JP2007032885A - Control method of air conditioner - Google Patents

Control method of air conditioner Download PDF

Info

Publication number
JP2007032885A
JP2007032885A JP2005214179A JP2005214179A JP2007032885A JP 2007032885 A JP2007032885 A JP 2007032885A JP 2005214179 A JP2005214179 A JP 2005214179A JP 2005214179 A JP2005214179 A JP 2005214179A JP 2007032885 A JP2007032885 A JP 2007032885A
Authority
JP
Japan
Prior art keywords
temperature
floor
room temperature
air
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005214179A
Other languages
Japanese (ja)
Other versions
JP2007032885A5 (en
JP4478082B2 (en
Inventor
Atsushi Edayoshi
敦史 枝吉
Masahiko Takagi
昌彦 高木
Kazutaka Suzuki
一隆 鈴木
Manabu Asahina
学 朝比奈
Hiroyuki Takada
博之 高田
Masaaki Maruyama
雅晃 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005214179A priority Critical patent/JP4478082B2/en
Publication of JP2007032885A publication Critical patent/JP2007032885A/en
Publication of JP2007032885A5 publication Critical patent/JP2007032885A5/ja
Application granted granted Critical
Publication of JP4478082B2 publication Critical patent/JP4478082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an air conditioner improving both the upper and lower temperature difference of a room and the plane temperature difference near a floor. <P>SOLUTION: The control method of the air conditioner comprises a first step of measuring the floor temperature of a plurality of areas near the floor of the room by a radiation temperature detecting means; a second step of averaging the measured floor temperature of the plurality of areas to compute an average floor temperature Ta; a third step of computing a room temperature Td from an arithmetic expression Td=(1-α)Tc+αTa when the detected temperature of a suction air temperature sensor is set to Tc and a radiation temperature contribution rate is set to α(0-0.5); a fourth step of comparing the room temperature Td with a set temperature Tb; and a fifth step of controlling the air quantity of an indoor blower or the capacity of a compressor when the room temperature Td does not reach the set temperature Tb. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、可動式の輻射センサーを用いて、ほぼ部屋全体の床温度を検知し、部屋の上下温度差、床平面温度差が少なくなるように、圧縮機の運転周波数、室内機送風機の風量等を制御する空気調和機の制御方法に関するものである。   The present invention uses a movable radiation sensor to detect the floor temperature of the entire room, so that the difference in temperature between the top and bottom of the room and the difference in floor plane temperature are reduced. It is related with the control method of the air conditioner which controls etc.

尚、空気調和機として、天井埋込カセット形空気調和機を用いて説明するが、その他の天井埋込形(ダクト式)、天吊り形等にも本発明は適用可能である。   In addition, although it demonstrates using a ceiling embedded cassette type air conditioner as an air conditioner, this invention is applicable also to other ceiling embedded types (duct type), a ceiling suspended type, etc.

従来の天井埋込カセット形空気調和機は、室内機の吸込み口に設置されている温度センサーで検知した温度を部屋の温度として、圧縮機の運転周波数、室内機送風機の風量等を制御している。しかし、空気の温度だけでは日射や床・壁などの輻射熱、機器の発熱等の影響によって、人間が感じる温度を正確に捉えられない。また、暖房時は空気の比重差で暖かい空気が上方にたまり込むため、天井付近の高い温度を検知し、居住空間の温度とは誤差が生じる。このように居住空間の温度を正確に捉えられないため、ユーザが適宜、設定温度を変えて、対応していた。しかし、省エネ管理が厳しく設定温度が変えられない場合は、冷えない/暖まらないなどの課題がある。   Conventional ceiling-embedded cassette-type air conditioners control the operating frequency of the compressor, the air volume of the indoor unit blower, etc., using the temperature detected by the temperature sensor installed at the inlet of the indoor unit as the room temperature. Yes. However, the air temperature alone cannot accurately capture the temperature perceived by humans due to the effects of solar radiation, radiant heat from the floor and walls, and heat generated by the equipment. Further, since warm air accumulates upward due to the difference in specific gravity of air during heating, a high temperature near the ceiling is detected, and an error occurs from the temperature of the living space. As described above, since the temperature of the living space cannot be accurately captured, the user appropriately responds by changing the set temperature. However, when the energy-saving management is strict and the set temperature cannot be changed, there are problems such as not being cooled / warming.

そこで、多方向(例えば、2、3あるいは4方向)吹出タイプの空気調和機において、吹出方向に対応する多方向の領域における上下温度分布を赤外線センサー等を用いて検知し、その検知情報に基づいて吹出空気流を制御するようにして、室内温度の均一な快適制御を可能にする空気調和機の吹出空気制御装置が提案されている(例えば、特許文献1参照)。
特開平3−2605456号公報
Therefore, in a multi-directional (for example, 2, 3 or 4 direction) blowing type air conditioner, an upper and lower temperature distribution in a multi-directional region corresponding to the blowing direction is detected using an infrared sensor or the like, and based on the detection information. Thus, there has been proposed a blown air control device for an air conditioner that enables uniform comfortable control of the indoor temperature by controlling the blown air flow (see, for example, Patent Document 1).
JP-A-3-260456

しかしながら、上記従来の空気調和機の吹出空気制御装置では、床や壁は熱容量が大きく、空気の温度よりも温度変化が遅いため、床や壁からの輻射温度を大きく見積もると、すでに快適な温度に制御しているにも関わらず、床や壁の温度が変わるまで余分なエネルギーを使ったり、不快感を与える場合があり、単純な平均化処理では快適性を損なう恐れがあった。また、部屋の上下の温度差はある程度改善されるものの、床付近の平面温度差は改善できないという課題があった。   However, in the conventional air conditioner air blow control device, the floor and walls have a large heat capacity, and the temperature change is slower than the temperature of the air. In spite of this, excessive energy may be used until the floor or wall temperature changes, or it may cause discomfort, and a simple averaging process may impair comfort. Moreover, although the temperature difference between the upper and lower sides of the room is improved to some extent, there is a problem that the flat temperature difference near the floor cannot be improved.

この発明は、上記のような課題を解決するためになされたもので、部屋の上下温度差、及び床付近の平面温度差を共に改善できる空気調和機の制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control method for an air conditioner that can improve both the vertical temperature difference in the room and the planar temperature difference near the floor. .

この発明に係る空気調和機の制御方法は、室内機が天井等の高所に据え付けられ、室内送風機からの吹出し空気を下向きに吹出すように構成され、複数の吹出し口と、空気の吸込み口と、床等の物体が輻射する赤外線を検知して物体の温度を検出し、部屋のほぼ垂直方向にその回転軸が配置されたモータにより駆動され、検知方向が回転軸に対して所定角度傾いて回転軸に取り付けられ、約360゜の範囲で回転して床等の物体の温度を検出する輻射温度検知手段と、冷凍サイクルの圧縮機と、吸込み口に設けられた吸込み空気温度センサーとを備えた空気調和機の制御方法において、輻射温度検知手段により、部屋の床付近の複数のエリアの床温度を測定する第1のステップと、測定した複数のエリアの床温度を平均化して、平均床温度Taを演算する第2のステップと、吸込み空気温度センサーの検知温度をTc、輻射温度寄与率をα(0〜0.5)としたとき、部屋温度Tdを、Td=(1−α)Tc+αTaの演算式から算出する第3のステップと、部屋温度Tdと設定温度Tbとを比較する第4のステップと、部屋温度Tdが設定温度Tbに達しない場合は、室内送風機の風量または圧縮機の能力制御を行う第5のステップとを備えたことを特徴とする。   The control method of the air conditioner according to the present invention is configured such that the indoor unit is installed at a high place such as a ceiling and blows out the air blown from the indoor blower downward, and includes a plurality of blowout ports and an air suction port Infrared rays radiated from objects such as floors are detected to detect the temperature of the object, and it is driven by a motor having its rotation axis arranged in a substantially vertical direction of the room, and the detection direction is inclined at a predetermined angle with respect to the rotation axis. A radiant temperature detection means that detects the temperature of an object such as a floor by rotating within a range of about 360 °, a compressor for a refrigeration cycle, and an intake air temperature sensor provided at the intake port. In the control method of an air conditioner provided, the first step of measuring the floor temperature of a plurality of areas near the floor of the room by the radiation temperature detection means, and averaging the measured floor temperatures of the plurality of areas Floor temperature T When the detection temperature of the intake air temperature sensor is Tc and the radiation temperature contribution ratio is α (0 to 0.5), the room temperature Td is calculated as Td = (1−α) Tc + αTa. The third step calculated from the arithmetic expression, the fourth step comparing the room temperature Td and the set temperature Tb, and if the room temperature Td does not reach the set temperature Tb, the air volume of the indoor fan or the compressor capacity And a fifth step of performing control.

この発明に係る空気調和機の制御方法は、上記構成により、部屋の上下温度差、及び床付近の平面温度差を共に改善でき、冷えない・暖まらないという快適性に関わる使用者の不満を解消することができる。   The control method for an air conditioner according to the present invention can improve both the vertical temperature difference of the room and the flat surface temperature difference near the floor by the above configuration, and eliminates user dissatisfaction related to comfort that does not cool or warm. can do.

実施の形態1.
図1乃至7は実施の形態1を示す図で、図1は天井埋込カセット形空気調和機の室内機1の側面図と平面図、図2は天井埋込カセット形空気調和機の室内機1の縦断面図、図3は輻射センサー2を示す図、図4は天井埋込カセット形空気調和機の冷媒回路図、図5は輻射センサー2を回転させて測定する部屋の8箇所の領域(a1〜a8)を示す図、図6は輻射センサー2の測定結果に基づく部屋の温度制御のフローチャート、図7は天井埋込カセット形空気調和機の室内機1の吹出し口付近の拡大図である。
Embodiment 1 FIG.
1 to 7 are diagrams showing Embodiment 1, FIG. 1 is a side view and a plan view of an indoor unit 1 of a ceiling embedded cassette type air conditioner, and FIG. 2 is an indoor unit of a ceiling embedded cassette type air conditioner. FIG. 3 is a diagram showing a radiation sensor 2, FIG. 4 is a refrigerant circuit diagram of a ceiling-embedded cassette type air conditioner, and FIG. 5 is an area of eight locations in a room where the radiation sensor 2 is rotated for measurement. FIG. 6 is a flowchart of room temperature control based on the measurement result of the radiation sensor 2, and FIG. 7 is an enlarged view of the vicinity of the outlet of the indoor unit 1 of the ceiling embedded cassette type air conditioner. is there.

図1に示すように、天井埋込カセット形空気調和機の室内機1は、外箱11の下面にパネル20が当接結合されている。パネル20は、中央部に位置する空気の吸込み口3と、この吸込み口3を囲む4個の吹出し口4とを備えている。吹出し口4は、ここでは4方向であるが、多方向(例えば、2、3・・・方向)の吹出タイプでもよい。   As shown in FIG. 1, in an indoor unit 1 of a ceiling-embedded cassette type air conditioner, a panel 20 is abutted and coupled to the lower surface of an outer box 11. The panel 20 includes an air inlet 3 located in the center and four outlets 4 surrounding the inlet 3. Although the blowout port 4 is four directions here, the blowout type of a multi-direction (for example, 2, 3, ... direction) may be sufficient.

また、吸込みと吹出しの空気の抵抗にならないパネル20のコーナー部に、床等の物体が輻射する赤外線を検知して物体の温度を検出する輻射センサー2(輻射温度検知手段の一例)が設置されている。さらに、パネル20の中央部に位置する吸込み口3付近には、吸込み空気の温度を検出する吸込み空気温度センサー6が設置されている。   In addition, a radiation sensor 2 (an example of a radiation temperature detecting means) that detects the temperature of an object by detecting infrared rays radiated by an object such as a floor is installed at a corner portion of the panel 20 that does not resist the suction and blowing air. ing. Further, a suction air temperature sensor 6 for detecting the temperature of the suction air is installed in the vicinity of the suction port 3 located at the center of the panel 20.

図2により、天井埋込カセット形空気調和機の室内機1の全体構成を簡単に説明する。室内機1は、断熱材14が内面に施された外箱11に、パネル20が当接結合され、図示しない固定ボルトにより取付金具18を介して天壁に固定される。外箱11の内部中央付近に、ファン12bをファンモータ12aで駆動する室内送風機12を備えている。室内送風機12が吸込み口3のグリル23、フィルタ22及びベルマウス17を通して室内空気を吸い込み、一次側空間24に高圧空気を吐き出す。高圧空気は室内熱交換器15を通り、二次側空間25に入り、吹出し口4から室内へ吹出される。室内熱交換器15の下方に、ドレンパン16が設置されている。輻射センサー2は、パネル20のコーナー部に別部品として取り付けられるコーナーパネル21(4個)のいずれかに設けられる。   The overall configuration of the indoor unit 1 of the ceiling-embedded cassette type air conditioner will be briefly described with reference to FIG. In the indoor unit 1, a panel 20 is abutted and coupled to an outer box 11 having an inner surface provided with a heat insulating material 14, and is fixed to a top wall via a mounting bracket 18 by a fixing bolt (not shown). An indoor blower 12 that drives a fan 12b with a fan motor 12a is provided in the vicinity of the inner center of the outer box 11. The indoor blower 12 sucks room air through the grill 23 of the suction port 3, the filter 22 and the bell mouth 17, and discharges high-pressure air to the primary side space 24. The high-pressure air passes through the indoor heat exchanger 15, enters the secondary side space 25, and is blown into the room from the blowout port 4. A drain pan 16 is installed below the indoor heat exchanger 15. The radiation sensor 2 is provided in one of the corner panels 21 (four pieces) attached as a separate part to the corner portion of the panel 20.

図3に示すように、コーナーパネル21に設置される輻射センサー2は、輻射センサー2の検知方向が部屋の垂直方向に対して所定角度(例えば、30゜)傾くように取り付けられ、回転軸5aが部屋の垂直方向に向いたモータ5(例えば、ステッピングモータ)によって約360゜回転する。例えば、時計方向に約360゜回転して、床が輻射する赤外線を検知して床の温度を検出し、次は反時計方向に約360゜回転して床温を検出する。この往復動作を繰り返す。   As shown in FIG. 3, the radiation sensor 2 installed on the corner panel 21 is attached so that the detection direction of the radiation sensor 2 is inclined by a predetermined angle (for example, 30 °) with respect to the vertical direction of the room, and the rotating shaft 5a. Is rotated about 360 ° by a motor 5 (for example, a stepping motor) oriented in the vertical direction of the room. For example, it rotates about 360 ° in the clockwise direction, detects the infrared ray radiated from the floor and detects the temperature of the floor, and then rotates about 360 ° in the counterclockwise direction to detect the bed temperature. This reciprocation is repeated.

図4により、天井埋込カセット形空気調和機の冷媒回路について簡単に説明する。   The refrigerant circuit of the ceiling-embedded cassette type air conditioner will be briefly described with reference to FIG.

天井埋込カセット形空気調和機は、室内機1と室外機60とを備えている。室内機1と、室外機60とは接続配管35及び接続配管37により接続されている。室内機1は、図2に示した室内熱交換器15と、室内送風機12と、室内送風機12等を制御する室内制御部46とを有する。室内制御部46には、使用者が操作するリモコン47が有線で接続されている。   The ceiling-embedded cassette type air conditioner includes an indoor unit 1 and an outdoor unit 60. The indoor unit 1 and the outdoor unit 60 are connected by a connection pipe 35 and a connection pipe 37. The indoor unit 1 includes the indoor heat exchanger 15 illustrated in FIG. 2, the indoor blower 12, and an indoor control unit 46 that controls the indoor blower 12 and the like. A remote controller 47 operated by a user is connected to the indoor control unit 46 by wire.

室外機60は、室内制御部46と信号線で接続された室外制御部44で制御されるインバータ回路45で周波数可変に駆動される圧縮機31と、冷媒の流れる方向を切り替える四方弁32と、減圧装置である電子膨張弁34と、室外熱交換器33と、室外送風機40と、アキュムレータ38とを有する。   The outdoor unit 60 includes a compressor 31 that is variably driven by an inverter circuit 45 controlled by an outdoor control unit 44 connected to the indoor control unit 46 through a signal line, a four-way valve 32 that switches a refrigerant flow direction, It has an electronic expansion valve 34 that is a decompression device, an outdoor heat exchanger 33, an outdoor blower 40, and an accumulator 38.

そして、例えば、冷房運転時には、圧縮機31、四方弁32、室外熱交換器33、電子膨張弁34、室内熱交換器15、四方弁32、アキュムレータ38、圧縮機31の順に接続して、冷媒回路を構成する。   For example, during cooling operation, the compressor 31, the four-way valve 32, the outdoor heat exchanger 33, the electronic expansion valve 34, the indoor heat exchanger 15, the four-way valve 32, the accumulator 38, and the compressor 31 are connected in this order. Configure the circuit.

室内機1の冷房又は暖房能力を制御する場合は、室内送風機12の回転数を変化させるか、又は圧縮機31を駆動するインバータ回路45の周波数を変化させる。但し、圧縮機31の能力制御には、インバータ回路45の周波数を変える方法以外に、室外送風機40の回転数を変化させる方法等がある。   When controlling the cooling or heating capacity of the indoor unit 1, the rotational speed of the indoor blower 12 is changed, or the frequency of the inverter circuit 45 that drives the compressor 31 is changed. However, the capacity control of the compressor 31 includes a method of changing the rotational speed of the outdoor blower 40 in addition to a method of changing the frequency of the inverter circuit 45.

次に輻射センサー2を用いて部屋の温度を制御する動作を、図5、図6により説明する。図5に示すように、部屋の床を8つのエリア(a1〜a8)に分けてそれぞれの床温を測定する。まず、予め決めた基準位置からa1、a2・・・a8と順に時計周りに輻射センサー2をモータ5により回転させる。それぞれの位置で5秒間停止し、床の輻射温度T1、T2・・・T8(a1、a2・・・a8に対応する)を測定する(図6のS1(第1のステップ))。この動作は、例えば1分毎に行うが、輻射センサー2の回転方向は、時計方向、反時計方向を繰り返す。   Next, the operation of controlling the room temperature using the radiation sensor 2 will be described with reference to FIGS. As shown in FIG. 5, the floor of the room is divided into eight areas (a1 to a8), and the respective bed temperatures are measured. First, the radiation sensor 2 is rotated by the motor 5 clockwise from a predetermined reference position in the order of a1, a2,. Stop at each position for 5 seconds, and measure the floor radiation temperatures T1, T2... T8 (corresponding to a1, a2... A8) (S1 in FIG. 6 (first step)). This operation is performed every minute, for example, but the rotation direction of the radiation sensor 2 repeats clockwise and counterclockwise.

輻射センサー2で測定したデータを平均化する(図6のS2(第2のステップ))。この場合の演算式は、
Ta=(ΣTn)/8・・・(1)
ここで、Taは平均床温度、Tn(n=1〜8)
は、各エリア(a1〜a8)の床温度である。
Data measured by the radiation sensor 2 is averaged (S2 in FIG. 6 (second step)). In this case, the equation is
Ta = (ΣTn) / 8 (1)
Here, Ta is the average bed temperature, Tn (n = 1-8)
Is the floor temperature of each area (a1 to a8).

人の体感温度は、空気温度、輻射温度、湿度、気流に影響され、その中でも空気温度、輻射温度の占める割合が大きい。一般的に空気温度に対して輻射温度の割合は50%以下である。そこで、次式により、部屋温度Tdを算出する(図6のS3(第3のステップ))。
Td=(1−α)Tc+αTa・・・(2)
ここで、Tcは吸込み空気温度センサー6の検知温度、αは輻射温度寄与率(0〜0.5)である。
The human sensible temperature is affected by air temperature, radiation temperature, humidity, and airflow, and the ratio of the air temperature and radiation temperature is large among them. In general, the ratio of the radiation temperature to the air temperature is 50% or less. Therefore, the room temperature Td is calculated by the following equation (S3 in FIG. 6 (third step)).
Td = (1-α) Tc + αTa (2)
Here, Tc is the temperature detected by the intake air temperature sensor 6, and α is the radiation temperature contribution ratio (0 to 0.5).

部屋温度Tdと、室温の設定温度Tbとを比較する(図6のS4(第4のステップ))。冷房運転時はTd≦Tb、暖房運転時はTd≧Tbを満たさない場合は、室内送風機12の風量制御または圧縮機31の能力制御を行う(図6のS5(第5のステップ))。   The room temperature Td is compared with the set temperature Tb of room temperature (S4 in FIG. 6 (fourth step)). When Td ≦ Tb is not satisfied during the cooling operation and Td ≧ Tb is not satisfied during the heating operation, the air volume control of the indoor blower 12 or the capacity control of the compressor 31 is performed (S5 in FIG. 6 (fifth step)).

次に、冷房運転時は、各エリア(a1〜a8)の個々の床温Tn(n=1〜8)の中で最も高い温度Tnmaxを算出する。暖房運転時は、各エリア(a1〜a8)の個々の床温Tn(n=1〜8)の中で最も低い温度Tnminを算出する。そして、冷房時と暖房時の局所的な部屋温度Td’を次式で算出する(図6のS6(第6のステップ))。
冷房時 局所的な部屋温度Td’=(1−α)Tc+αTnmax・・・(3)
暖房時 局所的な部屋温度Td’=(1−α)Tc+αTnmin・・・(4)
Next, during the cooling operation, the highest temperature Tnmax is calculated among the individual bed temperatures Tn (n = 1 to 8) of each area (a1 to a8). During the heating operation, the lowest temperature Tnmin is calculated among the individual bed temperatures Tn (n = 1 to 8) of each area (a1 to a8). And local room temperature Td 'at the time of air_conditioning | cooling and heating is calculated by following Formula (S6 of FIG. 6 (6th step)).
Local room temperature Td ′ = (1−α) Tc + αTnmax (3)
Local room temperature Td ′ = (1−α) Tc + αTminin during heating (4)

局所的な部屋温度Td’が、冷房運転時には設定温度Tbより高いか、また暖房時には設定温度Tbより低いかを判定する(図6のS7(第7のステップ))。局所的な部屋温度Td’が、冷房運転時には設定温度Tbより低く、また暖房時には設定温度Tbより高い場合は、S1に戻る。   It is determined whether local room temperature Td 'is higher than set temperature Tb during cooling operation or lower than set temperature Tb during heating (S7 in FIG. 6 (seventh step)). If the local room temperature Td 'is lower than the set temperature Tb during cooling operation and higher than the set temperature Tb during heating, the process returns to S1.

冷房運転時、局所的な部屋温度Td’が設定温度Tbより高いとき、または暖房運転時、局所的な部屋温度Td’より低いときは、その局所的な部屋温度Td’と設定温度Tbとの差を所定値c(例えば、2℃)と比較する(図6のS8(第8のステップ))。その局所的な部屋温度Td’と設定温度Tbとの差がcより小さい場合は、ハンチングを避けるためS1に戻る。   When the local room temperature Td ′ is higher than the set temperature Tb during the cooling operation or when it is lower than the local room temperature Td ′ during the heating operation, the local room temperature Td ′ and the set temperature Tb are The difference is compared with a predetermined value c (for example, 2 ° C.) (S8 in FIG. 6 (eighth step)). If the difference between the local room temperature Td 'and the set temperature Tb is smaller than c, the process returns to S1 to avoid hunting.

局所的な部屋温度Td’と設定温度Tbとの差がcより大きい場合は、室内送風機12の風量制御または圧縮機31の能力制御を行う(図6のS9(第9のステップ))。そして、S1と同様の方法により、床の輻射温度T1、T2・・・T8(a1、a2・・・a8に対応する)を測定する(図6のS10(第10のステップ))。また、S2と同様の方法により、輻射センサー2で測定したデータを平均化して、平均床温度Taを演算する(図6のS11(第11のステップ))。さらに、S3と同様の方法により、部屋温度Tdを算出する(図6のS12(第12のステップ))。   When the difference between the local room temperature Td 'and the set temperature Tb is larger than c, the air volume control of the indoor fan 12 or the capacity control of the compressor 31 is performed (S9 in FIG. 6 (9th step)). Then, the floor radiation temperatures T1, T2... T8 (corresponding to a1, a2... A8) are measured by the same method as S1 (S10 in FIG. 6 (tenth step)). Further, the average floor temperature Ta is calculated by averaging the data measured by the radiation sensor 2 by the same method as S2 (S11 in FIG. 6 (11th step)). Furthermore, the room temperature Td is calculated by the same method as S3 (S12 in FIG. 6 (12th step)).

部屋温度Tdと設定温度Tbとの差の絶対値を所定値d(例えば、2℃)と比較する(図6のS13(第13のステップ))。|Td−Tb|≦dの場合は、S9に戻り、室内送風機12の風量制御または圧縮機31の能力制御を続行する。   The absolute value of the difference between the room temperature Td and the set temperature Tb is compared with a predetermined value d (for example, 2 ° C.) (S13 in FIG. 6 (13th step)). If | Td−Tb | ≦ d, the process returns to S9, and the air volume control of the indoor fan 12 or the capacity control of the compressor 31 is continued.

|Td−Tb|≧dの場合は、部屋全体の温度と設定温度Tbとの差が大きくなりすぎ故、S1に戻る。   When | Td−Tb | ≧ d, the difference between the temperature of the entire room and the set temperature Tb becomes too large, and the process returns to S1.

以上のように、部屋の温度を輻射温度で補正する制御を行うことにより、部屋全体の温度を設定温度Tbに近づけることができるので、冷えない・暖まらないという快適性に関わる使用者の不満を解消し、さらに、冷しすぎ・暖めすぎを防止できるので、省エネを向上させることができる。   As described above, by controlling the room temperature with the radiation temperature, the temperature of the entire room can be brought close to the set temperature Tb. Eliminates and prevents over-cooling and over-warming, so energy saving can be improved.

輻射センサー2による各エリア(a1〜a8)の温度測定において、部屋温度Tdが設定温度Tbに達したときは、平均床温度Taに近い床温度のエリアに輻射センサー2が向いた状態で、輻射センサー2を静止させる。そして、この状態をそのエリアの床温度と設定温度Tbとの差が所定値(例えば、2℃)以上になるまで維持する。即ち、その間は、輻射センサー2を回転させない。これにより、輻射センサー2を駆動するモータ5の動作時間を減らすことができ、モータ5の寿命を延ばすことができる。   In the temperature measurement of each area (a1 to a8) by the radiation sensor 2, when the room temperature Td reaches the set temperature Tb, the radiation sensor 2 faces the area of the floor temperature close to the average floor temperature Ta, and the radiation is detected. The sensor 2 is stopped. This state is maintained until the difference between the floor temperature of the area and the set temperature Tb becomes equal to or higher than a predetermined value (for example, 2 ° C.). That is, the radiation sensor 2 is not rotated during that time. Thereby, the operation time of the motor 5 that drives the radiation sensor 2 can be reduced, and the life of the motor 5 can be extended.

また、特に部屋の一部分(接客コーナー等)を重点的に空調する場合は、使用者が輻射センサー2の向きをその部屋の一部分に固定してもよい。この動作は、使用者が操作するリモコン又は手動により行われる。これにより、重点的に空調したい部分を効果的に空調することが可能になる。   In particular, when air-conditioning a part of a room (such as a service corner) with priority, the user may fix the direction of the radiation sensor 2 to a part of the room. This operation is performed by a remote controller operated manually by the user or manually. As a result, it is possible to effectively air-condition the part that is to be air-conditioned with priority.

また、図7に示すように、吹出し口4にダンパー回転軸48aを中心にして回動するダンパー48(風量調整機構の一例)を設け、各エリア(a1〜a8)で設定温度Tbとの差に応じて、吹出し口4毎にダンパーにより風量を調整してエリア間の床温度差を減らすことができる。   Further, as shown in FIG. 7, a damper 48 (an example of an air volume adjusting mechanism) that rotates around the damper rotation shaft 48 a is provided at the outlet 4, and the difference from the set temperature Tb in each area (a1 to a8). Accordingly, it is possible to reduce the difference in floor temperature between areas by adjusting the air volume with a damper for each outlet 4.

実施の形態1を示す図で、天井埋込カセット形空気調和機の室内機1の側面図と平面図である。It is a figure which shows Embodiment 1, and is the side view and top view of the indoor unit 1 of a ceiling embedded cassette type air conditioner. 実施の形態1を示す図で、天井埋込カセット形空気調和機の室内機1の縦断面図(図1のA−A断面図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1, and is a longitudinal cross-sectional view (AA sectional drawing of FIG. 1) of the indoor unit 1 of a ceiling embedded cassette type air conditioner. 実施の形態1を示す図で、輻射センサー2を示す図である。FIG. 3 shows the first embodiment and shows a radiation sensor 2. 実施の形態1を示す図で、天井埋込カセット形空気調和機の冷媒回路図である。It is a figure which shows Embodiment 1, and is a refrigerant circuit figure of a ceiling embedded cassette type air conditioner. 実施の形態1を示す図で、輻射センサー2を回転させて測定する部屋の8箇所の領域(a1〜a8)を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows eight area | regions (a1-a8) of the room which rotates and measures the radiation sensor 2. FIG. 実施の形態1を示す図で、輻射センサー2の測定結果に基づく部屋の温度制御のフローチャート図である。FIG. 5 shows the first embodiment, and is a flowchart of room temperature control based on the measurement result of the radiation sensor 2. FIG. 実施の形態1を示す図で、天井埋込カセット形空気調和機の室内機1の吹出し口付近の拡大図である。It is a figure which shows Embodiment 1, and is an enlarged view near the blower outlet of the indoor unit 1 of a ceiling embedded cassette type air conditioner.

符号の説明Explanation of symbols

1 室内機、2 輻射センサー、3 吸込み口、4 吹出し口、5 モータ、6 吸込み空気温度センサー、11 外箱、12 室内送風機、12a ファンモータ、12b ファン、14 断熱材、15 室内熱交換器、16 ドレンパン、17 ベルマウス、18 取付金具、20 パネル、21 コーナーパネル、22 フィルタ、23 グリル、24 一次側空間、25 二次側空間、31 圧縮機、32 四方弁、33 室外熱交換器、34 電子膨張弁、35 接続配管、37 接続配管、38 アキュムレータ、40 室外送風機、44 室外制御部、45 インバータ回路、46 室内制御部、47 リモコン、48 ダンパー、48a ダンパー回転軸、60 室外機。   DESCRIPTION OF SYMBOLS 1 Indoor unit, 2 Radiation sensor, 3 Air inlet, 4 Air outlet, 5 Motor, 6 Air intake temperature sensor, 11 Outer box, 12 Indoor fan, 12a Fan motor, 12b Fan, 14 Heat insulating material, 15 Indoor heat exchanger, 16 Drain pan, 17 Bell mouth, 18 Mounting bracket, 20 Panel, 21 Corner panel, 22 Filter, 23 Grill, 24 Primary space, 25 Secondary space, 31 Compressor, 32 Four-way valve, 33 Outdoor heat exchanger, 34 Electronic expansion valve, 35 connection piping, 37 connection piping, 38 accumulator, 40 outdoor blower, 44 outdoor control unit, 45 inverter circuit, 46 indoor control unit, 47 remote control, 48 damper, 48a damper rotating shaft, 60 outdoor unit.

Claims (5)

室内機が天井等の高所に据え付けられ、室内送風機からの吹出し空気を下向きに吹出すように構成され、複数の吹出し口と、空気の吸込み口と、床等の物体が輻射する赤外線を検知して物体の温度を検出し、部屋のほぼ垂直方向にその回転軸が配置されたモータにより駆動され、検知方向が前記回転軸に対して所定角度傾いて該回転軸に取り付けられ、約360゜の範囲で回転して床等の物体の温度を検出する輻射温度検知手段と、冷凍サイクルの圧縮機と、前記吸込み口に設けられた吸込み空気温度センサーとを備えた空気調和機の制御方法において、
前記輻射温度検知手段により、部屋の床付近の複数のエリアの床温度を測定する第1のステップと、
前記測定した複数のエリアの床温度を平均化して、平均床温度Taを演算する第2のステップと、
前記吸込み空気温度センサーの検知温度をTc、輻射温度寄与率をα(0〜0.5)としたとき、部屋温度Tdを、Td=(1−α)Tc+αTaの演算式から算出する第3のステップと、
前記部屋温度Tdと設定温度Tbとを比較する第4のステップと、
前記部屋温度Tdが前記設定温度Tbに達しない場合は、前記室内送風機の風量または前記圧縮機の能力制御を行う第5のステップとを備えたことを特徴とする空気調和機の制御方法。
The indoor unit is installed in a high place such as the ceiling, and is configured to blow down the air blown out from the indoor blower. It detects infrared rays emitted from objects such as multiple air outlets, air inlets, and floors. Then, the temperature of the object is detected, and it is driven by a motor having its rotating shaft arranged in a substantially vertical direction of the room, and the detection direction is attached to the rotating shaft at a predetermined angle with respect to the rotating shaft. In a method for controlling an air conditioner, comprising: a radiation temperature detecting means for detecting the temperature of an object such as a floor rotating within a range; a compressor for a refrigeration cycle; and an intake air temperature sensor provided at the intake port ,
A first step of measuring floor temperatures of a plurality of areas near the floor of the room by the radiation temperature detecting means;
A second step of averaging the measured floor temperatures of the plurality of areas and calculating an average floor temperature Ta;
When the detected temperature of the intake air temperature sensor is Tc and the radiation temperature contribution ratio is α (0 to 0.5), a third temperature for calculating the room temperature Td from an arithmetic expression of Td = (1−α) Tc + αTa Steps,
A fourth step of comparing the room temperature Td with the set temperature Tb;
And a fifth step of controlling the air volume of the indoor blower or the capacity of the compressor when the room temperature Td does not reach the set temperature Tb.
前記部屋温度Tdが前記設定温度Tbに達した場合は、冷房時の個々のエリアの床温度の中で最も高い温度を算出しTnmaxとし、暖房時の個々のエリアの床温度の中で最も低い温度を算出しTnminとし、冷房時の局所的な部屋温度Td’=(1−α)Tc+αTnmax及び暖房時の局所的な部屋温度Td’=(1−α)Tc+αTnminを算出する第6のステップと、
前記局所的な部屋温度Td’と前記設定温度Tbとを比較する第7のステップと、
前記局所的な部屋温度Td’が前記設定温度Tbに達しない場合は、さらに前記局所的な部屋温度Td’と前記設定温度Tbとの差を所定値と比較する第8のステップと、
前記局所的な部屋温度Td’と前記設定温度Tbとの差の絶対値が所定値を超える場合は、前記室内送風機の風量または前記圧縮機の能力制御を行う第9のステップと、
前記輻射温度検知手段により、部屋の床付近の複数のエリアの床温度を測定する第10のステップと、
前記測定した複数のエリアの床温度を平均化して、平均床温度Taを演算する第11のステップと、
部屋温度Tdを、Td=(1−α)Tc+αTaの演算式から算出する第12のステップと、
この部屋温度Tdと前記設定温度Tbとの差の絶対値と所定値とを比較する第13のステップとを備え、第13のステップにおいて前記部屋温度Tdと前記設定温度Tbとの差の絶対値が所定値より大きい場合は、第1のステップに戻ることを特徴とする請求項1記載の空気調和機の制御方法。
When the room temperature Td reaches the set temperature Tb, the highest temperature among the floor temperatures of the individual areas during cooling is calculated as Tnmax, which is the lowest among the floor temperatures of the individual areas during heating. A sixth step of calculating a temperature to be Tnmin and calculating a local room temperature Td ′ = (1−α) Tc + αTnmax during cooling and a local room temperature Td ′ = (1−α) Tc + αTnmin during heating; ,
A seventh step of comparing the local room temperature Td ′ with the set temperature Tb;
If the local room temperature Td ′ does not reach the set temperature Tb, an eighth step of comparing the difference between the local room temperature Td ′ and the set temperature Tb with a predetermined value;
If the absolute value of the difference between the local room temperature Td ′ and the set temperature Tb exceeds a predetermined value, the ninth step of controlling the air volume of the indoor fan or the capacity of the compressor;
A tenth step of measuring floor temperatures of a plurality of areas near the floor of the room by the radiation temperature detecting means;
An eleventh step of averaging the measured floor temperatures of the plurality of areas and calculating an average floor temperature Ta;
A twelfth step of calculating the room temperature Td from an arithmetic expression of Td = (1−α) Tc + αTa;
A thirteenth step of comparing a predetermined value with an absolute value of a difference between the room temperature Td and the set temperature Tb, and an absolute value of a difference between the room temperature Td and the set temperature Tb in the thirteenth step. 2. The method of controlling an air conditioner according to claim 1, wherein when the value is larger than a predetermined value, the process returns to the first step.
前記輻射温度検知手段による複数のエリアの温度測定において、前記部屋温度が前記設定温度に達したときは、前記平均床温度と差の少ない床温度のエリアに前記輻射温度検知手段が向いた状態で、そのエリアの床温度と前記設定温度との差が所定値以上になるまで前記輻射温度検知手段を静止させることを特徴とする請求項1又は2記載の空気調和機の制御方法。   In the temperature measurement of the plurality of areas by the radiation temperature detection means, when the room temperature reaches the set temperature, the radiation temperature detection means is directed to the area of the floor temperature having a small difference from the average floor temperature. The method of controlling an air conditioner according to claim 1 or 2, wherein the radiation temperature detecting means is stopped until a difference between the floor temperature of the area and the set temperature becomes a predetermined value or more. 前記複数のエリアの中の特定のエリアを重点的に空調する場合は、使用者が前記輻射温度検知手段の向きを前記特定のエリアに固定することを特徴とする請求項1又は2記載の空気調和機の制御方法。   3. The air according to claim 1, wherein, when air-conditioning a specific area of the plurality of areas with priority, a user fixes the direction of the radiation temperature detecting means to the specific area. Harmonic machine control method. 前記吹出し口に風量調整機構を設け、前記複数のエリアでの前記設定温度との差に応じて、対応する前記吹出し口毎に前記風量調整機構により風量を調整することを特徴とする請求項1または2記載の空気調和機の制御方法。   The air volume adjusting mechanism is provided at the outlet, and the air volume is adjusted by the air volume adjusting mechanism for each of the corresponding outlets according to a difference from the set temperature in the plurality of areas. Or the control method of the air conditioner of 2.
JP2005214179A 2005-07-25 2005-07-25 Control method of air conditioner Expired - Fee Related JP4478082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214179A JP4478082B2 (en) 2005-07-25 2005-07-25 Control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214179A JP4478082B2 (en) 2005-07-25 2005-07-25 Control method of air conditioner

Publications (3)

Publication Number Publication Date
JP2007032885A true JP2007032885A (en) 2007-02-08
JP2007032885A5 JP2007032885A5 (en) 2008-08-07
JP4478082B2 JP4478082B2 (en) 2010-06-09

Family

ID=37792363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214179A Expired - Fee Related JP4478082B2 (en) 2005-07-25 2005-07-25 Control method of air conditioner

Country Status (1)

Country Link
JP (1) JP4478082B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757841B1 (en) * 2006-12-22 2007-09-11 삼성전자주식회사 Air conditioning system
JP2009139046A (en) * 2007-12-10 2009-06-25 Mitsubishi Electric Corp Ceiling suspension type air conditioner
JP2010008004A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Air conditioner
JP2011231975A (en) * 2010-04-27 2011-11-17 Daikin Industries Ltd Air conditioner
JP2012083077A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Air conditioner
JP2013117317A (en) * 2011-12-01 2013-06-13 Mitsubishi Electric Corp Air conditioner
JP2017110885A (en) * 2015-12-18 2017-06-22 ダイキン工業株式会社 Air conditioner
WO2018107668A1 (en) * 2016-12-15 2018-06-21 广东美的制冷设备有限公司 Air conditioner, and control method for one-button start-up thereof
CN112762580A (en) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 Control method of air conditioning system
CN112984745A (en) * 2021-03-12 2021-06-18 青岛海尔空调器有限总公司 Air speed control method of lower air outlet air conditioner and lower air outlet air conditioner
CN114183792A (en) * 2021-11-18 2022-03-15 浙江爱蓓特智能科技有限公司 Indoor constant temperature intelligent control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931192B2 (en) 2012-06-21 2016-06-08 三菱電機株式会社 Air conditioning system and control method of air conditioning system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757841B1 (en) * 2006-12-22 2007-09-11 삼성전자주식회사 Air conditioning system
JP2009139046A (en) * 2007-12-10 2009-06-25 Mitsubishi Electric Corp Ceiling suspension type air conditioner
JP4610601B2 (en) * 2007-12-10 2011-01-12 三菱電機株式会社 Ceiling suspended air conditioner
JP2010008004A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Air conditioner
JP2011231975A (en) * 2010-04-27 2011-11-17 Daikin Industries Ltd Air conditioner
JP2012083077A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Air conditioner
JP2013117317A (en) * 2011-12-01 2013-06-13 Mitsubishi Electric Corp Air conditioner
JP2017110885A (en) * 2015-12-18 2017-06-22 ダイキン工業株式会社 Air conditioner
WO2018107668A1 (en) * 2016-12-15 2018-06-21 广东美的制冷设备有限公司 Air conditioner, and control method for one-button start-up thereof
CN112762580A (en) * 2020-12-31 2021-05-07 青岛海尔空调电子有限公司 Control method of air conditioning system
CN112984745A (en) * 2021-03-12 2021-06-18 青岛海尔空调器有限总公司 Air speed control method of lower air outlet air conditioner and lower air outlet air conditioner
CN112984745B (en) * 2021-03-12 2022-04-19 青岛海尔空调器有限总公司 Air speed control method of lower air outlet air conditioner and lower air outlet air conditioner
CN114183792A (en) * 2021-11-18 2022-03-15 浙江爱蓓特智能科技有限公司 Indoor constant temperature intelligent control system

Also Published As

Publication number Publication date
JP4478082B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4478082B2 (en) Control method of air conditioner
US10024563B2 (en) Indoor unit of air-conditioning apparatus and air-conditioning apparatus
EP3203160B1 (en) Air-conditioning-device indoor unit
EP3187791B1 (en) Indoor unit for air conditioning device
GB2516336A (en) Air-conditioning apparatus
JP5310792B2 (en) Air conditioner ceiling-mounted indoor unit
JP6091655B2 (en) Air conditioning system
JP2007032887A (en) Air conditioner and mobile radiation temperature detector
JP2011174693A (en) Ceiling-mounted indoor unit for air conditioning device
JP2010008004A (en) Air conditioner
GB2513694A (en) Indoor unit and air conditioning apparatus
JP2014159908A (en) Air conditioning system
US10941954B2 (en) Air-conditioning system
JP2017155953A (en) Air conditioner
JP5930909B2 (en) Air conditioner
JP6727312B2 (en) Air conditioner
JP2020085402A (en) Indoor unit for air conditioning device
JP4610601B2 (en) Ceiling suspended air conditioner
JP4943496B2 (en) Air conditioner
US20240003580A1 (en) Air-conditioning system, controller for air-conditioning apparatus, and control method for air-conditioning apparatus
JP6288138B2 (en) Control device
JP6562139B2 (en) Refrigeration equipment
JP2016099034A (en) Air conditioning device, adjustment method of air conditioning device and manufacturing method of air conditioning facility
JP7112035B2 (en) air conditioner
JP2012063113A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Ref document number: 4478082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees