JP2007032917A - Heat medium supply system - Google Patents

Heat medium supply system Download PDF

Info

Publication number
JP2007032917A
JP2007032917A JP2005216195A JP2005216195A JP2007032917A JP 2007032917 A JP2007032917 A JP 2007032917A JP 2005216195 A JP2005216195 A JP 2005216195A JP 2005216195 A JP2005216195 A JP 2005216195A JP 2007032917 A JP2007032917 A JP 2007032917A
Authority
JP
Japan
Prior art keywords
heat
boiler
heat source
supply system
medium supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216195A
Other languages
Japanese (ja)
Other versions
JP4566853B2 (en
Inventor
Yukihiro Fukuzumi
幸大 福住
Osayuki Inoue
修行 井上
Kiichi Irie
毅一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005216195A priority Critical patent/JP4566853B2/en
Publication of JP2007032917A publication Critical patent/JP2007032917A/en
Application granted granted Critical
Publication of JP4566853B2 publication Critical patent/JP4566853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat medium supply system combining an absorption heat pump and heat source equipment such as a boiler, capable of minimizing the amount of fuel consumed by the heat source equipment by utilizing most effectively exhaust heat put into the absorption heat pump, and controlling the operating state of the absorption heat pump and heat source equipment such as the boiler installed in parallel, according to the load of a use destination. <P>SOLUTION: The absorption heat pump 32 driven by exhaust heat, an exhaust gas boiler 33 driven by exhaust heat, and a fuel burning boiler 34, are connected in parallel to a steam header to supply a heated heat medium (steam) to the steam header 36 from the absorption heat pump 32, the exhaust gas boiler 33 and the fuel burning boiler 34 and to supply the heated heat medium to the load of the use destination from the steam header. The start-stop or capacity control of the absorption heat pump 32, exhaust gas boiler 33 and fuel burning boiler 34 is performed according to the steam pressure (load amount) in the steam header 36 detected by a pressure sensor 38. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、温水などの排熱を熱源として駆動される第2種吸収ヒートポンプとボイラを組み合せて構成した熱媒供給システムに関するものである。   The present invention relates to a heat medium supply system configured by combining a boiler with a second type absorption heat pump that is driven using exhaust heat such as warm water as a heat source.

エンジンを用いたコージェネレーションでは、排ガスから熱回収して製造する蒸気は有効利用されるが、ジャケット温水は給湯以外に有効な使い道が少なく、冷却塔などで放熱する場合が多い。このような排温水或いは排蒸気等の低質の熱源から高温の熱を発生させる吸収ヒートポンプは、例えば特許文献1及び特許文献2によって既に公知である。   In cogeneration using an engine, steam produced by recovering heat from exhaust gas is used effectively, but jacket hot water has little effective use other than hot water supply, and often dissipates heat in a cooling tower or the like. Absorption heat pumps that generate high-temperature heat from such a low-quality heat source such as exhaust hot water or exhaust steam are already known from Patent Document 1 and Patent Document 2, for example.

上記の公知例は、全て吸収ヒートポンプの内部サイクルに関するものであって、吸収ヒートポンプと通常のボイラ等の機器を効果的に組み合せたシステムではなかった。そのため、吸収ヒートポンプ、排熱ボイラ、燃料焚きボイラを組み合せて熱媒供給システムを構成し、熱媒供給システム運転に際し、排熱を最も有効に利用し、且つ燃料使用量を最小にして二酸化炭素の排出量を最小にできるシステムにはなっていない。
特公昭58−18574号公報 特公昭58−18575号公報
The above known examples are all related to the internal cycle of the absorption heat pump, and are not a system that effectively combines an absorption heat pump and a device such as a normal boiler. Therefore, a heat medium supply system is configured by combining an absorption heat pump, a waste heat boiler, and a fuel-fired boiler.When operating the heat medium supply system, exhaust heat is used most effectively and the amount of fuel used is minimized. It is not a system that can minimize emissions.
Japanese Patent Publication No.58-18574 Japanese Patent Publication No. 58-18575

本発明は上述の点に鑑みてなされたもので、吸収ヒートポンプに投入する排熱を最も有効に利用し、また使用先の負荷に応じて、吸収ヒートポンプと、並列に設置されたボイラ等の熱源機器との運転状態を制御することによって、熱源機器で消費される燃料使用量、即ち装置を運転する際の二酸化炭素排出量を最小にできる吸収ヒートポンプとボイラ等の熱源機器を組み合せた熱媒供給システムを提供することを目的とする。   The present invention has been made in view of the above-described points, and most effectively uses the exhaust heat input to the absorption heat pump, and according to the load of the user, the absorption heat pump and a heat source such as a boiler installed in parallel. Heat medium supply combining a heat source device such as an absorption heat pump and boiler that can minimize the amount of fuel consumed by the heat source device, that is, the amount of carbon dioxide emission when operating the device, by controlling the operation state with the device The purpose is to provide a system.

上記課題を解決するため請求項1に記載の発明は、排熱で駆動される1台又は複数台の吸収ヒートポンプと、排熱又は燃料で駆動される1台又は複数台の熱源機器とをヘッダに並列に接続し、該吸収ヒートポンプ及び熱源機器から加熱された熱媒体を前記ヘッダに供給し、該ヘッダから加熱された熱媒体を負荷に供給するように構成したことを特徴とする熱媒供給システムにある。   In order to solve the above-mentioned problem, the invention described in claim 1 includes a header including one or more absorption heat pumps driven by exhaust heat and one or more heat source devices driven by exhaust heat or fuel. The heat medium supply, wherein the heat medium heated from the absorption heat pump and the heat source device is supplied to the header, and the heat medium heated from the header is supplied to the load. In the system.

請求項2に記載の発明は、請求項1に記載された熱媒供給システムにおいて、前記負荷の量を検出する負荷検出手段を設け、該負荷検出手段で検出した負荷量に応じて、前記吸収ヒートポンプ及び熱源機器の発停又は容量制御を行う運転制御手段を設けたことを特徴とする。   According to a second aspect of the present invention, in the heat medium supply system according to the first aspect of the present invention, load detection means for detecting the amount of the load is provided, and the absorption is performed according to the load amount detected by the load detection means. An operation control means for performing on / off or capacity control of the heat pump and the heat source device is provided.

請求項3に記載の発明は、請求項2に記載された熱媒供給システムにおいて、前記運転制御手段は前記吸収ヒートポンプを前記熱源機器に優先して運転する手段を備えていることを特徴とする。   The invention according to claim 3 is the heat medium supply system according to claim 2, wherein the operation control means includes means for operating the absorption heat pump in preference to the heat source device. .

請求項4に記載の発明は、請求項2又は3に記載された熱媒供給システムにおいて、前記負荷量に応じた前記吸収ヒートポンプ及び熱源機器の発停は、該吸収ヒートポンプ及び熱源機器の頻繁な発停が起らないように設定する手段を備えていることを特徴とする。   According to a fourth aspect of the present invention, in the heat medium supply system according to the second or third aspect, the absorption heat pump and the heat source device start and stop according to the load amount are frequent in the absorption heat pump and the heat source device. Means is provided for setting so as not to start and stop.

請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の熱媒供給システムにおいて、前記熱源機器は排熱ボイラ及び燃料焚きボイラであり、前記運転制御手段は前記吸収ヒートポンプと前記排熱ボイラを前記燃料焚きボイラに優先して運転する手段を備えていることを特徴とする。   According to a fifth aspect of the present invention, in the heat medium supply system according to any one of the first to fourth aspects, the heat source device is an exhaust heat boiler and a fuel-fired boiler, and the operation control means is the absorption heat pump. And means for operating the exhaust heat boiler in preference to the fuel-fired boiler.

請求項6に記載の発明は、請求項5に記載の熱媒供給システムにおいて、前記熱媒は蒸気であって前記負荷検出手段は前記ヘッダの蒸気圧を検出する圧力センサであることを特徴とする。   The invention according to claim 6 is the heating medium supply system according to claim 5, wherein the heating medium is steam, and the load detecting means is a pressure sensor for detecting the steam pressure of the header. To do.

請求項7に記載の発明は、請求項1乃至6のいずれか1項に記載の熱媒供給システムにおいて、前記排熱を供給する排熱源に、排熱媒体の冷却を必要とする排熱源と排熱媒体の冷却を必要としない排熱源がある場合、排熱媒体の冷却を必要とする排熱源からの排熱を優先して使用する手段を備えていることを特徴とする。   According to a seventh aspect of the present invention, in the heat medium supply system according to any one of the first to sixth aspects, the exhaust heat source that supplies the exhaust heat includes an exhaust heat source that requires cooling of the exhaust heat medium. In the case where there is an exhaust heat source that does not require cooling of the exhaust heat medium, a means for preferentially using the exhaust heat from the exhaust heat source that requires cooling of the exhaust heat medium is provided.

請求項8に記載の発明は、請求項1乃至7のいずれか1項に記載の熱媒供給システムにおいて、複数台の前記吸収ヒートポンプの間ではその運転優先順位は累積運転時間によって決める手段を備えていることを特徴とする。   The invention according to claim 8 is the heating medium supply system according to any one of claims 1 to 7, further comprising means for determining an operation priority among the plurality of the absorption heat pumps based on an accumulated operation time. It is characterized by.

請求項9に記載の発明は、請求項1乃至8のいずれか1項に記載の熱媒供給システムにおいて、複数台の熱源機器を種類に応じて複数グループに区分し、同一グループに属する複数の熱源機器の間ではその運転優先順位は累積運転時間によって決める手段を備えていることを特徴とする。   The invention according to claim 9 is the heat medium supply system according to any one of claims 1 to 8, wherein the plurality of heat source devices are divided into a plurality of groups according to the type, and a plurality of heat source devices belonging to the same group are divided. Among heat source devices, the operation priority is provided with means for determining the accumulated operation time.

各請求項に記載の発明によれば、熱媒供給システムを、排熱で駆動される1台又は複数台の吸収ヒートポンプと、排熱又は燃料で駆動される1台又は複数台の熱源機器とをヘッダに並列に接続し、ヘッダから加熱された熱媒体を負荷に供給するように構成したので、吸収ヒートポンプ及び各熱源機器の発停を熱媒使用先の負荷によって行い、その際の各機器の運転状態で排熱を最大限有効に利用することが可能となり、燃料使用量、即ち熱媒供給システムの二酸化炭素の排出量を最小限にすることが可能となる。   According to the invention described in each claim, the heat medium supply system includes one or more absorption heat pumps driven by exhaust heat, and one or more heat source devices driven by exhaust heat or fuel. Since the heat medium heated from the header is supplied to the load, the absorption heat pump and each heat source device are started and stopped by the load of the heat medium usage destination, and each device at that time In this operating state, exhaust heat can be used as effectively as possible, and the amount of fuel used, that is, the amount of carbon dioxide discharged from the heat medium supply system can be minimized.

請求項2に記載の発明によれば、負荷検出手段で検出した負荷量に応じて、吸収ヒートポンプ及び熱源機器の発停又は容量制御を行う運転制御手段を設けたので、負荷量に応じて吸収ヒートポンプ及び熱源機器の運転状態で排熱が最大限有効に利用することが可能となり、燃料使用量を最小限にすることが可能となる。   According to the second aspect of the present invention, since the operation control means for performing start / stop or capacity control of the absorption heat pump and the heat source device according to the load amount detected by the load detection means is provided, the absorption according to the load amount is provided. It is possible to utilize exhaust heat as effectively as possible in the operating state of the heat pump and the heat source device, and to minimize the amount of fuel used.

請求項3に記載の発明によれば、吸収ヒートポンプを熱源機器に優先して運転する手段を備えているので、排熱を最大限有効に利用することが可能となり、燃料使用量を最小限にすることが可能となる。   According to the third aspect of the invention, since the absorption heat pump is provided with a means for operating with priority over the heat source device, it is possible to make the most effective use of exhaust heat and minimize the amount of fuel used. It becomes possible to do.

請求項4に記載の発明によれば、吸収ヒートポンプ及び熱源機器の頻繁な発停が起らないように負荷量に応じた吸収ヒートポンプ及び熱源機器の発停を設定するので、頻繁な吸収ヒートポンプ及び熱源機器の発停による機器の劣化及び発停時のエネルギー損失を少なくすることができる。   According to the invention described in claim 4, since the absorption heat pump and the heat source device according to the load amount are set according to the load so that the absorption heat pump and the heat source device do not frequently start and stop, the frequent absorption heat pump and It is possible to reduce the deterioration of the equipment due to the start and stop of the heat source equipment and the energy loss at the start and stop.

請求項5に記載の発明によれば、吸収ヒートポンプと排熱ボイラを燃料焚きボイラに優先して運転するので、排熱が最大限有効に利用され、燃料使用量を最小限にすることが可能となる。   According to the invention described in claim 5, since the absorption heat pump and the exhaust heat boiler are operated with priority over the fuel-fired boiler, the exhaust heat can be utilized to the maximum extent and the amount of fuel used can be minimized. It becomes.

請求項6に記載の発明によれば、負荷検出手段はヘッダの蒸気圧を検出する圧力センサであるので、簡単な構成で負荷量を検出することが可能となる。   According to the sixth aspect of the present invention, since the load detection means is a pressure sensor that detects the vapor pressure of the header, the load amount can be detected with a simple configuration.

請求項7に記載の発明によれば、排熱媒体の冷却を必要とする排熱源からの排熱を優先して使用するので、排熱媒体を冷却するための機器を駆動する動力を少なくすることが可能となる。   According to the seventh aspect of the present invention, the exhaust heat from the exhaust heat source that requires cooling of the exhaust heat medium is preferentially used, so that the power for driving the device for cooling the exhaust heat medium is reduced. It becomes possible.

請求項8に記載の発明によれば、複数台の吸収ヒートポンプの間ではその運転優先順位は累積運転時間によって決めるので、吸収ヒートポンプの運転時間は略均等になる。   According to the eighth aspect of the invention, the operation priority among the plurality of absorption heat pumps is determined by the cumulative operation time, so that the operation time of the absorption heat pump becomes substantially equal.

請求項9に記載の発明によれば、複数台の熱源機器を種類に応じて複数グループに区分し、同一グループに属する複数の熱源機器の間ではその運転優先順位は累積運転時間によって決めるので、同一グループに属する熱源機器の運転時間は略均等になる。   According to the invention of claim 9, the plurality of heat source devices are divided into a plurality of groups according to the type, and the operation priority is determined by the cumulative operation time among the plurality of heat source devices belonging to the same group. The operation time of the heat source devices belonging to the same group is substantially equal.

先ず、図1を参照しながら単段第2種吸収ヒートポンプについて説明する。図1は単段の第2種ヒートポンプの構成を示す図である。図示するように、単段の第2種ヒートポンプ1は、蒸発器E、吸収器A、再生器G、凝縮器C、溶液熱交換器10、溶液ポンプ11、濃溶液配管12、希溶液配管13、冷媒ポンプ14、冷媒配管15、熱源温水配管16、熱源温水配管17、冷却水配管18、給水ポンプ19、給水予熱伝熱管20、及び蒸気発生熱交換器21から構成されている。   First, a single-stage type 2 absorption heat pump will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a single-stage second type heat pump. As shown in the figure, a single-stage type 2 heat pump 1 includes an evaporator E, an absorber A, a regenerator G, a condenser C, a solution heat exchanger 10, a solution pump 11, a concentrated solution pipe 12, and a diluted solution pipe 13. The refrigerant pump 14, the refrigerant pipe 15, the heat source hot water pipe 16, the heat source hot water pipe 17, the cooling water pipe 18, the feed water pump 19, the feed water preheating heat transfer pipe 20, and the steam generating heat exchanger 21.

上記構成の単段第2種ヒートポンプ1において、再生器Gの濃溶液は、溶液ポンプ11により濃溶液配管12を通り、溶液熱交換器10の被加熱側を通って加熱された後、吸収器Aに送られ該溶液熱交換器10内に散布される。吸収器A内で散布された濃溶液は、蒸発器Eから流入する冷媒蒸気を吸収して吸収熱を発生し、その熱で蒸気発生熱交換器21の中を流れる被加熱媒体(水)を加熱する。冷媒蒸気を吸収して濃度が薄くなった希溶液は、希溶液配管13を通り溶液熱交換器10の加熱側を経由して濃溶液配管12を通る濃溶液を加熱し再生器Gに戻る。   In the single-stage type 2 heat pump 1 having the above configuration, the concentrated solution in the regenerator G is heated by the solution pump 11 through the concentrated solution pipe 12 and through the heated side of the solution heat exchanger 10, and then the absorber. A is sent to A and dispersed in the solution heat exchanger 10. The concentrated solution sprayed in the absorber A absorbs the refrigerant vapor flowing from the evaporator E to generate absorption heat, and the heated medium (water) flowing through the vapor generation heat exchanger 21 by the heat is absorbed. Heat. The dilute solution whose concentration has been reduced by absorbing the refrigerant vapor passes through the dilute solution pipe 13, passes through the heating side of the solution heat exchanger 10, heats the concentrated solution through the concentrated solution pipe 12, and returns to the regenerator G.

再生器Gに戻った希溶液は、熱源温水配管17の中を流れる熱源温水101によって加熱され、冷媒蒸気を発生して濃縮され濃溶液となり、溶液サイクルを一巡する。再生器Gで発生した冷媒蒸気は凝縮器Cに導かれ、冷却水配管18の中を流れる冷却水102により冷却され凝縮し、冷媒液となる。この冷媒液は冷媒ポンプ14により冷媒配管15を通って蒸発器Eに送られ該蒸発器E内に散布され、熱源温水配管16の中を流れる熱源温水103により加熱されて蒸発し、吸収器Aに導かれる。以上が冷媒と溶液のサイクルである。   The dilute solution that has returned to the regenerator G is heated by the heat source hot water 101 flowing in the heat source hot water pipe 17, generates refrigerant vapor, is concentrated to become a concentrated solution, and goes around the solution cycle. Refrigerant vapor generated in the regenerator G is guided to the condenser C, and is cooled and condensed by the cooling water 102 flowing in the cooling water pipe 18 to become a refrigerant liquid. This refrigerant liquid is sent to the evaporator E through the refrigerant pipe 15 by the refrigerant pump 14 and dispersed in the evaporator E, and is heated and evaporated by the heat source hot water 103 flowing in the heat source hot water pipe 16. Led to. The above is the cycle of the refrigerant and the solution.

一方、被加熱媒体(水)104は、給水ポンプ19で加圧され給水予熱伝熱管20に導かれる。この給水予熱伝熱管20で被加熱媒体(水)104は、蒸発器Eで発生した冷媒蒸気が凝縮することにより加熱され、続いて吸収器A内の蒸気発生熱交換器21で溶液の吸収熱によって加熱されて水蒸気になる。   On the other hand, the heated medium (water) 104 is pressurized by the feed water pump 19 and guided to the feed water preheating heat transfer tube 20. The medium to be heated (water) 104 is heated in the feed water preheating heat transfer tube 20 as the refrigerant vapor generated in the evaporator E condenses, and then the absorption heat of the solution in the vapor generation heat exchanger 21 in the absorber A. Is heated to become water vapor.

このように、吸収ヒートポンプ1に熱源媒体(熱源温水101、103)と冷却媒体(冷却水102)を供給することによって、吸収器Aで高温の熱を発生させることができる。なお、給水予熱伝熱管20は、本実施形態例のように蒸発器内部に設置するに限らず、溶液循環系からの熱回収(配管13と熱交換)や、熱源温水による直接加熱(温水101、103と熱交換)、凝縮器Cの凝縮熱(凝縮器Cの缶胴内に伝熱管を設置)などが利用できる場所が考えられる。また、これらを組み合せても良い。また、冷媒配管15に熱交換器を設置し、蒸発器Eに供給する冷媒を予熱してもよい。予熱することによって、蒸気製造効率を向上させることができる。   Thus, by supplying the heat source medium (heat source hot water 101, 103) and the cooling medium (cooling water 102) to the absorption heat pump 1, the absorber A can generate high-temperature heat. Note that the feed water preheating heat transfer tube 20 is not limited to being installed inside the evaporator as in the present embodiment, but heat recovery from the solution circulation system (heat exchange with the pipe 13) or direct heating with hot water (hot water 101). , 103), the heat of condensation of the condenser C (a heat transfer tube is installed in the can body of the condenser C), and the like can be considered. Moreover, you may combine these. Further, a heat exchanger may be installed in the refrigerant pipe 15 to preheat the refrigerant supplied to the evaporator E. By preheating, steam production efficiency can be improved.

図2は本発明に係る吸収ヒートポンプとボイラを組み合せた熱媒供給システムをエンジンを用いたコージェネレーションに適用した例を示す図である。エンジン30に燃料105を供給して発電機31を駆動し発電を行うと同時に、エンジン30から発生するジャケット温水106を吸収ヒートポンプ32に供給し、このジャケット温水106の熱で吸収ヒートポンプ32を駆動して蒸気107を発生させる。また、エンジン30から発生する排ガス108を排ガスボイラ33に供給し、この排ガス108の熱で蒸気109を発生させる。蒸気ヘッダ36に並列に接続されたボイラ34−1、ボイラ34−2は燃料110が供給された蒸気111、蒸気111を発生する通常の燃料焚きボイラである。   FIG. 2 is a diagram showing an example in which a heat medium supply system combining an absorption heat pump and a boiler according to the present invention is applied to cogeneration using an engine. Fuel 105 is supplied to the engine 30 to drive the generator 31 to generate electricity. At the same time, the jacket hot water 106 generated from the engine 30 is supplied to the absorption heat pump 32, and the absorption heat pump 32 is driven by the heat of the jacket hot water 106. The steam 107 is generated. Further, the exhaust gas 108 generated from the engine 30 is supplied to the exhaust gas boiler 33, and steam 109 is generated by the heat of the exhaust gas 108. A boiler 34-1 and a boiler 34-2 connected in parallel to the steam header 36 are ordinary fuel-fired boilers that generate steam 111 and steam 111 supplied with fuel 110.

吸収ヒートポンプ32、排ガスボイラ33、ボイラ34−1、及びボイラ34−2で発生した蒸気107、109、111、111はいったん蒸気ヘッダ36に集合させてから使用先37に供給される。蒸気ヘッダ36には圧力センサ38が取り付けられており該圧力センサ38で検出した蒸気圧力値によって蒸気の過不足を検知する。蒸気ヘッダ36の圧力センサ38で蒸気の過不足を検知することで、安価、簡易に負荷を検知することができる。また、熱源機器である吸収ヒートポンプ32、排ガスボイラ33、ボイラ34−1、及びボイラ34−2と蒸気ヘッダ36を結ぶ配管には逆止弁V1、V2、V3−1、V3−2が取り付けられており、蒸気ヘッダ36から各熱源機器に蒸気が逆流するのを防いでいる。   The steam 107, 109, 111, 111 generated in the absorption heat pump 32, the exhaust gas boiler 33, the boiler 34-1, and the boiler 34-2 is once collected in the steam header 36 and then supplied to the user 37. A pressure sensor 38 is attached to the steam header 36, and the excess or deficiency of the steam is detected by the steam pressure value detected by the pressure sensor 38. By detecting the excess or deficiency of the steam with the pressure sensor 38 of the steam header 36, it is possible to detect the load easily and inexpensively. Also, check valves V1, V2, V3-1, and V3-2 are attached to the absorption heat pump 32, the exhaust gas boiler 33, the boiler 34-1 and the piping connecting the boiler 34-2 and the steam header 36, which are heat source devices. This prevents the steam from flowing back from the steam header 36 to each heat source device.

上記システムにおいて、吸収ヒートポンプ32、排ガスボイラ33、ボイラ34−1、及びボイラ34−2の各熱源機器は台数制御される。この台数制御について図3を用いて説明する。台数制御は蒸気ヘッダ36の蒸気圧力値について複数の圧力区分を設定し、予め圧力区分ごとに各熱源機器の運転状態を決めておいて、圧力センサ38で検出した蒸気ヘッダ36の蒸気圧力値がどの圧力区分に該当するかによって、各熱源機器の発停を行うものである。   In the above system, the number of heat source devices of the absorption heat pump 32, the exhaust gas boiler 33, the boiler 34-1 and the boiler 34-2 is controlled. This number control will be described with reference to FIG. In the unit control, a plurality of pressure categories are set for the steam pressure value of the steam header 36, the operating state of each heat source device is determined in advance for each pressure category, and the steam pressure value of the steam header 36 detected by the pressure sensor 38 is determined. Depending on the pressure category, each heat source device is started and stopped.

図3はON−OFFの2位置で制御する吸収ヒートポンプ32、排ガスボイラ33、ボイラ34−1、及びボイラ34−2の各熱源機器を計4台、図2に示すように設置した場合の稼働優先順位ごとの圧力設定値と運転状態の例を示している。縦軸は稼働(運転)優先順位を横軸は蒸気ヘッダ圧力を示す。稼働優先順位は吸収ヒートポンプ32が第1位、排ガスボイラ33が第2位、ボイラ34−2が第3位、ボイラ34−1が第4位となっている。排熱を有効に利用するため、吸収ヒートポンプ32と排ガスボイラ33が優先して運転される。このうち、吸収ヒートポンプ32は温水排熱を熱源としているため順位が1位、排ガスボイラが2位とする。   FIG. 3 shows the operation when a total of four heat source devices of an absorption heat pump 32, an exhaust gas boiler 33, a boiler 34-1 and a boiler 34-2 controlled at two positions of ON-OFF are installed as shown in FIG. An example of pressure setting values and operating states for each priority is shown. The vertical axis represents the operational (operation) priority, and the horizontal axis represents the steam header pressure. As for the operation priority, the absorption heat pump 32 is first, the exhaust gas boiler 33 is second, the boiler 34-2 is third, and the boiler 34-1 is fourth. In order to effectively use the exhaust heat, the absorption heat pump 32 and the exhaust gas boiler 33 are operated with priority. Among them, the absorption heat pump 32 uses hot water exhaust heat as a heat source, so the ranking is first and the exhaust gas boiler is second.

稼働優先順位第1位の吸収ヒートポンプ32は圧力センサ38で検出した蒸気ヘッダ36の蒸気圧力検出値が0.80MPa以下になると運転し、0.82MPaを超えると停止する。運転/停止の各圧力設定値に0.02MPaの幅を設けたのは、頻繁な発停を防止するためである。同様に稼働優先順位第2位の排ガスボイラ33は、圧力センサ38で検出した蒸気ヘッダ36の蒸気圧力検出値が0.78MPa以下になると運転し、0.80MPaを超えると停止する。   The absorption heat pump 32 having the first operating priority is operated when the detected steam pressure value of the steam header 36 detected by the pressure sensor 38 is 0.80 MPa or less, and is stopped when it exceeds 0.82 MPa. The reason why the width of 0.02 MPa is provided for each operation / stop pressure setting value is to prevent frequent start / stop. Similarly, the exhaust gas boiler 33 with the second highest operating priority is operated when the detected steam pressure value of the steam header 36 detected by the pressure sensor 38 is 0.78 MPa or less, and is stopped when it exceeds 0.80 MPa.

本台数制御では、ボイラ34−1とボイラ34−2の稼働優先順位は、各々の累積運転時間を比較して決定する。ここでは、ボイラ34−1の累積運転時間の方が短かった場合を示していて、この場合、稼働優先順位はボイラ34−2が第3位、ボイラ34−1が第4位となり、それぞれ圧力センサ38で検出した蒸気ヘッダ36の蒸気圧力検出値が0.76/0.74MPa以下になると運転し、0.78/0.76MPaを超えると停止する。蒸気ヘッダ36の圧力が0.82MPaを超えた状態では全ての熱源機器が停止し、エンジン30のジャケット温水106は冷却塔やラジエータ(図示せず)等に供給して大気に放熱する。   In this number control, the operation priority order of the boiler 34-1 and the boiler 34-2 is determined by comparing the accumulated operation times. Here, the case where the accumulated operation time of the boiler 34-1 is shorter is shown. In this case, the operation priority is the third place for the boiler 34-2 and the fourth place for the boiler 34-1 and the pressure is set to the pressure. The operation is started when the detected steam pressure value of the steam header 36 detected by the sensor 38 is 0.76 / 0.74 MPa or less, and the operation is stopped when the detected value exceeds 0.78 / 0.76 MPa. In a state where the pressure of the steam header 36 exceeds 0.82 MPa, all the heat source devices are stopped, and the jacket hot water 106 of the engine 30 is supplied to a cooling tower, a radiator (not shown) or the like and radiated to the atmosphere.

上記のような台数制御を行うことによって、エンジン30から発生するジャケット温水106を最優先に、排ガス108を次に優先して利用することができるので、コージェネレーション排熱の有効利用を促進し、システムの熱利用効率を高めることで、蒸気発生のための化石燃料消費量を削減し、炭酸ガス排出量を抑制することができる。また、本実施形態例の台数制御では、吸収ヒートポンプ及び熱源機器の頻繁な発停が起らないように負荷量に応じた吸収ヒートポンプ及び熱源機器の発停を行うので、頻繁な吸収ヒートポンプ及び熱源機器の発停による機器の劣化及び発停時のエネルギー損失を少なくすることができる。ここで、ジャケット温水106が排ガス108より優先して利用される理由は、上述のようにジャケット温水106は利用しない場合、冷却塔などによって放熱させる必要がある(そのためポンプやファン等を運転する必要がある)が、排ガス108は利用しない場合は排ガスボイラ33をバイパスして排気するだけで良いためである。   By controlling the number of units as described above, the jacket hot water 106 generated from the engine 30 can be used with the highest priority, and the exhaust gas 108 can be used with the next highest priority. By increasing the heat utilization efficiency of the system, fossil fuel consumption for steam generation can be reduced and carbon dioxide emissions can be suppressed. Further, in the number control of the present embodiment example, the absorption heat pump and the heat source device are started and stopped according to the load amount so that the absorption heat pump and the heat source device do not frequently start and stop, so the frequent absorption heat pump and the heat source It is possible to reduce the deterioration of the device due to the start / stop of the device and the energy loss at the start / stop. Here, the reason why the jacket hot water 106 is used in preference to the exhaust gas 108 is that, as described above, when the jacket hot water 106 is not used, it is necessary to radiate heat by a cooling tower or the like. However, when the exhaust gas 108 is not used, it is only necessary to bypass the exhaust gas boiler 33 and exhaust the exhaust gas.

本実施形態では、吸収ヒートポンプ32と排ガスボイラ33を1台ずつ設けた場合について述べたが、これらは複数台でも良く、発停の優先順位は上述のボイラ34−1、ボイラ34−2と同様に累積運転時間によって決定すると良い。また、当然ながら、エンジンが停止している場合はジャケット温水106も排ガス108も発生しないので、吸収ヒートポンプ32と排ガスボイラ33は停止し、ボイラ34−1、ボイラ34−2のみで蒸気を発生させて負荷に対応する。   In the present embodiment, the case where the absorption heat pump 32 and the exhaust gas boiler 33 are provided one by one has been described, but a plurality of these may be provided, and the priority of starting and stopping is the same as that of the boilers 34-1 and 34-2 described above. It is better to determine the cumulative operating time. Of course, when the engine is stopped, neither the jacket hot water 106 nor the exhaust gas 108 is generated. Therefore, the absorption heat pump 32 and the exhaust gas boiler 33 are stopped, and steam is generated only by the boiler 34-1 and the boiler 34-2. Corresponding to the load.

本実施形態の台数制御は、蒸気ヘッダ36の蒸気圧力値が所定の値より高い状態が一定時間継続した場合には、運転中の熱源機器を1台停止し、逆に所定の値より低い状態が一定時間継続した場合には、停止中の熱源機器を1台運転するようにしたものである。   In the number control of the present embodiment, when the state where the steam pressure value of the steam header 36 is higher than a predetermined value continues for a certain period of time, one operating heat source device is stopped and, conversely, the state is lower than the predetermined value. Is continued for a certain period of time, one of the stopped heat source devices is operated.

図4は図2と同じ機器構成、即ち吸収ヒートポンプ32(図4では「吸収ヒートポンプ」記す)、排ガスボイラ33(図4では「排ガスボイラ」と記す)、ボイラ34−1(図4では「ボイラ1」と記す)、及びボイラ34−2(図4では「ボイラ2」と記す)から成る構成のシステムに、本実施形態の台数制御を適用した場合の運転フローを示す図である。圧力センサ38で検出した蒸気ヘッダ36の検出蒸気圧力をP、設定圧力をPd、ディファレンシャルをΔとした場合、熱源機器の運転台数減少は、P>Pd+Δの状態が設定時間継続した場合に実行される(ステップST1、ST2)。   4 shows the same equipment configuration as FIG. 2, that is, an absorption heat pump 32 (referred to as “absorption heat pump” in FIG. 4), an exhaust gas boiler 33 (referred to as “exhaust gas boiler” in FIG. 4), and a boiler 34-1 (referred to as “boiler” in FIG. 4). 1 ”) and a boiler 34-2 (referred to as“ boiler 2 ”in FIG. 4). FIG. 6 is a diagram showing an operation flow when the number control of this embodiment is applied to a system having a configuration. When the detected steam pressure of the steam header 36 detected by the pressure sensor 38 is P, the set pressure is Pd, and the differential is Δ, the number of operating heat source devices is decreased when the state of P> Pd + Δ continues for a set time. (Steps ST1 and ST2).

停止の優先順位は、第1位がボイラ34−1とボイラ34−2のうち累積運転時間の長い方、第2位がボイラ34−1とボイラ34−2のうち累積運転時間の短い方、第3位が排ガスボイラ、第4位が吸収ヒートポンプとなっている。そこでボイラ34−1とボイラ34−2の運転時間を比較し(ステップST3)、ボイラ34−1の運転時間>ボイラ34−2の運転時間の場合、ボイラ34−1が運転中かを判断し(ステップST4)、運転中であったらボイラ34−1を停止し(ステップST5)、STARTに戻る。また、ステップST3でボイラ34−2の運転時間>ボイラ34−1の運転時間の場合とステップST4でボイラ34−1が運転中でない場合、ボイラ34−2が運転中かを判断し(ステップST6)、運転中であったらボイラ34−2を停止し(ステップST7)、STARTに戻る。   As for the priority of the stop, the first is the longer cumulative operation time of the boiler 34-1 and the boiler 34-2, the second is the shorter cumulative operation time of the boiler 34-1 and the boiler 34-2, The third is the exhaust gas boiler, and the fourth is the absorption heat pump. Therefore, the operation times of the boiler 34-1 and the boiler 34-2 are compared (step ST3), and if the operation time of the boiler 34-1> the operation time of the boiler 34-2, it is determined whether the boiler 34-1 is in operation. (Step ST4) If it is in operation, the boiler 34-1 is stopped (Step ST5), and the process returns to START. In step ST3, if the operation time of the boiler 34-2 is greater than the operation time of the boiler 34-1 and if the boiler 34-1 is not in operation in step ST4, it is determined whether the boiler 34-2 is in operation (step ST6). If it is in operation, the boiler 34-2 is stopped (step ST7), and the process returns to START.

前記ステップST6において、ボイラ34−2が運転中でなかったら、ボイラ34−1が運転中かを判断し(ステップST8)、運転中であったらステップST5に移行し、運転中でなかったら排ガスボイラ33が運転中かを判断し、運転中であったら排ガスボイラ33を停止し(ステップST10)、STARTに戻る。前記ステップST9で排ガスボイラ33が運転中でなかったら、吸収ヒートポンプ32が運転中かを判断し(ステップST11)、運転中であったら吸収ヒートポンプ32を停止し(ステップST12)、STARTに戻る。また、吸収ヒートポンプ32が運転中でなかったら警報を発する(ステップST13)。   If the boiler 34-2 is not in operation in step ST6, it is determined whether the boiler 34-1 is in operation (step ST8). If it is in operation, the process proceeds to step ST5. It is determined whether or not 33 is in operation. If it is in operation, the exhaust gas boiler 33 is stopped (step ST10), and the process returns to START. If the exhaust gas boiler 33 is not in operation in step ST9, it is determined whether the absorption heat pump 32 is in operation (step ST11). If it is in operation, the absorption heat pump 32 is stopped (step ST12) and the process returns to START. If the absorption heat pump 32 is not in operation, an alarm is issued (step ST13).

熱源機器の運転台数増加は、P<Pd−Δの状態がある設定時間継続した場合に実行され、その優先順位は、第1位が吸収ヒートポンプ、第2位が排ガスボイラ、第3位がボイラ34−1とボイラ34−2のうち運転時間の短い方、第4位がボイラ34−1とボイラ34−2のうち運転時間の長い方となっている。そこで前記ステップST1において、P>Pd+Δでなく、且つP<Pd−Δの状態が設定時間経過し(ステップST14、ST15)、吸収ヒートポンプ32が停止中かを判断し(ステップST16)、停止中であったら吸収ヒートポンプ32を運転し(ステップST17)、STARTに戻る。   The increase in the number of operating heat source devices is executed when the condition of P <Pd−Δ continues for a set time, and the priority order is the absorption heat pump in the first place, the exhaust gas boiler in the second place, and the boiler in the third place Among the boilers 34-1 and 34-2, the one with the shorter operation time, and the fourth place is the one with the longer operation time among the boilers 34-1 and 34-2. Therefore, in step ST1, it is determined whether P> Pd + Δ and P <Pd−Δ have elapsed for the set time (steps ST14 and ST15), and whether the absorption heat pump 32 is stopped (step ST16). If there is, the absorption heat pump 32 is operated (step ST17), and the process returns to START.

前記ステップST16において、吸収ヒートポンプ停止中でなかったら、続いて排ガスボイラ33が停止中かを判断し(ステップST18)、停止中であったら排ガスボイラ33を運転し(ステップST19)、STARTに戻る。前記ステップST18において、排ガスボイラ33が停止中でなかったら、続いてボイラ34−1の運転時間<ボイラ34−2の運転時間かを判断し(ステップST20)、ボイラ34−1の運転時間<ボイラ34−2の運転時間であったらボイラ34−1が停止中かを判断し(ステップST21)、停止中であったらボイラ34−1を運転し(ステップST22)、STARTに戻る。   If the absorption heat pump is not stopped in step ST16, it is subsequently determined whether the exhaust gas boiler 33 is stopped (step ST18). If it is stopped, the exhaust gas boiler 33 is operated (step ST19), and the process returns to START. In step ST18, if the exhaust gas boiler 33 is not stopped, it is subsequently determined whether the operation time of the boiler 34-1 <the operation time of the boiler 34-2 (step ST20), and the operation time of the boiler 34-1 <boiler. If it is the operation time of 34-2, it is determined whether the boiler 34-1 is stopped (step ST21). If it is stopped, the boiler 34-1 is operated (step ST22), and the process returns to START.

前記ステップST20でボイラ34−2の運転時間<ボイラ34−1の運転時間であった場合と前記ステップST21でボイラ34−1が停止中でなかった場合、ボイラ34−2が停止中かを判断し(ステップST23)、停止中であったらボイラ34−2を運転し(ステップST24)、STARTに戻る。前記ステップST23でボイラ34−2が停止中でなかった場合はボイラ34−1が停止中かを判断し(ステップST25)、停止中であったら前記ステップST22に移行し、停止中で無かったら警報を発する(ステップST13)。   When the operation time of the boiler 34-2 is less than the operation time of the boiler 34-1 at the step ST20 and when the boiler 34-1 is not stopped at the step ST21, it is determined whether the boiler 34-2 is stopped. If it is stopped (step ST23), the boiler 34-2 is operated (step ST24), and the process returns to START. If the boiler 34-2 is not stopped in step ST23, it is determined whether the boiler 34-1 is stopped (step ST25). If it is stopped, the process proceeds to step ST22, and if it is not stopped, an alarm is issued. Is issued (step ST13).

上記のように台数制御を行うことによって、図2の例と同様に、エンジン30から発生するジャケット温水106を最優先に、排ガス108をその次に優先して利用することができるので、コージェネレーション排熱の有効利用を促進し、システムの熱利用効率を高めることで、蒸気発生のための化石燃料消費量を削減し、炭酸ガス排出量を抑制することができる。また、蒸気ヘッダ36の圧力を略一定になるように制御できるため、図2の実施形態に比べて、負荷変動に伴う蒸気ヘッダの圧力変動を小さくすることができる。さらに、各熱源機器の頻繁な発停が起らないように負荷量に応じて発停を行うので、頻繁な機器の発停による機器の劣化及び発停時のエネルギー損失を少なくすることができる。   By controlling the number of units as described above, the jacket hot water 106 generated from the engine 30 can be used with the highest priority and the exhaust gas 108 can be used with the highest priority, as in the example of FIG. By promoting the effective use of exhaust heat and increasing the heat utilization efficiency of the system, the consumption of fossil fuel for generating steam can be reduced and the amount of carbon dioxide emission can be suppressed. Moreover, since the pressure of the steam header 36 can be controlled to be substantially constant, the pressure fluctuation of the steam header accompanying the load fluctuation can be reduced as compared with the embodiment of FIG. Furthermore, since the start / stop is performed according to the load amount so that the frequent start / stop of each heat source device does not occur, the deterioration of the device due to the frequent start / stop of the device and the energy loss at the start / stop can be reduced. .

本発明に係る台数制御を行うシステムの別の構成例として、複数台の吸収ヒートポンプ32−1〜32−3、複数台の排ガスボイラ33−1〜33−3、複数台のボイラ34−1〜34−3を設置した場合について、図5を用いて説明する。   As another configuration example of the system for controlling the number of units according to the present invention, a plurality of absorption heat pumps 32-1 to 32-3, a plurality of exhaust gas boilers 33-1 to 33-3, and a plurality of boilers 34-1 to 3-1. The case where 34-3 is installed is demonstrated using FIG.

図5は図2の機器構成を複数台拡張したものであり、温水排熱によって駆動され蒸気を発生させる吸収ヒートポンプ32−1〜32−3と、排ガスによって駆動され蒸気を発生させる排ガスボイラ33−1〜33−3と、燃料を燃焼させて蒸気を発生する通常の燃料焚きボイラ34−1〜34−3の各熱源機器を、逆止弁V1−1〜V1−3、V2−1〜V2−3、V3−1〜V3−3を介して蒸気ヘッダ36に並列に接続したものである。これらの各熱源機器から発生した蒸気はいったん蒸気ヘッダ36に集合させてから使用先37に供給され、蒸気ヘッダ36に取り付けられた圧力センサ38で検出した検出圧力値によって使用先37の負荷状況を検知する点は図2の例と同様である。   FIG. 5 is an expansion of the apparatus configuration of FIG. 2 and includes absorption heat pumps 32-1 to 32-3 driven by hot water exhaust heat to generate steam, and an exhaust gas boiler 33-driven by exhaust gas to generate steam. 1 to 3-3 and normal fuel-fired boilers 34-1 to 34-3 that generate steam by burning fuel, check valves V1-1 to V1-3, V2-1 to V2 -3, connected in parallel to the steam header 36 via V3-1 to V3-3. The steam generated from each of these heat source devices is once gathered in the steam header 36 and then supplied to the user 37, and the load status of the user 37 is determined by the detected pressure value detected by the pressure sensor 38 attached to the steam header 36. The points to be detected are the same as in the example of FIG.

図5に示すシステムの台数制御の1例を図6を用いて説明する。図3の場合と同様に、本台数制御では蒸気ヘッダ36の圧力値を0.01MPa毎に区分し、各々の区分ごとに各熱源機器の運転状態を予め設定しておいて、圧力センサ38で検出した蒸気ヘッダ36の蒸気圧力値に応じて各熱源機器の発停を行うものである。各熱源機器は種類毎に、吸収ヒートポンプ32−1〜32−3、排ガスボイラ33−1〜33−3、ボイラ34−1〜34−3の3グループに分けられ、この順に優先して運転されるものとする。同じ熱源機器グループ内の各々の熱源機器については、各熱源機器の累積運転時間が短いものから優先して運転するように予め順位を決めておく。   An example of the number control of the system shown in FIG. 5 will be described with reference to FIG. As in the case of FIG. 3, in this number control, the pressure value of the steam header 36 is divided every 0.01 MPa, and the operation state of each heat source device is preset for each division, and the pressure sensor 38 Each heat source device is started and stopped according to the detected steam pressure value of the steam header 36. Each heat source device is divided into three groups of absorption heat pumps 32-1 to 32-3, exhaust gas boilers 33-1 to 33-3, and boilers 34-1 to 34-3, and is operated with priority in this order. Shall be. For each heat source device in the same heat source device group, the order is determined in advance so that the heat source devices are operated with priority from the shortest accumulated operation time of each heat source device.

図6はON−OFFの2位置で制御する吸収ヒートポンプ32−1〜32−3、排ガスボイラ33−1〜33−3、ボイラ34−1〜34−3の各熱源機器を計9台設置した場合の蒸気圧力設定値と運転状態のテーブルの一例を示している。最初に、各熱源機器グループ(吸収ヒートポンプ32−1〜32−3のグループ、排ガスボイラ33−1〜33−3のグループ、ボイラ34−1〜34−3のグループ)内において、各熱源機器のうち、累積運転時間の短いものから順に“A”、“B”、“C”と順位を割当てておき、先ず吸収ヒートポンプ32−1〜32−3のグループ内の優先順位の高い機器から運転を開始する。吸収ヒートポンプ32−1〜32−3のグループ内の機器を全て運転した場合、次に排ガスボイラ33−1〜33−3のグループ内の優先順位に従って同様に運転を行い、排ガスボイラ33−1〜33−3のグループの機器を全て運転した場合、次に燃料焚きのボイラ34−1〜34−3クループの優先順位に従って同様に運転を行い、最終的に全ての熱源機器が運転した状態に至る。   In FIG. 6, a total of nine heat source devices of absorption heat pumps 32-1 to 32-3, exhaust gas boilers 33-1 to 33-3, and boilers 34-1 to 34-3 controlled at two positions of ON-OFF are installed. In this case, an example of a table of steam pressure set values and operation states is shown. First, in each heat source equipment group (a group of absorption heat pumps 32-1 to 32-3, a group of exhaust gas boilers 33-1 to 33-3, a group of boilers 34-1 to 34-3), Among them, the order of “A”, “B”, “C” is assigned in order from the shortest accumulated operation time, and the operation is started from the equipment with the highest priority in the group of the absorption heat pumps 32-1 to 32-3. Start. When all the devices in the group of the absorption heat pumps 32-1 to 32-3 are operated, the operation is similarly performed according to the priority order in the group of the exhaust gas boilers 33-1 to 33-3, and the exhaust gas boilers 33-1 to 33-1 are operated. When all the devices in the group 33-3 are operated, the same operation is performed in accordance with the priority order of the fuel-fired boilers 34-1 to 34-3, and finally all the heat source devices are operated. .

また、停止する順位は運転優先順位の逆になり、先ず燃料焚きのボイラ34−1〜34−3の運転優先順位の低いボイラから順に停止する。燃料焚きのボイラ34−1〜34−3グループ内のボイラの全てが停止した場合、次は排ガスボイラ33−1〜33−3グループの運転優先順位の低いボイラから順に停止し、排ガスボイラ33−1〜33−3グループのボイラの全てが停止した場合、次は吸収ヒートポンプ32−1〜32−3グループ内の運転優先順位の低い機器から順に停止、最終的に全ての熱源機器を停止した状態になる。   Further, the order of stopping is the reverse of the order of operation priority. First, the boilers having the lowest operation priority of the fuel-fired boilers 34-1 to 34-3 are stopped in order. When all of the boilers in the fuel-fired boilers 34-1 to 34-3 are stopped, the boilers in the order of lower operation priority of the exhaust gas boilers 33-1 to 33-3 are stopped in turn, and the exhaust gas boiler 33- When all of the boilers in the 1-33-3 groups are stopped, the next stop is in order from the equipment with the lowest operating priority in the absorption heat pumps 32-1 to 32-3 group, and finally all the heat source equipments are stopped. become.

こうすることによって各々の熱源機器グループ内の各機器の総運転時間の偏りを小さくすることができる。例えば吸収ヒートポンプ32−1、32−2、32−3の累積運転時間がそれぞれ150時間、100時間、180時間であったとすると、稼働優先順位が第1位A=吸収ヒートポンプ32−2、第2位B=吸収ヒートポンプ32−1、第3位C=吸収ヒートポンプ32−3と割当てられる。同様に排ガスボイラ33−1、33−2、33−3にその累積運転時間により、グループ内で第1位A、第2位B、第3位Cが割当てられ、燃料焚きのボイラ34−1、34−2、34−3にもその累積運転時間により、グループ内で第1位A、第2位B、第3位Cが割当てられる。   By doing so, it is possible to reduce the deviation of the total operation time of each device in each heat source device group. For example, assuming that the cumulative operation time of the absorption heat pumps 32-1, 32-2, and 32-3 is 150 hours, 100 hours, and 180 hours, respectively, the operation priority order is the first rank A = absorption heat pump 32-2 and second The position B = absorption heat pump 32-1 and the third position C = absorption heat pump 32-3 are assigned. Similarly, the exhaust gas boilers 33-1, 33-2, 33-3 are assigned first rank A, second rank B, and third rank C within the group according to their accumulated operation time, and the fuel-fired boiler 34-1 , 34-2, and 34-3 are also assigned first rank A, second rank B, and third rank C within the group according to their accumulated operation time.

稼働優先順位が第1位Aの吸収ヒートポンプ32−2は、圧力センサ38の蒸気ヘッダ36の検出蒸気圧が0.81MPa以下になると運転し、0.82MPaを超えると停止する。運転/停止の各圧力設定値に0.01MPaの幅を設けたのは、頻繁な発停を防止するためである。同様に稼働優先順位が第2位Bの吸収ヒートポンプ32−1は、圧力センサ38の蒸気ヘッダ36の検出蒸気圧が0.80MPa以下になると運転し、0.81MPaを超えると停止する。稼働優先順位が第3位Cの吸収ヒートポンプ32−3は、圧力センサ38の蒸気ヘッダ36の検出蒸気圧が0.79MPa以下になると運転し、0.80MPaを超えると停止する。   The absorption heat pump 32-2 whose operation priority is first rank A is operated when the detected vapor pressure of the vapor header 36 of the pressure sensor 38 is 0.81 MPa or less, and is stopped when it exceeds 0.82 MPa. The reason why a range of 0.01 MPa is provided for each operation / stop pressure setting value is to prevent frequent start / stop. Similarly, the absorption heat pump 32-1 with the operation priority of the second rank B operates when the detected vapor pressure of the vapor header 36 of the pressure sensor 38 becomes 0.80 MPa or less, and stops when it exceeds 0.81 MPa. The absorption heat pump 32-3 whose operation priority is the third rank C operates when the detected vapor pressure of the vapor header 36 of the pressure sensor 38 is 0.79 MPa or less, and stops when it exceeds 0.80 MPa.

以下同様に、排ガスボイラ33−1〜33−3のグループ内の第1位Aの排ガスボイラが稼働優先順位第4位、第2位Bの排ガスボイラが稼働優先順位第5位、第3位Cの排ガスボイラが稼働優先順位第6位、燃料焚きのボイラ34−1〜34−3のグループの第1位Aの燃料焚きのボイラが稼働優先順位第7位、第2位Bの燃料焚きのボイラが稼働優先順位第8位、第3位Cの燃料焚きのボイラが稼働優先順位第9位となり、圧力センサ38で検出される蒸気ヘッダ36の検出蒸気圧値を基に発停を行うようになっている。   Similarly, the exhaust gas boiler of No. 1 in the group of exhaust gas boilers 33-1 to 33-3 is the fourth highest priority for operation, and the second exhaust gas boiler is the fifth highest priority for operation. Exhaust boiler of C is 6th in operation priority, fuel-fired boilers 34-1 to 34-3, 1st A fuel-fired boiler is 7th in operation priority, 2nd B is fuel-fired The boiler with the No. 8 priority in operation and the No. 3 fuel-capped boiler with No. 9 in the priority order of operation, start and stop based on the detected steam pressure value of the steam header 36 detected by the pressure sensor 38. It is like that.

そして蒸気ヘッダ36が0.73MPa以下で全ての熱源機器が運転され、また蒸気ヘッダ36の圧力が0.82MPaを超えた状態では全ての熱源機器は停止する。   All the heat source devices are operated when the steam header 36 is 0.73 MPa or less, and all the heat source devices are stopped when the pressure of the steam header 36 exceeds 0.82 MPa.

上記のような台数制御を行うことによって、熱源機器を使用しない場合は冷却塔などで冷却する必要がある温水排熱を最優先に、排ガスをその次に優先して利用することができるので、コージェネレーションシステムからの熱を最も効率良く、且つ経済的に利用することができる。また、各熱源機器の累積運転時間を踏まえて各熱源機器の運転優先順位を決定しているため、各熱源機器の運転時間が略均等になり、メンテナンスサイクルを長くすることができる。さらに、各熱源機器の頻繁な発停が起こらないように負荷量に応じて発停を行うので、頻繁な機器の発停による機器の劣化及び発停時のエネルギー損失を少なくすることができる。   By controlling the number of units as described above, hot water exhaust heat that needs to be cooled by a cooling tower or the like must be given top priority when not using heat source equipment, and exhaust gas can be used with priority next to it. The heat from the cogeneration system can be utilized most efficiently and economically. Moreover, since the operation priority order of each heat source device is determined based on the accumulated operation time of each heat source device, the operation time of each heat source device becomes substantially uniform, and the maintenance cycle can be lengthened. Furthermore, since the start and stop is performed according to the load amount so that frequent start and stop of each heat source device does not occur, deterioration of the device due to frequent start and stop of the device and energy loss at the time of start and stop can be reduced.

本実施形態では台数制御を吸収ヒートポンプ32−1〜32−3のグループ、排ガスボイラ33−1〜33−3のグループ、燃料焚きのボイラ34−1〜34−3のグループと、各グループ内の優先順位“A”、“B”、“C”の割当てを累積運転時間によって行ったが、より簡単に、例えば1週間毎に運転優先順位のローテーションを行うなどの方法でも、各熱源機器の運転時間の均一化という目的は十分達することができる。   In the present embodiment, the number control is performed by a group of absorption heat pumps 32-1 to 32-3, a group of exhaust gas boilers 33-1 to 33-3, a group of fuel-fired boilers 34-1 to 34-3, Although the priorities “A”, “B”, and “C” are assigned according to the cumulative operation time, the operation of each heat source device can be performed more easily, for example, by rotating the operation priority every week. The purpose of time equalization can be sufficiently achieved.

また、本実施形態の台数制御では、蒸気ヘッダ36の蒸気圧力による運転テーブルに従って各熱源機器の発停を行うようにしたが、図4と同様、蒸気ヘッダ36の圧力設定値と比較しながら、簡単なシーケンスにしたがって各熱源機器の発停を制御する方法を採用してもよい。   Further, in the number control of the present embodiment, each heat source device is started and stopped according to the operation table based on the steam pressure of the steam header 36, but as in FIG. 4, while comparing with the pressure set value of the steam header 36, You may employ | adopt the method of controlling the start / stop of each heat-source apparatus according to a simple sequence.

以上の実施形態は単段の吸収ヒートポンプを組み合せた場合について述べたが、多段のヒートポンプで構成してもよい。図7を参照しながら、2段吸収ヒートポンプについて説明する。   Although the above embodiment described the case where a single stage absorption heat pump was combined, you may comprise with a multistage heat pump. The two-stage absorption heat pump will be described with reference to FIG.

図7に示すように、2段第2種吸収ヒートポンプは、低圧蒸発器EL、高圧蒸発器EH、低圧吸収器AL、高圧吸収器AH、再生器G、凝縮器C、溶液熱交換器40L、溶液熱交換器40H、溶液ポンプ41、濃溶液配管42、希溶液配管43、希溶液配管44、冷媒ポンプ45、冷媒配管46、熱源温水配管47、熱源温水配管48、冷却水配管49、熱媒配管50、給水ポンプ51、給水予熱伝熱管52、給水予熱伝熱管53、及び蒸気発生伝熱管54から構成される。   As shown in FIG. 7, the two-stage type 2 absorption heat pump includes a low pressure evaporator EL, a high pressure evaporator EH, a low pressure absorber AL, a high pressure absorber AH, a regenerator G, a condenser C, a solution heat exchanger 40L, Solution heat exchanger 40H, solution pump 41, concentrated solution piping 42, diluted solution piping 43, diluted solution piping 44, refrigerant pump 45, refrigerant piping 46, heat source hot water piping 47, heat source hot water piping 48, cooling water piping 49, heat medium The pipe 50, the feed water pump 51, the feed water preheat heat transfer pipe 52, the feed water preheat heat transfer pipe 53, and the steam generation heat transfer pipe 54 are configured.

上記構成の第2種2段吸収ヒートポンプ3において、再生器Gの濃溶液は、溶液ポンプ41により、濃溶液配管42を通り、溶液熱交換器40Lを通り、溶液熱交換器40Lの被加熱側を通り加熱された後、分岐して一方は低圧吸収器ALに送られ該低圧吸収器AL内に散布され、もう一方は溶液熱交換器40Hの被加熱側を通り加熱された後、高圧吸収器AHに送られ該高圧吸収器AH内に散布される。低圧吸収器AL内に散布された濃溶液は、低圧蒸発器ELから流入する冷媒蒸気を吸収し吸収熱を発生し、その熱で熱媒配管46の中に流れる熱媒を加熱する。   In the second type two-stage absorption heat pump 3 having the above-described configuration, the concentrated solution of the regenerator G is passed through the concentrated solution pipe 42, the solution heat exchanger 40L, and the heated side of the solution heat exchanger 40L by the solution pump 41. After being heated through, the one branch is sent to the low pressure absorber AL and sprayed into the low pressure absorber AL, and the other is heated through the heated side of the solution heat exchanger 40H and then the high pressure absorption. Sent to the vessel AH and sprayed into the high-pressure absorber AH. The concentrated solution sprayed in the low-pressure absorber AL absorbs the refrigerant vapor flowing from the low-pressure evaporator EL, generates absorption heat, and heats the heat medium flowing into the heat medium pipe 46 with the heat.

上記冷媒蒸気を吸収し濃度が薄くなった希溶液は、溶液熱交換器40Lの加熱側を経由して再生器Gに戻る。一方、高圧吸収器AHに散布された濃溶液は、高圧蒸発器EHから流入する冷媒蒸気を吸収して吸収熱を発生し、その熱で蒸気発生伝熱管54の中を流れる被加熱媒体を加熱する。冷媒蒸気を吸収して濃度が薄くなった希溶液は、希溶液配管43を通り溶液熱交換器40Hの加熱側を経由して低圧吸収器ALから希溶液配管44を通って流入する希溶液と合流し、再生器Gに戻り、再生器G内に散布される。該再生器G内で散布された希溶液は、熱源温水配管48の中を流れる熱源温水101によって加熱され、冷媒蒸気を発生して濃縮され濃溶液となり、溶液サイクルを一巡する。   The diluted solution that has absorbed the refrigerant vapor and has a reduced concentration returns to the regenerator G via the heating side of the solution heat exchanger 40L. On the other hand, the concentrated solution dispersed in the high-pressure absorber AH absorbs refrigerant vapor flowing from the high-pressure evaporator EH to generate absorption heat, and heats the heated medium flowing in the vapor generation heat transfer tube 54 with the heat. To do. The dilute solution having a reduced concentration due to absorption of the refrigerant vapor passes through the dilute solution pipe 43, passes through the heating side of the solution heat exchanger 40H, and the dilute solution flowing from the low pressure absorber AL through the dilute solution pipe 44. It joins, returns to the regenerator G, and is dispersed in the regenerator G. The dilute solution sprayed in the regenerator G is heated by the heat source hot water 101 flowing in the heat source hot water pipe 48, generates refrigerant vapor and becomes a concentrated solution, and completes the solution cycle.

再生器Gで発生した冷媒蒸気は凝縮器Cに導かれ、冷却水配管49の中を流れる冷却水102によって冷却されて凝縮し、冷媒液となる。この冷媒液は冷媒ポンプ45により冷媒配管46を通って低圧蒸発器EL及び高圧蒸発器EHに送られ、低圧蒸発器EL及び高圧蒸発器EH内にそれぞれ散布される。散布された冷媒液は低圧蒸発器ELでは熱源温水配管47の中を流れる熱源温水103によって加熱され蒸発し、低圧吸収器ALに導かれる。同様に、高圧蒸発器EHでは熱媒配管50を流れる熱媒によって加熱されて蒸発し、高圧吸収器AHに導かれる。以上が溶液のサイクルである。   Refrigerant vapor generated in the regenerator G is guided to the condenser C, and is cooled and condensed by the cooling water 102 flowing in the cooling water pipe 49 to become a refrigerant liquid. This refrigerant liquid is sent to the low-pressure evaporator EL and the high-pressure evaporator EH through the refrigerant pipe 46 by the refrigerant pump 45 and dispersed in the low-pressure evaporator EL and the high-pressure evaporator EH, respectively. The sprayed refrigerant liquid is heated and evaporated by the heat source hot water 103 flowing in the heat source hot water pipe 47 in the low pressure evaporator EL, and is led to the low pressure absorber AL. Similarly, in the high-pressure evaporator EH, it is heated and evaporated by the heat medium flowing through the heat medium pipe 50 and led to the high-pressure absorber AH. This is the solution cycle.

一方、被加熱媒体(水)104は、給水ポンプ51で加圧されて給水予熱伝熱管52に導かれる。給水予熱伝熱管52では、再生器Gで発生した冷媒蒸気が凝縮することで、被加熱媒体(水)104が加熱され、続いて給水予熱伝熱管53では、高圧蒸発器EHで発生した冷媒蒸気が凝縮することで、被加熱媒体(水)104がさらに加熱される。最後に被加熱媒体(水)104は高圧吸収器AH内の蒸気発生伝熱管54で溶液の吸収熱によって加熱されて水蒸気となる。このように、吸収ヒートポンプのサイクルを多段とすることによって同じ温度の熱源からより高温の熱を作り出すことができる。   On the other hand, the heated medium (water) 104 is pressurized by the feed water pump 51 and guided to the feed water preheating heat transfer tube 52. In the feed water preheating heat transfer tube 52, the refrigerant vapor generated in the regenerator G condenses to heat the heated medium (water) 104, and in the feed water preheating heat transfer tube 53, the refrigerant vapor generated in the high pressure evaporator EH. As a result of condensation, the heated medium (water) 104 is further heated. Finally, the medium to be heated (water) 104 is heated by the absorption heat of the solution in the steam generation heat transfer tube 54 in the high-pressure absorber AH to become water vapor. Thus, higher temperature heat can be produced from the same temperature heat source by making the cycle of the absorption heat pump multistage.

なお、給水予熱伝熱管53の設置場所としては、溶液循環系からの熱回収や、熱源温水による直接加熱などが利用でき、これらの組み合せでも良い。また、高圧蒸発器EHに供給される冷媒液を温水などで予熱することで、効率を上げることもできる。   In addition, as a place for installing the feed water preheating heat transfer tube 53, heat recovery from the solution circulation system, direct heating with heat source hot water, or the like can be used, and a combination thereof may be used. Moreover, efficiency can also be improved by preheating the refrigerant liquid supplied to the high-pressure evaporator EH with warm water or the like.

上記実施形態例では、排熱の形態をエンジン30のジャケット温水106や排ガス108としたが、工場排熱なども同様に適用できる。また、温水や排ガスに限らず他の熱媒でも構わない。   In the above embodiment, the exhaust heat form is the jacket warm water 106 and the exhaust gas 108 of the engine 30, but factory exhaust heat and the like can be similarly applied. Further, the heating medium is not limited to hot water and exhaust gas, and other heating media may be used.

被加熱媒体は相変化せず、高温水のまま取り出してもよい。その場合は圧力センサの代りに温度センサに加えて流量計を用いることになる。また、被加熱媒体は水に限らず他の熱媒でもよい。   The medium to be heated does not change phase and may be taken out as high temperature water. In that case, a flow meter is used in addition to the temperature sensor instead of the pressure sensor. Further, the medium to be heated is not limited to water, and may be another heat medium.

吸収ヒートポンプ、排ガスボイラ、燃料焚きボイラ等の熱源機器の台数には制約がない。1台でも複数台でもよい。また、排熱ボイラ又は燃料焚きのボイラがなくとも成立する。また、燃料焚きボイラは、電気エネルギーを熱に変換して蒸気を発生する電気ボイラでも良い。排熱ボイラに追い焚き機能が付いている場合は、それを「排熱ボイラ+燃料焚きボイラ」みなすこともできる。   There are no restrictions on the number of heat source devices such as absorption heat pumps, exhaust gas boilers, and fuel-fired boilers. One or more units may be used. Further, it can be established without an exhaust heat boiler or a fuel-fired boiler. The fuel-fired boiler may be an electric boiler that generates steam by converting electric energy into heat. If the exhaust heat boiler has a reheating function, it can be regarded as “exhaust heat boiler + fuel-fired boiler”.

吸収ヒートポンプは、単段、多段など、特に指定はない。また、上記実施形態例では、各熱源機器をON/OFFの2位置制御としたが、多位置制御(HI,LO,OFF等)や比例制御に拡張することができる。その際の制御方法は多缶ボイラシステムで公知の様々なものを採用できる。   The absorption heat pump is not particularly specified as single stage or multistage. In the above-described embodiment, each heat source device has two-position control of ON / OFF, but can be extended to multi-position control (HI, LO, OFF, etc.) and proportional control. Various control methods known in the multi-can boiler system can be adopted as the control method at that time.

また、他の公知の多缶ボイラシステムと同様の台数制御(負荷予測、スケジュール運転等)を適用することができる。特に吸収ヒートポンプは、通常のボイラに比べて起動時間が長くかかるため、負荷予測によって頻繁な発停を防ぐことは非常に有効である。例えば、使用先の負荷が減少した場合でも、吸収ヒートポンプを停止せず待機状態としておくことによって、再び負荷が増加した場合に遅延することなく負荷に追従することができる。   Moreover, the same number control (load prediction, schedule operation, etc.) as other known multi-can boiler systems can be applied. In particular, since an absorption heat pump takes longer to start than a normal boiler, it is very effective to prevent frequent start / stop by load prediction. For example, even when the load at the use destination decreases, by keeping the absorption heat pump in a standby state without stopping, it is possible to follow the load without delay when the load increases again.

単段第2種吸収ヒートポンプの構成例を示す図である。It is a figure which shows the structural example of a single stage 2nd type | mold absorption heat pump. 本発明に係る熱媒供給システムをエンジンを用いたコージェネレーションに適用した例を示す図である。It is a figure which shows the example which applied the heat-medium supply system which concerns on this invention to the cogeneration using an engine. 本発明に係る熱媒供給システムの台数制御を説明するための図である。It is a figure for demonstrating the number control of the heat-medium supply system which concerns on this invention. 本発明に係る熱媒供給システムの台数制御のフローを示す図である。It is a figure which shows the flow of the number control of the heat-medium supply system which concerns on this invention. 本発明に係る熱媒供給システムの構成例を示す図である。It is a figure which shows the structural example of the heat-medium supply system which concerns on this invention. 本発明に係る熱媒供給システムの蒸気圧力設定値と各熱源機器の運転状態を示す図である。It is a figure which shows the operating state of the steam pressure setting value and each heat-source apparatus of the heat-medium supply system which concerns on this invention. 2段第2種吸収ヒートポンプの構成を示す図である。It is a figure which shows the structure of a two-stage type 2 absorption heat pump.

符号の説明Explanation of symbols

1 単段第2種吸収ヒートポンプ
3 2段第2種吸収ヒートポンプ
E 蒸発器
A 吸収器
G 再生器
C 凝縮器
EH 高圧蒸発器
EL 低圧蒸発器
AH 高圧吸収器
AL 低圧吸収器
V1 逆止弁
V2 逆止弁
V3 逆止弁
11 溶液ポンプ
12 濃溶液配管
13 希溶液配管
14 冷媒ポンプ
15 冷媒配管
16 熱源温水配管
17 熱源温水配管
18 冷却水配管
19 給水ポンプ
20 給水予熱伝熱管
21 蒸気発生熱交換器
30 エンジン
31 発電機
32 吸収ヒートポンプ
33 排ガスボイラ
34 ボイラ
36 蒸気ヘッダ
37 使用先
40L 溶液熱交換器
40H 溶液熱交換器
41 溶液ポンプ
42 濃溶液配管
43 希溶液配管
44 希溶液配管
45 冷媒ポンプ
46 冷媒配管
47 熱源温水配管
48 熱源温水配管
49 冷却水配管
50 熱媒配管
51 給水ポンプ
52 給水予熱伝熱管
53 給水予熱伝熱管
54 蒸気発生伝熱管
1 Single stage type 2 absorption heat pump 3 2nd stage type 2 absorption heat pump E Evaporator A Absorber G Regenerator C Condenser EH High pressure evaporator EL Low pressure evaporator AH High pressure absorber AL Low pressure absorber V1 Check valve V2 Reverse Stop valve V3 Check valve 11 Solution pump 12 Concentrated solution piping 13 Dilute solution piping 14 Refrigerant pump 15 Refrigerant piping 16 Heat source hot water piping 17 Heat source hot water piping 18 Cooling water piping 19 Water supply pump 20 Water supply preheating heat transfer tube 21 Steam generating heat exchanger 30 Engine 31 Generator 32 Absorption heat pump 33 Exhaust gas boiler 34 Boiler 36 Steam header 37 Usage 40L Solution heat exchanger 40H Solution heat exchanger 41 Solution pump 42 Concentrated solution piping 43 Diluted solution piping 44 Dilute solution piping 45 Refrigerant pump 46 Refrigerant piping 47 Heat source hot water piping 48 Heat source hot water piping 49 Cooling water piping 50 Heat medium piping 1 feed water pump 52 water preheating heat exchanger tube 53 the water supply preheating heat exchanger tube 54 steam generator heat transfer tube

Claims (9)

排熱で駆動される1台又は複数台の吸収ヒートポンプと、排熱又は燃料で駆動される1台又は複数台の熱源機器とをヘッダに並列に接続し、該吸収ヒートポンプ及び熱源機器から加熱された熱媒体を前記ヘッダに供給し、該ヘッダから加熱された熱媒体を負荷に供給するように構成したことを特徴とする熱媒供給システム。   One or more absorption heat pumps driven by exhaust heat and one or more heat source devices driven by exhaust heat or fuel are connected in parallel to the header and heated from the absorption heat pump and heat source devices. The heat medium supply system is configured to supply the heated heat medium to the header and to supply the heat medium heated from the header to the load. 請求項1に記載された熱媒供給システムにおいて、
前記負荷の量を検出する負荷検出手段を設け、該負荷検出手段で検出した負荷量に応じて、前記吸収ヒートポンプ及び熱源機器の発停又は容量制御を行う運転制御手段を設けたことを特徴とする熱媒供給システム。
In the heating medium supply system according to claim 1,
Load detecting means for detecting the amount of the load is provided, and operation control means for performing start / stop or capacity control of the absorption heat pump and the heat source device according to the load amount detected by the load detecting means is provided. Heating medium supply system.
請求項2に記載された熱媒供給システムにおいて、
前記運転制御手段は前記吸収ヒートポンプを前記熱源機器に優先して運転する手段を備えていることを特徴とする熱媒供給システム。
In the heating medium supply system according to claim 2,
The operation control means includes means for operating the absorption heat pump in preference to the heat source device.
請求項2又は3に記載された熱媒供給システムにおいて、
前記負荷量に応じた前記吸収ヒートポンプ及び熱源機器の発停は、該吸収ヒートポンプ及び熱源機器の頻繁な発停が起らないように設定する手段を設けていることを特徴とする熱媒供給システム。
In the heating medium supply system according to claim 2 or 3,
The heat medium supply system characterized in that means for setting the absorption heat pump and the heat source device according to the load amount so as not to frequently start and stop the absorption heat pump and the heat source device is provided. .
請求項1乃至4のいずれか1項に記載の熱媒供給システムにおいて、
前記熱源機器は排熱ボイラ及び燃料焚きボイラであり、
前記運転制御手段は前記吸収ヒートポンプと前記排熱ボイラを前記燃料焚きボイラに優先して運転する手段を備えていることを特徴とする熱媒供給システム。
The heating medium supply system according to any one of claims 1 to 4,
The heat source equipment is a waste heat boiler and a fuel-fired boiler,
The operation control means includes means for operating the absorption heat pump and the exhaust heat boiler in preference to the fuel-fired boiler.
請求項5に記載の熱媒供給システムにおいて、
熱媒は蒸気であって前記負荷検出手段は前記ヘッダの蒸気圧を検出する圧力センサであることを特徴とする熱媒供給システム。
In the heating medium supply system according to claim 5,
The heating medium supply system, wherein the heating medium is steam, and the load detection means is a pressure sensor that detects a vapor pressure of the header.
請求項1乃至6のいずれか1項に記載の熱媒供給システムにおいて、
前記排熱を供給する排熱源に、排熱媒体の冷却を必要とする排熱源と排熱媒体の冷却を必要としない排熱源がある場合、排熱媒体の冷却を必要とする排熱源からの排熱を優先して使用する手段を備えていることを特徴とする熱媒供給システム。
The heating medium supply system according to any one of claims 1 to 6,
When the exhaust heat source that supplies the exhaust heat includes an exhaust heat source that requires cooling of the exhaust heat medium and an exhaust heat source that does not require cooling of the exhaust heat medium, the exhaust heat source that requires cooling of the exhaust heat medium A heating medium supply system comprising means for giving priority to waste heat.
請求項1乃至7のいずれか1項に記載の熱媒供給システムにおいて、
複数台の前記吸収ヒートポンプの間ではその運転優先順位は累積運転時間によって決める手段を備えていることを特徴とする熱媒供給システム。
The heating medium supply system according to any one of claims 1 to 7,
A heating medium supply system comprising means for determining the operation priority among a plurality of the absorption heat pumps based on an accumulated operation time.
請求項1乃至8のいずれか1項に記載の熱媒供給システムにおいて、
複数台の熱源機器を種類に応じて複数グループに区分し、同一グループに属する複数の熱源機器の間ではその運転優先順位は累積運転時間によって決める手段を備えていることを特徴とする熱媒供給システム。
In the heating medium supply system according to any one of claims 1 to 8,
Heat medium supply, characterized in that a plurality of heat source devices are divided into a plurality of groups according to the type, and the operation priority among the plurality of heat source devices belonging to the same group is determined by the cumulative operation time. system.
JP2005216195A 2005-07-26 2005-07-26 Heat medium supply system Expired - Fee Related JP4566853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216195A JP4566853B2 (en) 2005-07-26 2005-07-26 Heat medium supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216195A JP4566853B2 (en) 2005-07-26 2005-07-26 Heat medium supply system

Publications (2)

Publication Number Publication Date
JP2007032917A true JP2007032917A (en) 2007-02-08
JP4566853B2 JP4566853B2 (en) 2010-10-20

Family

ID=37792392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216195A Expired - Fee Related JP4566853B2 (en) 2005-07-26 2005-07-26 Heat medium supply system

Country Status (1)

Country Link
JP (1) JP4566853B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017701A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012042205A (en) * 2010-05-14 2012-03-01 Miura Co Ltd Heat pump steam generating device
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system
CN104930640A (en) * 2014-03-17 2015-09-23 荏原冷热系统株式会社 Heat source device unit
JP2020008212A (en) * 2018-07-06 2020-01-16 東京ガスエンジニアリングソリューションズ株式会社 Cogeneration system, control device for cogeneration system, and control method for cogeneration system
JP2020190402A (en) * 2019-05-24 2020-11-26 株式会社サムソン Multi-can installation boiler performing quantity control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280458A (en) * 1985-10-03 1987-04-13 三菱電機株式会社 Absorption type heat pump
JPH02130247A (en) * 1988-11-07 1990-05-18 Nichii:Kk Cogeneration system
JPH0875102A (en) * 1994-08-31 1996-03-19 Miura Co Ltd Automatic controlling method of number of boilers
JPH1114186A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Absorption cogenerating system utilizing engine waste heat and its operation control method
JPH11118282A (en) * 1997-10-16 1999-04-30 Hitachi Ltd Cold/hot water supply device
JP2003222301A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Operation control method and system of process steam generation equipment for industry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280458A (en) * 1985-10-03 1987-04-13 三菱電機株式会社 Absorption type heat pump
JPH02130247A (en) * 1988-11-07 1990-05-18 Nichii:Kk Cogeneration system
JPH0875102A (en) * 1994-08-31 1996-03-19 Miura Co Ltd Automatic controlling method of number of boilers
JPH1114186A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Absorption cogenerating system utilizing engine waste heat and its operation control method
JPH11118282A (en) * 1997-10-16 1999-04-30 Hitachi Ltd Cold/hot water supply device
JP2003222301A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Operation control method and system of process steam generation equipment for industry

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142415A1 (en) * 2010-05-14 2011-11-17 三浦工業株式会社 Steam system
JP2012042205A (en) * 2010-05-14 2012-03-01 Miura Co Ltd Heat pump steam generating device
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017701A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
JP2015017713A (en) * 2013-07-08 2015-01-29 有限会社庄野環境デザインラボ Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system
CN104930640A (en) * 2014-03-17 2015-09-23 荏原冷热系统株式会社 Heat source device unit
JP2015175564A (en) * 2014-03-17 2015-10-05 荏原冷熱システム株式会社 Heat source device unit
JP2020008212A (en) * 2018-07-06 2020-01-16 東京ガスエンジニアリングソリューションズ株式会社 Cogeneration system, control device for cogeneration system, and control method for cogeneration system
JP2020190402A (en) * 2019-05-24 2020-11-26 株式会社サムソン Multi-can installation boiler performing quantity control

Also Published As

Publication number Publication date
JP4566853B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4566853B2 (en) Heat medium supply system
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
CN105431685A (en) System for producing heat source for heating or electricity using medium/low temperature waste heat and method for controlling same
WO2011068880A2 (en) Utilizing steam and/or hot water generated using solar energy
Reddy et al. Waste Heat Recovery Methods And Technologies.
JP2010038537A (en) System and method for controlling stack temperature
EP2657625B1 (en) Method and device for controlling operation of heat pump device
WO2016043094A1 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP4794229B2 (en) Gas turbine power generator and gas turbine combined power generation system
JP2014034924A (en) Exhaust heat recovery device of internal combustion engine and cogeneration system
JP5130676B2 (en) Steam generation system
JP2011089722A (en) Method and device for refrigeration/air conditioning
US7347057B1 (en) Control of dual-heated absorption heat-transfer machines
JP4999992B2 (en) Gas turbine combined power generation system
CA2888018C (en) Oxy boiler power plant with a heat integrated air separation unit
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
CN103953403A (en) Trans-critical and subcritical coupling organic Rankine circulating system for recovery of flue gas residual heat
JP5605557B2 (en) Heat pump steam generator
US20150089944A1 (en) Back-up boiler system for a solar thermal power plant based on molten salt technology, a solar thermal power plant and a method for operating a solar thermal power plant
CN201050838Y (en) Highly effective instant heating type heat pump hot-water system
JP5760303B2 (en) Heat supply system
CN108507219A (en) A kind of compound two-stage type lithium bromide absorption type heat pump and working method
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
KR20140085003A (en) Energy saving system for using waste heat of ship
JP2011075206A (en) Heat pump system generating a plurality of systems of warm water with different temperature

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees