JP2007032551A - Reciprocating type propulsion moving body - Google Patents

Reciprocating type propulsion moving body Download PDF

Info

Publication number
JP2007032551A
JP2007032551A JP2005239148A JP2005239148A JP2007032551A JP 2007032551 A JP2007032551 A JP 2007032551A JP 2005239148 A JP2005239148 A JP 2005239148A JP 2005239148 A JP2005239148 A JP 2005239148A JP 2007032551 A JP2007032551 A JP 2007032551A
Authority
JP
Japan
Prior art keywords
pair
weights
moving body
propulsion
backward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005239148A
Other languages
Japanese (ja)
Inventor
Takeo Oda
武男 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005239148A priority Critical patent/JP2007032551A/en
Publication of JP2007032551A publication Critical patent/JP2007032551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for propelling a moving body in an inertial space with propellant or centrifugal force not depending on ground friction reaction. <P>SOLUTION: When a pair of weights having mutually reverse rotation are located approximately overlapping each other backward or approaching each other, they are driven to be rotated in the direction of moving one apart from the other, whereby the moving body formed with the pair of weights having mutually reverse rotation is also eventually moved backward with reaction. When the pair of weights is mutually rotated and moved forward in the propelling direction, the pair of weights having mutually reverse rotation produces frontward centrifugal resultant force so that the backward movement of the moving body is stopped and changed into forward movement. When the pair of weights are mutually rotated and moved backward, they produces backward centrifugal resultant force so that forward movement of the moving body is decelerated and stopped and at the same time braking is given to the pair of weights approaching each other in the rotating direction to be slowed down or stopped. The backward rotation control of the pair of weights having mutually reverse rotation results in the moving body to be propelled and moved forward by a backward movement distance or longer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は宇宙空間での飛翔体や人工衛星の姿勢制御用や軌道変更に推進薬を使用せず、地上においては水平状態で推進するタイヤの摩擦による反力を使用しない走行を可能にした玩具や展示用の往復動型推進移動体に関するものである。The present invention does not use a propellant for controlling the attitude of a flying object or satellite or changing orbits in outer space, and enables to travel without using reaction force due to tire friction propelled in a horizontal state on the ground And a reciprocating propulsion moving body for display.

過去に公表された遠心力等を利用して宇宙空間や、地上の水平状態で推進する方法が書面上である。宇宙空間での飛翔体航行の軌道変更は、推進薬による反力や星の引力を応用したスイング−バイ航行と人工衛星の姿勢制御、軌道変更には磁気トルカ、推進薬、イオン、マイクロ波が知られている。
地上では、地上とタイヤとの摩擦で駆動され外部の物理的な環境に頼っている。
The method of propelling in space or on the ground using the centrifugal force published in the past is in writing. In order to change the trajectory of flying objects in outer space, swing-by navigation using the reaction force of the propellant and the attraction of the stars and attitude control of the satellite, magnetic orbiters, propellants, ions, and microwaves are used to change the orbit. Are known.
On the ground, it is driven by friction between the ground and tires and relies on the external physical environment.

駆動と制動位置で慣性モーメントによる反作用を打ち消して推進する方法もある(例えば、特許文献1を参照。)。
遠心力による後方移動を無くするため停止されない回転速度を制御する事で推進する方法もある(例えば、特許文献2を参照。)。
There is also a method of canceling the reaction caused by the moment of inertia at the driving and braking positions and propelling (see, for example, Patent Document 1).
There is also a method of propulsion by controlling the rotational speed that is not stopped in order to eliminate backward movement due to centrifugal force (see, for example, Patent Document 2).

特開平20004−270672JP 2000000427072 特開昭62−103486JP 62-103486 A

以上に述べた従来の慣性力や遠心力による推進装置の問題点の解決方法はニュウトン運動の第3法則の作用.反作用や慣性の法則が重要になるが、軸を中心に半径を有する重錘の位置が後方の位置から前方の位置に回転移動されると、反作用で重錘を回転させるために構成された車両も重錘を含めた回転される質量と車両の質量も関係するが、車両は後退移動すると考えられる。The solution of the problems of the propulsion device by the conventional inertia force and centrifugal force described above is the action of the third law of Newtonian motion. The reaction and inertia laws are important, but the vehicle is configured to rotate the weight by the reaction when the weight with the radius around the axis is rotated from the rear position to the front position. Although the mass including the weight is also related to the mass of the vehicle and the mass of the vehicle, the vehicle is considered to move backward.

地上では地上とタイヤの接地抵抗やタイヤの車軸に使用されている複数の軸受の回転抵抗で、重錘が止まらない程度の回転で発生する遠心力による後方移動は見かけ上停止され、しかも慣性空間の宇宙空間では質量が有る重錘と近接にある同質量の物体から静かに押しても第3法則の作用.反作用により、お互いに離れると考えられ、地上の水平状態で主に考えられる摩擦は地上とタイヤの接地抵抗、タイヤの車軸を軸支する軸受の回転抵抗、各重錘が相互に逆回転に一回転する事で前後に重心移動による接地抵抗と回転抵抗の増大を考慮に入れ、そして宇宙空間で推進薬による反力で飛翔体や人工衛星の姿勢制御用や軌道変更されており、地上ではタイヤとの摩擦で走行されており、これらの欠点を解決するためになされたものである。On the ground, the backward movement due to the centrifugal force generated by the rotation that the weight does not stop is apparently stopped by the ground resistance of the ground and the tire and the rotational resistance of the multiple bearings used on the tire axle, and the inertial space In the outer space, the third law works even if it is gently pushed from an object of the same mass close to the mass with the mass. The reaction is considered to be separated from each other, and the friction that is mainly considered in the horizontal state on the ground is the ground resistance of the ground and the tire, the rotational resistance of the bearing that supports the axle of the tire, and the weights counteract each other in reverse rotation. By taking into account the increase in grounding resistance and rotational resistance due to the movement of the center of gravity by rotating forward and backward, the attitude of the flying object and satellite is changed and the orbit is changed by the reaction force due to the propellant in outer space, and tires on the ground It was made in order to solve these drawbacks.

そして、本発明は上記目的を達成するため、駆動手段で駆動される相互に逆回転する一対の軸と、その一対の各軸の上端部にその各軸の軸線方向に対して直角方向に指向する支持材の一方を固着され、且つ上下に配置された一対の各支持材の他方に重錘を固着された相互に逆回転する一対の重錘が構成された推進装置と、その推進装置を設けた移動体において、
前記相互に逆回転する一対の重錘の位置が後方にある時、回転を制御する事により、前記推進装置を設けた移動体が後退され、且つ後退移動距離以上に前に推進する移動体を特徴とする往復動型推進移動体
In order to achieve the above object, the present invention is directed to a pair of shafts that are reversely rotated and driven by driving means, and to the upper end portions of the pair of shafts in a direction perpendicular to the axial direction of the shafts. A propulsion device comprising a pair of counterweights, each of which is fixed to one of the supporting members and having a weight fixed to the other of the pair of supporting members disposed above and below and configured to rotate counterclockwise. In the mobile body provided,
When the position of the pair of weights that rotate reversely to each other is at the rear, the moving body provided with the propulsion device is moved backward by controlling the rotation, and the moving body that pushes forward more than the backward moving distance Characteristic reciprocating propulsion mobile

また第2の課題解決手段は、前記推進装置を設けた往復直線運動機構と、その往復直線運動機構を設けた移動体を第2の特徴としているThe second problem solving means has a second feature of a reciprocating linear motion mechanism provided with the propulsion device and a movable body provided with the reciprocating linear motion mechanism.

また第3の課題解決手段は、前記相互に逆回転する一対の重錘の位置が後方にあって、相互に近づく回転方向にある一対の重錘が、駆動手段と回生機構との協動で相互に遠ざかる回転方向に与えられる事を第3の特徴とする。Further, the third problem solving means is that the pair of weights that are reversely rotated in the reverse direction are located behind and the pair of weights in the rotational direction approaching each other are in cooperation with the driving means and the regeneration mechanism. A third feature is that the rotation directions are away from each other.

また第4の課題解決手段は、前記重錘の代替に蓄電器にされた相互に逆回転する一対の蓄電器を第4の特徴としているA fourth problem-solving means has a fourth feature of a pair of capacitors that are reversely rotated with each other and that are replaced with a capacitor instead of the weight.

駆動手段の電動機に装着された減速機の駆動軸で、駆動される相互に逆回転する一対の軸と、その一対の軸は軸と、その軸に軸支された中空軸の各軸の上端部に、その各軸の軸線方向に対して直角方向に指向する支持材の一方を固着され、且つ上下に配置された各支持材の他方に重錘を固着された相互に逆回転する一対の重錘が構成された推進装置と、その推進装置を設けた移動体において、
最初起動するに、相互に逆回転する一対の重錘の位置が後方にある時、略重合か、又は近くにある時、駆動によって相互に遠ざかる回転方向に回転される事によって、推進装置を設けた水平な地上を移動する車両も出発位置から反作用で必然的に後退移動され、推進方向側の前方に相互に逆回転する一対の重錘が回転移動すると、一対の重錘が相互に逆回転されている事で発生する前向きの遠心力の合成力で、推進装置を設けた車両の後退移動が停止され、今度は推進移動され且つ運動量も増し、この時点で推進装置を設けた車両の位置が出発位置に戻り、そして推進方向側とは反対の後方を一対の重錘が相互に回転移動されると、後向きの遠心力の合成力で、推進装置を設けた車両の後退移動が減速から停止と同時に、相互に近づく回転方向にある一対の重錘に、制動を与え略重合か、又は近くに停止、又は低速にする事で、車両が後退移動した距離以上に前に推進移動され、このように一対の重錘の位置が後方で回転を制御する事で電気エネルギーだけで車両が後退移動した距離以上に前に推進移動され、水平状態でタイヤの摩擦による反力を使用しない走行の効果が生ずる。慣性空間の宇宙空間で前記推進装置を直接設けた移動体には実験用に適している。
A drive shaft of a reduction gear mounted on the electric motor of the drive means, a pair of shafts that are driven to rotate reversely to each other, the pair of shafts is a shaft, and an upper end of each shaft of a hollow shaft that is supported by the shaft A pair of support members oriented in a direction perpendicular to the axial direction of each axis is fixed to the part, and a weight is fixed to the other support material arranged vertically, and a pair of weights are fixed to each other. In the propulsion device configured with the weight and the moving body provided with the propulsion device,
When starting, the propulsion device is provided by rotating in the direction of rotation away from each other by driving when the position of a pair of weights that rotate in reverse to each other is at the rear, substantially overlapping, or close A vehicle moving on a horizontal ground is inevitably moved backward by reaction from the starting position, and when a pair of weights that rotate counterclockwise in front of the propulsion direction rotates, the pair of weights rotate counterclockwise. The backward movement of the vehicle provided with the propulsion device is stopped by the combined force of the forward centrifugal force generated by the operation, and this time the propulsion is moved and the momentum increases, the position of the vehicle provided with the propulsion device at this time Return to the starting position, and when the pair of weights are rotated and moved to each other on the rear side opposite to the propulsion direction side, the backward movement of the vehicle provided with the propulsion device is decelerated from the deceleration by the resultant force of centrifugal force. Rotation approaching each other at the same time as stopping By applying braking to the pair of weights at approximately the same position, or stopping nearby or slowing down, the vehicle is propelled forward by more than the distance the vehicle has moved backward, thus the position of the pair of weights By controlling the rotation at the rear, the vehicle is propelled forward by the electric energy alone beyond the distance the vehicle has moved backward, and the effect of running without using the reaction force due to tire friction in the horizontal state is produced. It is suitable for experiments for a mobile body in which the propulsion device is directly provided in the space of inertial space.

そして、請求項2において前記推進装置を設けた車両が、一対の重錘の位置が後方において、略重合か、又は近くにある時、駆動によって一対の重錘が相互に遠ざかる回転方向に回転されると、反作用で推進装置を設けた車両が後退移動され、これを改善するため推進装置を往復直線運動機構の稼動部に設置、そしてその往復直線運動機構のベースを慣性空間や地上を移動する移動体に設置された事で改善され、最初起動するに相互に逆回転する一対の重錘の位置が後方において略重合か、又は近くにある時、駆動されると一対の重錘が相互に遠ざかる回転方向に回転され、反作用で前記推進装置を設けた往復直線運動機構の稼動部だけがベースをスライドしながら後退移動され、一対の重錘が前方を相互に逆回転されると、前向きの遠心力の合成力で、前記推進装置を設けた往復直線運動機構の稼動部が後退移動から停止、そして停止から加速されながらベースをスライドしながら前進移動され、且つ前記推進装置を設けた往復直線運動機構の稼動部の運動量も増えて、駆動時の出発位置に戻るに弾性体で停止され、且つ前記推進装置を設けた往復直線運動機構の稼動部の運動量が、停止状態にある移動体に移り、且つ合成された運動量となり、移動体だけが前に推進移動となり、推進方向側とは反対の後方を一対の重錘が相互に回転移動されると、後向きの遠心力の合成力で、前記推進装置を設けた移動体の前進移動が減速から停止と同時に、相互に近づく回転方向にある一対の重錘に、制動を与え略重合か、又は近くの位置に停止、又は低速に後方で回転を制御する事で前記推進装置を設けた往復直線運動機構を慣性空間の宇宙空間でこの前記推進装置と直線運動機構を組み合わした飛翔体や、人工衛星の姿勢制御用や軌道変更にこの推進方法を利用すると推進薬はいらず、地上を移動する移動体に直線運動機構を設置した事で移動体は後退移動がなく前だけに推進移動に改善される。The vehicle provided with the propulsion device according to claim 2 is rotated in a rotational direction in which the pair of weights move away from each other by driving when the positions of the pair of weights are substantially overlapped or close to each other. Then, the vehicle provided with the propulsion device is moved backward due to the reaction, and in order to improve this, the propulsion device is installed in the operating part of the reciprocating linear motion mechanism, and the base of the reciprocating linear motion mechanism is moved in the inertial space or the ground. It is improved by being installed in the moving body, and when the position of the pair of weights that are reversely rotated with each other when they are first activated is substantially overlapped or close to the rear, When only the operating part of the reciprocating linear motion mechanism provided with the propulsion device is rotated backward in the direction of rotation and moved backward while sliding the base, and the pair of weights are rotated in reverse in the forward direction, Centrifugal force The operating portion of the reciprocating linear motion mechanism provided with the propulsion device is moved from the backward movement by the combined force, moved forward while sliding the base while being accelerated from the stop, and the reciprocating linear motion mechanism provided with the propulsion device. The momentum of the operating part increases, the momentum of the operating part of the reciprocating linear motion mechanism provided with the propulsion device is stopped by the elastic body to return to the starting position at the time of driving, and moves to the moving body in the stopped state, and The propulsion device is a combined momentum, and only the moving body is propelled forward, and when a pair of weights are rotated and moved to the rear opposite to the propulsion direction side, the propulsion device uses the resultant force of centrifugal force in the backward direction. At the same time as the forward movement of the moving body provided with deceleration is stopped from deceleration, a pair of weights in the rotating direction approaching each other is braked to substantially overlap, or stop at a nearby position, or control the rotation backward at a low speed By doing If the propulsion is applied to a flying object that combines the propulsion device and the linear motion mechanism in the space of inertial space, or to change the orbit of an artificial satellite, the propellant is not needed. In addition, since the linear motion mechanism is installed on the moving body that moves on the ground, the moving body is improved to propulsion movement only without the backward movement.

そして請求項3において、同軸反転機構の相互に逆回転する一対の重錘に駆動による回転速度を与える時と、その回転速度で制動を与える時に、相互に逆回転する一対の重錘の慣性モーメントが大きく、又電動機に大電流が流れ、負荷による駆動系統や支持する金属を軽減するため、回生機構のバネ−リンク機構を支持材の間に関節を設け、軸側の支持材と重錘側の支持材との間に形成され、最初駆動されるに相互に逆回転する一対の重錘の位置が後方において、略重合されるか、又は近くにある時、相互に遠ざかる回転方向に回転にされ、そして一対の各重錘が相互に一回転される近くの相互に近づく回転方向時、駆動手段で相互に逆回転する一対の軸側支持材を制動され停止されると、回生機構のバネ−リンク機構で重錘側支持材の慣性モーメントのエネルギーを吸収させ、今度は反対の回転方向に一対の各重錘が相互に遠ざかる回転方向に、と同時に重錘側支持材の慣性モーメントのエネルギーを駆動手段と協動で放出され、同じ後方で回転を制御する事で駆動手段の電動機の効率も改善され、上記で説明されたように回生機構を設けた相互に逆回転する一対の重錘が構成された慣性空間や地上を移動する移動体も後退移動距離以上に前に推進移動される効果があり、In claim 3, the moment of inertia of the pair of weights rotating in the opposite directions when the rotational speed by driving is applied to the pair of weights rotating in the reverse direction of the coaxial reversing mechanism and the braking is applied at the rotation speed. In order to reduce the drive system and supporting metal due to the load, a large current flows through the motor, and the spring-link mechanism of the regenerative mechanism is provided with a joint between the support materials, the support material on the shaft side and the weight side The pair of weights that are formed between the first and second support members, which are reversely rotated with respect to each other when they are first driven, are substantially overlapped in the rear, or when they are close to each other, they rotate in the direction of rotation away from each other. When a pair of shaft-side support members that are reversely rotated with each other by the driving means are braked and stopped in a rotating direction close to each other where the pair of weights are rotated one by one, the spring of the regeneration mechanism -Inertia of weight side support with link mechanism The energy of the moment is absorbed, and this time, the moment of inertia of the weight side support material is released in cooperation with the driving means in the opposite direction of rotation in the direction of rotation where the pair of weights move away from each other. By controlling the rotation in the rear, the efficiency of the electric motor of the driving means is also improved, and as described above, the motor moves in an inertial space or a ground where a pair of reciprocating weights provided with a regeneration mechanism are configured. The moving object also has the effect of being moved forward more than the backward movement distance,

そして請求項4において、上下の各支持材の他方に設けられている一対の重錘の代替に、移動体に設置されてある蓄電器を設置される形状に代替された事で、人工衛星と飛翔体や車両の移動体に設けた事で質量が軽減され前に推進移動距離も伸び、スペースが空きスペースを有効に活用する事が出来る。Further, in claim 4, by replacing the pair of weights provided on the other of the upper and lower support members with a shape in which a capacitor installed in the moving body is installed, the artificial satellite and the flight By providing it on the body and the moving body of the vehicle, the mass is reduced, and the propulsion movement distance is also extended before, so that the space can be used effectively.

図1FIG.

以下、本発明の実施するための最良の形態を説明する。図1は推進装置2を設けた車両1の側面図で、相互に逆回転する一対の軸は同軸反転機構と双軸並列機構があるが、図を省くが双軸並列機構の一対の軸に取り付けられた各支持材の回転半径が大きくなるため、同軸反転機構で説明する。Hereinafter, the best mode for carrying out the present invention will be described. FIG. 1 is a side view of a vehicle 1 provided with a propulsion device 2. A pair of shafts that rotate in reverse to each other includes a coaxial reversing mechanism and a biaxial parallel mechanism. Since the turning radius of each attached support member becomes large, the coaxial reversing mechanism will be described.

図2FIG.

図2は推進装置2を設けた車両1の上面図で、図1と図2を使って簡単な構造を説明するに、安定性向上と接地抵抗を減らすため硬質のタイヤ38を4個設けた移動体の車両1と、その車両1に推進装置2を構成する蓄電器5と電動機3に装着された減速機4で駆動される同軸反転機構7と、その同軸反転機構7の相互に逆回転する一対の軸8a.9に一方を固着された各支持材12.13と、その各支持材12.13の他方に重錘14.15を固着され、それらの機器で構成する推進装置(以後推進装置と略して記述する)2に設けたフランジ8bの軸受で軸支された回転軸の主軸9と、その主軸9に固着された下部の従動傘歯車11と、上部の従動傘歯車10が対向にあり、電動機3に装着された減速機4の駆動軸に固着された駆動傘歯車5は、対向にある同歯数の上下従動傘歯車10.11に噛合されて、その上部の従動傘歯車10は軸受を設け中空軸を兼ねたフランジ8aに固着されて、そのフランジ8aは主軸9に軸支され、そのフランジ8aの上端部に中空軸を兼ねたフランジ8aの軸線方向に対して直角方向に指向する下部支持材13の一方を固着、そして主軸9の上端部に固着された主軸9の軸線方向に対して直角方向に指向する上部支持材12の一方を固着され、上部支持材12の他方に重錘14が固着され、もう一つ重錘15も下部支持材13の他方に固着されて、上部支持材12の重錘14と対称にある下部支持材13の重錘15は接触されないよう形成され、有線による手動で、又は無線による遠隔操作装置の受信機17を設け、無線の受信機17の信号を制御機器(PWM制御等)16を介して電動機3の駆動や制動を制御される。慣性空間用の推進装置2を直接設けた移動体は実験用で図と説明を省く。FIG. 2 is a top view of the vehicle 1 provided with the propulsion device 2. In order to explain a simple structure using FIGS. 1 and 2, four hard tires 38 are provided in order to improve stability and reduce ground resistance. A vehicle 1 that is a moving body, a capacitor 5 that constitutes the propulsion device 2 in the vehicle 1, a coaxial reversing mechanism 7 that is driven by a speed reducer 4 that is mounted on an electric motor 3, and the coaxial reversing mechanism 7 rotate in reverse. A pair of shafts 8a. 9. Each support material 12.13 fixed on one side to 9 and a weight 14.15 fixed on the other of the support materials 12.13, and a propulsion device composed of these devices (hereinafter abbreviated as a propulsion device). 2), the main shaft 9 of the rotary shaft supported by the bearing of the flange 8b provided in 2, the lower driven bevel gear 11 fixed to the main shaft 9, and the upper driven bevel gear 10 are opposed to each other. The drive bevel gear 5 fixed to the drive shaft of the speed reducer 4 mounted on is engaged with the upper and lower driven bevel gears 10.11 having the same number of teeth facing each other, and the upper driven bevel gear 10 is provided with a bearing. Fixed to a flange 8a also serving as a hollow shaft, the flange 8a is pivotally supported by the main shaft 9, and a lower support oriented in a direction perpendicular to the axial direction of the flange 8a also serving as a hollow shaft at the upper end of the flange 8a. One side of the material 13 is fixed, and the upper end of the main shaft 9 One of the upper support members 12 oriented in the direction perpendicular to the axial direction of the main shaft 9 is fixed, the weight 14 is fixed to the other of the upper support members 12, and the other weight 15 is also a lower support member. The weight 15 of the lower support 13 fixed to the other of the upper support 12 and symmetrical to the weight 14 of the upper support 12 is formed so as not to be in contact with the receiver 17 of the remote control device manually by wire or wirelessly. The signal of the wireless receiver 17 is controlled via the control device (PWM control or the like) 16 to drive or brake the electric motor 3. The moving body directly provided with the propulsion device 2 for the inertial space is used for experiments, and the illustration and description are omitted.

図3FIG.

図3は相互に逆回転する一対の重錘14.15と移動体の車両1の動きを示した相関図で、上部の重錘14は白円で、下部の重錘15は円内を斜線で表した黒円で示してあり、点線は停止状態にある車両1の基準の位置(1)を示し、回転軸の主軸9を中心に点線の円を半分に分けた推進側を斜線で表した半円の前方39と反対の半円の後方40を示し、一対の重錘14.15が後方40において略重合(1)されるか、又は近くにある位置から回転されると、車両1が(2)から(6)までの動きを示した略図で、FIG. 3 is a correlation diagram showing the movement of the pair of weights 14.15 and the moving vehicle 1 that are reversely rotated with each other. The upper weight 14 is a white circle and the lower weight 15 is hatched in the circle. The dotted line indicates the reference position (1) of the vehicle 1 in a stopped state, and the propulsion side in which the dotted circle is divided in half around the main shaft 9 of the rotating shaft is indicated by diagonal lines. When the pair of weights 14.15 are substantially superposed (1) at the rear 40 or rotated from a nearby position, the vehicle 1 is shown. Is a schematic diagram showing the movement from (2) to (6),

一対の重錘14.15が後方40において略重合(1)されるか、又は近くにある位置の意味は、最初に一対の重錘14.15が駆動される時は略重合(1)されるが連続に1回転事に後方40で回転と停止、又は低速される位置を位置検出装置で機械的、又は電気的制動装置が無い場合は、目視で手動による電動機の回転を制御する事によって大きくずれ、ずれた位置から回転を与える事になり、The pair of weights 14.15 are substantially superposed (1) at the rear 40, or the position in the vicinity means that when the pair of weights 14.15 are driven for the first time, they are substantially superposed (1). However, if there is no mechanical or electrical braking device at the position detection device at the position where the rotation is stopped and stopped at the rear 40 in one continuous rotation, or at a low speed, the rotation of the motor is manually controlled by visual observation. It will shift greatly from the shifted position,

図1から図3を使って説明するに、水平な地上での制御される移動体の展示用や玩具の車両1を有線による手動で、又は無線の受信機17の信号を制御機器(PWM制御等)16を介して電動機3が回転されると、上記で説明された構造により、図3に示した後方40の位置において略重合(1)されるか、又は近くにある白円の上部の重錘14と黒円の下部の重錘15が相互に遠ざかるよう相互に逆回転されると、(2)に示した車両1が反作用で必然的に後退移動され、さらに回転され(3)の前方39の略角度の位置に回転移動されて来ると、一対の重錘14.15が相互に逆回転されている事で発生する前向きの遠心力の合成力で車両1の後退移動が停止され、今度は車両1が前に推進移動され、前向きの遠心力の合成力で車両1の運動量が増して、一対の重錘14.15が(4)の示した前方39の略角度の位置に回転移動されて来ると、車両1が出発位置に戻り、後方40の(5)の略角度の位置に回転移動されて来ると後向きの遠心力の合成力で車両1の前に推進移動が停止され、と同時に後方40位置にある一対の重錘14.15の各回転を電動機3による制動を与え、一対の重錘14.15が相互に近づくに減速されて、一対の重錘14.15が後方40の(6)の略重合されるか、又は近くの位置で停止、又は低速と後方40で回転を制御する事で車両1が後退移動した距離以上に前に推進移動される。As shown in FIGS. 1 to 3, a moving object to be controlled on a horizontal ground or a toy vehicle 1 is manually wired or a signal of a wireless receiver 17 is controlled by a control device (PWM control). Etc.) When the electric motor 3 is rotated via 16, it is substantially superposed (1) at the position of the rear 40 shown in FIG. When the weight 14 and the weight 15 at the bottom of the black circle are rotated reversely to each other, the vehicle 1 shown in (2) is inevitably moved backward by reaction and further rotated (3). When it is rotated and moved to a position at an approximate angle of the front 39, the backward movement of the vehicle 1 is stopped by the combined force of the forward centrifugal force generated by the pair of weights 14.15 rotating in the reverse direction. This time, the vehicle 1 is propelled forward and the combined force of the forward centrifugal force When the amount of movement increases and the pair of weights 14.15 are rotationally moved to the position of the approximate angle of the front 39 indicated by (4), the vehicle 1 returns to the starting position, and the abbreviation (5) of the rear 40. When it is rotationally moved to the angular position, the propulsive movement is stopped in front of the vehicle 1 by the resultant force of the centrifugal force in the backward direction, and at the same time, each rotation of the pair of weights 14.15 at the rear 40 position is performed by the electric motor 3. The brake is applied and the pair of weights 14.15 are decelerated as they approach each other, and the pair of weights 14.15 are rearranged in the rear (40) (6), or stopped at a nearby position, or slow. By controlling the rotation at the rear 40, the vehicle 1 is propelled forward by more than the distance traveled backward.

図4FIG.

図4は移動体の車両1に往復直線運動機構を設けた図を示しているが、往復直線運動機構は電気駆動のリニアモーター19や機械式のリニアガイド20が有り、使用環境や経済的によって設けられ、往復直線運動機構の摩擦係数の小さなリニアガイド20の場合は、地上での使用が最適でそれについて説明する。相互に逆回転する一対の重錘14.15が構成された推進装置2をリニアガイド21の稼動部22に固着され、リニアガイド21のベース23を車両1に設置され、車両側1に又は稼動部22側に稼動部22の衝突を防ぐため、減速から停止させる緩衝体25を設置、緩衝体25は変形しにくい低反発係数の小さい物を使用、車両側1に稼動部22の往復動や緩衝体25に伴う減速から停止の反動を止める停止保持装置(電磁石等)24を設置、以上のような構造で構成された推進装置2をリニアガイド21の稼動部22に設置、そしてそのリニアガイド21のベース23を車両1に固着された事で、FIG. 4 shows a diagram in which a moving vehicle 1 is provided with a reciprocating linear motion mechanism. The reciprocating linear motion mechanism has an electrically driven linear motor 19 and a mechanical linear guide 20, and depends on the use environment and economics. In the case of the linear guide 20 which is provided and has a small friction coefficient of the reciprocating linear motion mechanism, the use on the ground is optimal and will be described. The propulsion device 2 configured with a pair of weights 14.15 that rotate in reverse to each other is fixed to the operating portion 22 of the linear guide 21, and the base 23 of the linear guide 21 is installed in the vehicle 1 and is operated on the vehicle side 1 or in operation. In order to prevent the operation unit 22 from colliding with the part 22 side, a shock absorber 25 for stopping from deceleration is installed, the shock absorber 25 is made of a low-repulsion coefficient that is difficult to deform, A stop holding device (such as an electromagnet) 24 for stopping the reaction of the stop from the deceleration accompanying the shock absorber 25 is installed, the propulsion device 2 configured as described above is installed in the operating portion 22 of the linear guide 21, and the linear guide By fixing the base 23 of the vehicle 21 to the vehicle 1,

図5FIG.

図5は相互に逆回転する一対の重錘14.15と移動体の車両1の動きを示した相関図で、上部の重錘14は白円で、下部の重錘15は黒円で示してあり、点線は停止状態にある車両1の基準の位置(1)を示し、回転軸の主軸9を中心に点線の円を半分に分けた推進側を斜線で表した半円の前方39と反対の半円の後方40を示し、一対の重錘14.15が後方40において略重合(1)されか、又は近くにある位置から回転されると、車両1が(2)から(6)までの動きを示した略図で、FIG. 5 is a correlation diagram showing the movement of the pair of weights 14.15 that reversely rotate with each other and the moving vehicle 1. The upper weight 14 is a white circle, and the lower weight 15 is a black circle. The dotted line indicates the reference position (1) of the vehicle 1 in a stopped state, and the front side 39 of the semicircle that represents the propulsion side that is divided in half with the dotted circle centered on the main shaft 9 of the rotating shaft When the opposite semi-circular rear 40 is shown and the pair of weights 14.15 are substantially superposed (1) at the rear 40 or rotated from a nearby position, the vehicle 1 is moved from (2) to (6) Schematic showing the movement up to

本発明は以上のような構造でこれを使用する時は、水平な地上で最適な車両1の玩具か、又は展示用の車両1に、リニアガイド21が設置された車両1が、停止状態の位置を保持しながら互いに逆回転される一対の重錘14.15の位置が後方40において略重合(1)されるか、又は近くにある時、電動機3で駆動を与えると一対の重錘14.15が相互に遠ざかるよう相互に逆回転されると、推進装置2の稼動部22だけが反作用で必然的に推進装置2の稼動部22だけが起点(1)を後退移動にベース23をスライドされ、相互に逆回転される一対の重錘14.15が前方の39に回転移動すると、一対の重錘14.15が互いに逆回転される事で発生する前向きの遠心力の合成力で、推進装置2の稼動部22が後退移動のスライドを停止(3)され、そして今度は停止から前に推進移動され、且つ推進装置2が設置されたリニアガイド24の稼動部22の運動量も増えて、駆動時の起点(4)に戻るに緩性体(変形しにくい低反発係数)25で停止され、且つ停止保持装置(電磁石等)24でリニアガイド21の稼動部22の動きを固定、そして相互に逆回転する一対の重錘14.15が構成された推進装置2の運動量が車両1に移り、且つ合成された運動量となり、車両1だけが前に推進移動となり一対の重錘14.15が後方40の(5)の略角度の位置に回転移動されて来ると、後向きの遠心力の合成力で車両1が前に推進移動が停止され、と同時に後方40の位置にある一対の重錘14.15の各回転を電動機3による制動を与え、一対の重錘14.15が相互に近づくに減速されて、後方40の(6)の略重合されるか、又は近くの位置で停止、又は低速となり、停止保持装置(電磁石等)24を解除された事により、後方40で回転を制御する事で車両1が前だけに推進移動される。When the present invention is used in the above structure, the toy of the vehicle 1 that is optimal on a horizontal ground or the vehicle 1 in which the linear guide 21 is installed on the vehicle 1 for display is in a stopped state. When the position of the pair of weights 14.15 that are reversely rotated while maintaining the position is substantially overlapped (1) in the rear 40 or is in the vicinity, when the motor 3 is driven, the pair of weights 14 .15 are reversely rotated so as to move away from each other, only the operating part 22 of the propulsion device 2 reacts and inevitably only the operating part 22 of the propulsion device 2 slides the base 23 in the backward movement from the starting point (1). When the pair of weights 14.15 that are rotated in reverse to each other rotate and move to the front 39, the combined force of the forward centrifugal force generated by the pair of weights 14.15 being rotated in reverse from each other, The operating unit 22 of the propulsion device 2 slides backward. It is stopped (3), and this time it is propelled and moved forward from the stop, and the momentum of the operating part 22 of the linear guide 24 in which the propulsion device 2 is installed also increases, so that it returns to the starting point (4) during driving. A pair of weights 14.15 that are stopped by a body (low repulsion coefficient that is difficult to deform) 25, and that the movement of the operating portion 22 of the linear guide 21 is fixed by a stop holding device (electromagnet or the like) 24, and that rotate reversely to each other. The momentum of the configured propulsion device 2 moves to the vehicle 1 and becomes a combined momentum, and only the vehicle 1 is propelled forward, and the pair of weights 14.15 are positioned at a substantially angular position (5) in the rear 40. When it is rotationally moved, the propulsion movement of the vehicle 1 is stopped forward by the resultant centrifugal force of the centrifugal force, and at the same time, the rotation of the pair of weights 14.15 at the position of the rear 40 is braked by the electric motor 3. Give a pair of weights 14.15 to each other Then, it is decelerated and the rear 40 (6) is almost superposed, or it stops at a nearby position or becomes low speed, and the stop holding device (electromagnet etc.) 24 is released, so that the rear 40 rotates. By controlling, the vehicle 1 is propelled forward only.

図6FIG.

図6は地球31を周回する人工衛星26にリニアモーター18を設けた斜視図で、飛翔体は基本的に構造が同じで図を省く、人工衛星26に常時修正が必要な姿勢制御、軌道変更の推進軸方向に最適なリニアモーター18を設け、化学燃料のロケットエンジンと併用に補助的に使用され、リニアモーターの稼動部19に上記で説明した推進装置2を設け、リニアモーター18のベース20には人工衛星26や飛翔体の重心から両方向に延びた支持部材27の両端に、2次元方向に変えられる台座に設け、その2つの台座にリニアモーター18のベース20を固着され、2台の推進装置2を2次元方向軸に変えられる各軸の電動機29.30を設けた台座に、人工衛星26や飛翔体の両端に設けられた推進装置2の相互に逆回転する一対の重錘14.15の推進軸方向が、人工衛星26や飛翔体の重心に向かうよう形成されて、太陽電池28は一対の重錘14.15の回転に影響が無い場所に設けられた略図である。リニアエンコンダー等の位置検出装置は図による表示は省く。FIG. 6 is a perspective view in which a linear motor 18 is provided on an artificial satellite 26 that orbits the earth 31. The flying object basically has the same structure and is not shown in the figure. A linear motor 18 that is optimal in the propulsion axis direction is provided, which is used as an auxiliary in combination with the rocket engine of chemical fuel. The propulsion device 2 described above is provided in the operating part 19 of the linear motor, and the base 20 of the linear motor 18 is provided. Are provided on both ends of a support member 27 extending in both directions from the center of gravity of the artificial satellite 26 or the flying body, and a base 20 of the linear motor 18 is fixed to the two bases, and the two bases are fixed to the two bases. A pair of weights that reversely rotate the propulsion device 2 provided on both ends of the artificial satellite 26 and the flying object on a pedestal provided with the motor 29.30 of each axis that can change the propulsion device 2 into a two-dimensional direction axis. Propeller shaft direction of 4.15, is formed so as toward the center of gravity of the satellite 26 or flying object, a solar cell 28 is a schematic diagram provided in place have no influence on the rotation of the pair of weight 14.15. A position detection device such as a linear encoder omits the display in the figure.

本発明は以上のような構造でこれを使用する時は、動力源は蓄電器6や太陽電池28で供給され、制御機16で2台の台座にある電動機29.30やリニアモーター18と2台の相互に逆回転する一対の重錘14.15を駆動する2個の電動機3に供給され、人工衛星26や飛翔体の2台の相互に逆回転する一対の重錘14.15の駆動や回転位置の同期や、リニアモーター18の駆動と同期と、電動機3で推進装置2を2次元方向に変えられる台座の位置検出の信号をコンピュウターで制御する事で、軌道変更の場合は2つの相互に逆回転する一対の重錘14.15の推進軸方向を同一方向にする事で、人工衛星26や飛翔体の重心が軌道変更され、姿勢制御の場合は対向にある1組の相互に逆回転する一対の重錘14.15の推進軸方向を相互いに反対方向にされると、人工衛星26や飛翔体の重心を中心に回転され、電気エネルギーだけで宇宙空間の人工衛星26や飛翔体の姿勢制御や軌道変更を可能で、When the present invention is used in the structure as described above, the power source is supplied by the battery 6 or the solar battery 28, and the controller 16 has two motors 29.30 and two linear motors 18 on two bases. Are supplied to two electric motors 3 that drive a pair of weights 14.15 that rotate reversely to each other, and drive a pair of weights 14.15 that rotate reversely to each other, such as an artificial satellite 26 or a flying object. By controlling the rotation position, driving and synchronization of the linear motor 18 and the signal for detecting the position of the pedestal that can change the propulsion device 2 in the two-dimensional direction by the electric motor 3 with a computer, there are two cases when changing the trajectory. By making the propulsion axis directions of the pair of weights 14.15 that rotate in reverse to each other in the same direction, the center of gravity of the artificial satellite 26 or the flying object is changed, and in the case of attitude control, a pair of opposing ones are mutually connected. Direction of propulsion axis of a pair of counterweights 14.15 rotating in reverse Once in the opposite direction to each other physician, it is rotated about the center of gravity of the satellite 26 and projectile, capable attitude control and orbit change of the satellite 26 and projectile in space only electrical energy,

基本的に車両1に設けたリニアガイドの推進方法と同じで図5の相互に逆回転する一対の重錘14.15と車両1の相関図を使って説明するに、人工衛星26の両端にある同じ推進軸方向にある軌道変更の方法は、最初起動するに相互に逆回転する一対の重錘14.15の位置が後方の図5の40において略重合(1)されるか、又は近くにある時、電動機3で駆動されると一対の重錘14.15が相互に遠ざかる回転方向に回転され、反作用で推進装置2を設けたリニアモーター18の稼動部19だけがベース20をリニアエンコンダー等の位置検出装置を介して推進装置2の稼動部19が後退速度と同期とりながら起点からスライド移動(2)され、相互に逆回転する一対の重錘14.15が前方39に回転移動されると、前向きの遠心力の合成力で推進装置2を設けたリニアモーター18の稼動部19が後退移動から停止(3)、そしてその停止位置(3)から加速されながら推進移動速度と同期とりながらにスライド移動され、且つ推進装置2を設けたリニアモーター18の稼動部19の運動量も増えて、駆動時の起点位置(4)に戻るにリニアモーター18による制動を与えて電気的に停止状態を保持され、且つ推進装置2を設けたリニアモーター18の稼動部19の運動量が、一定方向状態にある人工衛星26や飛翔体に移り、且つ合成された運動量となって人工衛星26だけが軌道変更となり、推進方向側とは反対の後方40内を一対の重錘14.15が相互に回転移動されると、後向きの遠心力の合成力で、推進装置2を設けた人工衛星28や飛翔体の軌道変更が減速から停止と同時に、相互に近づく回転方向(5)にある一対の重錘14.15に、制動を与え略重合(6)されるか、又は近くの位置で停止、又は低速と、後方で回転を制御する事で人工衛星26や飛翔体の軌道変更が可能になり、人工衛星26の両端の推進装置2を1つ停止する事で姿勢制御が可能で、又どちらかの推進軸方向を反対方向にする事でも可能。Basically, the linear guide propulsion method provided in the vehicle 1 is the same as that of the pair of weights 14.15 of FIG. The method of trajectory change in the same propulsion axis direction is that the position of a pair of weights 14.15 that reversely rotate relative to each other upon first activation is substantially superposed (1) at or near the rear 40 of FIG. When the motor 3 is driven, the pair of weights 14.15 are rotated in a rotating direction away from each other, and only the operating part 19 of the linear motor 18 provided with the propulsion device 2 by reaction acts on the linear encoder 20. The moving unit 19 of the propulsion device 2 is slid and moved (2) from the starting point in synchronization with the retreating speed via a position detection device such as a der. The forward centrifugal The operating part 19 of the linear motor 18 provided with the propulsion device 2 is slid and moved in synchronism with the propulsion movement speed while being accelerated from the stop position (3), and the propulsion movement speed is synchronized with the combined force of The momentum of the operating part 19 of the linear motor 18 provided with the propulsion device 2 is also increased, braking is applied by the linear motor 18 to return to the starting position (4) during driving, and the propulsion device is held electrically. The momentum of the operating part 19 of the linear motor 18 provided with 2 is transferred to the artificial satellite 26 or the flying body in a constant direction state, and the combined momentum is changed to only the artificial satellite 26, the propulsion direction side and When the pair of weights 14.15 are rotated and moved in the opposite rear 40, the orbital change of the artificial satellite 28 provided with the propulsion device 2 or the flying object is made by the combined force of the backward centrifugal force. At the same time as stopping from speed, a pair of weights 14.15 in the direction of rotation (5) approaching each other is braked and substantially superposed (6), or stopped at a nearby position, or at low speed and backward By controlling the rotation, the orbit of the artificial satellite 26 and the flying object can be changed, and the attitude can be controlled by stopping one of the propulsion devices 2 at both ends of the artificial satellite 26. It can be done in the opposite direction.

図7FIG.

図7は後方40において矢印で示した相互に近づく回転方向にある一対の重錘14.15が、駆動手段と回生機構との協動で、反対に相互に遠ざかる回転方向に与えられる略図で、FIG. 7 is a schematic diagram in which a pair of weights 14.15 in the rotational direction approaching each other indicated by an arrow at the rear 40 is given in the rotational direction away from each other in cooperation with the driving means and the regeneration mechanism.

図8FIG.

図8は回生機構のバネ−リンク機構を設けた支持材12の上面図で、バネ−リンク機構の関節軸34を支点に軸側支持材で重錘側支持材41が回動される重錘14の慣性モーメントのエネルギーをバネ32で吸収と放出される略図を示す。FIG. 8 is a top view of the support member 12 provided with the spring-link mechanism of the regenerative mechanism. The weight on which the weight-side support member 41 is rotated by the shaft-side support member around the joint shaft 34 of the spring-link mechanism. A schematic diagram is shown in which the energy of 14 moments of inertia is absorbed and released by a spring 32.

図9FIG.

図9は回生機構のバネ−リンク機構を設けた上下の支持材12.13の側面図で、支持材の間に関節軸34を設け、バネ32の一方を軸側支持材に固着され、バネ32の他方を重錘側支持材41に固着され、上下の各重錘14.15が関節軸34を中心に回動されるよう形成された回生機構のバネ−リンク機構の略図を示しており、9 is a side view of the upper and lower support members 12.13 provided with the spring-link mechanism of the regenerative mechanism. The joint shaft 34 is provided between the support members, and one of the springs 32 is fixed to the shaft-side support member. 32 shows a schematic view of a spring-link mechanism of a regenerative mechanism in which the other 32 is fixed to the weight side support member 41 and each of the upper and lower weights 14.15 is rotated about the joint shaft 34. ,

これを使用する時は、相互に逆回転する一対の重錘14.15の位置が、後方39の略重合されるか、又は近くにある状態の一対の重錘14.15が相互に遠ざかる回転方向にあって、停止状態からの駆動時は駆動手段の電動機3と協働で、一旦回生機構のバネ−リンク機構で駆動エネルギーを吸収させ、放出されて回転速度で相互に一回転される近くの一対の重錘14.15が相互に近づくに電動機3で相互に逆回転する一対の軸側支持材を制動され停止されると回生機構のバネーリンク機構で、重錘側支持材41の慣性モーメントのエネルギーを吸収させ、今度は反対の回転方向に一対の重錘14.15の回転方向が相互に遠ざかる回転方向にされる、と同時に重錘側支持材41の慣性モーメントのエネルギーが電動機3と協動で放出され、同じ後方40で回転を制御する事で、上記で説明されたように回生機構を設けた相互に逆回転する一対の重錘14.15が構成された移動体も後退移動距離以上に前に推進移動する。When this is used, the position of the pair of weights 14.15 that rotate counterclockwise is substantially superposed at the rear 39, or the pair of weights 14.15 that are in the vicinity are rotated away from each other. When driving from a stopped state, the driving energy is once absorbed by the spring-link mechanism of the regenerative mechanism in cooperation with the electric motor 3 of the driving means, and is released and rotated one by one at a rotational speed. When the pair of weights 14.15 approaches each other, the pair of shaft-side support members rotating in the opposite directions by the motor 3 are braked and stopped by the spring link mechanism of the regenerative mechanism, and the inertia moment of the weight-side support material 41 This time, the rotation direction of the pair of weights 14.15 is set to the rotation direction away from each other in the opposite rotation direction. At the same time, the energy of the inertia moment of the weight side support member 41 is Released in cooperation By controlling the rotation at the same rear 40, the moving body including the pair of weights 14.15 having the regenerative mechanism and rotating reversely as described above is also more than the backward movement distance. Move forward.

図10FIG.

図10は支持材12の一方を主軸9に中空を設けた中空軸33に固着され、他方に設けられている一対の重錘14.15の代替に、移動体に設置されてある蓄電器6を設置された上面図で、蓄電器6の各端子から少なくとも2本の導線35を中空軸33に導いた略図で、FIG. 10 shows a battery 6 installed in a moving body, instead of a pair of weights 14.15 provided on one side of a support material 12 fixed to a hollow shaft 33 provided with a hollow in the main shaft 9. In the installed top view, it is a schematic diagram in which at least two conductors 35 are led from each terminal of the capacitor 6 to the hollow shaft 33;

図11FIG.

図11は支持材12.13の蓄電器6の側面図で、重錘14.15の代替に移動体に設置されてある蓄電器6を設置される形状に代替され、上部と下部の支持材12.13に重錘14、15の替わりに設置したそれぞれの蓄電池6からの集電方法は上部の支持材12に設置された蓄電池6の場合、導線35を回転軸の主軸9に中空を形成された中空軸33の中空を通り、推進装置2の下部の中空軸33にスリップリング36を設けて、導線35をスリップリング36に接着されてブラシ37で集電され、ブラシ37からの導線35を制御機17に送られる。下部の支持材13に固着された蓄電池6からの集電方法は、導線35を上部傘歯車10に固着されたフランジ8aにスリップリング36を設け、導線35をスリップリング36に固着されて、ブラシ37で集電され導線35を制御機17に送られる。FIG. 11 is a side view of the battery 6 of the support material 12.13. Instead of the weight 14.15, the shape of the battery 6 installed on the moving body is replaced with the shape of the upper and lower support materials 12.15. In the case of the storage battery 6 installed on the upper support member 12, the current collecting method from the respective storage batteries 6 installed in place of the weights 14 and 15 in FIG. A slip ring 36 is provided in the hollow shaft 33 at the lower part of the propulsion device 2 through the hollow of the hollow shaft 33, the conductive wire 35 is bonded to the slip ring 36 and collected by the brush 37, and the conductive wire 35 from the brush 37 is controlled. Sent to machine 17. The method of collecting current from the storage battery 6 fixed to the lower support member 13 is to provide a slip ring 36 on the flange 8a fixed to the upper bevel gear 10 with the conductive wire 35, and to fix the conductive wire 35 to the slip ring 36. The current is collected at 37 and the conductive wire 35 is sent to the controller 17.

本発明は以上のような構造でこれを使用する時は、図を省くが相互に逆回転する一対の重錘14.15の代替を蓄電器6にされた推進装置2を往復直線運動機構のリニアモーター18やリニアガイド21に設け、慣性空間や地上の移動体で使用され、そして回生機構のバネ−リンク機構と組み合わせも可能。When the present invention is used in the structure as described above, the propulsion device 2 in which the capacitor 6 is substituted for the pair of weights 14.15 which are not shown in the figure but rotate reversely to each other is connected to the linear of the reciprocating linear motion mechanism. It is installed in the motor 18 and linear guide 21, used in inertial space and on the ground moving body, and can be combined with the spring-link mechanism of the regenerative mechanism.

本発明の往復動型推進装置は、従来の技術で製作可能にあり、慣性空間の宇宙飛翔体や人工衛星らの移動体に推進装置と往復直線運動機構を設置する事で利用出来ると考えられる。重力下の水平な地上の車両は玩具等や展示用に科学の発展や教育に効果があると考えられる。The reciprocating propulsion device of the present invention can be manufactured by conventional techniques, and can be used by installing a propulsion device and a reciprocating linear motion mechanism on a spacecraft in an inertial space or a moving body such as an artificial satellite. . Vehicles on the ground under gravity are considered to be effective for scientific development and education for toys and exhibits.

同軸反転機構を構成した往復動型推進機の車両の側面図Side view of a reciprocating propulsion vehicle vehicle having a coaxial reversing mechanism 同軸反転機構を構成した往復動型推進機の車両の上面図Top view of a reciprocating propulsion vehicle with a coaxial reversing mechanism 相互に逆回転する一対の重錘と移動体の車両の動きを(1)から(6)まで示した相関図Correlation diagram showing (1) to (6) the movement of the vehicle of a pair of weights and a moving body that rotate reversely to each other 往復直線運動機構のリニアガイドを構成した車両の側面図Side view of vehicle with linear guide for reciprocating linear motion mechanism 相互に逆回転する一対の重錘14.15とリニアガイドを設けた車両1の動きを示した相関図Correlation diagram showing the movement of the vehicle 1 provided with a pair of weights 14.15 and linear guides rotating in reverse with each other 往復直線運動機構のリニアモーターを構成した人工衛星の斜視図Perspective view of an artificial satellite with a linear motor with a reciprocating linear motion mechanism 一対の各重錘が回転方向を逆回転にされる図A diagram in which each pair of weights is rotated in the reverse direction. 回生機構のバネ−リンク機構の上面図Top view of spring-link mechanism of regenerative mechanism 回生機構のバネ−リンク機構の側面図Side view of spring-link mechanism of regenerative mechanism 支持材に重錘の代替に蓄電器を設けた上面図Top view with a storage capacitor instead of a weight on the support material 推進装置の支持材に一対の重錘の代替に蓄電器を設けた側面図Side view of the propulsion unit support with a capacitor instead of a pair of weights

符号の説明Explanation of symbols

1 車両
2 推進装置
3 電動機
4 減速機
5 駆動傘歯車
6 蓄電器
7 同軸反転機構
8a 上部フランジ
8b 下部フランジ
9 主軸
10 上部傘歯車
11 下部傘歯車
12 上部支持材
13 下部支持材
14 上部重錘
15 下部重錘
16 制御機
17 受信機
18 リニアモーター
19 リニアモーターの稼動部
20 リニアモーターのベース
21 リニアガイド
22 リニアガイドの稼動部
23 リニアガイドのベース
24 停止保持装置
25 緩衝体
26 人工衛星や飛翔体
27 支持部材
28 太陽電池
29 電動機
30 電動機
31 地球
32 バネ
33 中空軸
34 関節軸
35 導線
36 スリップリング
37 ブラシ
38 硬質のタイヤ
39 前方
40 後方
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Propulsion device 3 Electric motor 4 Reduction gear 5 Drive bevel gear 6 Capacitor 7 Coaxial reversing mechanism 8a Upper flange 8b Lower flange 9 Main shaft 10 Upper bevel gear 11 Lower bevel gear 12 Upper support material 13 Lower support material 14 Upper weight 15 Lower Weight 16 Controller 17 Receiver 18 Linear motor 19 Linear motor operating part 20 Linear motor base 21 Linear guide 22 Linear guide operating part 23 Linear guide base 24 Stop holding device 25 Buffer 26 Artificial satellite or flying object 27 Support member 28 Solar cell 29 Electric motor 30 Electric motor 31 Earth 32 Spring 33 Hollow shaft 34 Joint shaft 35 Conductor wire 36 Slip ring 37 Brush 38 Hard tire 39 Front 40 Rear

Claims (4)

駆動手段で駆動される相互に逆回転する一対の軸と、その一対の各軸の上端部にその各軸の軸線方向に対して直角方向に指向する支持材の一方を固着され、且つ上下に配置された各支持材の他方に重錘を固着された相互に逆回転する一対の重錘が構成された推進装置と、その推進装置を設けた移動体において
前記相互に逆回転する一対の重錘の位置が後方にある時、回転を制御する事により、前記推進装置を設けた移動体が後退され、且つ後退距離以上に前に推進する移動体を特徴とする往復動型推進移動本体。
A pair of oppositely rotating shafts driven by driving means, and one of support members oriented in a direction perpendicular to the axial direction of each axis are fixed to the upper ends of the pair of axes, and vertically A propulsion device configured with a pair of counterweights that rotate counterclockwise each having a weight fixed to the other of the respective supporting members, and a pair of weights that rotate counterclockwise in a moving body provided with the propulsion device. A reciprocating propulsion moving main body characterized in that when the weight is in the rear, the moving body provided with the propulsion device is moved backward by controlling the rotation and propelled forward more than the retraction distance.
前記推進装置を設けた往復直線運動機構と、その往復直線運動機構を設けた移動体を特徴とする特許請求項1記載の往復動型推進移動本体。2. A reciprocating propulsion moving body according to claim 1, wherein the reciprocating linear motion mechanism is provided with the propulsion device, and the movable body is provided with the reciprocating linear motion mechanism. 前記相互に逆回転する一対の重錘の位置が後方にあって、相互に近づく回転方向にある時、駆動手段と回生機構との協動で、相互に遠ざかる回転方向に与えられる一対の重錘を特徴とする特許請求項1記載の往復動型推進移動本体。A pair of weights provided in a rotational direction moving away from each other by the cooperation of the driving means and the regenerative mechanism when the position of the pair of weights rotating in the reverse direction is behind and in the rotational direction approaching each other The reciprocating type propulsion moving body according to claim 1 characterized by the above-mentioned. 前記重錘の代替に蓄電器にされた相互に逆回転する一対の蓄電器を特徴とする特許請求項1記載の往復動型推進移動本体。2. A reciprocating propulsion moving main body according to claim 1, wherein a pair of accumulators rotating in opposite directions are used instead of the weights.
JP2005239148A 2005-07-25 2005-07-25 Reciprocating type propulsion moving body Pending JP2007032551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239148A JP2007032551A (en) 2005-07-25 2005-07-25 Reciprocating type propulsion moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239148A JP2007032551A (en) 2005-07-25 2005-07-25 Reciprocating type propulsion moving body

Publications (1)

Publication Number Publication Date
JP2007032551A true JP2007032551A (en) 2007-02-08

Family

ID=37792067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239148A Pending JP2007032551A (en) 2005-07-25 2005-07-25 Reciprocating type propulsion moving body

Country Status (1)

Country Link
JP (1) JP2007032551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302083B1 (en) 2022-05-26 2023-07-03 和穂 小磯 spacecraft equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302083B1 (en) 2022-05-26 2023-07-03 和穂 小磯 spacecraft equipment
JP2023174461A (en) * 2022-05-26 2023-12-07 和穂 小磯 Spacecraft device
WO2024095873A1 (en) * 2022-05-26 2024-05-10 和穂 小磯 Spacecraft apparatus

Similar Documents

Publication Publication Date Title
US8981608B2 (en) Method of propulsion
CN108750144B (en) Three-dimensional coordinated type rope system satellite
KR101432046B1 (en) Spherical robot using thrust
US20200251941A1 (en) Combined propellant-less propulsion and reaction wheel device
US20100307290A1 (en) Apparatus, system and method for gyroscopic propulsion and/or steering
US11149719B2 (en) EdDrive propellantless propulsion system
US20030047015A1 (en) Centrifugal propulsion system
US20050039556A1 (en) Rotational apparatus
CN113825664B (en) Apparatus and method for spherical components
JP2007032551A (en) Reciprocating type propulsion moving body
EP3758953B1 (en) Apparatus and methods for a spherical assembly
JP6591549B2 (en) Propulsion system
US20120024633A1 (en) Gyromotor
US3889543A (en) Propulsion system
TW201105525A (en) Vehicle propulsion using kinetic energy transfer
CN215979729U (en) Constrained centrifugal drive non-working medium thruster
JP2012107524A (en) Device for obtaining propulsive force from self-rotating rotor
EP3363667A2 (en) Magnetic inertial thruster for deep space with a mass having variable energy density that concentrates and disperses
JP2002010622A (en) Power generating system using casimir effect
KR20110104835A (en) Unit for generating propulsive force and apparatus having the same unit
TWM526542U (en) Centrifugal thruster structure
JP2021173215A (en) Propulsion device and aircraft with propulsion device
JP2006090295A (en) Recoilless propulsion device
JP2004044565A (en) Inertia efficiency adjustable propulsion device
KR20040090014A (en) A propulsion apparatus of dynamic force