JP2007031947A - Sealed type tunnel boring machine method - Google Patents

Sealed type tunnel boring machine method Download PDF

Info

Publication number
JP2007031947A
JP2007031947A JP2005212366A JP2005212366A JP2007031947A JP 2007031947 A JP2007031947 A JP 2007031947A JP 2005212366 A JP2005212366 A JP 2005212366A JP 2005212366 A JP2005212366 A JP 2005212366A JP 2007031947 A JP2007031947 A JP 2007031947A
Authority
JP
Japan
Prior art keywords
water
chamber
face
pressure
tbm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005212366A
Other languages
Japanese (ja)
Other versions
JP4504882B2 (en
Inventor
Katsumi Uchida
克巳 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2005212366A priority Critical patent/JP4504882B2/en
Publication of JP2007031947A publication Critical patent/JP2007031947A/en
Application granted granted Critical
Publication of JP4504882B2 publication Critical patent/JP4504882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform efficient construction by using a tunnel boring machine (TBM), even in the presence of natural ground associated with a large quantity of sump water and high-pressure groundwater, when a mountain tunnel targeting a bedrock is bored. <P>SOLUTION: The TBM comprises: a bulkhead 6 for partitioning a front section of a body serving as an outer shell; a chamber 7 which is formed between the bulkhead 6 and a face 30, which is to be filled with water, and into which excavation muck is to be taken; a water supply means which is connected to the bulkhead 6 so as to supply the water into the chamber 7; and a mud discharging means for discharging the excavation muck along with the water from the inside of the chamber 7. The water is supplied into the chamber 7 by the water supply means so that the chamber 7 can be filled with the water, and the TBM advances to bore the tunnel, while discharging the excavation muck along with the water from the inside of the chamber 7 by the mud discharging means. When the TBM encounters the natural ground associated with the sump water, the quantity of the water supplied into the chamber 7 by the water supply means is reduced so that water pressure in the chamber 7 can be kept lower than that of the face 30, and the sump water is flown into the chamber 7 from the face 30 and discharged by the mud discharging means, so that the water pressure of the face 30 can be decreased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、岩盤を対象とした山岳トンネルの施工において、多量湧水や高圧地下水を伴う地山までも対応可能とする密閉型トンネルボーリングマシン工法に関する。   The present invention relates to a hermetic tunnel boring machine method capable of handling even a natural mountain with a large amount of spring water or high-pressure groundwater in the construction of a mountain tunnel for a rock mass.

非特許文献1に記載されているように、以前は、トンネルボーリングマシン(以下、TBMという。)とシールド掘進機とは明確に区分されていた。つまり、TBMは岩盤を対象とした山岳トンネルに対応するものであり、シールド掘進機は土砂地山を対象とする都市土木のトンネルに対応するものであった。   As described in Non-Patent Document 1, previously, a tunnel boring machine (hereinafter referred to as TBM) and a shield machine have been clearly distinguished. In other words, the TBM corresponds to a mountain tunnel for the bedrock, and the shield machine corresponds to the urban civil engineering tunnel for the earth and sand mountain.

その後、山岳トンネルにおいて軟弱な不良地山に対応するために、TBMにシールド掘進機の要素を取り入れたシールド型のTBMが開発された(例えば、非特許文献1参照。)。このシールド型のTBMは、それ以前のオープン型のTBMにおいて、その本体構造を機長全長にわたって完全にシェル(胴体)で覆った構造としたものである。そして、図4に示すように、このTBM101の掘進は、オープン型のTBMと同様に、切羽30を開放しながら行われ、切羽30が自立することを前提としている。また、掘削ずりの搬出は、切羽30が開放された状態で、ベルトコンベヤ又はスクリューコンベヤによる輸送や、ジェットポンプを利用した流体輸送で行われる。   Thereafter, in order to cope with soft and bad ground in a mountain tunnel, a shield-type TBM in which elements of a shield machine are incorporated into the TBM has been developed (for example, see Non-Patent Document 1). This shield type TBM is a structure in which the main body structure is completely covered with a shell (fuselage) over the entire length of the captain in the open type TBM before that. Then, as shown in FIG. 4, the excavation of the TBM 101 is performed while opening the face 30 as in the case of the open type TBM, and it is assumed that the face 30 is independent. Further, excavation is carried out by transportation using a belt conveyor or a screw conveyor or fluid transportation using a jet pump with the face 30 opened.

一方、都市土木のトンネルにおいて岩盤混じりの土砂地山に対応するため、TBMの要素を取り入れた岩盤対応シールド掘進機が開発された。この岩盤対応シールド掘進機は、例えば、それ以前の泥水式シールド掘進機に、TBMで用いるディスクカッタを適用するなどしたものである。そして、図5に示すように、このシールド掘進機102の掘進は、泥水式シールド掘進機と同様に、切羽圧A10(地山の土圧及び水圧)に対抗しながら、土砂地山や地下水を動かさないで行うことを基本としている。泥水による切羽30の押さえ(安定)は、切羽圧A10に対して、隔壁106で仕切られたチャンバ107内の泥水圧A11をA11=A10+αとして加圧することで行われる(一般的に、αは19.6kPa程度である。)。また、掘削土の搬出は、土砂を泥水中に取り込み溶け込んだ状態で配管を通して行われる。
「TBMハンドブック」,日本トンネル技術協会,2000年2月
On the other hand, in order to cope with the earth and sand pile mixed with rock in the tunnel of urban civil engineering, a shield excavation machine for rock mass incorporating TBM elements was developed. This shield excavator for rock mass is, for example, a disc cutter used in TBM applied to a previous muddy shield excavator. Then, as shown in FIG. 5, the excavation of the shield machine 102 is similar to the muddy water shield machine, while resisting the face pressure A 10 (the earth pressure and water pressure of the natural ground), It is basically done without moving. The pressing (stabilization) of the face 30 by mud is performed by pressurizing the mud pressure A 11 in the chamber 107 partitioned by the partition wall 106 as A 11 = A 10 + α with respect to the face pressure A 10 (general) Α is about 19.6 kPa). In addition, the excavated soil is carried out through the pipe in a state where the earth and sand are taken in and dissolved in the muddy water.
"TBM Handbook", Japan Tunneling Technology Association, February 2000

しかし、多量湧水や高圧地下水を伴う地山に遭遇した場合には、シールド型のTBM101では、切羽30は開放されているため自立することができない。切羽30を自立させるためには、水抜きボーリングや薬液注入などの補助工法を施す必要があった。また、切羽30の開放面からの肌落ちや開放状態での大量の水抜きのため、地山が乱されTBM101を拘束することもあった。これを回避するためにも同様の補助工法が必要であった。このため、多量湧水や高圧地下水を伴う地山の施工区間が長くなったり多くなったりすると、上記のような原始的な山岳工法に頼ることが多くなり、多大の時間と費用を必要とし、トンネルの掘進工程、TBMの稼働率、施工の確実性などの施工性にかなりの問題を含んでいた。   However, when encountering a natural ground accompanied by a large amount of spring water or high-pressure groundwater, the shield type TBM 101 cannot open itself because the face 30 is open. In order to make the face 30 self-supporting, it was necessary to carry out auxiliary construction methods such as drain boring and chemical injection. Further, due to skin peeling from the open face of the face 30 and a large amount of water draining in the open state, the natural ground is disturbed and the TBM 101 may be restrained. In order to avoid this, a similar auxiliary method was necessary. For this reason, if the construction section of a natural mountain with a large amount of spring water or high-pressure groundwater becomes longer or larger, it often depends on the primitive mountain construction method as described above, and requires a lot of time and cost. There were considerable problems in workability such as tunnel excavation process, TBM availability, and construction reliability.

一方、岩盤対応シールド掘進機102は、切羽圧A10よりも大きな圧力A11に加圧した泥水をチャンバ7内に満たすために、多量湧水や高圧地下水を伴う地山において切羽圧A10がシールド掘進機の耐圧を上回る場合には、全く対応できないシステムであった。 On the other hand, the shield excavator for rock mass 102 fills the chamber 7 with muddy water pressurized to a pressure A 11 larger than the face pressure A 10 , so that the face pressure A 10 is applied in the ground with a large amount of spring water and high-pressure groundwater. It was a system that could not cope at all when exceeding the pressure resistance of shield machine.

このように、TBMとシールド掘進機とは、互いに影響し合いその対応可能な地山の範囲が広くなりつつあるが、未だに、岩盤を対象とした山岳トンネルにおいて、多量湧水や高圧地下水を伴う地山に対応し効率的に施工することができる工法は、確立されていなかった。   In this way, TBM and shield machine are influencing each other and the range of natural ground that can be dealt with is widening, but there is still a large amount of spring water and high-pressure groundwater in mountain tunnels targeting rocks. No construction method has been established that can be constructed efficiently in response to natural ground.

本発明の課題は、岩盤を対象とする山岳トンネルを掘削する際に、多量湧水や高圧地下水を伴う地山があっても、トンネルボーリングマシンを用いて効率的に施工することである。   An object of the present invention is to efficiently perform construction using a tunnel boring machine even when there is a natural mountain with a large amount of spring water or high-pressure groundwater when excavating a mountain tunnel for rock.

以上の課題を解決するため、請求項1に記載の発明の密閉型トンネルボーリングマシン工法は、例えば図1から3に示すように、トンネルボーリングマシンを用いて山岳トンネルを掘進するトンネルボーリングマシン工法であって、前記トンネルボーリングマシンは、地山を掘削するカッタヘッド2の後方に設けられて外殻となる胴体(前胴4、後胴5)と、この胴体の前部を仕切る隔壁6と、この隔壁6と切羽30との間に形成され水が充満するとともに掘削ずりが取り込まれるチャンバ7と、前記隔壁6に接続されて前記チャンバ7内へ水を送水する送水手段(送水管12、送水ポンプ13など)及び前記チャンバ7内から水とともに掘削ずりを排出する排泥手段(排泥管17、排泥ポンプ18など)とを有しており、前記カッタヘッド2で地山を掘削し、前記チャンバ7内に前記送水手段で水を送水して充満させ、前記チャンバ7内から前記排泥手段で水とともに掘削ずりを排出しながら、前記トンネルボーリングマシン(密閉型トンネルボーリングマシン1)を掘進し、湧水を伴う地山に遭遇した際に、前記送水手段による送水量を減少させ前記チャンバ7内の水圧を切羽30の水圧よりも低く維持し、湧水を切羽30から前記チャンバ7内に流入させ排泥手段により排水することを特徴とする。   In order to solve the above problems, the closed tunnel boring machine method of the invention described in claim 1 is a tunnel boring machine method for excavating a mountain tunnel using a tunnel boring machine as shown in FIGS. The tunnel boring machine includes a fuselage (front trunk 4 and rear trunk 5) which is provided behind the cutter head 2 for excavating a natural ground and serves as an outer shell, and a partition wall 6 which partitions the front part of the trunk. A chamber 7 that is formed between the partition wall 6 and the face 30 and is filled with water and into which excavation shear is taken in, and a water supply means that is connected to the partition wall 6 and supplies water into the chamber 7 (water supply pipe 12, water supply) Pump 13 and the like, and mud discharging means (such as a mud pipe 17 and a mud pump 18) for discharging excavated shear together with water from the inside of the chamber 7, and the cutter head The tunnel boring machine (sealed type) is excavated by filling the chamber 7 with water by the water feeding means and filling the chamber 7 with water by the mud draining means. When excavating the tunnel boring machine 1) and encountering a natural ground with spring water, the amount of water supplied by the water supply means is reduced and the water pressure in the chamber 7 is kept lower than the water pressure of the face 30 so that the spring water It is characterized in that it flows into the chamber 7 from the face 30 and is drained by a mud discharge means.

このように、トンネルボーリングマシンは、水が充満されたチャンバ7を形成し切羽30を開放せずに密閉していることにより、湧水を伴う地山に遭遇した場合に、切羽30からの肌落ちや切羽面での水の動きを抑制することができる。そして、送水手段によるチャンバ7内への送水量を減少させて、チャンバ7内の水圧を切羽30の水圧よりも低い圧力に減圧して維持する。チャンバ7内の水圧を切羽30の水圧よりも低くすることにより、チャンバ7内に切羽30から湧水が流入する。これにより、切羽30の水圧を低下させることができ、密閉型トンネルボーリングマシンの掘進を容易にすることができる。さらに、地山の水圧がトンネルボーリングマシンの耐圧を超えるものであっても、切羽30の水圧をその耐圧以下になるまで低下させることができ、トンネルボーリングマシンによって掘進することができる。   As described above, the tunnel boring machine forms the chamber 7 filled with water and seals the face 30 without opening the face 30. Therefore, when the tunnel boring machine encounters a natural mountain with spring water, The movement of water on the fall or face can be suppressed. Then, the amount of water fed into the chamber 7 by the water feeding means is reduced, and the water pressure in the chamber 7 is reduced to a pressure lower than the water pressure of the face 30 and maintained. By making the water pressure in the chamber 7 lower than that of the face 30, spring water flows into the chamber 7 from the face 30. Thereby, the water pressure of the face 30 can be reduced, and the tunnel tunnel boring machine can be easily digged. Furthermore, even if the water pressure of the natural ground exceeds the pressure resistance of the tunnel boring machine, the water pressure of the face 30 can be lowered until the pressure becomes equal to or lower than the pressure resistance, and the tunnel boring machine can dig.

したがって、多量湧水や高圧地下水を伴う地山を掘進する際に、従来のように水抜きボーリングや薬液注入などの補助工法を施すことなく、トンネルボーリングマシンを用いて効率的に施工することができる。つまり、施工区間に多量湧水や高圧地下水を伴う地山を含む山岳トンネルであっても、そのトンネルの掘進工程が安定し、トンネルボーリングマシンの稼働率が向上し、施工の確実性が確保されることにより、施工期間を短縮し、施工費用を低減することができる。   Therefore, when excavating a natural mountain with a large amount of spring water or high-pressure groundwater, it is possible to construct it efficiently using a tunnel boring machine without applying auxiliary methods such as draining boring or injecting chemicals as in the past. it can. In other words, even if it is a mountain tunnel that includes groundwater with a large amount of spring water and high-pressure groundwater in the construction section, the tunnel excavation process is stabilized, the operation rate of the tunnel boring machine is improved, and the construction reliability is ensured. Thus, the construction period can be shortened and the construction cost can be reduced.

請求項2に記載の発明は、請求項1に記載の密閉型トンネルボーリングマシン工法において、湧水を伴う地山に遭遇した際に、前記カッタヘッド2による掘削ずりの発生量を減少させることを特徴とする。   According to a second aspect of the present invention, in the closed tunnel boring machine construction method according to the first aspect, when a natural ground with spring water is encountered, the amount of excavation shear caused by the cutter head 2 is reduced. Features.

このように、カッタヘッド2による掘削ずりの発生量を減少させることにより、排泥手段により排出すべき掘削ずりの量が減少し、その分排泥手段による排水量を増加させることができる。そして、排泥手段による排水量を増加させることにより、チャンバ7内の水圧をさらに低下させることができる。   In this way, by reducing the amount of excavation shear generated by the cutter head 2, the amount of excavation shear to be discharged by the mud discharging means is reduced, and the amount of drainage by the mud discharging means can be increased accordingly. And the water pressure in the chamber 7 can be further reduced by increasing the amount of drainage by the mud discharge means.

本発明によれば、山岳トンネルを掘削する際に多量湧水や高圧地下水を伴う地山に遭遇しても、トンネルボーリングマシンに水が充満されたチャンバを形成しているので、切羽は開放されずに密閉され、切羽からの肌落ちや切羽面での水の動きの抑制が可能である。そして、チャンバ内への送水量を減少させてチャンバ内の水圧を切羽の水圧よりも低く維持し、切羽からチャンバ内に湧水を流入させて排泥手段により排水するので、切羽の水圧を低下させることが可能である。地山の水圧がトンネルボーリングマシンの耐圧を超えても、その耐圧以下にまで低下させることが可能である。したがって、従来のように水抜きボーリングや薬液注入などの補助工法を施すことなく、トンネルボーリングマシンを用いた効率的な施工が可能である。   According to the present invention, even when encountering a natural mountain with a large amount of spring water or high-pressure groundwater when excavating a mountain tunnel, the tunnel boring machine forms a chamber filled with water, so the face is opened. It is hermetically sealed and can suppress skin removal from the face and movement of water on the face. The amount of water fed into the chamber is reduced to maintain the water pressure in the chamber lower than the water pressure of the face, and the spring water flows into the chamber from the face and is drained by the mud discharge means, thus reducing the water pressure of the face. It is possible to make it. Even if the water pressure in the natural ground exceeds the pressure resistance of the tunnel boring machine, it can be reduced to below that pressure resistance. Therefore, efficient construction using a tunnel boring machine is possible without performing auxiliary construction methods such as drain boring and chemical injection as in the prior art.

以下、図を参照して本発明を実施するための最良の形態を詳細に説明する。
まず、本実施形態に係る密閉型トンネルボーリングマシン1(以下、密閉型TBM1という。)の構成について説明する。この密閉型TBM1は、基本的には、周知のシールド型TBMの構成要素を備えている。さらに、切羽を開放させず密閉するために、周知の泥水式シールド掘進機における切羽保持のための構成要素が組み入れられている。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
First, the configuration of a sealed tunnel boring machine 1 (hereinafter referred to as a sealed TBM 1) according to the present embodiment will be described. The sealed TBM 1 basically includes the components of a well-known shielded TBM. Furthermore, in order to seal the face without opening it, a component for retaining the face in a known mud shield shield machine is incorporated.

すなわち、図1に示すように、本実施形態に係る密閉型TBM1は、カッタモータ3で駆動され地山を掘削するカッタヘッド2と、このカッタヘッド2の後方に設けられて外殻となる伸縮可能な複胴構造の胴体(前胴4、後胴5)と、後胴5の後部でセグメント31をリング状に組み付けるエレクタ8と、後方で組み立てられたセグメント31で掘削反力を確保して推進力を発生させるシールドジャッキ9と、を装備している。その他、中折れジャッキ10、削孔機11などを装備している。   That is, as shown in FIG. 1, the sealed TBM 1 according to the present embodiment includes a cutter head 2 driven by a cutter motor 3 to excavate a natural ground, and an expansion / contraction provided behind the cutter head 2 and serving as an outer shell. Ensuring the excavation reaction force with the body (front cylinder 4 and rear cylinder 5) of possible multiple cylinder structures, the erector 8 that assembles the segment 31 in a ring shape at the rear of the rear cylinder 5, and the segment 31 assembled at the rear And a shield jack 9 for generating a propulsive force. In addition, a folding jack 10 and a drilling machine 11 are equipped.

なお、本実施形態では、密閉型TBM1の機器構成を簡素化するために、周知のTBMが備える構成要素を省略している。すなわち、既設トンネルの内壁面に押し付け前胴4を位置保持するフロントグリッパと、既設トンネルの内壁面に押し付け後胴5を位置保持するメイングリッパと、メイングリッパで掘削反力を確保して推進力を発生させるスラストジャッキと、を装備していない。しかし、密閉型TBM1は、それらの構成要素を装備することが可能である。それらを装備した場合には、エレクタ8は後胴5の後部で支保、ライナーなども組み付ける機能を有する。また、スラストジャッキは主推進ジャッキとして、シールドジャッキ9は地盤が軟弱でメイングリッパにより掘削反力を確保することができない場合における補助ジャッキとしての機能を有する。   In this embodiment, in order to simplify the device configuration of the sealed TBM 1, components included in the well-known TBM are omitted. That is, a front gripper that holds the front cylinder 4 against the inner wall surface of the existing tunnel, a main gripper that holds the post cylinder 5 against the inner wall surface of the existing tunnel, and a main gripper that ensures excavation reaction force and propulsion force It is not equipped with a thrust jack that generates However, the sealed TBM 1 can be equipped with these components. When these are equipped, the erector 8 has a function of assembling a support, a liner and the like at the rear part of the rear cylinder 5. The thrust jack has a function as a main jack, and the shield jack 9 has a function as an auxiliary jack when the ground is soft and the main gripper cannot secure a reaction force for excavation.

さらに、この密閉型TBM1は、前胴4の前部を仕切る隔壁6と、この隔壁6と切羽30との間に形成され泥水が充満するとともに掘削ずりが取り込まれるチャンバ7と、隔壁6に接続されてチャンバ7内へ泥水を送水する送水手段及びチャンバ7内から泥水と掘削ずりを排出する排泥手段と、を装備している。したがって、従来のTBMのような切羽30を開放した状態で排土する排土装置を装備していない。   Further, the sealed TBM 1 is connected to the partition wall 6 that partitions the front portion of the front barrel 4, the chamber 7 that is formed between the partition wall 6 and the face 30 and is filled with muddy water and into which excavation shear is taken in. The water supply means for supplying the muddy water into the chamber 7 and the mud discharge means for discharging the muddy water and the excavation shear from the chamber 7 are equipped. Therefore, it is not equipped with a soil removal device that performs soil removal with the face 30 open like a conventional TBM.

図2に示すように、チャンバ7内の泥水と掘削ずりは、排泥手段により地上に設置した処理設備28まで流体輸送され、処理設備28により泥水と掘削ずりに分離される。分離された泥水は、地上に設置した調整槽29に貯留され、送水手段により再び循環される。   As shown in FIG. 2, the muddy water and excavation in the chamber 7 are fluid-transported to the processing equipment 28 installed on the ground by the mud discharge means and separated into the mud and excavation sludge by the processing equipment 28. The separated muddy water is stored in the adjustment tank 29 installed on the ground and is circulated again by the water supply means.

送水手段は、調整槽29から密閉型TBM1のチャンバ7まで配設される送水管12と、この送水管12に介装される送水ポンプ13、送水バルブ14、15などから構成されている。また、チャンバ7側の送水バルブ15には、コントロールバルブ16が並設されている。   The water supply means includes a water supply pipe 12 disposed from the adjustment tank 29 to the chamber 7 of the sealed TBM 1, a water supply pump 13 interposed in the water supply pipe 12, and water supply valves 14 and 15. A control valve 16 is provided in parallel with the water supply valve 15 on the chamber 7 side.

排泥手段は、チャンバ7から処理設備28まで配設される排泥管17と、この排泥管17に介装されるクラッシャ21、排泥ポンプ18、排泥バルブ20などから構成されている。なお、トンネルの延長に応じて、排泥管17には中継ポンプ19が適宜増設される。また、隔壁6には、上記排泥管17とは別系統の予備排泥管22が接続されている。   The mud draining means includes a mud pipe 17 disposed from the chamber 7 to the treatment facility 28, a crusher 21 interposed in the mud pipe 17, a mud pump 18, a mud valve 20, and the like. . A relay pump 19 is appropriately added to the mud pipe 17 in accordance with the extension of the tunnel. In addition, a spare drainage pipe 22 of a different system from the drainage pipe 17 is connected to the partition wall 6.

送水管12と排泥管17との間には、これらを送水バルブ15と排泥バルブ20の近傍で連通させるバイパス管23が設けられている。このバイパス管23には、バイパスバルブ24が介装され、送水管12を介してチャンバ7内に供給される泥水の一部を、排泥管17側にバイパスさせて、チャンバ7内の圧力を所定値に保つ際に用いられる。   A bypass pipe 23 is provided between the water supply pipe 12 and the mud discharge pipe 17 so as to communicate them in the vicinity of the water supply valve 15 and the mud discharge valve 20. A bypass valve 24 is interposed in the bypass pipe 23, and a part of the muddy water supplied into the chamber 7 through the water supply pipe 12 is bypassed to the side of the mud pipe 17 so that the pressure in the chamber 7 is increased. Used when maintaining a predetermined value.

また、送水管12とクラッシャ21との間には、循環管25が設けられている。この循環管25には、循環ポンプ26が介装され、チャンバ7内に供給される泥水の一部を、クラッシャ21に供給できるようになっている。   A circulation pipe 25 is provided between the water supply pipe 12 and the crusher 21. A circulation pump 26 is interposed in the circulation pipe 25, and a part of the muddy water supplied into the chamber 7 can be supplied to the crusher 21.

次に、上記構成のTBMを用いた密閉型TBM工法について説明する。この密閉型TBM工法における掘進は、基本的にはカッタヘッド2で地山を掘削し、チャンバ7内に送水手段で泥水を送水して充満させ、チャンバ7内から排泥手段で泥水とともに掘削ずりを排出しながら行う。そして、地山が通常の岩盤である施工区間、軟弱な不良地山である施工区間、多量湧水や高圧地下水を伴う施工区間に分けて、チャンバ7内の泥水圧の管理方法を変更して行う。チャンバ7内の泥水圧の管理は、送水手段の送水量及び送水圧、カッタヘッド2の掘削土量、排泥手段の排水量を制御しながら行う。   Next, a sealed TBM method using the TBM having the above configuration will be described. In this sealed TBM method, the excavation is basically performed by excavating a natural ground with the cutter head 2, filling the chamber 7 with muddy water by the water supply means, and excavating the muddy water with the muddy water from the chamber 7 with the mud discharge means. While discharging. Then, change the management method of the muddy water pressure in the chamber 7 by dividing it into a construction section where the natural ground is a normal rock, a construction section where the soft ground is bad, and a construction section with a large amount of spring water and high-pressure groundwater. Do. The muddy water pressure in the chamber 7 is managed while controlling the water supply amount and water supply pressure of the water supply means, the amount of excavated soil of the cutter head 2 and the amount of drainage of the mud discharge means.

まず、地山が通常の岩盤である施工区間では、切羽30が自立するので、チャンバ7内へ送水は、掘削ずりを排泥するために必要な水量として制御すればよい。したがって、切羽30を保持するためにチャンバ7内の泥水圧を制御する必要はない。   First, since the working face 30 is self-supporting in the construction section where the natural ground is a normal rock mass, the water supply into the chamber 7 may be controlled as the amount of water necessary for draining the excavated shear. Therefore, it is not necessary to control the muddy water pressure in the chamber 7 in order to hold the face 30.

次に、地山が軟弱な不良地山である施工区間では、切羽30が自立しないので、従来の泥水式シールド工法によって掘進する。すなわち、切羽圧に対してチャンバ7内の泥水圧を高い圧力に加圧して、切羽30を安定させながら行う。チャンバ7内の泥水圧の制御は、送水ポンプ13の回転数を変化させたり、コントロールバルブ16の開口率を変化させたりして行う。   Next, since the face 30 is not self-supporting in the construction section where the natural ground is a soft defective ground, it is dug by the conventional muddy water type shield method. That is, the muddy water pressure in the chamber 7 is increased to a higher pressure than the face pressure, and the face 30 is stabilized. The muddy water pressure in the chamber 7 is controlled by changing the rotation speed of the water pump 13 or changing the opening ratio of the control valve 16.

そして、地山が多量湧水や高圧地下水を伴う施工区間では、送水手段による送水量を減少させ、チャンバ7内の水圧を切羽30の水圧よりも低い圧力に減圧して所定の圧力で維持する。つまり、図3に示すように、チャンバ7内の水圧Aは、切羽30の水圧Aに対して、A=A−βとして制御される。βは、切羽30の水圧を低下させるための管理値である。チャンバ7内の水圧の制御範囲は、密閉型TBM1の耐圧範囲内とする。 Then, in the construction section where the natural mountain is accompanied by a large amount of spring water or high-pressure groundwater, the amount of water supplied by the water supply means is reduced, and the water pressure in the chamber 7 is reduced to a pressure lower than the water pressure of the face 30 and maintained at a predetermined pressure. . That is, as shown in FIG. 3, the water pressure A 0 in the chamber 7 is controlled as A 0 = A 1 −β with respect to the water pressure A 1 of the face 30. β is a management value for reducing the water pressure of the face 30. The control range of the water pressure in the chamber 7 is set to be within the pressure resistance range of the sealed TBM 1.

チャンバ7内の水圧が切羽30の水圧よりも低いので、地山の湧水が切羽30からチャンバ7内に流入する。流入した湧水を、送水手段により送水された泥水とカッタヘッド2により掘削された掘削ずりとともに、排泥手段により排出する。   Since the water pressure in the chamber 7 is lower than the water pressure in the face 30, natural spring water flows from the face 30 into the chamber 7. The inflow spring water is discharged by the mud discharge means together with the muddy water supplied by the water supply means and the excavation shear excavated by the cutter head 2.

ここで、送水ポンプ13の送水量は、地山の湧水量が多くなるに従って減少させることになる。そして、送水ポンプ13の送水量がゼロになる場合には、掘削ずりの排出は湧水のみで行うことになる。さらに地山の湧水量が多くなる場合は、排泥ポンプ18の最大能力までチャンバ7内に湧水を流入させ掘削ずりとともに排出する。   Here, the amount of water supplied by the water supply pump 13 is reduced as the amount of spring water in the natural mountain increases. And when the water supply amount of the water supply pump 13 becomes zero, the excavation is discharged only by the spring water. Further, when the amount of spring water in the ground increases, the spring water flows into the chamber 7 up to the maximum capacity of the mud pump 18 and is discharged together with excavation.

地山の湧水量が排泥ポンプ18の最大能力を超える場合には、密閉型TBM1の掘進速度を落として、カッタヘッド2による掘削ずりの発生量を減少させる。排泥手段により排出すべき掘削ずりの量が減少し、その分排泥手段による排水量が増加する。   When the amount of spring water in the ground exceeds the maximum capacity of the mud pump 18, the digging speed of the sealed TBM 1 is reduced to reduce the amount of excavation caused by the cutter head 2. The amount of excavation shear to be discharged by the mud discharge means decreases, and the amount of drainage by the mud discharge means increases accordingly.

掘削ずりの排出量が少ない状態が長く続く場合や、あまりにも湧水が多く排水のみで排土できない場合には、予備排泥管22に別途排泥ポンプを接続して湧水の一部をトンネル坑外へ排出し、掘削ずりの排土を確保する。   If the state of low excavation discharge continues for a long time, or if there is too much spring water and the soil cannot be drained only by drainage, a separate drainage pump is connected to the preliminary drainage pipe 22 to remove a part of the springwater. Discharge outside the tunnel mine and secure excavated soil.

以上の実施形態によれば、密閉型TBM工法では、切羽30を密閉して掘進を行うので、地山が多量湧水や高圧地下水を伴う地山に遭遇した場合に、切羽30からの肌落ちや切羽面での水の動きを抑制することができる。そして、排泥手段により湧水を排出することにより、切羽30の水圧を低下させることができ、密閉型TBM1の掘進を容易にすることができる。   According to the above embodiment, in the sealed TBM method, the face 30 is sealed and excavated, so when the natural mountain encounters a natural mountain with a large amount of spring water or high-pressure groundwater, the skin from the face 30 is removed. And the movement of water on the face can be suppressed. And by discharging spring water with a mud discharge means, the water pressure of the face 30 can be reduced and the excavation of the sealed TBM 1 can be facilitated.

さらに、カッタヘッド2による掘削ずりの発生量を減少させることにより、排泥手段により排出すべき掘削ずりの量が減少し、その分排泥手段による排水量を増加させることができ、チャンバ7内の水圧をさらに低下させることができる。また、地山の水圧が密閉型TBM1の耐圧を超えるものであっても、切羽30の水圧をその耐圧以下になるまで低下させることができ、密閉型TBM1によって掘進することができる。   Further, by reducing the amount of excavation debris generated by the cutter head 2, the amount of excavation debris to be discharged by the mud discharge means can be reduced, and the amount of drainage by the mud discharge means can be increased accordingly. The water pressure can be further reduced. Moreover, even if the water pressure of the natural ground exceeds the pressure resistance of the sealed type TBM1, the water pressure of the face 30 can be lowered until the pressure becomes equal to or lower than the pressure resistance, and the sealed type TBM1 can dig.

したがって、従来のように水抜きボーリングや薬液注入などの補助工法を施すことなく、TBMを用いて効率的に施工することができる。すなわち、施工区間に多量湧水や高圧地下水を伴う地山を含む山岳トンネルであっても、そのトンネルの掘進工程が安定し、TBMの稼働率が向上し、施工の確実性が確保されることにより、施工期間を短縮し、施工費用を低減することができる。   Therefore, it can be efficiently constructed using TBM without performing auxiliary construction methods such as draining boring and chemical injection as in the prior art. In other words, even if it is a mountain tunnel including a natural mountain with a large amount of spring water and high-pressure groundwater in the construction section, the tunnel excavation process is stable, the TBM operation rate is improved, and construction reliability is ensured. Thus, the construction period can be shortened and the construction cost can be reduced.

また、岩盤を対象とした山岳トンネルにおける施工では、可燃性ガス(有毒ガス)の噴出や高温地山などが問題となる。しかし、この問題も切羽30が密閉されていることや水による冷却効果などによって解消することができる。   In addition, in the construction of mountain tunnels for bedrock, flammable gas (toxic gas) jets and high-temperature mountains are problematic. However, this problem can also be solved by the fact that the face 30 is sealed or the cooling effect by water.

なお、以上の実施の形態においては、チャンバ7内の泥水圧を減圧するために、送水量を減少させた後に排泥量を増加させているが、本発明はこれに限定されるものではなく、排泥量を増加させた後に送水量を減少させても良い。   In the above embodiment, in order to reduce the muddy water pressure in the chamber 7, the amount of discharged mud is increased after the amount of water supplied is decreased, but the present invention is not limited to this. The water supply amount may be decreased after increasing the amount of discharged mud.

また、高圧地下水の急激な圧変動に制御が対応できず、チャンバ7内の泥水圧が密閉型TBM1の耐力を超える場合には、送水管12、チャンバ7などに緊急圧抜バルブ27を接続しておき、機械的な緊急圧抜きを行っても良い。   Further, when the control cannot cope with the rapid pressure fluctuation of the high-pressure groundwater, and the muddy water pressure in the chamber 7 exceeds the proof strength of the sealed TBM 1, an emergency pressure relief valve 27 is connected to the water supply pipe 12, the chamber 7, etc. In addition, mechanical emergency pressure relief may be performed.

また、切羽30の水圧が著しく高く、ポンプ性能が大きくなって不経済となる場合には、削孔機11を用いて水抜きボーリングにより予め切羽30の水圧を下げておいても良い。その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   Further, when the water pressure of the face 30 is extremely high and the pump performance becomes large and uneconomical, the water pressure of the face 30 may be lowered in advance by draining boring using the hole drilling machine 11. In addition, it is needless to say that specific detailed structures and the like can be appropriately changed.

本発明を適用した一実施の形態に係る密閉型TBMの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of sealed TBM which concerns on one embodiment to which this invention is applied. 本発明を適用した一実施の形態に係る密閉型TBMにおける流体のフローを説明する図である。It is a figure explaining the flow of the fluid in sealed TBM which concerns on one embodiment to which this invention is applied. 本発明に係る密閉型TBMにおける切羽の水圧とチャンバ内の水圧との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the water pressure of the face in the sealed TBM which concerns on this invention, and the water pressure in a chamber. 従来のTBMにおける切羽の水圧とチャンバ内の水圧との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the water pressure of the face in conventional TBM, and the water pressure in a chamber. 従来のシールド掘進機における切羽の水圧とチャンバ内の水圧との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the water pressure of the face in a conventional shield machine, and the water pressure in a chamber.

符号の説明Explanation of symbols

1 密閉型トンネルボーリングマシン
2 カッタヘッド
3 カッタモータ
4 前胴(胴体)
5 後胴(胴体)
6 隔壁
7 チャンバ
8 エレクタ
9 シールドジャッキ
10 中折れジャッキ
11 削孔機
12 送水管(送水手段)
13 送水ポンプ(送水手段)
14、15 送水バルブ(送水手段)
16 コントロールバルブ(送水手段)
17 排泥管(排泥手段)
18 排泥ポンプ(排泥手段)
19 中継ポンプ(排泥手段)
20 排泥バルブ(排泥手段)
21 クラッシャ(排泥手段)
22 予備排泥管(排泥手段)
23 バイパス管
24 バイパスバルブ
25 循環管
26 循環ポンプ
27 緊急圧抜バルブ
28 処理設備
29 調整槽
30 切羽
31 セグメント
(山岳トンネルにおける)切羽の水圧
(密閉型TBMの)チャンバ内の泥水圧
1 Sealed tunnel boring machine 2 Cutter head 3 Cutter motor 4 Front trunk (body)
5 Rear trunk (torso)
6 Bulkhead 7 Chamber 8 Electa 9 Shield Jack 10 Folding Jack 11 Hole Drilling Machine 12 Water Supply Pipe (Water Supply Means)
13 Water supply pump (water supply means)
14, 15 Water supply valve (water supply means)
16 Control valve (water supply means)
17 Mud discharge pipe (mud discharge means)
18 Mud pump (mud discharge means)
19 Relay pump (mud discharge means)
20 Mud discharge valve (mud discharge means)
21 Crusher (mud draining means)
22 Preliminary drainage pipe (sludge means)
23 Bypass pipe 24 Bypass valve 25 Circulation pipe 26 Circulation pump 27 Emergency pressure relief valve 28 Processing equipment 29 Adjustment tank 30 Face 31 Segment A 0 Water pressure at face A 1 (in a mountain tunnel) A 1 Muddy water pressure in the chamber (in a closed TBM)

Claims (2)

トンネルボーリングマシンを用いて山岳トンネルを掘進するトンネルボーリングマシン工法であって、
前記トンネルボーリングマシンは、地山を掘削するカッタヘッドの後方に設けられて外殻となる胴体と、この胴体の前部を仕切る隔壁と、この隔壁と切羽との間に形成され水が充満するとともに掘削ずりが取り込まれるチャンバと、前記隔壁に接続されて前記チャンバ内へ水を送水する送水手段及び前記チャンバ内から水とともに掘削ずりを排出する排泥手段とを有しており、
前記カッタヘッドで地山を掘削し、前記チャンバ内に前記送水手段で水を送水して充満させ、前記チャンバ内から前記排泥手段で水とともに掘削ずりを排出しながら、前記トンネルボーリングマシンを掘進し、
湧水を伴う地山に遭遇した際に、前記送水手段による送水量を減少させ前記チャンバ内の水圧を切羽の水圧よりも低く維持し、湧水を切羽から前記チャンバ内に流入させ排泥手段により排水することを特徴とする密閉型トンネルボーリングマシン工法。
A tunnel boring machine method that uses a tunnel boring machine to dig up a mountain tunnel,
The tunnel boring machine is formed behind a cutter head for excavating a natural ground and serves as an outer shell, a bulkhead partitioning the front of the fuselage, and a space between the bulkhead and the face. And a chamber into which the excavated ladle is taken in, a water supply means connected to the partition wall to feed water into the chamber, and a mud draining means for discharging the excavated ladle together with water from within the chamber,
Excavating the tunnel boring machine while excavating a natural ground with the cutter head, filling the chamber with water by the water supply means, and discharging the excavation debris together with water from the chamber with the mud discharge means And
When encountering a natural mountain with spring water, the amount of water supplied by the water supply means is reduced, the water pressure in the chamber is kept lower than the water pressure of the face, and the spring water flows from the face into the chamber to drain the mud. Sealed tunnel boring machine method characterized by draining by means of
湧水を伴う地山に遭遇した際に、前記カッタヘッドによる掘削ずりの発生量を減少させることを特徴とする請求項1に記載の密閉型トンネルボーリングマシン工法。   2. The closed tunnel boring machine method according to claim 1, wherein the amount of excavation caused by the cutter head is reduced when encountering a natural ground with spring water.
JP2005212366A 2005-07-22 2005-07-22 Sealed tunnel boring machine method Expired - Fee Related JP4504882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212366A JP4504882B2 (en) 2005-07-22 2005-07-22 Sealed tunnel boring machine method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212366A JP4504882B2 (en) 2005-07-22 2005-07-22 Sealed tunnel boring machine method

Publications (2)

Publication Number Publication Date
JP2007031947A true JP2007031947A (en) 2007-02-08
JP4504882B2 JP4504882B2 (en) 2010-07-14

Family

ID=37791528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212366A Expired - Fee Related JP4504882B2 (en) 2005-07-22 2005-07-22 Sealed tunnel boring machine method

Country Status (1)

Country Link
JP (1) JP4504882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133986A1 (en) * 2016-02-01 2017-08-10 Herrenknecht Ag Tunnel boring device and system for the hydraulic removal of cuttings, and system for producing a stable fluid pressure for a boring fluid in the region of a cutting disk of the tunnel boring device
CN107559014A (en) * 2017-07-21 2018-01-09 上海隧道工程有限公司 Mud conditioning platform on movable type water
CN113120519A (en) * 2021-04-16 2021-07-16 中铁工程服务有限公司 Slag discharge surge buffering device for shield construction and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077784A (en) * 1996-09-03 1998-03-24 Hitachi Constr Mach Co Ltd Tunnel excavator and tunnel excavation method
JP2002129888A (en) * 2000-10-25 2002-05-09 Shimizu Corp Tunnel boring machine and tunnel boring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077784A (en) * 1996-09-03 1998-03-24 Hitachi Constr Mach Co Ltd Tunnel excavator and tunnel excavation method
JP2002129888A (en) * 2000-10-25 2002-05-09 Shimizu Corp Tunnel boring machine and tunnel boring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133986A1 (en) * 2016-02-01 2017-08-10 Herrenknecht Ag Tunnel boring device and system for the hydraulic removal of cuttings, and system for producing a stable fluid pressure for a boring fluid in the region of a cutting disk of the tunnel boring device
US11118454B2 (en) * 2016-02-01 2021-09-14 Herrenknecht Ag Tunnel boring device and system for the hydraulic removal of cuttings, and system for producing a stable fluid pressure for a boring fluid in the region of a cutting disk of the tunnel boring device
CN107559014A (en) * 2017-07-21 2018-01-09 上海隧道工程有限公司 Mud conditioning platform on movable type water
CN107559014B (en) * 2017-07-21 2019-12-20 上海隧道工程有限公司 Movable overwater slurry treatment platform
CN113120519A (en) * 2021-04-16 2021-07-16 中铁工程服务有限公司 Slag discharge surge buffering device for shield construction and construction method thereof
CN113120519B (en) * 2021-04-16 2023-07-21 中铁工程服务有限公司 Slag tapping and gushing buffer device for shield construction and construction method thereof

Also Published As

Publication number Publication date
JP4504882B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CN110159274B (en) Sea area high water pressure shield method tunnel emergency tool changing structure and construction method
Home Hard rock TBM tunneling in challenging ground: Developments and lessons learned from the field
CN108708738A (en) Realize that the pretreated combination type T BM of rock burst and rock burst pre-process driving method
JP5425855B2 (en) Muddy water type shield machine
CN110905536A (en) Construction method for receiving complex stratum earth pressure shield in underground excavation tunnel
CN108798688A (en) Realize that the combination type T BM that gets rid of poverty of card machine and card machine get rid of poverty driving method
JP4504882B2 (en) Sealed tunnel boring machine method
CN110656947B (en) Method for tunneling raised section of seabed bedrock
JP5336454B2 (en) Explosion-proof excavation equipment
JP2007077682A (en) Shield machine and working area forming method therefor
CN109519184B (en) Construction method for controlling attitude drift of shield tunneling machine by advanced drilling
US11441423B2 (en) Method and apparatus for the bottom-up construction of vertical risers from underground passes through the soil, using a pipe jacking equipment
JP3648669B2 (en) Bedrock storage facility and construction method thereof
JP2020139320A (en) Shield excavator and shield construction method
RU2059813C1 (en) Method for mining steeply dipping ore bodies
JPH11131972A (en) Tunnel constructing method
JP4464248B2 (en) Shield widening method and shield machine capable of widening lining
JP7162279B2 (en) Pressure drilling system
KR20230094583A (en) Method of excavating shore connection between submerged floating tunnel and sumsea bored tunnel
Grothen et al. Extreme ingress: Managing high water inflows in hard rock TBM tunneling
JP2000192787A (en) Earth pressure shield excavator and excavating method therewith
Duhme Urban Tunneling in Settlement Risk Areas
RU2043501C1 (en) Method for driving tunnels in unstable water-saturated rocks
JP7290621B2 (en) rock excavator
JPH0776819A (en) Improving method for ground of tunnel excavation part and peripheral part thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160430

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees