JP2007033951A - Laser wave front composing method using nonlinear light wave mixing, and device using same - Google Patents

Laser wave front composing method using nonlinear light wave mixing, and device using same Download PDF

Info

Publication number
JP2007033951A
JP2007033951A JP2005218150A JP2005218150A JP2007033951A JP 2007033951 A JP2007033951 A JP 2007033951A JP 2005218150 A JP2005218150 A JP 2005218150A JP 2005218150 A JP2005218150 A JP 2005218150A JP 2007033951 A JP2007033951 A JP 2007033951A
Authority
JP
Japan
Prior art keywords
laser
diffracted light
light
order diffracted
wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005218150A
Other languages
Japanese (ja)
Inventor
Takashige Omatsu
尾松  孝茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2005218150A priority Critical patent/JP2007033951A/en
Publication of JP2007033951A publication Critical patent/JP2007033951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser wave front composing method by which no light energy is lost and high wave front composition efficiency can be obtained, and a device using the same. <P>SOLUTION: A laser wave front composing device has a laser light emitting device which emits laser light, a hologram which generates a plurality of diffracted light beams from the laser light emitted by the laser light emitting device, an optical system which reflects at least one of the plurality of diffracted light beams generated by the hologram so that its optical path overlaps with other diffracted light beams, and an element which is arranged at a place where optical paths overlap and exhibits photorefractive effect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非線形光波混合を用いたレーザー波面合成技術(以下「波面シンセシス」という。)に関する。   The present invention relates to a laser wavefront synthesis technique using nonlinear optical wave mixing (hereinafter referred to as “wavefront synthesis”).

回折光学素子や液晶空間変調器などを利用してレーザー波面の位相、振幅を高度に変調するいわゆる波面シンセシスに対するニーズが急速に高まりつつある。波面シンセシスの従来の技術としては、下記特許文献1に記載の技術がある。   There is a rapidly increasing need for so-called wavefront synthesis that highly modulates the phase and amplitude of a laser wavefront using a diffractive optical element or a liquid crystal spatial modulator. As a conventional technique of wavefront synthesis, there is a technique described in Patent Document 1 below.

しかしながら、1次回折光として取り出される所望の波面を合成すると、1次回折に付随して現れる不要な0次回折光や高次回説光がシステム損失となり、波面合成効率が著しく低下してしまうといった課題がある。   However, when a desired wavefront extracted as the first-order diffracted light is synthesized, unnecessary 0th-order diffracted light and high-order light that appear accompanying the first-order diffraction become system losses, and the wavefront synthesis efficiency is significantly reduced. is there.

そこで、本発明は、より光エネルギーの損失無く、高い効率で波面合成効率ができるレーザー波面合成方法及びそれを用いた装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a laser wavefront synthesis method and apparatus using the same, which can achieve a wavefront synthesis efficiency with high efficiency without loss of light energy.

上記課題につき本発明者が鋭意検討を行った結果、不要な0次回折光や高次回折光のエネルギーを非線形光波結合により、一次回折光へリサイクルして波面合成効率を向上させることに着目し、本発明に想到するに至った。   As a result of intensive studies by the inventor regarding the above-mentioned problems, the present inventors have focused on recycling the energy of unnecessary 0th-order diffracted light and higher-order diffracted light to first-order diffracted light by nonlinear optical wave coupling, thereby improving the wavefront synthesis efficiency. I came up with the invention.

即ち、本発明に係るレーザー波面合成装置は、レーザー光を発生させるレーザー発生装置と、このレーザー発生装置が発生させるレーザー光を複数の回折光を発生させるホログラムと、このホログラムにより発生した複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させる光学系と、この光路が重複する位置に配置されるフォトリフラクティブ効果を示す素子と、を有することとする。   That is, a laser wavefront synthesis device according to the present invention includes a laser generator that generates laser light, a hologram that generates a plurality of diffracted lights from the laser light generated by the laser generator, and a plurality of diffractions generated by the hologram. An optical system that reflects at least one of the light and overlaps the other diffracted light and the optical path, and an element that exhibits a photorefractive effect disposed at a position where the optical path overlaps are provided.

また、本発明に係るレーザー波面合成装置において、フォトリフラクティブ効果を示す素子は、強誘電性結晶又は半絶縁性半導体結晶により構成されていることが望ましく、具体的には上記効果を示す限りこれらに限られることは無いが、例えばBaTiO、SBN、LiNbO、 KNbO、Snの少なくともいずれかを含んで構成されていることがより望ましい。 In the laser wavefront synthesis apparatus according to the present invention, the element exhibiting a photorefractive effect is preferably composed of a ferroelectric crystal or a semi-insulating semiconductor crystal, and specifically, as long as the above effect is exhibited. Although it is not limited, for example, it is more preferable that it is configured to include at least one of BaTiO 3 , SBN, LiNbO 3 , KNbO 3 , and Sn 2 P 2 S 6 .

また、本発明にかかるレーザー波面合成装置において、光路が重複する回折光は、0次回折光と1次回折光であることも望ましく、更には、0次回折光のエネルギーを1次回折光のエネルギーに移乗させることがより望ましい。   In the laser wavefront synthesizing apparatus according to the present invention, the diffracted light having overlapping optical paths is preferably 0th-order diffracted light and 1st-order diffracted light, and further, the energy of the 0th-order diffracted light is transferred to the energy of the first-order diffracted light. It is more desirable.

また、本発明に係るレーザー波面合成方法は、レーザー光から複数の回折光を発生させる工程、この複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させてフォトリフラクティブ効果を示す素子に入射させる工程、を有することとする。   The method of synthesizing a laser wavefront according to the present invention includes a step of generating a plurality of diffracted lights from a laser beam, and reflecting at least one of the plurality of diffracted lights to overlap an optical path with other diffracted lights. A step of making it incident on an element exhibiting a refractive effect.

また、本発明に係るレーザー波面合成方法において、フォトリフラクティブ効果を示す素子は、強誘電性結晶又は半絶縁性半導体結晶により構成されていることが望ましく、具体的には上記効果を示す限りこれらに限られることは無いが、例えばBaTiO、SBN、LiNbO、 KNbO、Snの少なくともいずれかを含んで構成されていることがより望ましい。 In the laser wavefront synthesizing method according to the present invention, it is desirable that the element exhibiting the photorefractive effect is composed of a ferroelectric crystal or a semi-insulating semiconductor crystal. Although it is not limited, for example, it is more preferable that it is configured to include at least one of BaTiO 3 , SBN, LiNbO 3 , KNbO 3 , and Sn 2 P 2 S 6 .

また、本発明に係るレーザー波面合成方法において、光路を重複させる回折光は、0次回折光と1次回折光であることが望ましく、更には、0次回折光のエネルギーを1次回折光のエネルギーに移乗させることがより望ましい。   In the laser wavefront synthesis method according to the present invention, the diffracted light that overlaps the optical path is preferably 0th-order diffracted light and 1st-order diffracted light, and further, the energy of the 0th-order diffracted light is transferred to the energy of the first-order diffracted light. It is more desirable.

以上により、より光エネルギーの損失無く、高い効率で波面合成効率ができるレーザー波面合成方法及びそれを用いた装置を提供することができる。   As described above, it is possible to provide a laser wavefront synthesizing method and an apparatus using the laser wavefront synthesizing method that can achieve a wavefront synthesizing efficiency with high efficiency without loss of light energy.

図1は、本実施形態に係るレーザー波面合成装置の概略を示す図である。本実施例に係るレーザー波面合成装置1は、レーザーを発生させるレーザー発生装置2、このレーザー発生装置が発生させるレーザー光を複数の回折光を発生させるホログラム3、このホログラムにより発生した複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させる光学系4、この光路が重複する位置に配置されるフォトリフラクティブ効果を示す素子5、を有する。   FIG. 1 is a diagram showing an outline of a laser wavefront synthesis apparatus according to this embodiment. A laser wavefront synthesizing apparatus 1 according to the present embodiment includes a laser generator 2 that generates a laser, a hologram 3 that generates a plurality of diffracted lights from a laser beam generated by the laser generator, and a plurality of diffracted lights generated by the hologram. The optical system 4 that reflects at least one of them and overlaps the other diffracted light and the optical path, and the element 5 that exhibits the photorefractive effect disposed at the position where the optical path overlaps.

本実施形態に係るレーザー発生装置は、レーザー光を発生させることができる限りにおいて周知のものを種々用いることができるが、例えばNd:YVO、波長1μmのCWレーザー装置(240mW)を好適に用いることができる。 As the laser generator according to the present embodiment, various known devices can be used as long as they can generate laser light. For example, a CW laser device (240 mW) with Nd: YVO 4 and a wavelength of 1 μm is preferably used. be able to.

ホログラム3は、ラゲールガウスビームなどの特異点を有する波面を生成するものであって、レーザー光を回折し、複数の回折光を発生させることができるものである。なお、ホログラム3としては、所望の機能を達成することができる限りにおいて様々な構成を採用することができるが、例えば液晶空間変調器を好適に用いることができる。   The hologram 3 generates a wavefront having a singular point such as a Laguerre Gaussian beam, and can diffract a laser beam to generate a plurality of diffracted beams. As the hologram 3, various configurations can be adopted as long as a desired function can be achieved. For example, a liquid crystal spatial modulator can be preferably used.

液晶空間変調器とは、画素に対応した電極が配置された一対の基板と、この一対の基板の間に挟持されるネマティック液晶などの液晶、を有するものであって、各画素に印加させる電圧を調整することによって液晶分子の配向を調整し、これに応じて入射した光の位相を変調させることができるものである。但し、一般に液晶空間変調器を用いた場合、その位相変調度は可視光に対しては2π、赤外光に対してはπ程度にとどまるため、ラゲールガウスビームなどの特異点を有する波面を生成するには、コンピュータで予めキャリア周波数を有する位相変調された干渉縞に対応するよう計算されたホログラムを液晶空間変調器に表示させておくことが極めて有用である(図2参照)。   A liquid crystal spatial modulator has a pair of substrates on which electrodes corresponding to pixels are arranged, and a liquid crystal such as a nematic liquid crystal sandwiched between the pair of substrates, and a voltage applied to each pixel. By adjusting the orientation of the liquid crystal molecules, the phase of the incident light can be modulated accordingly. However, in general, when a liquid crystal spatial modulator is used, the degree of phase modulation is about 2π for visible light and π for infrared light, so a wavefront having a singular point such as a Laguerre Gaussian beam is generated. For this purpose, it is extremely useful to display on the liquid crystal spatial modulator a hologram that has been calculated by a computer so as to correspond to a phase-modulated interference fringe having a carrier frequency in advance (see FIG. 2).

以上のとおり、入射されるレーザー光はホログラムによって 回折され、1次回折光として所望の変調光を取り出すことができるが、入射されるレーザー光のうちの大部分はホログラムによって回折されない(変調されない)0次回折光となる。また、液晶空間変調器の画素構造そのものも回折格子として働くため、更に損失を増やしてしまうこととなる。従って、入射光から合成波面へのエネルギー変換効率が数十%を超えることは難しい(理論限界は33%である)。   As described above, the incident laser light is diffracted by the hologram and desired modulated light can be taken out as the first-order diffracted light. However, most of the incident laser light is not diffracted by the hologram (not modulated). Next diffracted light. Further, since the pixel structure itself of the liquid crystal spatial modulator also functions as a diffraction grating, the loss is further increased. Therefore, it is difficult for the energy conversion efficiency from incident light to the combined wavefront to exceed several tens of percent (theoretical limit is 33%).

そこで、本実施形態では、ホログラム3により発生した複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させる光学系4を設け、更に、この光路が重複する位置に配置されるフォトリフラクティブ効果を示す素子5を設けて波面合成効率を高めている。   Therefore, in the present embodiment, an optical system 4 is provided that reflects at least one of the plurality of diffracted lights generated by the hologram 3 to overlap the optical path with other diffracted lights, and further, at the position where the optical paths overlap. The element 5 which shows the photorefractive effect arrange | positioned is provided, and the wave front synthetic | combination efficiency is improved.

光学系4は、ホログラム3により発生した複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させるものであって、例えば1次回折光をフォトリフラクティブ効果を示す素子5に導くレンズ41、0次回折光を反射させてフォトリフラクティブ効果を示す素子5において1次回折光と光路を重複させるための反射板42と、を有して構成されている。なおレンズ41や反射板42の構成としては、これらの機能を奏する限りにおいて特段に制限されない。   The optical system 4 reflects at least one of the plurality of diffracted lights generated by the hologram 3 to overlap the optical path with other diffracted lights. For example, the optical system 4 converts the first-order diffracted light into a photorefractive effect 5. And a reflecting plate 42 for reflecting the first-order diffracted light and the optical path in the element 5 that reflects the 0th-order diffracted light and exhibits the photorefractive effect. The configuration of the lens 41 and the reflecting plate 42 is not particularly limited as long as these functions are exhibited.

フォトリフラクティブ効果を示す素子5は、ある回折光から他の回折光にエネルギーを移乗させることができる素子である。フォトリフラクティブ効果を示す素子としては、例えば強誘電性結晶、半絶縁性半導体結晶が挙げられる。この材料からなる素子は、互いにコヒーレントな微弱な信号光(以下「シグナル光」という。)と強い励起光(以下「ポンプ光」という。)を入射させた場合、両者が作る干渉縞を介してエネルギーの交換を起こし、ポンプ光のエネルギーをシグナル光へ移乗させることができる(これを二光波混合という。図3参照)。上記フォト利不落ティ部素子を示す阻止としては上記効果を示す限りこれらに限られることは無いことはもちろんであるが、BaTiO、SBN、LiNbO、 KNbO、Snの結晶を好適に用いることができ、これらのうち少なくともいずれかを含んで構成されていることが好ましい。なお、本実施形態の例において、フォトリフラクティブ効果を示す素子5を透過する前後における1次回折光の強さについて確認した結果を図4に示す。 The element 5 that exhibits the photorefractive effect is an element that can transfer energy from one diffracted light to another diffracted light. Examples of the element exhibiting the photorefractive effect include a ferroelectric crystal and a semi-insulating semiconductor crystal. When an element made of this material receives weak signal light (hereinafter referred to as “signal light”) and strong excitation light (hereinafter referred to as “pump light”) that are coherent with each other, an interference fringe formed by both of them is used. It is possible to exchange energy and transfer the energy of the pump light to the signal light (this is called two-wave mixing, see FIG. 3). Of course, the prevention of the photo-refractory tee element is not limited to these as long as the above-described effect is exhibited, but it is not limited to BaTiO 3 , SBN, LiNbO 3 , KNbO 3 , Sn 2 P 2 S 6 . Crystals can be suitably used, and it is preferable that at least one of them is included. In addition, in the example of this embodiment, the result confirmed about the intensity | strength of the 1st-order diffracted light before and behind permeate | transmitting the element 5 which shows a photorefractive effect is shown in FIG.

以上、本実施形態に係るレーザー波面合成装置は、フォトリフラクティブ効果を示す素子のニ波混合に注目し、ホログラムが発生する0次回折光と1次回折光を結合させ、0次回折光のエネルギーを1次回折光へ移乗させることで合成波面へのエネルギー変換効率を向上させることができるようになる。この方法によると原理的には100%近くまで波面合成効率を向上させることができ、極めて有用である。なお、本実施形態では0次回折光と1次回折光の二波の場合を説明として用いているが、上記に限定されず、2次回折光をもフォトリフラクティブ効果を示す素子に入射させ、エネルギーを移乗させることが可能であって、有用であることはいうまでもない。   As described above, the laser wavefront synthesizing apparatus according to the present embodiment pays attention to the two-wave mixing of the element exhibiting the photorefractive effect, and combines the zero-order diffracted light and the first-order diffracted light generated by the hologram, By transferring to the folded light, the energy conversion efficiency to the composite wavefront can be improved. According to this method, in principle, the wavefront synthesis efficiency can be improved to nearly 100%, which is extremely useful. In this embodiment, the case of two waves of 0th-order diffracted light and 1st-order diffracted light is used as an explanation. However, the present invention is not limited to the above, and second-order diffracted light is also incident on an element exhibiting a photorefractive effect and energy is transferred. Needless to say, it can be used.

以上、本発明に係るレーザー波面合成方法及びそれを用いた装置によると、波面合成技術の光ピンセット、顕微鏡光学、超微細光造形など光によるナノテクノロジー(ナノフォトニクス)に用いることができ、産業上の利用可能性がある。   As described above, according to the laser wavefront synthesis method and the apparatus using the laser wavefront synthesis method according to the present invention, it can be used for light nanotechnology (nanophotonics) such as optical tweezers, microscope optics, and ultrafine optical modeling of wavefront synthesis technology. There is a possibility of use.

実施形態に係るレーザー波面合成装置の概略を示す図。The figure which shows the outline of the laser wavefront synthesis apparatus which concerns on embodiment. 液晶空間変調器を用いたホログラムによる波面合成を説明するための図。The figure for demonstrating the wavefront synthesis | combination by the hologram using a liquid crystal spatial modulator. フォトリフラクティブ効果を示す素子による二光波混合を説明する図。The figure explaining the two-wave mixing by the element which shows a photorefractive effect. フォトリフラクティブ効果を示す素子を透過する前後における1次回折光の強さを比較した結果を示す図。The figure which shows the result of having compared the intensity | strength of the 1st-order diffracted light before and behind transmitting the element which shows the photorefractive effect.

符号の説明Explanation of symbols

1…レーザー波面合成装置、2…レーザー発生装置、3…ホログラム、4…光学系、41…レンズ、42…反射板、5…フォトリフラクティブ効果を示す素子
DESCRIPTION OF SYMBOLS 1 ... Laser wavefront synthesis apparatus, 2 ... Laser generator, 3 ... Hologram, 4 ... Optical system, 41 ... Lens, 42 ... Reflecting plate, 5 ... Element which shows photorefractive effect

Claims (10)

レーザー光を発生させるレーザー発生装置と、
該レーザー発生装置が発生させるレーザー光を複数の回折光を発生させるホログラムと、
前記ホログラムにより発生した複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させる光学系と、
前記光路が重複する位置に配置されるフォトリフラクティブ効果を示す素子と、を有するレーザー波面合成装置。
A laser generator for generating laser light;
A hologram for generating a plurality of diffracted lights from the laser light generated by the laser generator;
An optical system that reflects at least one of a plurality of diffracted lights generated by the hologram and overlaps an optical path with other diffracted lights;
A laser wavefront synthesizing device having a photorefractive effect arranged at a position where the optical paths overlap.
前記フォトリフラクティブ効果を示す素子は、強誘電性結晶又は半絶縁性半導体結晶により構成されていることを特徴とする請求項1記載のレーザー波面合成装置。   2. The laser wavefront synthesizing apparatus according to claim 1, wherein the element exhibiting the photorefractive effect is composed of a ferroelectric crystal or a semi-insulating semiconductor crystal. 前記フォトリフラクティブ効果を示す素子は、BaTiO、SBN、LiNbO、 KNbO、Snのいずれかを含んで構成されていることを特徴とする請求項1又は2に記載のレーザー波面合成装置。 3. The laser according to claim 1, wherein the element exhibiting a photorefractive effect includes any one of BaTiO 3 , SBN, LiNbO 3 , KNbO 3 , and Sn 2 P 2 S 6. Wavefront synthesizer. 前記光路が重複する回折光は、0次回折光と1次回折光であることを特徴とする請求項1記載のレーザー波面合成装置。   2. The laser wavefront synthesizing apparatus according to claim 1, wherein the diffracted light having overlapping optical paths is zero-order diffracted light and first-order diffracted light. 0次回折光のエネルギーを1次回折光のエネルギーに移乗させることを特徴とする請求項4記載のレーザー波面合成装置。   5. The laser wavefront synthesizer according to claim 4, wherein the energy of the 0th-order diffracted light is transferred to the energy of the 1st-order diffracted light. レーザー光から複数の回折光を発生させる工程、
該複数の回折光のうち、少なくともいずれかを反射させて他の回折光と光路を重複させてフォトリフラクティブ効果を示す素子に入射させる工程、を有するレーザー波面合成方法。
A step of generating a plurality of diffracted lights from a laser beam,
A method of synthesizing a laser wavefront, comprising a step of reflecting at least one of the plurality of diffracted lights and making an optical path overlap with another diffracted light to enter an element exhibiting a photorefractive effect.
前記フォトリフラクティブ効果を示す素子は、強誘電性結晶又は半絶縁性半導体結晶により構成されていることを特徴とする請求項6記載のレーザー波面合成方法。   7. The laser wavefront synthesis method according to claim 6, wherein the element exhibiting a photorefractive effect is composed of a ferroelectric crystal or a semi-insulating semiconductor crystal. 前記フォトリフラクティブ効果を示す素子は、BaTiO、SBN、LiNbO、 KNbO、Snの少なくともいずれかを含んで構成されていることを特徴とする請求項6又は7に記載のレーザー波面合成方法。 The element showing the photorefractive effect is configured to include at least one of BaTiO 3 , SBN, LiNbO 3 , KNbO 3 , and Sn 2 P 2 S 6 . Laser wavefront synthesis method. 前記光路を重複させる回折光は、0次回折光と1次回折光であることを特徴とする請求項6記載のレーザー波面合成方法。   7. The laser wavefront synthesis method according to claim 6, wherein the diffracted light that overlaps the optical path is zero-order diffracted light and first-order diffracted light. 0次回折光のエネルギーを1次回折光のエネルギーに移乗させることを特徴とする請求項9記載のレーザー波面合成方法。
10. The laser wavefront synthesis method according to claim 9, wherein the energy of the 0th-order diffracted light is transferred to the energy of the 1st-order diffracted light.
JP2005218150A 2005-07-28 2005-07-28 Laser wave front composing method using nonlinear light wave mixing, and device using same Pending JP2007033951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218150A JP2007033951A (en) 2005-07-28 2005-07-28 Laser wave front composing method using nonlinear light wave mixing, and device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218150A JP2007033951A (en) 2005-07-28 2005-07-28 Laser wave front composing method using nonlinear light wave mixing, and device using same

Publications (1)

Publication Number Publication Date
JP2007033951A true JP2007033951A (en) 2007-02-08

Family

ID=37793275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218150A Pending JP2007033951A (en) 2005-07-28 2005-07-28 Laser wave front composing method using nonlinear light wave mixing, and device using same

Country Status (1)

Country Link
JP (1) JP2007033951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method
JP2019012270A (en) * 2018-07-30 2019-01-24 浜松ホトニクス株式会社 Microscope device and method for image acquisition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310230A (en) * 1989-06-07 1991-01-17 Ricoh Co Ltd Parallel optical information processor
WO2003063559A1 (en) * 2002-01-16 2003-07-31 The University Of Chicago Use of multiple optical vortices for pumping, mixing and sorting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310230A (en) * 1989-06-07 1991-01-17 Ricoh Co Ltd Parallel optical information processor
WO2003063559A1 (en) * 2002-01-16 2003-07-31 The University Of Chicago Use of multiple optical vortices for pumping, mixing and sorting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method
JP2015219501A (en) * 2014-05-21 2015-12-07 浜松ホトニクス株式会社 Microscope device and image acquisition method
CN106415354A (en) * 2014-05-21 2017-02-15 浜松光子学株式会社 Microscope device and image acquisition method
US9891172B2 (en) 2014-05-21 2018-02-13 Hamamatsu Photonics K.K. Microscope device and image acquisition method
US10302569B2 (en) 2014-05-21 2019-05-28 Hamamatsu Photonics K.K. Microscope device and image acquisition method
JP2019012270A (en) * 2018-07-30 2019-01-24 浜松ホトニクス株式会社 Microscope device and method for image acquisition

Similar Documents

Publication Publication Date Title
US10108146B2 (en) Anisotropic leaky-mode modulator for holographic video displays
JP5947172B2 (en) Wavelength conversion type spatial light modulator
US20140300695A1 (en) Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US10585394B2 (en) Method for encoding a hologram in a light modulation device
KR101605219B1 (en) Light control device and light control method
US9958711B1 (en) Control system using a phase modulation capable acousto-optic modulator for diverting laser output intensity noise to a first order laser light beam and related methods
KR101577096B1 (en) Light control device and light control method
JP2007033951A (en) Laser wave front composing method using nonlinear light wave mixing, and device using same
Shapira et al. Functional facets for nonlinear crystals
KR102612401B1 (en) Holographic display apparatus and method for canceling noise thereof
US8264774B2 (en) Method and apparatus for generating reconstructions of information encoded in ambient light modulators
JP2006220933A (en) Optical information recording method and apparatus using holography
Gruneisen et al. Holographic compensation of severe dynamic aberrations in membrane-mirror-based telescope systems
Xu et al. Large field-of-view nonlinear holography in lithium niobate
JP5040482B2 (en) Hologram recording apparatus, hologram reproducing apparatus, hologram recording method, and hologram reproducing method
EP4325194A1 (en) Dispersion measurement device and dispersion measurement method
Rodríguez-Fajardo et al. On-axis complex-amplitude modulation for the generation of super-stable vector modes
JP2018040980A (en) Wavelength conversion element and wavelength conversion optical pulse waveform shaping device
Imbrock et al. Nonlinear Beam Shaping with Femtosecond Laser-Induced Volume Phase Holograms in Lithium Niobate
JP2006049506A (en) Semiconductor laser excitation solid state laser apparatus
Zhang et al. Improved imaging for second harmonic generation via a two-dimensional quasi-multivalue-encoding method
WO2013024818A1 (en) Frequency shifter and frequency shifting method
Xu et al. Nonlinear beam shaping in periodical χ (2) fork gratings with structural defects
Berenberg et al. Blazed dynamic holograms and their application to correction of distortions in laser systems
JP2005003828A (en) Hologram recording apparatus and hologram recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524