯材(以下、キャリア芯材と記載する場合がある。)として球状のソフトフェライトを用い、該球状のソフトフェライトの表面を樹脂でコーティングしたものであるが、印刷回数が進むことで、該表面の樹脂が、磁性キャリア同士の摩耗で劣化してしまい電子写真現像に耐えられなくなる。そのため多くの電子写真現像機では、カウントしたドキュメント印刷枚数が一定値になると、磁性キャリアをトナーとともに交換することとしている。   The running cost of an electrophotographic developing machine greatly depends on the cost of consumables such as toner and magnetic carrier. Many of the magnetic carriers are obtained by using spherical soft ferrite as a carrier core material for electrophotographic development (hereinafter sometimes referred to as carrier core material) and coating the surface of the spherical soft ferrite with a resin. However, as the number of times of printing proceeds, the resin on the surface deteriorates due to wear between the magnetic carriers and cannot withstand electrophotographic development. Therefore, in many electrophotographic developing machines, when the counted number of printed documents reaches a certain value, the magnetic carrier is exchanged together with the toner.

ここで、特許文献1には、キャリア芯材の原料として炭酸塩原料を使用し、該原料のガス化成分を利用することで、キャリア芯材中に中空構造を発生させ、密度・比重の小さいキャリア芯材を製造する方法が提案されている。   Here, in Patent Document 1, a carbonate raw material is used as a raw material for the carrier core material, and by using a gasification component of the raw material, a hollow structure is generated in the carrier core material, and the density and specific gravity are small. A method for manufacturing a carrier core material has been proposed.

特開昭61-7851号公報JP 61-7851 A

本発明者らは、磁性キャリアの交換寿命を延ばすために、キャリア芯材の表面にある樹脂へのストレスを減らすことが肝要であることに想到した。そして、該キャリア芯材の比重を小さくすることで、電子写真現像機内での電子写真現像剤の攪拌混合時に、該キャリア芯材の受けるストレスを削減できることに想到した。しかしながら、本発明者らの検討によれば、例えば、特許文献1に記載された製造方法で製造された磁性キャリアを用いて電子写真現像剤を製造し、該電子写真現像剤を上記MFP等に適用した場合、該磁性キャリアの交換寿命を延長させることが、出来ないことが判明した。   The present inventors have realized that it is important to reduce the stress on the resin on the surface of the carrier core material in order to extend the exchange life of the magnetic carrier. Then, it has been conceived that by reducing the specific gravity of the carrier core material, stress applied to the carrier core material can be reduced when the electrophotographic developer is stirred and mixed in the electrophotographic developing machine. However, according to the study by the present inventors, for example, an electrophotographic developer is manufactured using a magnetic carrier manufactured by the manufacturing method described in Patent Document 1, and the electrophotographic developer is used in the MFP or the like. When applied, it has been found that the exchange life of the magnetic carrier cannot be extended.

ここで本発明者らは、従来技術において、磁性キャリアの交換寿命が延長しなかった原因についてさらに検討を行った。その結果、以下のことが判明した。即ち、キャリア芯材の原料の仮焼時に炭酸塩原料のガス化が進行し、仮焼粉中に中空構造が形成されるが、該中空構造が形成された仮焼粉に対し、仮焼工程後にボールミルによる湿式粉砕工程を行うことで、該中空構造が粉砕されてしまう。ここで、次の焼成工程において、残留した一部の炭酸塩原料のガス化により、焼成粉中に中空構造が形成されることとなるが、該形成は、不十分なものに留まってしまった為であると考えられた。   Here, the present inventors further examined the cause of the fact that the exchange life of the magnetic carrier was not extended in the prior art. As a result, the following was found. That is, the gasification of the carbonate raw material proceeds during the calcining of the carrier core material, and a hollow structure is formed in the calcined powder. The hollow structure is pulverized by performing a wet pulverization step with a ball mill later. Here, in the next firing step, a hollow structure is formed in the fired powder by gasification of a part of the remaining carbonate raw material, but the formation remains insufficient. It was thought to be for the purpose.

さらに特許文献1は、炭酸塩原料の一部を取り分けておき、これを仮焼後の原料粉に添加して、焼成を行う構成についても記載されている。しかしながら、本発明者らの検討によれば、該構成を用いた磁性キャリアを含む電子写真現像剤を上記MFP等に適用した場合にも、該磁性キャリアの交換寿命を延長し得ないことが判明した。   Furthermore, Patent Document 1 also describes a configuration in which a part of the carbonate raw material is separated and added to the calcined raw material powder and then fired. However, according to the study by the present inventors, it has been found that even when an electrophotographic developer containing a magnetic carrier using this configuration is applied to the MFP or the like, the replacement life of the magnetic carrier cannot be extended. did.

ここでも本発明者らは、磁性キャリアの交換寿命が延長しなかった原因について検討を行った。その結果、該構成の場合では、炭酸塩原料から発生するガスの量に不足があり、やはり、焼成工程における中空構造形成が不十分なものに留まってしまう為、該磁性キャリアの交換寿命を延長し得ないものと考えられた。   Here again, the present inventors examined the cause of the fact that the exchange life of the magnetic carrier was not extended. As a result, in the case of this configuration, the amount of gas generated from the carbonate raw material is insufficient, and again, the hollow structure formation in the firing process remains insufficient, thus extending the exchange life of the magnetic carrier. It was considered impossible.

そこで本発明が解決しようとする課題は、電子写真現像機としてMFP等を用いた場合でも、安定した高画質で高速現像が可能、且つ磁性キャリアの交換寿命が長い電子写真現像剤を製造するためのキャリア芯材、該キャリア芯材を含む磁性キャリアおよびその製造方法、該磁性キャリアから製造された電子写真現像剤を提供することである。   Therefore, the problem to be solved by the present invention is to produce an electrophotographic developer capable of high-speed development with stable high image quality and long magnetic carrier replacement life even when an MFP or the like is used as an electrophotographic developing machine. A carrier core material, a magnetic carrier containing the carrier core material, a method for producing the same, and an electrophotographic developer produced from the magnetic carrier.

本発明者らは、電子写真現像機としてMFP等を用いた場合でも、安定した高画質で高速現像が可能、且つ磁性キャリアの交換寿命が長い電子写真現像剤を製造するため、磁性キャリアが満たすべき構造、物性について研究をおこなった。その結果、磁性キャリアが、単に中空構造を有しているだけでは足らず、該磁性キャリアに含まれるキャリア芯材の見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、該見掛け密度が2.0g/cm3以下の要件を満たすことが必要であることに想到した。そして、本発明者らは、該要件を満たすキャリア芯材の製造方法にも想到し、本発明を完成したものである。 The present inventors produce an electrophotographic developer capable of high-speed development with stable high image quality and a long exchange life of a magnetic carrier even when an MFP or the like is used as an electrophotographic developing machine. I studied the structure and physical properties that should be used. As a result, it is not sufficient that the magnetic carrier has a hollow structure. When the apparent density / true density of the carrier core material contained in the magnetic carrier is A, 0.25 ≦ A ≦ 0.40. It was also conceived that the apparent density must satisfy the requirement of 2.0 g / cm 3 or less. The present inventors have also conceived a method for producing a carrier core material that satisfies the above requirements, and have completed the present invention.

即ち、課題を解決するための第1の手段は、
電子写真現像剤用キャリアに用いられるキャリア芯材であって、
該キャリア芯材の見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、見掛け密度が2.0g/cm以下であることを特徴とする電子写真現像用キャリア芯材である。
That is, the first means for solving the problem is:
A carrier core material used in a carrier for an electrophotographic developer,
Electrophotographic development characterized in that when the apparent density / true density of the carrier core material is A, 0.25 ≦ A ≦ 0.40 and the apparent density is 2.0 g / cm 3 or less. Carrier core material.

第2の手段は、
該キャリア芯材において、BET法で測定した比表面積の値をBET(0)、湿式分散型粒度分布測定機より求められるcs値を真密度で割り返して求めた球形換算比表面積の値をBET(D)としたとき、
BET(0)≧0.07m/g、且つ、3.0≦BET(0)/BET(D)≦10.0であることを特徴とする第1の手段に記載の電子写真現像用キャリア芯材である。
The second means is
In the carrier core material, the value of the specific surface area measured by the BET method is BET (0), the cs value obtained from the wet dispersion type particle size distribution measuring machine is divided by the true density, and the value of the spherical equivalent specific surface area is obtained by BET. When (D)
The carrier for electrophotographic development according to the first means, wherein BET (0) ≧ 0.07 m 2 / g and 3.0 ≦ BET (0) / BET (D) ≦ 10.0 It is a core material.

第3の手段は、
該キャリア芯材が、磁性酸化物と、真比重3.5以下の非磁性酸化物とを含むことを特徴とする請求項1または2に記載の電子写真現像剤用キャリア芯材である。
The third means is
The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the carrier core material contains a magnetic oxide and a nonmagnetic oxide having a true specific gravity of 3.5 or less.

第4の手段は、
該磁性酸化物が、ソフトフェライトであることを特徴とする第3の手段に記載の電子写真現像剤用キャリア芯材である。
The fourth means is
The carrier core material for an electrophotographic developer according to the third means, wherein the magnetic oxide is soft ferrite.

第5の手段は、
該キャリア芯材中に、前記非磁性酸化物が1wt%以上、50wt%以下含有されていることを特徴とする第3または第4の手段に記載の電子写真現像用キャリア芯材である。
The fifth means is
The carrier core material for electrophotographic development according to the third or fourth means, wherein the carrier core material contains the nonmagnetic oxide in an amount of 1 wt% to 50 wt%.

第6の手段は、
第1から第5の手段のいずれかに記載の電子写真現像剤用キャリア芯材を、樹脂で被覆したことを特徴とする電子写真現像用キャリアである。
The sixth means is
A carrier for electrophotographic development, wherein the carrier core material for an electrophotographic developer according to any one of the first to fifth means is coated with a resin.

第7の手段は、
前記樹脂の被覆量が、前記キャリア芯材の0.1wt%以上、20.0wt%以下であることを特徴とする第6の手段に記載の電子写真現像用キャリアである。
The seventh means is
The carrier for electrophotographic development according to the sixth means, wherein the coating amount of the resin is 0.1 wt% or more and 20.0 wt% or less of the carrier core material.

第8の手段は、
平均粒径が、25μm以上、50μm以下であることを特徴とする第6または第7の手段に記載の電子写真現像剤用キャリアである。
The eighth means is
The carrier for an electrophotographic developer according to the sixth or seventh means, wherein the average particle size is 25 μm or more and 50 μm or less.

第9の手段は、
1wt%以上、50wt%以下のシリカを含むことを特徴とする第6から第8の手段のいずれかに記載の電子写真現像剤用キャリアである。
The ninth means is
The carrier for an electrophotographic developer according to any one of the sixth to eighth means, wherein the carrier contains 1 wt% or more and 50 wt% or less of silica.

第10の手段は、
第6から第9の手段いずれかに記載の電子写真現像剤用キャリアを含むことを特徴とする電子写真現像剤である。
The tenth means is
An electrophotographic developer comprising the carrier for an electrophotographic developer according to any one of the sixth to ninth means.

第11の手段は、
1種または2種以上の金属元素Mの、炭酸塩、酸化物、水酸化物から選択される1種または2種以上と、Feとを混合し、粒径1μmまで粉砕して粉砕物を得る工程と、
該粉砕物へ、樹脂粒子と、水と、バインダーと、分散剤と、を加えてスラリーとした後、湿式粉砕し、さらに乾燥させて、造粒粉を得る工程と、
該造粒粉を仮焼して、仮焼品を得る工程と、
該仮焼品を焼成して、焼成物を得る工程と、
該焼成物を粉砕してキャリア芯材を得る工程と、を有することを特徴とする電子写真現像用キャリア芯材の製造方法である。
The eleventh means is
One or two or more metal elements M selected from carbonates, oxides and hydroxides, and Fe 2 O 3 are mixed and pulverized to a particle size of 1 μm. Obtaining a product;
Adding the resin particles, water, a binder, and a dispersant to the pulverized product to form a slurry, followed by wet pulverization and further drying to obtain a granulated powder;
Calcining the granulated powder to obtain a calcined product;
Firing the calcined product to obtain a fired product;
And a step of pulverizing the fired product to obtain a carrier core material.

第12の手段は、
該粉砕物へ加える樹脂粒子として、シリコンを含有する樹脂粒子を用いることを特徴とする第11の手段に記載の電子写真現像用キャリア芯材の製造方法である。
The twelfth means is
11. The method for producing a carrier core material for electrophotographic development according to the eleventh means, wherein resin particles containing silicon are used as the resin particles to be added to the pulverized product.

第13の手段は、
1種または2種以上の金属元素Mの、炭酸塩、酸化物、水酸化物から選択される1種または2種以上とFeとを混合し、粉砕して粉砕物を得る工程と、
該粉砕物へ、シリカ粒子と、水と、バインダーと、分散剤とを加えてスラリーとした後、湿式粉砕し、さらに乾燥させて、造粒粉を得る工程と、
該造粒粉を焼成して、焼成物を得る工程と、
該焼成物を粉砕してキャリア芯材を得る工程と、を有することを特徴とする電子写真現像用キャリア芯材の製造方法である。
The thirteenth means is
A step of mixing one or two or more metal elements M selected from carbonates, oxides and hydroxides with Fe 2 O 3 and pulverizing to obtain a pulverized product; ,
A step of adding silica particles, water, a binder, and a dispersant to the pulverized product to form a slurry, followed by wet pulverization and further drying to obtain granulated powder,
Firing the granulated powder to obtain a fired product;
And a step of pulverizing the fired product to obtain a carrier core material.

第1から第5の手段のいずれかに記載の電子写真現像用キャリア芯材を用いて製造された電子写真現像用キャリアは、電子写真現像機内における電子写真現像剤の混合攪拌時に受けるストレスに耐久性が高く、交換寿命の長い電子写真現像用キャリアとなる。   An electrophotographic developing carrier manufactured using the electrophotographic developing carrier core material according to any one of the first to fifth means is resistant to stress applied during mixing and stirring of an electrophotographic developer in an electrophotographic developing machine. It becomes a carrier for electrophotographic development having a high property and a long exchange life.

第6から第9の手段のいずれかに記載の電子写真現像用キャリアは、電子写真現像機内における電子写真現像剤の混合攪拌時に受けるストレスに耐久性が高く、交換寿命の長い電子写真現像用キャリアとなる。   The electrophotographic developer carrier according to any one of the sixth to ninth means is a carrier for electrophotographic development that is highly resistant to stress applied during mixing and stirring of the electrophotographic developer in the electrophotographic developing machine and has a long exchange life. It becomes.

第10の手段に記載の電子写真現像剤は、MFP等に適用した場合でも、安定した高画質で高速現像が可能で、且つ、交換寿命の長い電子写真現像剤である。   The electrophotographic developer described in the tenth means is an electrophotographic developer capable of high-speed development with stable high image quality and long replacement life even when applied to an MFP or the like.

第11から第13の手段のいずれかに記載の電子写真現像用キャリア芯材の製造方法によれば、電子写真現像機内における電子写真現像剤の混合攪拌時に受けるストレスに耐久性が高く、交換寿命の長い電子写真現像用キャリアの原料である電子写真現像用キャリア芯材を製造することができる。   According to the method for producing a carrier core material for electrophotographic development according to any one of the eleventh to thirteenth means, the durability against stress applied during mixing and stirring of the electrophotographic developer in the electrophotographic developing machine is high, and the replacement life It is possible to produce a carrier core material for electrophotographic development which is a raw material for a long electrophotographic development carrier.

以下、本発明の実施形態を説明する。
本発明に係るキャリア芯材は、常温での、見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、見掛け密度が2.0g/cm以下である。ここで見掛け密度は、例えばJISZ2504に準拠して測定される。一方、真密度は、真密度測定装置(例えば、後述するピクノメーター)によって測定するのが便宜である。
この構成を有するキャリア芯材をふくむ磁性キャリアを用いて製造された電子写真現像剤は、MFP等に適用した場合でも、安定した高画質で高速現像が可能、且つ磁性キャリアの交換寿命が長いという優れた特徴を発揮するものである。
Embodiments of the present invention will be described below.
The carrier core material according to the present invention has an apparent density / true density = A at room temperature, where 0.25 ≦ A ≦ 0.40 and the apparent density is 2.0 g / cm 3 or less. . Here, the apparent density is measured in accordance with, for example, JISZ2504. On the other hand, it is convenient to measure the true density with a true density measuring device (for example, a pycnometer described later).
An electrophotographic developer manufactured using a magnetic carrier including a carrier core material having this configuration is capable of high-speed development with stable high image quality and a long replacement life of the magnetic carrier even when applied to an MFP or the like. It exhibits excellent characteristics.

該キャリア芯材を用いることで、電子写真現像剤が上述した優秀な特徴を発揮する詳細な理由は不明だが、前記Aが所定範囲にあることで、MFP等の電子写真現像機内において、該電子写真現像剤が攪拌される際の攪拌トルクが小さくて済み、安定した高画質で高速現像が可能になると同時に、磁性キャリアへの衝撃が軽減されてダメージも軽減されるため、磁性キャリアの交換寿命も長くなるのではないかと考えられる。   Although the detailed reason why the electrophotographic developer exhibits the above-described excellent characteristics by using the carrier core material is unclear, when the A is within a predetermined range, the electrophotographic developer can be used in an electrophotographic developing machine such as an MFP. The agitation torque when the photographic developer is agitated can be reduced, enabling high-speed development with stable image quality, and at the same time, the impact on the magnetic carrier is reduced and damage is reduced, so the replacement life of the magnetic carrier is reduced. May be longer.

そして、本発明に係るキャリア芯材が、BET法で測定した比表面積の値をBET(0)、球形換算比表面積の値をBET(D)としたとき、BET(0)≧0.07m/g、且つ、3.0≦BET(0)/BET(D)≦10.0であると、該キャリア芯材に形成される中空構造が、微細な中空構造の集合体であり、且つ、十分な量の中空構造が形成されているからである。ここで、BET法で測定した比表面積の値であるBET(0)とは、通常のBET法で測定した比表面積の値のことである。一方、球形換算比表面積の値BET(D)は、例えば、湿式分散型粒度分布測定器であるマイクロトラックを用いてcs値(Calculated Specific Surfaces Area)を求め、該cs値を前記真密度で割り返して算定される。この構成を有するキャリア芯材は、中空構造が、微細な中空構造の集合体である為、機械的に強固である。この結果、該キャリア芯材を有する磁性キャリアも衝撃に対して耐久性があるので、磁性キャリアの交換寿命も長くなるのではないかと考えられる。 And when the value of the specific surface area measured by the BET method is BET (0) and the value of the spherical equivalent specific surface area is BET (D), the carrier core material according to the present invention has BET (0) ≧ 0.07 m 2. / G and 3.0 ≦ BET (0) / BET (D) ≦ 10.0, the hollow structure formed in the carrier core material is an aggregate of fine hollow structures, and This is because a sufficient amount of hollow structure is formed. Here, BET (0), which is the value of the specific surface area measured by the BET method, is the value of the specific surface area measured by the normal BET method. On the other hand, the value BET (D) of the spherical equivalent specific surface area is obtained by, for example, obtaining a cs value (Calculated Specific Surfaces Area) using a microtrack which is a wet dispersion type particle size distribution measuring device, and dividing the cs value by the true density. Calculated in return. The carrier core material having this configuration is mechanically strong because the hollow structure is an assembly of fine hollow structures. As a result, since the magnetic carrier having the carrier core material is also resistant to impact, the exchange life of the magnetic carrier may be extended.

そして、上述の構成を有する磁性キャリアを用いて製造された電子写真現像剤を、MFP等に適用した場合、安定した高画質で高速現像が可能で、且つ、交換寿命が従来品と比較して50%以上長いという優れた特徴を発揮するものである。   When an electrophotographic developer manufactured using a magnetic carrier having the above-described configuration is applied to an MFP or the like, high-speed development with stable high image quality is possible, and replacement life is longer than that of a conventional product. It exhibits the excellent feature of being 50% or longer.

さらに、本発明に係るキャリア芯材が、磁性酸化物と、真比重3.5g/cm3以下の非磁性酸化物との複合構造を有する構成とすることも好ましい。該構成をとり中空部分を非磁性酸化物で埋めることで、上述したA値やBET(0)/BET(D)値を所定範囲に納めながら、中空容量を減らすことができ、該キャリア芯材の機械的強度を向上させることができるものである。ここで、真比重3.5g/cm3以下の非磁性酸化物の好適な例として、SiO、Al、Al(OH)、B等を挙げることができる。そして、キャリア芯材における該非磁性酸化物の含有量が1wt%以上、50wt%以下、さらに好ましくは5wt%以上、40wt%以下であると、キャリア芯材としての磁気的特性と機械的特性とが両立でき好ましい構成である。また、磁性酸化物としてM2+O・FeまたはM2+・Feの一般式で示されるスピネル型フェライト(M2+にはMn、Mg、Fe、Co、Ni、Cu、Zn等)、M2+O・6Fe、M2+・6Fe1219の一般式で示されるマグネトプランバイト型フェライト(M2+にはBa、Sr、Pb等)、3M3+ ・5FeまたはM3+ Fe12の一般式で示されるガーネット型フェライト(M3+にはSm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等)、ペロブスカイト型フェライトおよびイルメナイト型フェライト等が挙げられ、特にスピネル型フェライトとして知られるM2+O・FeでM2+がMn、Mg、Feの少なくとも1種を有する所謂ソフトフェライトを用いることが好ましい。これは、ソフトフェライトを用いることでトナーとキャリアとの撹拌性が良くなり、高画質の画像を得ることができるという利点が有るからである。 Furthermore, the carrier core material according to the present invention preferably has a composite structure of a magnetic oxide and a nonmagnetic oxide having a true specific gravity of 3.5 g / cm 3 or less. By adopting this configuration and filling the hollow portion with a nonmagnetic oxide, the hollow capacity can be reduced while keeping the above-mentioned A value and BET (0) / BET (D) value within a predetermined range, and the carrier core material It is possible to improve the mechanical strength. Here, preferred examples of the true specific gravity of 3.5 g / cm 3 or less of non-magnetic oxide, mention may be made of SiO 2, Al 2 O 3, Al (OH) 2, B 2 O 3 and the like. When the content of the nonmagnetic oxide in the carrier core material is 1 wt% or more and 50 wt% or less, more preferably 5 wt% or more and 40 wt% or less, the magnetic characteristics and mechanical characteristics as the carrier core material are obtained. It is a preferable configuration that can achieve both. Further, as a magnetic oxide, a spinel ferrite represented by a general formula of M 2+ O · Fe 2 O 3 or M 2 + · Fe 2 O 4 (M 2+ includes Mn, Mg, Fe, Co, Ni, Cu, Zn, etc.) ), M2 + O · 6Fe 2 O 3 , magnetoplumbite type ferrite represented by the general formula of M 2 + · 6Fe 12 O 19 (M 2+ includes Ba, Sr, Pb, etc.), 3M 3+ 2 O 3 · 5Fe 2 Garnet type ferrite represented by the general formula of O 3 or M 3+ 3 Fe 5 O 12 (M 3+ includes Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.), perovskite type ferrite and ilmenite-type ferrite, and the like, in particular M 2+ in M 2+ O · Fe 2 O 3, known as spinel ferrite is Mn, Mg, have at least one Fe It is preferable to use that so-called soft ferrite. This is because the use of soft ferrite has the advantage that the agitation between the toner and the carrier is improved and a high-quality image can be obtained.

次に、上述したキャリア芯材を、樹脂で被覆することで磁性キャリアを得ることができる。ここで被覆樹脂としては、例えばシリコーン樹脂が好適に用いられる。被覆量は、キャリア芯材の0.1wt%以上あれば、磁性キャリアとして好ましい機械的特性と耐久性とを発揮することができ、キャリア芯材の20.0wt%以下であれば、磁性キャリア同士が凝集してしまうといった事態を回避することができ、さらに12wt%以下であればキャリアの抵抗が高くなりすぎるといった事態を回避することができることから一層好ましい。   Next, a magnetic carrier can be obtained by coating the above-described carrier core material with a resin. Here, as the coating resin, for example, a silicone resin is preferably used. If the coating amount is 0.1 wt% or more of the carrier core material, it is possible to exhibit mechanical properties and durability preferable as a magnetic carrier, and if it is 20.0 wt% or less of the carrier core material, the magnetic carriers Can be avoided, and if it is 12 wt% or less, it is more preferable because a situation in which the resistance of the carrier becomes too high can be avoided.

上記構成を有する磁性キャリアと、粉砕法または重合法で製造される粒径10μm程度のトナーとを混合することで電子写真現像剤を製造することができる。該電子写真現像剤は、MFP等に適用した場合でも、安定した高画質で高速現像が可能で、且つ、交換寿命が、従来品と比較して50%以上長いという優れた特徴を発揮するものである。   An electrophotographic developer can be produced by mixing a magnetic carrier having the above-described structure with a toner having a particle size of about 10 μm produced by a pulverization method or a polymerization method. The electrophotographic developer exhibits an excellent feature that, even when applied to an MFP or the like, high-speed development with stable high image quality is possible, and the replacement life is 50% or more longer than that of a conventional product. It is.

次に本発明に係るキャリア芯材、および該キャリア芯材を含む磁性キャリアの製造方法について、1.樹脂添加法と、2.シリカ粒子添加法と、の2法について説明する。   Next, regarding a carrier core material according to the present invention and a method for producing a magnetic carrier including the carrier core material, 1. resin addition method; Two methods, the silica particle addition method, will be described.

1.樹脂添加法
[秤量・混合]
本発明に係る磁性キャリアが含むキャリア芯材に用いられる磁性酸化物(好ましくはソフトフェライト)は、一般式:MO・Feであらわされる。ここでMとしては、例えば、Fe、Mn、Mg等の金属が挙げられる。Fe、Mn、Mgは、単独使用も可能だが混合組成とすることで、キャリア芯材における磁気的特性の制御可能範囲が広くなり好ましい。
1. Resin addition method [weighing and mixing]
The magnetic oxide (preferably soft ferrite) used for the carrier core material included in the magnetic carrier according to the present invention is represented by the general formula: MO · Fe 2 O 3 . Here, examples of M include metals such as Fe, Mn, and Mg. Fe, Mn, and Mg can be used alone, but a mixed composition is preferable because the controllable range of magnetic properties in the carrier core material is widened.

そして、Mの原料としては、FeであればFeが好適に使用できる。MnであればMnCOが好適に使用できるが、これに限られることなくMn等も使用可能であり、MgであればMgCOが好適に使用できるが、これに限られることなくMg(OH)等も好適に使用できる。そして、これらの原料の配合比を、該磁性酸化物の目的組成と一致させて秤量し混合して、金属原料混合物を得る。 And, as a raw material of M, if the Fe is Fe 2 O 3 can be suitably used. If Mn is MnCO 3 can be suitably used, it may be used without any Mn 3 O 4, etc. It is not limited to this, but if Mg MgCO 3 can be suitably used, Mg not limited thereto (OH) 2 etc. can also be used conveniently. Then, the blending ratio of these raw materials is matched with the target composition of the magnetic oxide and weighed and mixed to obtain a metal raw material mixture.

次に、該金属原料混合物へ樹脂粒子を添加する。ここで、ポリエチレン、アクリル等の炭素系の樹脂粒子を添加する構成と、シリコーン樹脂等のシリコンを含有する樹脂の粒子を添加する構成とがある。該炭素系の樹脂粒子およびシリコンを含有する樹脂粒子とも、後述する仮焼工程にて燃焼し、該燃焼時に発生するガスによって、仮焼粉中に中空構造を生成させる点では、同一である。しかし、該燃焼後に、炭素系の樹脂粒子は仮焼粉中に中空構造を生成させるのみであるが、シリコンを含有する樹脂粒子は、燃焼後にSiOとなり生成した中空構造中に残留する。該樹脂粒子の粒径および添加量は、炭素系およびシリコン系とも、平均粒径2μm〜8μmが好ましく、添加量は全原料粉中の0.1wt%以上、20wt%以下が好ましく、最も好ましくは12wt%である。 Next, resin particles are added to the metal raw material mixture. Here, there are a configuration in which carbon-based resin particles such as polyethylene and acrylic are added and a configuration in which silicon-containing resin particles such as silicone resin are added. The carbon-based resin particles and the silicon-containing resin particles are the same in that they burn in the calcining step described later and a hollow structure is generated in the calcined powder by the gas generated during the combustion. However, after the combustion, the carbon-based resin particles only generate a hollow structure in the calcined powder, but the resin particles containing silicon remain as SiO 2 after combustion and remain in the generated hollow structure. The particle size and addition amount of the resin particles are preferably 2 to 8 μm in average particle size for both carbon and silicon, and the addition amount is preferably 0.1 wt% or more and 20 wt% or less in the total raw material powder, most preferably 12 wt%.

[粉砕・造粒]
秤量・混合したMおよびFe等の金属原料混合物および樹脂粒子を、振動ミル等の粉砕機中に導入し、粒径2μm〜0.5μm、好ましくは1μmまで粉砕する。次いで、この粉砕物に水、バインダー0.5〜2wt%、分散剤0.5〜2wt%を加えることで、固形分濃度が50〜90wt%のスラリーとし、該スラリーをボールミル等で湿式粉砕する。ここで、バインダーとしては、ポリビニルアルコール等が好ましく、分散剤としては、ポリカルボン酸アンモニウム系等が好ましい。
[Crushing and granulation]
The metal raw material mixture such as M and Fe and the resin particles weighed and mixed are introduced into a pulverizer such as a vibration mill, and pulverized to a particle size of 2 μm to 0.5 μm, preferably 1 μm. Next, water, 0.5-2 wt% of binder, and 0.5-2 wt% of a dispersant are added to the pulverized product to form a slurry having a solid content concentration of 50-90 wt%, and the slurry is wet-pulverized with a ball mill or the like. . Here, polyvinyl alcohol or the like is preferable as the binder, and ammonium polycarboxylate or the like is preferable as the dispersant.

造粒工程では、該湿式粉砕されたスラリーを噴霧乾燥機に導入して温度100℃〜300℃の熱風中に噴霧して乾燥させ、粒径10μm〜200μmの造粒粉を得る。得られた造粒粉は、製品最終粒径を考慮して、それに外れる粗粒および微粉を、振動ふるいで除外して粒度調整する。詳細な理由は後述するが、製品最終粒径は25μm以上、50μm以下であることが好ましいことから、当該造粒粉の粒径は15μm〜100μmに調整しておくことが好ましい。   In the granulation step, the wet-pulverized slurry is introduced into a spray dryer and sprayed into hot air having a temperature of 100 ° C. to 300 ° C. to be dried to obtain granulated powder having a particle size of 10 μm to 200 μm. In the obtained granulated powder, the final particle size of the product is taken into consideration, and coarse particles and fine powders that deviate from the granulated powder are excluded with a vibration sieve to adjust the particle size. Although the detailed reason will be described later, since the final particle size of the product is preferably 25 μm or more and 50 μm or less, the particle size of the granulated powder is preferably adjusted to 15 μm to 100 μm.

[仮焼]
金属原料混合物と樹脂粒子との混合造粒物を、800℃〜1000℃に加熱した炉に投入し、大気下で仮焼して仮焼品とする。このとき、樹脂粒子が燃焼し発生するガスにより造粒粉中に中空構造が形成される。樹脂粒子としてシリコンを含有する樹脂を用いた場合は、該中空構造中に非磁性酸化物であるSiOが生成する。
[Calcination]
The mixed granulated product of the metal raw material mixture and the resin particles is put into a furnace heated to 800 ° C. to 1000 ° C. and calcined in the atmosphere to obtain a calcined product. At this time, a hollow structure is formed in the granulated powder by the gas generated by burning the resin particles. When a resin containing silicon is used as the resin particles, SiO 2 that is a nonmagnetic oxide is generated in the hollow structure.

[焼成]
次に、該中空構造が形成された仮焼品を、1100℃〜1250℃に加熱した炉に投入して焼成してフェライト化し焼成物とする。該焼成時の雰囲気は、金属原料の種類により適宜選択される。例えば、金属原料がFeとMn(モル比100:0〜50:50)の場合は窒素雰囲気が求められ、Fe、Mn、Mgの場合は窒素雰囲気や酸素分圧調製雰囲気が好ましく、Fe、Mn、Mgの場合であってMgのモル比が30%を超える場合は大気雰囲気でもよい。
[Baking]
Next, the calcined product in which the hollow structure is formed is put into a furnace heated to 1100 ° C. to 1250 ° C. and fired to be ferritized into a fired product. The atmosphere at the time of firing is appropriately selected depending on the type of metal raw material. For example, when the metal raw materials are Fe and Mn (molar ratio 100: 0 to 50:50), a nitrogen atmosphere is required, and when Fe, Mn, and Mg, a nitrogen atmosphere or an oxygen partial pressure adjustment atmosphere is preferable, and Fe, Mn In the case of Mg, when the molar ratio of Mg exceeds 30%, an air atmosphere may be used.

[解砕、分級]
得られた焼成物をハンマーミル解粒等で粗粉砕し、次に気流分級機で1次分級した。さらに振動ふるいまたは超音波ふるいにて粒度をそろえた後、磁場選鉱機にかけ、非磁性成分を除去し、キャリア芯材とした。
[Disintegration, classification]
The obtained fired product was coarsely pulverized by hammer mill pulverization or the like, and then primary classified by an air classifier. Furthermore, after aligning the particle size with a vibration sieve or an ultrasonic sieve, it was subjected to a magnetic beneficiator to remove non-magnetic components to obtain a carrier core material.

[コーティング]
得られたキャリア芯材に対して樹脂コーティングを施し、磁性キャリアを製造する。コーティング樹脂としては、KR251(信越化学社製)のようなシリコーン系樹脂が好ましい。当該コーティング樹脂を適宜な溶剤(トルエン等)に、20から40wt%溶解させ、樹脂溶液を調製する。ここで、当該樹脂溶液の濃度により、キャリア芯材への被覆樹脂料を制御することができる。そして調製された樹脂溶液とキャリア芯材とを重量比で、キャリア芯材:樹脂溶液=10:1から5:1の割合にて混合した後、150℃〜250℃にて加熱撹拌して、樹脂被覆されたキャリア芯材を得る。ここで被覆される樹脂の量は、
前記キャリア芯材の0.1wt%以上、20.0wt%以下であることが好ましい。
[coating]
A resin carrier is applied to the obtained carrier core material to manufacture a magnetic carrier. As the coating resin, a silicone resin such as KR251 (manufactured by Shin-Etsu Chemical Co., Ltd.) is preferable. The coating resin is dissolved in an appropriate solvent (toluene or the like) at 20 to 40 wt% to prepare a resin solution. Here, the coating resin material to the carrier core material can be controlled by the concentration of the resin solution. And after mixing the prepared resin solution and carrier core material in the ratio of carrier core material: resin solution = 10: 1 to 5: 1, it is heated and stirred at 150 ° C. to 250 ° C., A resin-coated carrier core material is obtained. The amount of resin coated here is
It is preferable that it is 0.1 wt% or more and 20.0 wt% or less of the carrier core material.

この樹脂被覆されたキャリア芯材を、さらに加熱して該被覆樹脂層を硬化させ、当該コーティング樹脂が被覆されたキャリア芯材である磁性キャリアを製造することができる。
ここで、磁性キャリアの最終粒径は25μm以上、50μm以下であることが好ましい。、これは当該粒径が25μm以上あれば、キャリア付着が少なく、高画質を得ることができるという観点から好ましく、50μm以下あれば、キャリア粒子のトナー保持能力が高く、べた画像の均一さ、トナー飛散量の低減、カブリが少ないという観点から好ましいからである。
さらに、該磁性キャリアと、適宜な粒径を有するトナーとを混合することで電子写真現像剤を製造することができる。
The resin-coated carrier core material is further heated to cure the coating resin layer, whereby a magnetic carrier that is a carrier core material coated with the coating resin can be produced.
Here, the final particle size of the magnetic carrier is preferably 25 μm or more and 50 μm or less. If the particle size is 25 μm or more, it is preferable from the viewpoint that the carrier adhesion is small and high image quality can be obtained. If the particle size is 50 μm or less, the toner retaining ability of the carrier particles is high, the uniformity of the solid image, the toner This is because it is preferable from the viewpoint of reducing the amount of scattering and reducing fog.
Furthermore, an electrophotographic developer can be produced by mixing the magnetic carrier and a toner having an appropriate particle size.

2.シリカ粒子添加法
[秤量・混合]
本発明に係る磁性キャリアが含むキャリア芯材に用いられる磁性酸化物(好ましくはソフトフェライト)も、1.樹脂添加法で説明したものと同様であり、同様の原料と配合とを用いて金属原料混合物を得る。
2. Silica particle addition method [weighing and mixing]
The magnetic oxide (preferably soft ferrite) used for the carrier core material included in the magnetic carrier according to the present invention is also 1. It is the same as that described in the resin addition method, and a metal raw material mixture is obtained using the same raw materials and blending.

次に、該金属原料混合物へシリカ粒子を添加する。ここで、該シリカ粒子は、1.樹脂添加法で説明した樹脂粒子とは異なり、燃焼してガスを発生するとはないが、後述する焼成工程において、フェライト化する焼成物中に取り込まれる。すると、該シリカ粒子を取り込んだ焼成物は、1.樹脂添加法で説明した、「中空構造中にSiOが残留した焼成物」と類似の構造を有することとなる。ここで、本発明者らの検討によれば、該シリカ粒子の平均粒径が1μm〜10μmであり、添加量が全原料粉中の1wt%〜50wt%であると、後工程で得られるキャリア芯材において、該キャリア芯材の見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、該見掛け密度が2.0g/cm3以下となり、さらに、該キャリア芯材を用いて製造した電子写真現像剤による電子写真現像に悪影響を与えないことに想到したものである。 Next, silica particles are added to the metal raw material mixture. Here, the silica particles are: Unlike the resin particles described in the resin addition method, it does not burn and generate gas, but is taken into the fired product that is ferritized in the firing step described below. Then, the fired product in which the silica particles are incorporated is as follows: It will have a structure similar to the “baked product in which SiO 2 remains in the hollow structure” described in the resin addition method. Here, according to the study by the present inventors, when the average particle diameter of the silica particles is 1 μm to 10 μm and the addition amount is 1 wt% to 50 wt% in the total raw material powder, the carrier obtained in the subsequent step In the core material, when the apparent density / true density of the carrier core material is A, 0.25 ≦ A ≦ 0.40, and the apparent density is 2.0 g / cm 3 or less, The inventors have conceived that the electrophotographic developer produced by using the carrier core material does not adversely affect the electrophotographic development.

[粉砕・造粒]
秤量・混合したMおよびFe等の金属原料混合物およびシリカ粒子を、振動ミル等の粉砕機中に導入し、1.樹脂添加法で説明したものと同様に粉砕し、スラリー化し、湿式粉砕した後、造粒して粒径10μm〜200μmの造粒粉を得る。1.にて説明したように、当該製造方法においても、製品最終粒径は25μm以上、50μm以下であることが好ましいことから、当該造粒粉の粒径は15μm〜100μmに調整しておくことが好ましい。
[Crushing and granulation]
1. Weighed and mixed the metal raw material mixture such as M and Fe and silica particles into a pulverizer such as a vibration mill. It grind | pulverizes similarly to what was demonstrated by the resin addition method, makes a slurry, wet-grinds, Then, it granulates and obtains the granulated powder with a particle size of 10 micrometers-200 micrometers. 1. As described above, also in the manufacturing method, since the final particle size of the product is preferably 25 μm or more and 50 μm or less, the particle size of the granulated powder is preferably adjusted to 15 μm to 100 μm. .

[仮焼]
金属原料混合物とシリカ粒子との混合造粒物へは、仮焼することなく次工程の焼成を施す。
[Calcination]
The mixed granulated product of the metal raw material mixture and the silica particles is fired in the next step without being calcined.

[焼成]
金属原料混合物とシリカ粒子との混合造粒物を、1100℃〜1250℃に加熱した炉に投入して焼成してフェライト化し焼成物とする。該焼成時の雰囲気は、1.樹脂添加法で説明したものと同様である。該焼成により、シリカ粒子が取り込まれた焼成物が生成する。
[Baking]
The mixed granulated product of the metal raw material mixture and the silica particles is put into a furnace heated to 1100 ° C. to 1250 ° C. and fired to be ferritized into a fired product. The firing atmosphere is as follows: This is the same as that described in the resin addition method. By the firing, a fired product in which silica particles are incorporated is generated.

[解砕、分級]
得られた焼成物を、1.樹脂添加法で説明したものと同様に解砕、分級し、キャリア芯材とした。
[Disintegration, classification]
The obtained fired product is obtained as follows. The carrier core material was crushed and classified in the same manner as described for the resin addition method.

[コーティング]
得られたキャリア芯材に対して、1.樹脂添加法で説明したものと同様に樹脂コーティングを施し、該被覆樹脂層を硬化させ、磁性キャリアを製造する。
さらに、該磁性キャリアと、適宜な粒径を有するトナーとを混合することで電子写真現像剤を製造することができる。
[coating]
For the obtained carrier core material: A resin coating is applied in the same manner as described in the resin addition method, and the coating resin layer is cured to produce a magnetic carrier.
Furthermore, an electrophotographic developer can be produced by mixing the magnetic carrier and a toner having an appropriate particle size.

以上、1.樹脂添加法、および、2.シリカ粒子添加法の2法による磁性キャリアの製造について説明したが、いずれの製造においてもシリコーン樹脂またはシリカ粒子を添加した場合、該磁性キャリア中に1wt%以上、50wt%以下のシリカ分を含有することになる。この結果、磁性キャリアに含まれるキャリア芯材の見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、該見掛け密度が2.0g/cm3以下の要件を満たす多孔質低密度のキャリアを得ることができる。 1. 1. resin addition method, and The production of the magnetic carrier by the silica particle addition method 2 has been described. In any production, when a silicone resin or silica particles are added, the magnetic carrier contains a silica content of 1 wt% or more and 50 wt% or less. It will be. As a result, when the apparent density / true density of the carrier core material contained in the magnetic carrier is set to A, 0.25 ≦ A ≦ 0.40 and the apparent density is 2.0 g / cm 3 or less. A porous low-density carrier satisfying the above can be obtained.

以下、実施例を用いて、本発明をより具体的に説明する。
(実施例1)
キャリア芯材の原料として、微粉砕したFeとMgCOとを準備する。そしてモル比でFe:MgO=80:20となるように秤量する。一方、水中へ全原料に対して10wt%に相当する平均粒径5μmのポリエチレン樹脂粒子(住友精化製LE−1080)と、分散剤としてポリカルボン酸アンモニウム系分散剤を1.5wt%、湿潤剤としてサンノプコ(株)SNウェット980を0.05wt%、バインダーとしてポリビニルアルコールを0.02wt%、添加したものを準備し、ここへ先程、秤量したFe、MgCOを投入・攪拌し、濃度75wt%のスラリーを得た。このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した後、スプレードライヤーにて該スラリーを噴霧し、粒径10μm〜200μmの乾燥造粒品を製造した。この造粒品から、網目61μmの篩網を用いて粗粒を分離した後、大気中で900℃に加熱して仮焼し、樹脂粒子成分を分解させた。その後1160℃、窒素雰囲気下で5時間焼成し、フェライト化させた。このフェライト化した焼成品をハンマーミルで解砕し、風力分級機を用いて微粉を除去し、網目54μmの振動ふるいで粒度調整してキャリア芯材を得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
As a raw material of the carrier core material is prepared Fe 2 O 3 and MgCO 3 were finely pulverized. The Fe 2 O 3 molar ratio: MgO = 80: weighed such that 20. On the other hand, polyethylene resin particles (LE-1080 manufactured by Sumitomo Seika Co., Ltd.) having an average particle diameter of 5 μm corresponding to 10 wt% with respect to all raw materials in water, and 1.5 wt% of a polycarboxylate ammonium-based dispersant as a dispersant are wet. Prepared by adding 0.05 wt% of San Nopco SN wet 980 as the agent and 0.02 wt% of polyvinyl alcohol as the binder, and then weighed in the Fe 2 O 3 and MgCO 3 weighed earlier. A slurry with a concentration of 75 wt% was obtained. The slurry was wet pulverized with a wet ball mill, stirred for a while, and then sprayed with a spray dryer to produce a dry granulated product having a particle size of 10 μm to 200 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 61 μm, and then heated to 900 ° C. in the atmosphere and calcined to decompose the resin particle components. Thereafter, it was baked at 1160 ° C. in a nitrogen atmosphere for 5 hours to make it ferritic. The ferritized fired product was crushed with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 54 μm to obtain a carrier core material.

次に、シリコーン系樹脂(商品名:KR251、信越化学製)をトルエンに溶解させてコーティング樹脂溶液を準備した。そして、前記キャリア芯材と該樹脂溶液とを重量比でキャリア芯材:樹脂溶液=9:1の割合にて撹拌機に導入し、樹脂溶液にキャリア芯材を3時間浸漬しながら150℃〜250℃にて加熱撹拌した。これにより、該樹脂がキャリア芯材重量に対し1.0wt%の割合でコーティングされた。この樹脂被覆されたキャリア芯材を熱風循環式加熱装置に設置し、250℃で5時間加熱を行い、該被覆樹脂層を硬化させて、実施例1に係る磁性キャリアを得た。   Next, a silicone resin (trade name: KR251, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in toluene to prepare a coating resin solution. Then, the carrier core material and the resin solution are introduced into the stirrer at a ratio by weight of carrier core material: resin solution = 9: 1, and the carrier core material is immersed in the resin solution for 3 hours at 150 ° C. to The mixture was heated and stirred at 250 ° C. Thereby, the resin was coated at a ratio of 1.0 wt% with respect to the weight of the carrier core material. The resin-coated carrier core material was placed in a hot-air circulating heating device, heated at 250 ° C. for 5 hours, and the coated resin layer was cured to obtain a magnetic carrier according to Example 1.

(実施例2)
ポリエチレン樹脂粒子を全原料に対して0.1wt%添加した以外は、実施例1と同様にして、実施例2に係る磁性キャリアを得た。
(Example 2)
A magnetic carrier according to Example 2 was obtained in the same manner as in Example 1 except that 0.1 wt% of polyethylene resin particles were added to all raw materials.

(実施例3)
ポリエチレン樹脂粒子を全原料に対して20wt%添加した以外は、実施例1と同様にして、実施例3に係る磁性キャリアを得た。
(Example 3)
A magnetic carrier according to Example 3 was obtained in the same manner as in Example 1 except that 20 wt% of polyethylene resin particles were added to all raw materials.

(実施例4)
キャリア芯材の原料として微粉砕したFeとMgCO以外にMnCOを加え、モル比でFe:MnO:MgO=52:34:14となるように秤量した以外は、実施例1と同様にして、実施例4に係る磁性キャリアを得た。
Example 4
Implementation was performed except that MnCO 3 was added in addition to finely pulverized Fe 2 O 3 and MgCO 3 as raw materials for the carrier core material, and the molar ratio was Fe 2 O 3 : MnO: MgO = 52: 34: 14. In the same manner as in Example 1, a magnetic carrier according to Example 4 was obtained.

(実施例5)
ポリエチレン樹脂粒子を、シリコンを含有する樹脂である平均粒径2.4μmのシリコーン樹脂粒子(GE東芝シリコーン(株)製トスパール120)に変更し、焼成温度を1200℃で行なった以外は、実施例2と同様にして、実施例5に係る磁性キャリアを得た。
(Example 5)
Except that the polyethylene resin particles were changed to silicone resin particles having an average particle size of 2.4 μm (Tospearl 120 manufactured by GE Toshiba Silicone Co., Ltd.), which is a resin containing silicon, and the firing temperature was 1200 ° C. In the same manner as in Example 2, a magnetic carrier according to Example 5 was obtained.

(実施例6)
キャリア芯材の原料としてMgCOを省き、微粉砕したFeとMnCOを加え、モル比でFe:MnO=65:35となるように秤量し、焼成温度を1160℃で行なった以外は、実施例5と同様にして、実施例6に係る磁性キャリアを得た。
(Example 6)
MgCO 3 is omitted as a raw material for the carrier core, finely pulverized Fe 2 O 3 and MnCO 3 are added, weighed so that the molar ratio is Fe 2 O 3 : MnO = 65: 35, and the firing temperature is 1160 ° C. A magnetic carrier according to Example 6 was obtained in the same manner as Example 5 except for the above.

(実施例7)
ポリエチレン樹脂粒子を、シリコンを含有する樹脂である平均粒径2.4μmのシリコーン樹脂粒子(GE東芝シリコーン(株)製トスパール120)に変更し、焼成温度を1180℃で行なった以外は、実施例4と同様にして、実施例7に係る磁性キャリアを得た。
(Example 7)
Except that the polyethylene resin particles were changed to silicone resin particles having an average particle diameter of 2.4 μm, which is a resin containing silicon (Tospearl 120 manufactured by GE Toshiba Silicone Co., Ltd.), and the firing temperature was 1180 ° C. In the same manner as in Example 4, a magnetic carrier according to Example 7 was obtained.

(実施例8)
キャリア芯材の原料としてMgCOを省き、微粉砕したFeとMn4を加え、モル比でFe:MnO=65:35となるように秤量し、焼成温度を1130℃で行なった以外は、実施例3と同様にして、実施例8に係る磁性キャリアを得た。
(Example 8)
MgCO 3 is omitted as a raw material for the carrier core, finely pulverized Fe 2 O 3 and Mn 3 O 4 are added, weighed so that the molar ratio is Fe 2 O 3 : MnO = 65: 35, and the firing temperature is 1130. A magnetic carrier according to Example 8 was obtained in the same manner as Example 3 except that the process was performed at ° C.

(実施例9)
ポリエチレン樹脂粒子を、シリコンを含有する樹脂である平均粒径2.4μmのシリコーン樹脂粒子(GE東芝シリコーン(株)製トスパール120)に変更し、焼成温度を1160℃で行なった以外は、実施例8と同様にして、実施例9に係る磁性キャリアを得た。
Example 9
Except that the polyethylene resin particles were changed to silicone resin particles having an average particle size of 2.4 μm (Tospearl 120 manufactured by GE Toshiba Silicone Co., Ltd.), which is a resin containing silicon, and the firing temperature was 1160 ° C. In the same manner as in Example 8, a magnetic carrier according to Example 9 was obtained.

(実施例10)
キャリア芯材の原料として微粉砕したFeとMn以外にMg(OH)を加え、モル比でFe:MnO:MgO=52:34:14となるように秤量し、焼成温度条件を1180℃とした以外は、実施例9と同様にして、実施例10に係る磁性キャリアを得た。
(Example 10)
In addition to finely pulverized Fe 2 O 3 and Mn 3 O 4 as raw materials for the carrier core material, Mg (OH) 2 is added and weighed so that the molar ratio is Fe 2 O 3 : MnO: MgO = 52: 34: 14. Then, a magnetic carrier according to Example 10 was obtained in the same manner as in Example 9, except that the firing temperature condition was 1180 ° C.

(実施例11)
キャリア芯材の原料として、微粉砕したFeとMg(OH)とを準備する。そしてモル比でFe:MgO=80:20となるように秤量する。一方、水中へ全原料に対して20wt%に相当する平均粒径4μmのシリカ粒子(SIBELCO社製 SIKRON M500)と、分散剤としてポリカルボン酸アンモニウム系分散剤を1.5wt%、湿潤剤としてサンノプコ(株)SNウェット980を0.05wt%、バインダーとしてポリビニルアルコールを0.02wt%、添加したものを準備し、ここへ先程、秤量したFe、Mg(OH)を投入・攪拌し、濃度75wt%のスラリーを得た。このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した後、スプレードライヤーにて該スラリーを噴霧し、粒径10μm〜200μmの乾燥造粒品を製造した。この造粒品から、網目25μmの篩網を用いて粗粒を分離した後、1150℃、窒素雰囲気下で5時間焼成し、フェライト化させた。このフェライト化した焼成品をハンマーミルで解砕し、風力分級機を用いて微粉を除去し、網目54μmの振動ふるいで粒度調整してキャリア芯材を得た。
(Example 11)
Finely pulverized Fe 2 O 3 and Mg (OH) 2 are prepared as raw materials for the carrier core material. The Fe 2 O 3 molar ratio: MgO = 80: weighed such that 20. On the other hand, silica particles with an average particle size of 4 μm (SIKRON M500 manufactured by SIBELCO) corresponding to 20 wt% of all raw materials in water, 1.5 wt% of an ammonium polycarboxylate dispersant as a dispersant, and San Nopco as a wetting agent. Co. SN wet 980 0.05 wt%, polyvinyl alcohol 0.02 wt% as a binder was prepared, and the weighed Fe 2 O 3 and Mg (OH) 2 were added and stirred here. A slurry with a concentration of 75 wt% was obtained. The slurry was wet pulverized with a wet ball mill, stirred for a while, and then sprayed with a spray dryer to produce a dry granulated product having a particle size of 10 μm to 200 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 25 μm, and then baked at 1150 ° C. in a nitrogen atmosphere for 5 hours to be ferritized. The ferritized fired product was crushed with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 54 μm to obtain a carrier core material.

次に、該キャリア芯材へ、実施例1と同様にして、シリコーン系樹脂をコーティングし、硬化させて実施例11に係る磁性キャリアを得た。   Next, the carrier core material was coated with a silicone resin and cured in the same manner as in Example 1 to obtain a magnetic carrier according to Example 11.

(実施例12)
キャリア芯材の原料としてMg(OH)を省き、微粉砕したMnを加え、モル比でFe:MnO=80:20となるように秤量した以外は、実施例11と同様にして、実施例12に係る磁性キャリアを得た。
(Example 12)
Example 11 except that Mg (OH) 2 was omitted as a raw material for the carrier core, finely pulverized Mn 3 O 4 was added, and the mixture was weighed so that the molar ratio was Fe 2 O 3 : MnO = 80: 20. Similarly, a magnetic carrier according to Example 12 was obtained.

(実施例13)
シリカ粒子を全原料に対して40wt%添加した以外は、実施例12と同様にして、実施例13に係る磁性キャリアを得た。
(Example 13)
A magnetic carrier according to Example 13 was obtained in the same manner as in Example 12 except that 40 wt% of silica particles was added to all raw materials.

(実施例14)
焼成温度を1110℃とした以外は、実施例11と同様にして、実施例14に係る磁性キャリアを得た。
(Example 14)
A magnetic carrier according to Example 14 was obtained in the same manner as Example 11 except that the firing temperature was 1110 ° C.

(実施例15)
焼成温度を1140℃とした以外は、実施例11と同様にして、実施例15に係る磁性キャリアを得た。
(Example 15)
A magnetic carrier according to Example 15 was obtained in the same manner as Example 11 except that the firing temperature was 1140 ° C.

(実施例16)
Mg(OH)をMgCOに代替し、焼成温度を1170℃とした以外は、実施例11と同様にして、実施例16に係る磁性キャリアを得た。
(Example 16)
A magnetic carrier according to Example 16 was obtained in the same manner as in Example 11 except that Mg (OH) 2 was replaced with MgCO 3 and the firing temperature was 1170 ° C.

(実施例17)
キャリア芯材の原料としてMg(OH)を省き、微粉砕したMnを加え、モル比でFe:MnO=57:43となるように秤量し、シリカ粒子を全原料に対して5wt%添加し、焼成温度を1100℃とした以外は、実施例11と同様にして、実施例17に係る磁性キャリアを得た。
(Example 17)
Mg (OH) 2 was omitted as a raw material for the carrier core material, finely pulverized Mn 3 O 4 was added, and the mixture was weighed so that the molar ratio was Fe 2 O 3 : MnO = 57: 43. On the other hand, a magnetic carrier according to Example 17 was obtained in the same manner as Example 11 except that 5 wt% was added and the firing temperature was 1100 ° C.

(実施例18)
シリカ粒子を全原料に対して10wt%添加し、焼成温度を1070℃とした以外は、実施例17と同様にして、実施例18に係る磁性キャリアを得た。
(Example 18)
A magnetic carrier according to Example 18 was obtained in the same manner as in Example 17 except that 10 wt% of silica particles was added to all raw materials and the firing temperature was set to 1070 ° C.

(実施例19)
シリカ粒子を全原料に対して20wt%添加し、焼成温度を1170℃とした以外は、実施例17と同様にして、実施例19に係る磁性キャリアを得た。
Example 19
A magnetic carrier according to Example 19 was obtained in the same manner as in Example 17 except that 20 wt% of silica particles were added to the total raw material and the firing temperature was 1170 ° C.

(実施例20)
シリカ粒子を全原料に対して40wt%添加し、焼成温度を1140℃とした以外は、実施例17と同様にして、実施例20に係る磁性キャリアを得た。
(Example 20)
A magnetic carrier according to Example 20 was obtained in the same manner as in Example 17 except that 40 wt% of silica particles were added to all raw materials and the firing temperature was 1140 ° C.

(実施例21)
シリカ粒子を全原料に対して60wt%添加し、焼成温度を1130℃とした以外は、実施例17と同様にして、実施例20に係る磁性キャリアを得た。
(Example 21)
A magnetic carrier according to Example 20 was obtained in the same manner as in Example 17 except that 60 wt% of silica particles were added to the total raw material and the firing temperature was 1130 ° C.

(比較例1)
ポリエチレン樹脂粒子を添加せず、且つ、仮焼をしない以外は、実施例1と同様にして、比較例1に係る磁性キャリアを得た。
(Comparative Example 1)
A magnetic carrier according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the polyethylene resin particles were not added and calcined.

(比較例2)
キャリア芯材の原料として微粉砕したFeとMgCOとを、モル比でFe:MgO=75:25となるように秤量した以外は、比較例1と同様にして、比較例2に係る磁性キャリアを得た。
(Comparative Example 2)
Comparison was made in the same manner as in Comparative Example 1 except that Fe 2 O 3 and MgCO 3 pulverized as raw materials for the carrier core were weighed so that the molar ratio was Fe 2 O 3 : MgO = 75: 25. A magnetic carrier according to Example 2 was obtained.

(比較例3)
ポリエチレン樹脂粒子を添加せず、且つ、仮焼をしない以外は、実施例4と同様にして、比較例3に係る磁性キャリアを得た。
(Comparative Example 3)
A magnetic carrier according to Comparative Example 3 was obtained in the same manner as in Example 4 except that the polyethylene resin particles were not added and calcined.

(比較例4)
ポリエチレン樹脂粒子を添加しない以外は、実施例4と同様にして、比較例4に係る磁性キャリアを得た。
(Comparative Example 4)
A magnetic carrier according to Comparative Example 4 was obtained in the same manner as Example 4 except that no polyethylene resin particles were added.

(比較例5)
シリコーン樹脂粒子を添加しない以外は、実施例10と同様にして、比較例5に係る磁性キャリアを得た。
(Comparative Example 5)
A magnetic carrier according to Comparative Example 5 was obtained in the same manner as Example 10 except that the silicone resin particles were not added.

(比較例6)
シリコーン樹脂粒子を添加せず、仮焼をせず、焼成温度を1160℃で行なった以外は、実施例9と同様にして、比較例6に係る磁性キャリアを得た。
(Comparative Example 6)
A magnetic carrier according to Comparative Example 6 was obtained in the same manner as in Example 9, except that the silicone resin particles were not added, calcined, and the firing temperature was 1160 ° C.

(実施例1〜21、比較例1〜6のまとめ)
上記実施例および比較例の製造条件の一覧表を表1に示し、製造された各キャリア芯材の物性値の一覧表を表2に示した。
但し、見掛け密度測定は、JIS−Z2504:2000に準拠して行った。真密度測定は、QUANTA CHROME製ピクノメータ1000を用いて測定した。比表面積BET(0)は、ユアサアイオニクス製ソーブU2を用いて測定した。球形換算比表面積BET(D)は、まず、日機装(株)製マイクロトラックHRAを用いてcs値(Calculated Specific Surfaces Area)を測定し、該cs値を真密度で割り返して算定した。尚、表2において、BET(0)/BET(D)の値を指標Bとして示した。平均粒径は、日機装(株)製マイクロトラックHRAにより測定した。飽和磁化および保持力は、室温専用振動試料型磁力計(VSM)(東英工業株式会社製)により測定した。非磁性分(シリカ)分は、JIS規格(JIS G 1212)に準じた方法により測定した。
(Summary of Examples 1-21 and Comparative Examples 1-6)
Table 1 shows a list of manufacturing conditions of the above Examples and Comparative Examples, and Table 2 shows a list of physical property values of each manufactured carrier core material.
However, the apparent density was measured according to JIS-Z2504: 2000. The true density was measured using a pycnometer 1000 manufactured by QUANTA CHROME. The specific surface area BET (0) was measured using Sorb U2 manufactured by Yuasa Ionics. The spherical specific surface area BET (D) was calculated by first measuring the cs value (Calculated Specific Surfaces Area) using a Microtrac HRA manufactured by Nikkiso Co., Ltd. and dividing the cs value by the true density. In Table 2, the value of BET (0) / BET (D) is shown as an index B. The average particle diameter was measured by Microtrack HRA manufactured by Nikkiso Co., Ltd. Saturation magnetization and coercive force were measured by a room temperature dedicated vibration sample magnetometer (VSM) (manufactured by Toei Industry Co., Ltd.). The nonmagnetic content (silica) content was measured by a method according to JIS standards (JIS G 1212).

さらに、各実施例および比較例にかかる磁性キャリアと、粒径1μm程度の市販トナーとを混合して電子写真現像剤を製造し、該電子写真現像剤を用いて画像評価試験を行った。その結果を表3に記載する。尚、評価において、◎は非常に良好なレベル、○は良好なレベル、△は使用可能なレベル、×は使用不可なレベルとした。   Furthermore, an electrophotographic developer was produced by mixing the magnetic carrier according to each of Examples and Comparative Examples and a commercially available toner having a particle size of about 1 μm, and an image evaluation test was performed using the electrophotographic developer. The results are listed in Table 3. In the evaluation, ◎ is a very good level, ◯ is a good level, Δ is a usable level, and x is a non-usable level.

表2において、指標Aが低いほど、キャリア芯材の密度が低減できているといえ、指標Bが3.0以上であれば、見掛けの粒径から計算される比表面積より実際の比表面積が大きいことになるので、キャリア内部に、微細な中空構造が形成され、10以下であれば十分な量の中空構造が形成されているといえる。従って、実施例1〜10は、比較例1〜6に比較して指標Aの値が低いことから、原料組成の違いを超えてキャリア芯材の密度が低減できていることがわかる。また、指標Bの値についても実施例1〜21は、比較例1〜6に比較して好ましい範囲に収まっており、原料組成の違いを超えてキャリア芯材の内部に微細な中空構造が十分に形成されていることが判明した。   In Table 2, it can be said that the lower the index A, the lower the density of the carrier core material. If the index B is 3.0 or more, the actual specific surface area is larger than the specific surface area calculated from the apparent particle size. Since it is large, a fine hollow structure is formed inside the carrier, and if it is 10 or less, it can be said that a sufficient amount of hollow structure is formed. Therefore, since Examples 1-10 have a lower index A value than Comparative Examples 1-6, it can be seen that the density of the carrier core material can be reduced beyond the difference in the raw material composition. Moreover, Examples 1-21 are also contained in the preferable range also about the value of the parameter | index B compared with Comparative Examples 1-6, and a fine hollow structure is enough inside a carrier core material exceeding the difference in a raw material composition. Was found to be formed.

さらに、実施例5〜7、9、10においては、シリコーン樹脂粒子を加えているため、仮焼時に該シリコーン樹脂中のSi成分がSiO粒子となり、該SiO粒子がフェライト組成と複合化された結果、キャリア芯材の真比重において、さらに低いものが製造できた。また、実施例11〜21においても、シリカ粒子がフェライト組成に取り込まれて複合化された結果、キャリア芯材の真比重において低いものが製造できた。 Further, in Examples 5 to 7, 9, and 10, since the silicone resin particles are added, the Si component in the silicone resin becomes SiO 2 particles during calcination, and the SiO 2 particles are combined with the ferrite composition. As a result, a carrier core material having a lower true specific gravity could be produced. In Examples 11 to 21 as well, silica particles were incorporated into the ferrite composition and combined, and as a result, the carrier core material having a low true specific gravity could be produced.

表3に示した画像評価試験結果より、次のことが判明した。
まず、初期画像特性においては、比較例1の画質を除き、実施例・比較例ともに非常に良好または良好なレベルであった。そして、50K枚において、実施例は、非常に良好または良好なレベルを維持したが、比較例1〜6ではレベルが低下し始めた。100K枚においては、実施例にも一部レベルの低下が見られたが、比較例1〜6では、全ての例において、いずれかの項目において使用不可レベルとなり、交換時期を超過していることが判明した。さらに、150K枚において、実施例1〜21に使用不可レベルのものはなかったが、比較例1〜6は使用不可レベルにあることが判明した。
From the image evaluation test results shown in Table 3, the following was found.
First, with respect to the initial image characteristics, except for the image quality of Comparative Example 1, both the Examples and Comparative Examples were very good or good levels. And in 50K sheets, the example maintained a very good or good level, but in Comparative Examples 1 to 6, the level began to decrease. In 100K sheets, some examples also showed a decrease in level, but in Comparative Examples 1-6, all items were unusable in any item and exceeded the replacement time. There was found. Furthermore, in 150K sheets, there were no unusable levels in Examples 1-21, but it was found that Comparative Examples 1-6 were at unusable levels.

Figure 2007034249
Figure 2007034249
Figure 2007034249
Figure 2007034249
Figure 2007034249
Figure 2007034249

Claims (13)

電子写真現像剤用キャリアに用いられるキャリア芯材であって、
該キャリア芯材の見掛け密度/真密度=Aとしたとき、0.25≦A≦0.40であり、且つ、見掛け密度が2.0g/cm以下であることを特徴とする電子写真現像用キャリア芯材。
A carrier core material used in a carrier for an electrophotographic developer,
Electrophotographic development characterized in that when the apparent density / true density of the carrier core material is A, 0.25 ≦ A ≦ 0.40 and the apparent density is 2.0 g / cm 3 or less. Carrier core material.
該キャリア芯材において、BET法で測定した比表面積の値をBET(0)、湿式分散型粒度分布測定機より求められるcs値を真密度で割り返して求めた球形換算比表面積の値をBET(D)としたとき、
BET(0)≧0.07m/g、且つ、3.0≦BET(0)/BET(D)≦10.0であることを特徴とする請求項1に記載の電子写真現像用キャリア芯材。
In the carrier core material, the value of the specific surface area measured by the BET method is BET (0), the cs value obtained from the wet dispersion type particle size distribution measuring machine is divided by the true density, and the value of the spherical equivalent specific surface area is obtained by BET. When (D)
2. The carrier core for electrophotographic development according to claim 1, wherein BET (0) ≧ 0.07 m 2 / g and 3.0 ≦ BET (0) / BET (D) ≦ 10.0. Wood.
該キャリア芯材が、磁性酸化物と、真比重3.5以下の非磁性酸化物とを含むことを特徴とする請求項1または2に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the carrier core material contains a magnetic oxide and a nonmagnetic oxide having a true specific gravity of 3.5 or less. 該磁性酸化物が、ソフトフェライトであることを特徴とする請求項3に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 3, wherein the magnetic oxide is soft ferrite. 該キャリア芯材中に、前記非磁性酸化物が1wt%以上、50wt%以下含有されていることを特徴とする請求項3または4に記載の電子写真現像用キャリア芯材。   The carrier core material for electrophotographic development according to claim 3 or 4, wherein the carrier core material contains the nonmagnetic oxide in an amount of 1 wt% to 50 wt%. 請求項1から5のいずれかに記載の電子写真現像剤用キャリア芯材を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   6. A carrier for electrophotographic development, wherein the carrier core material for an electrophotographic developer according to claim 1 is coated with a resin. 前記樹脂の被覆量が、前記キャリア芯材の0.1wt%以上、20.0wt%以下であることを特徴とする請求項6に記載の電子写真現像用キャリア。   The electrophotographic developer carrier according to claim 6, wherein a coating amount of the resin is 0.1 wt% or more and 20.0 wt% or less of the carrier core material. 平均粒径が、25μm以上、50μm以下であることを特徴とする請求項6または7に記載の電子写真現像剤用キャリア。   The carrier for an electrophotographic developer according to claim 6 or 7, wherein the average particle size is 25 µm or more and 50 µm or less. 1wt%以上、50wt%以下のシリカを含むことを特徴とする請求項6から8のいずれかに記載の電子写真現像剤用キャリア。   The carrier for an electrophotographic developer according to claim 6, comprising 1 wt% or more and 50 wt% or less of silica. 請求項6から9のいずれかに記載の電子写真現像剤用キャリアを含むことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the carrier for an electrophotographic developer according to claim 6. 1種または2種以上の金属元素Mの、炭酸塩、酸化物、水酸化物から選択される1種または2種以上と、Feとを混合し、粉砕して粉砕物を得る工程と、
該粉砕物へ、樹脂粒子と、水と、バインダーと、分散剤とを加えてスラリーとした後、湿式粉砕し、さらに乾燥させて、造粒粉を得る工程と、
該造粒粉を仮焼して、仮焼品を得る工程と、
該仮焼品を焼成して、焼成物を得る工程と、
該焼成物を粉砕してキャリア芯材を得る工程と、を有することを特徴とする電子写真現像用キャリア芯材の製造方法。
A step of mixing one or two or more metal elements M selected from carbonates, oxides, and hydroxides with Fe 2 O 3 and crushing to obtain a pulverized product. When,
Adding the resin particles, water, binder, and dispersant to the pulverized product to form a slurry, followed by wet pulverization and further drying to obtain a granulated powder;
Calcining the granulated powder to obtain a calcined product;
Firing the calcined product to obtain a fired product;
And a step of pulverizing the fired product to obtain a carrier core material.
該粉砕物へ加える樹脂粒子として、シリコンを含有する樹脂粒子を用いることを特徴とする請求項11に記載の電子写真現像用キャリア芯材の製造方法。   12. The method for producing a carrier core material for electrophotographic development according to claim 11, wherein resin particles containing silicon are used as the resin particles added to the pulverized product. 1種または2種以上の金属元素Mの、炭酸塩、酸化物、水酸化物から選択される1種または2種以上とFeとを混合し、粉砕して粉砕物を得る工程と、
該粉砕物へ、シリカ粒子と、水と、バインダーと、分散剤とを加えてスラリーとした後、湿式粉砕し、さらに乾燥させて、造粒粉を得る工程と、
該造粒粉を焼成して、焼成物を得る工程と、
該焼成物を粉砕してキャリア芯材を得る工程と、を有することを特徴とする電子写真現像用キャリア芯材の製造方法。
A step of mixing one or two or more metal elements M selected from carbonates, oxides and hydroxides with Fe 2 O 3 and pulverizing to obtain a pulverized product; ,
A step of adding silica particles, water, a binder, and a dispersant to the pulverized product to form a slurry, followed by wet pulverization and further drying to obtain granulated powder,
Firing the granulated powder to obtain a fired product;
And a step of pulverizing the fired product to obtain a carrier core material.
JP2005285652A 2005-06-22 2005-09-29 Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer Active JP4862181B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2005285652A JP4862181B2 (en) 2005-06-22 2005-09-29 Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer
CN2006800364660A CN101283315B (en) 2005-09-29 2006-09-25 Carrier core material for electrophotographic development, carrier for electrophotographic development and method for manufacturing the same, and electrophotographic developer
KR1020087007651A KR101121239B1 (en) 2005-09-29 2006-09-25 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
CN201110001876.4A CN102081317B (en) 2005-09-29 2006-09-25 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
EP06810470.2A EP1990684B1 (en) 2005-09-29 2006-09-25 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
EP12000034.4A EP2439594B1 (en) 2005-09-29 2006-09-25 Electrophotographic developer carrier core material, electrophotographic developer carrier, methods of manufacturing the same, and electrophotographic developer
US11/992,675 US8652736B2 (en) 2005-09-29 2006-09-25 Electrophotographic developer carrier core material, electrophotographic developer carrier, methods of manufacturing the same, and electrophotographic developer
KR1020117012031A KR20110067170A (en) 2005-09-29 2006-09-25 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
PCT/JP2006/318902 WO2007037182A1 (en) 2005-09-29 2006-09-25 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
HK11112921.6A HK1158769A1 (en) 2005-09-29 2011-11-29 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
HK12109449.4A HK1168663A1 (en) 2005-09-29 2012-09-25 Electrophotographic developer carrier core material, electrophotographic developer carrier, methods of manufacturing the same, and electrophotographic developer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005182604 2005-06-22
JP2005182604 2005-06-22
JP2005285652A JP4862181B2 (en) 2005-06-22 2005-09-29 Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2007034249A true JP2007034249A (en) 2007-02-08
JP4862181B2 JP4862181B2 (en) 2012-01-25

Family

ID=37793538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285652A Active JP4862181B2 (en) 2005-06-22 2005-09-29 Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP4862181B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder
JP2008209725A (en) * 2007-02-27 2008-09-11 Canon Inc Two-component developer and replenisher developer
JP2008249899A (en) * 2007-03-29 2008-10-16 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009003026A (en) * 2007-06-19 2009-01-08 Dowa Electronics Materials Co Ltd Carrier for electrophotographic developer and electrophotographic developer
JP2009053384A (en) * 2007-08-27 2009-03-12 Canon Inc Two-component developer, replenishing developer and image forming method
JP2009080348A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic development, manufacturing method therefor, magnetic carrier and electrophotographic developer
JP2009086339A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
WO2009122832A1 (en) 2008-03-31 2009-10-08 パウダーテック株式会社 Carrier core for electrophotographic developer and method for producing the same, carrier and method for producing the same, and electrophotographic developer
JP2009237049A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, and method of manufacturing the same
JP2009251312A (en) * 2008-04-07 2009-10-29 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2010061099A (en) * 2008-03-11 2010-03-18 Canon Inc Two-component developer
US20100075244A1 (en) * 2007-04-10 2010-03-25 Dowa Electronics Materials Co., Ltd. Carrier core material for electrophotographic developer, and manufacturing method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP2011028060A (en) * 2009-07-27 2011-02-10 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for producing the same, carrier for the electrophotographic developer, and electrophotographic developer carrier
JP2012025640A (en) * 2010-07-27 2012-02-09 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotographic development using the same, developer for electrophotography, and method for producing ferrite particle
JP2013103869A (en) * 2011-11-16 2013-05-30 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer using the same,
JP2013231840A (en) * 2012-04-27 2013-11-14 Dowa Electronics Materials Co Ltd Manufacturing method of carrier core material for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2014021252A (en) * 2012-07-18 2014-02-03 Konica Minolta Inc Carrier for electrostatic charge image development, two-component developer and image forming method
JP2015041038A (en) * 2013-08-23 2015-03-02 コニカミノルタ株式会社 Two-component developer for electrostatic charge image development, and manufacturing method of the same
WO2015108149A1 (en) 2014-01-20 2015-07-23 パウダーテック株式会社 Ferrite particles having outer shell structure, ferrite carrier core for electrophotographic developer, and electrophotographic developer
JP2015169776A (en) * 2014-03-06 2015-09-28 三菱化学株式会社 Two-component developer
JP2016024405A (en) * 2014-07-23 2016-02-08 富士ゼロックス株式会社 Carrier for electrostatic charge image development, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
EP3051354A1 (en) 2015-01-27 2016-08-03 Powdertech Co., Ltd. Carrier and electrophotographic developer using the carrier
EP3296816A1 (en) 2016-09-14 2018-03-21 Powdertech Co., Ltd. Carrier, electrophotographic developer, and method of manufacturing carrier
US10585369B2 (en) 2015-01-28 2020-03-10 Powdertech Co., Ltd. Ferrite particle having outer shell structure
JP2020052065A (en) * 2018-09-21 2020-04-02 パウダーテック株式会社 Electrophotographic developer carrier, electrophotographic developer, and method for manufacturing electrophotographic developer
JP2021063895A (en) * 2019-10-11 2021-04-22 株式会社リコー Carrier, developer, process cartridge, image forming apparatus, and image forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146061A (en) * 1988-11-28 1990-06-05 Nippon Steel Corp Magnetic carrier particles light in weight and rich in rigidity and manufacture of the same
JPH05265258A (en) * 1992-01-20 1993-10-15 Mita Ind Co Ltd Magnetic particle
JPH08194338A (en) * 1995-01-20 1996-07-30 Fuji Xerox Co Ltd Carrier for developing electrostatic charge image, production thereof and image forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146061A (en) * 1988-11-28 1990-06-05 Nippon Steel Corp Magnetic carrier particles light in weight and rich in rigidity and manufacture of the same
JPH05265258A (en) * 1992-01-20 1993-10-15 Mita Ind Co Ltd Magnetic particle
JPH08194338A (en) * 1995-01-20 1996-07-30 Fuji Xerox Co Ltd Carrier for developing electrostatic charge image, production thereof and image forming method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089869A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Carrier powder for electrophotographic development, method for manufacturing the same, and electrophotographic developer containing the carrier powder
JP2008209725A (en) * 2007-02-27 2008-09-11 Canon Inc Two-component developer and replenisher developer
JP2008249899A (en) * 2007-03-29 2008-10-16 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
US20100075244A1 (en) * 2007-04-10 2010-03-25 Dowa Electronics Materials Co., Ltd. Carrier core material for electrophotographic developer, and manufacturing method of the same, carrier for electrophotographic developer, and electrophotographic developer
US8592123B2 (en) * 2007-04-10 2013-11-26 Dowa Electronics Materials Co., Ltd. Carrier core material for electrophotographic developer, and manufacturing method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009003026A (en) * 2007-06-19 2009-01-08 Dowa Electronics Materials Co Ltd Carrier for electrophotographic developer and electrophotographic developer
JP2009053384A (en) * 2007-08-27 2009-03-12 Canon Inc Two-component developer, replenishing developer and image forming method
JP2009080348A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic development, manufacturing method therefor, magnetic carrier and electrophotographic developer
JP2009086339A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
JP2010061099A (en) * 2008-03-11 2010-03-18 Canon Inc Two-component developer
US9034551B2 (en) 2008-03-11 2015-05-19 Canon Kabushiki Kaisha Two-component developer
JP2009237049A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, and method of manufacturing the same
WO2009122832A1 (en) 2008-03-31 2009-10-08 パウダーテック株式会社 Carrier core for electrophotographic developer and method for producing the same, carrier and method for producing the same, and electrophotographic developer
JP2009244572A (en) * 2008-03-31 2009-10-22 Powdertech Co Ltd Carrier core material for electrophotographic developer, its method for manufacturing, carrier and its method for manufacturing, and electrophotographic developer using the carrier
JP2009251312A (en) * 2008-04-07 2009-10-29 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2011028060A (en) * 2009-07-27 2011-02-10 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for producing the same, carrier for the electrophotographic developer, and electrophotographic developer carrier
JP2012025640A (en) * 2010-07-27 2012-02-09 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotographic development using the same, developer for electrophotography, and method for producing ferrite particle
JP2013103869A (en) * 2011-11-16 2013-05-30 Dowa Electronics Materials Co Ltd Ferrite particle, and carrier for electrophotographic development and electrophotographic developer using the same,
JP2013231840A (en) * 2012-04-27 2013-11-14 Dowa Electronics Materials Co Ltd Manufacturing method of carrier core material for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2014021252A (en) * 2012-07-18 2014-02-03 Konica Minolta Inc Carrier for electrostatic charge image development, two-component developer and image forming method
JP2015041038A (en) * 2013-08-23 2015-03-02 コニカミノルタ株式会社 Two-component developer for electrostatic charge image development, and manufacturing method of the same
WO2015108149A1 (en) 2014-01-20 2015-07-23 パウダーテック株式会社 Ferrite particles having outer shell structure, ferrite carrier core for electrophotographic developer, and electrophotographic developer
US9372426B2 (en) 2014-01-20 2016-06-21 Powdertech Co., Ltd. Ferrite particle having outer shell structure, ferrite carrier core material for electrophotographic developer, and electrophotographic developer
JP2015169776A (en) * 2014-03-06 2015-09-28 三菱化学株式会社 Two-component developer
JP2016024405A (en) * 2014-07-23 2016-02-08 富士ゼロックス株式会社 Carrier for electrostatic charge image development, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
EP3051354A1 (en) 2015-01-27 2016-08-03 Powdertech Co., Ltd. Carrier and electrophotographic developer using the carrier
US10036982B2 (en) 2015-01-27 2018-07-31 Powdertech Co., Ltd. Carrier and electrophotographic developer using the carrier
US10585369B2 (en) 2015-01-28 2020-03-10 Powdertech Co., Ltd. Ferrite particle having outer shell structure
EP3296816A1 (en) 2016-09-14 2018-03-21 Powdertech Co., Ltd. Carrier, electrophotographic developer, and method of manufacturing carrier
US10248039B2 (en) 2016-09-14 2019-04-02 Powdertech Co., Ltd. Carrier, electrophotographic developer, and method of manufacturing carrier
JP2020052065A (en) * 2018-09-21 2020-04-02 パウダーテック株式会社 Electrophotographic developer carrier, electrophotographic developer, and method for manufacturing electrophotographic developer
JP2021063895A (en) * 2019-10-11 2021-04-22 株式会社リコー Carrier, developer, process cartridge, image forming apparatus, and image forming method
JP7190993B2 (en) 2019-10-11 2022-12-16 株式会社リコー Carrier, developer, process cartridge, image forming apparatus, and image forming method

Also Published As

Publication number Publication date
JP4862181B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4862181B2 (en) Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer
US8652736B2 (en) Electrophotographic developer carrier core material, electrophotographic developer carrier, methods of manufacturing the same, and electrophotographic developer
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
US9429862B2 (en) Carrier for electrophotographic developer and electrophotographic developer
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2006323211A (en) Carrier for electrophotographic development, method for manufacturing same and electrophotographic developer
KR101468247B1 (en) Carrier core material for electrophotographic developing agent, process for producing the carrier core material, carrier for electrophotographic developing agent, and electrophotographic developing agent
JP2008175883A (en) Ferrite carrier for electrophotographic developer and electrophotographic developer
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5930576B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5188918B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP4948191B2 (en) Two-component electrophotographic developer carrier and two-component electrophotographic developer
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5804656B2 (en) Mn ferrite particles, carrier for electrophotographic developer using the same, developer for electrophotography
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP5114785B2 (en) Electrophotographic developer carrier, method for producing the same, and electrophotographic developer
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5076191B2 (en) Manufacturing method of carrier core material for electrophotographic development
JP5924814B2 (en) Method for producing ferrite particles
JP2023151599A (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250