JP2007030270A - Manufacturing method of cylindrical body made of rubber - Google Patents

Manufacturing method of cylindrical body made of rubber Download PDF

Info

Publication number
JP2007030270A
JP2007030270A JP2005214888A JP2005214888A JP2007030270A JP 2007030270 A JP2007030270 A JP 2007030270A JP 2005214888 A JP2005214888 A JP 2005214888A JP 2005214888 A JP2005214888 A JP 2005214888A JP 2007030270 A JP2007030270 A JP 2007030270A
Authority
JP
Japan
Prior art keywords
mold
rubber cylinder
inner mold
diameter side
unvulcanized rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005214888A
Other languages
Japanese (ja)
Inventor
Shizuo Yokobori
志津雄 横堀
Kazuharu Uetsubo
一晴 上坪
Mitsuo Oshikata
満男 押方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2005214888A priority Critical patent/JP2007030270A/en
Publication of JP2007030270A publication Critical patent/JP2007030270A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a rubber made cylindrical body (rubber hose) capable of enhancing the productivity, appearance and dimensional accuracy of the rubber made cylindrical body. <P>SOLUTION: An unvulcanized rubber cylinder 7 is arranged on the outer peripheral side of a cylindrical inner mold 4 and the outer peripheral surface of the inner mold 4 is constituted of the side surface of a truncated cone. The inner mold 4 on its small diameter side is externally fitted to a shaft 6 so as to be freely slid in its center axis direction and inserted in a cylindrical outer mold 5 on its large diameter side. The inner peripheral surface of the outer mold 5 is constituted of the side surface of a truncated cone. The inner mold 4 is pushed in the outer mold 5 toward its small diameter side and the movement of the inner mold 4 in the center axis direction of the end part on the large diameter side of the inner mold 4 is restricted with respect to the outer mold 5. The inner mold 4 is thermally expanded on its small diameter side by heat for vulcanizing molding to press an unvulcanized rubber cylinder 7 on its outer peripheral side to the inner peripheral surface of the outer mold 5. By this constitution, the unvulcanized rubber cylinder 7 is vulcanized and molded into the rubber hose 1 by the pressure and heating of the inner mold 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、両端の内径及び外径が異なる円錐台状のゴムホースなどを製造するためのゴム製筒体の製造方法に関するものである。   The present invention relates to a method of manufacturing a rubber cylinder for manufacturing a truncated cone-shaped rubber hose having different inner diameters and outer diameters at both ends.

一般に、ゴム製筒体は、未加硫ゴム筒を内外から押圧しながら加熱することにより加硫成形して製造されている。ゴム製筒体のうち、内径に対する長さの比が比較的に小さいタイヤや空気ばねなどの製造には、未加硫ゴム筒の内側にバッグを挿入し、そのバッグの圧力で未加硫ゴム筒を外金型に押し付けるバッグ方式の加硫成形を採用することが多い(例えば特許文献1)。   Generally, a rubber cylinder is manufactured by vulcanization molding by heating an unvulcanized rubber cylinder while pressing it from inside and outside. Of the rubber cylinders, for the manufacture of tires and air springs with a relatively small length ratio relative to the inner diameter, a bag is inserted inside the unvulcanized rubber cylinder, and the unvulcanized rubber is inserted under the pressure of the bag. In many cases, bag-type vulcanization molding in which a cylinder is pressed against an outer mold is employed (for example, Patent Document 1).

ただ、ゴムホースなどの長尺ゴム製筒体の製造にバッグ方式の加硫成形を採用しようとしても、バッグの挿入及び引き抜きが難しく、生産性が極端に低下する。さらに、柔らかいバッグを押し付けられるゴム製筒体の内周面に寸法変動や凹凸、段差を生じやすく、ゴム製筒体として、内部を流体が流れるゴムホースを製造する場合、特に、内部を摩耗性流体が流れるスラリーホースを製造する場合には、その製品に不具合を生じさせるおそれがある。   However, even if a bag-type vulcanization molding is adopted for the production of a long rubber cylinder such as a rubber hose, it is difficult to insert and withdraw the bag, and the productivity is extremely lowered. Furthermore, when manufacturing a rubber hose in which fluid flows easily as a rubber cylinder, the inner circumference of the rubber cylinder that is pressed against a soft bag is likely to cause dimensional fluctuations, irregularities, and steps. In the case of manufacturing a slurry hose through which the slag flows, there is a risk of causing a problem in the product.

そのため、ゴムホースなどの長尺ゴム製筒体の製造には、マンドレルに未加硫ゴム及び補強繊維を積層し、その外周を布締めして直接蒸気加硫する布巻き方式の加硫成形が採用されている。
特開平6−23864
Therefore, for the production of long rubber cylinders such as rubber hoses, cloth-wrapped vulcanization is used, in which unvulcanized rubber and reinforcing fibers are laminated on a mandrel, and the outer periphery is tightened and directly steam vulcanized. Has been.
JP-A-6-23864

ところが、布巻き方式の加硫成形を採用する場合、ゴム製筒体の生産性が低く、製品の外観上の見栄えも悪くなりやすく、さらに製品の寸法精度も劣りやすい。   However, when cloth-wrapping vulcanization molding is employed, the productivity of the rubber cylinder is low, the appearance of the product tends to deteriorate, and the dimensional accuracy of the product tends to be poor.

本発明は、ゴム製筒体の生産性、外観及び寸法精度を高めることができるゴム製筒体の製造方法の提供を目的とする。   An object of this invention is to provide the manufacturing method of the rubber cylinder which can improve the productivity, external appearance, and dimensional accuracy of a rubber cylinder.

上記目的を達成するために、本発明に係る製造方法は、両端の内径及び外径が異なる円錐台状のゴム製筒体を製造するものである。その手順を説明すると、まず、円錐台の側面からなる外周面を有する筒状の内型の外周側に未加硫ゴム筒を配置して、内型を内型支持用のシャフトに外嵌する。次いで、円錐台の側面からなる内周面を有する外型に、この外型と大径側及び小径側の向きを合わせて内型を挿入する。その後、内型の大径側端部の外型に対する中心軸方向の移動を規制して、加硫成形用の熱によって内型を小径側に熱膨張させることにより、内型の外周側に配置した未加硫ゴム筒を外型の内周面に押圧して加硫成形する。   In order to achieve the above object, the manufacturing method according to the present invention manufactures a truncated cone-shaped rubber cylinder having different inner and outer diameters at both ends. The procedure will be described. First, an unvulcanized rubber cylinder is arranged on the outer peripheral side of a cylindrical inner mold having an outer peripheral surface made up of the side surface of the truncated cone, and the inner mold is externally fitted to the shaft for supporting the inner mold. . Next, the inner mold is inserted into the outer mold having the inner peripheral surface formed of the side surface of the truncated cone by aligning the outer mold with the large diameter side and the small diameter side. After that, by restricting the movement of the end of the large-diameter side of the inner mold in the direction of the central axis relative to the outer mold, the inner mold is thermally expanded to the small-diameter side by heat for vulcanization molding, and arranged on the outer peripheral side of the inner mold. The unvulcanized rubber cylinder is pressed against the inner peripheral surface of the outer mold and vulcanized.

この構成によれば、加硫成形する際、熱膨張して小径側に伸びる内型の外周面が外型の内周面に徐々に近接するので、未加硫ゴムを均一に流動させながら強く加圧することができる。これにより、ゴム製筒体の形状及び寸法を安定させると共に、残留空気を十分に排除してゴム製筒体の物性を安定させることができる。さらに、未加硫ゴム筒を加圧する内型及び外型に十分な剛性があるので、バッグ方式や布巻き方式のような寸法変動や凹凸、段差を生じさせることなく、ゴム製筒体を極めて安定した形状及び寸法に成形することができる。   According to this configuration, when the vulcanization molding is performed, the outer peripheral surface of the inner mold that is thermally expanded and extends toward the small diameter side gradually approaches the inner peripheral surface of the outer mold. Can be pressurized. As a result, the shape and dimensions of the rubber cylinder can be stabilized, and residual air can be sufficiently eliminated to stabilize the physical properties of the rubber cylinder. Furthermore, since the inner and outer molds that pressurize the unvulcanized rubber cylinder have sufficient rigidity, the rubber cylinder can be made extremely without causing dimensional fluctuations, irregularities and steps as in the bag system and cloth winding system. It can be molded into a stable shape and size.

また、内型の外周面及び外型の内周面が円錐台の側面からなるので、内型及び外型を着脱する際の抵抗を小さくして、その着脱を極めて容易にすることができる。つまり、加硫成形前に内型を外型に挿入する際は、内型が所定の位置に達するまで、内型の外周側に配置した未加硫ゴム筒と外型の内周面との間にクリアランスがあり、加硫成形後に内型を引き抜く際は、その引き抜き始めとほぼ同時にゴム製筒体が内型又は外型と離間する。   In addition, since the outer peripheral surface of the inner mold and the inner peripheral surface of the outer mold are composed of the side surfaces of the truncated cone, the resistance when attaching and detaching the inner mold and the outer mold can be reduced, and the attachment and detachment can be made extremely easy. That is, when the inner mold is inserted into the outer mold before vulcanization molding, the unvulcanized rubber cylinder arranged on the outer peripheral side of the inner mold and the inner peripheral surface of the outer mold until the inner mold reaches a predetermined position. There is a clearance between them, and when the inner die is drawn after vulcanization molding, the rubber cylinder is separated from the inner die or the outer die almost simultaneously with the start of the drawing.

また、内型を自由に膨張させることによる中心軸方向の移動を利用して、中心軸方向に対して傾斜する内型の外周面と外型の内周面とを近接させるので、内型の両端を拘束して径方向にのみ膨張させる手法のように、内型、外型及びシャフトの強度を極端に大きく設定する必要がない。なお、シャフトは、軸状の部材であり、中実の軸状部材及びパイプ状の軸状部材を含む概念である。   Also, the inner mold outer peripheral surface and the outer mold inner peripheral surface that are inclined with respect to the central axis direction are brought close to each other by utilizing the movement in the central axis direction by freely expanding the inner mold. There is no need to set the strength of the inner mold, the outer mold and the shaft to be extremely large as in the technique of constraining both ends and inflating only in the radial direction. The shaft is a shaft-shaped member, and is a concept including a solid shaft-shaped member and a pipe-shaped shaft-shaped member.

内型を熱膨張させてその外周面を外型の内周面に近接させるには、内型を樹脂製とし、外型を内型よりも熱膨張率の小さい鋼製とし、両者の熱膨張率の差によって内型を小径側に膨張させることにより、内型で未加硫ゴム筒を外型に押圧する手法を採用することができる。樹脂製の内型は、鋼製の外型よりも熱膨張率が十分に大きく、これらを組み合わせることにより、未加硫ゴム筒を強く加圧することができる。なお、あらかじめ外型だけを加熱しておき、外型に内型を押し込んだ後、内型だけを熱膨張させることにより、内型の外周面を外型の内周面に近接させる手法も採用可能である。   To thermally expand the inner mold and bring its outer peripheral surface closer to the inner peripheral surface of the outer mold, the inner mold is made of resin, the outer mold is made of steel having a smaller coefficient of thermal expansion than the inner mold, and the thermal expansion of both By inflating the inner mold to the smaller diameter side due to the difference in rate, a technique of pressing the unvulcanized rubber cylinder against the outer mold with the inner mold can be employed. The resin inner mold has a sufficiently larger coefficient of thermal expansion than the steel outer mold, and by combining these, the unvulcanized rubber cylinder can be strongly pressed. In addition, only the outer mold is heated in advance, the inner mold is pushed into the outer mold, and then only the inner mold is thermally expanded to bring the inner mold outer peripheral surface closer to the outer mold inner peripheral surface. Is possible.

内型をマンドレルとして利用することにより、内型の周りに未加硫ゴム筒を形成すれば、あらかじめ未加硫ゴム筒を形成してその未加硫ゴム筒を内型に装着する工程を省略することができる。   If an unvulcanized rubber cylinder is formed around the inner mold by using the inner mold as a mandrel, the process of forming the unvulcanized rubber cylinder in advance and attaching the unvulcanized rubber cylinder to the inner mold is omitted. can do.

また、本発明は、上記の製造方法によって円錐台状に製造されるゴム製筒体を提供する。このゴム製筒体は、ゴムのみから構成されるものであってもよいが、例えば内面ゴムと外面ゴムとの間にスチールコードのような補強繊維を配することにより、補強繊維を埋設してなる補強繊維層を設けることもできる。上記の製造方法は、加硫成形する際、未加硫ゴム筒をその全体に渡ってほぼ均一に加圧することができるので、未加硫ゴムの不均一な流動を生じさせにくく、補強繊維を埋設した構造であってもその補強繊維のずれをなくすことができる。   The present invention also provides a rubber cylinder manufactured in the shape of a truncated cone by the above manufacturing method. The rubber cylinder may be composed only of rubber. For example, a reinforcing fiber such as a steel cord is disposed between the inner rubber and the outer rubber so that the reinforcing fiber is embedded. A reinforcing fiber layer can be provided. In the above production method, when vulcanization molding is performed, the unvulcanized rubber cylinder can be pressurized almost uniformly over the whole, so that it is difficult to cause non-uniform flow of the unvulcanized rubber, and the reinforcing fiber is Even if it is an embedded structure, the displacement of the reinforcing fiber can be eliminated.

大径側端の内径(D)に対する中心軸方向長さ(L)の比(L/D)が8〜40に設定されるゴム製筒体は、バッグ方式の加硫成形を採用しにくい長尺のゴム製筒体であり、上記の製造方法によって製造するのが好ましい。さらに、(L/D)が10〜20に設定されるゴム製筒体や、Dが50mm〜300mmに設定されるゴム製筒体、特にその中でもDが80mm〜200mmに設定されるゴム製筒体は、上記の製造方法によって製造するのがより好ましい。   Rubber cylinders in which the ratio (L / D) of the length (L) in the central axis direction to the inner diameter (D) of the large-diameter end is set to 8 to 40 are difficult to adopt bag-type vulcanization molding. It is a rubber cylinder of a scale, and is preferably manufactured by the above manufacturing method. Furthermore, a rubber cylinder in which (L / D) is set to 10 to 20, a rubber cylinder in which D is set to 50 mm to 300 mm, particularly a rubber cylinder in which D is set to 80 mm to 200 mm. The body is more preferably produced by the production method described above.

また、本発明は、未加硫ゴム筒を両端の内径及び外径が異なる円錐台状のゴム製筒体に加硫成形するための加硫成形型を提供する。   The present invention also provides a vulcanization mold for vulcanizing and molding an unvulcanized rubber cylinder into a truncated cone-shaped rubber cylinder having different inner and outer diameters at both ends.

具体的には、円錐台の側面からなる外周面を有し、外周側に未加硫ゴム筒を配置される筒状の樹脂製の内型と、この内型を支持するシャフトと、円錐台の側面からなる内周面を有し、内型よりも熱膨張率の小さい鋼製の外型とを備えた加硫成形型であり、その内型は、シャフトに外嵌されて外型に大径側及び小径側の向きを合わせて挿入されると共に、大径側端部の外型に対する中心軸方向の移動を規制され、加硫成形用の熱による外型との熱膨張率の差によって小径側に膨張することにより、未加硫ゴム筒を外型の内周面に押圧して加硫成形する。   Specifically, a cylindrical resin-made inner mold having an outer peripheral surface composed of side surfaces of a truncated cone and having an unvulcanized rubber cylinder disposed on the outer peripheral side, a shaft that supports the inner mold, and the truncated cone A vulcanization mold having a steel outer mold having an inner peripheral surface made of a side surface and having a smaller coefficient of thermal expansion than the inner mold, and the inner mold is externally fitted to the shaft to form the outer mold. The large diameter side and the small diameter side are inserted in the same direction, and the movement of the end of the large diameter side in the central axis direction with respect to the outer mold is restricted, and the difference in thermal expansion coefficient from the outer mold due to the heat for vulcanization molding , The unvulcanized rubber cylinder is pressed against the inner peripheral surface of the outer mold and vulcanized and molded.

内型をシャフトの表面を直接に滑らせるようにしてもよいが、内型とシャフトとの間に鋼管などのパイプ状のスライド部材を介在させてもよい。シャフトに対して内型をより確実に滑らせることにより、内型の伸びを拘束する摩擦力の発生を確実に阻止することができる。   The inner mold may be slid directly on the surface of the shaft, but a pipe-like slide member such as a steel pipe may be interposed between the inner mold and the shaft. By sliding the inner mold more reliably with respect to the shaft, it is possible to reliably prevent the generation of frictional force that restrains the elongation of the inner mold.

外型に未加硫ゴム筒の外周面の全面を接触させるので、未加硫ゴム筒を加熱する加熱手段を外型に設けることにより、外型から未加硫ゴム筒に直接に熱を伝導させて効率よく加熱することができる。   Since the entire outer peripheral surface of the unvulcanized rubber cylinder is brought into contact with the outer mold, heat is directly transferred from the outer mold to the unvulcanized rubber cylinder by providing a heating means for heating the unvulcanized rubber cylinder. And can be heated efficiently.

以上のとおり、本発明によると、円錐台の側面からなる外周面を有する内型を円錐台の側面からなる外周面を有する外型に挿入し、その内型を熱膨張させて小径側に伸ばすことにより、内型の外周面と外型の内周面とで未加硫ゴム筒を加圧して加硫成形するようにしている。これにより、十分な剛性のある内型及び外型で未加硫ゴム筒を徐々にかつ強く加圧して加硫成形することができ、形状、寸法及び物性の極めて安定したゴム製筒体を製造することができる。また、内型及び外型の着脱を容易にすることができ、ゴム製筒体の生産性を高めることができる。   As described above, according to the present invention, the inner mold having the outer peripheral surface composed of the side surface of the truncated cone is inserted into the outer mold having the outer peripheral surface composed of the side surface of the truncated cone, and the inner mold is thermally expanded to extend toward the smaller diameter side. Thus, the unvulcanized rubber cylinder is pressurized and vulcanized by the outer peripheral surface of the inner mold and the inner peripheral surface of the outer mold. As a result, it is possible to vulcanize and mold the unvulcanized rubber cylinder gradually and strongly with sufficiently rigid inner and outer molds, producing a rubber cylinder with extremely stable shape, dimensions and physical properties. can do. Also, the inner and outer molds can be easily attached and detached, and the productivity of the rubber cylinder can be increased.

以下、本発明に係るゴム製筒体の製造方法を実施するための最良の形態について、図面を用いて説明する。図1は本発明に係る製造方法によって製造するゴムホースを示す図であり、下半分は側面図、上半分は断面図である。   Hereinafter, the best mode for carrying out the method for producing a rubber cylinder according to the present invention will be described with reference to the drawings. FIG. 1 is a view showing a rubber hose manufactured by the manufacturing method according to the present invention, in which the lower half is a side view and the upper half is a cross-sectional view.

ゴムホース1は、一端の内径(D1)が他端の内径(D2)よりも大きく、肉厚(t)が全周及び全長に渡って一定の円錐台状のゴム製筒体とされ、内面ゴム1aと外面ゴム1bとの間に、補強繊維としてのスチールコードを埋設してなる補強繊維層2が設けられている。ゴムホース1の寸法は、例えば内径(D)が50mm〜300mm、中心軸方向長さ(L)が1000mm〜5000mm、一端(大径側端)の内径(D1)に対する中心軸方向長さ(L)の比(L/D1)が8〜40、肉厚(t)が10mm〜30mmに設定される。   The rubber hose 1 has an inner diameter (D1) that is larger than an inner diameter (D2) at one end, and a wall thickness (t) that is a truncated cone-shaped rubber cylinder that is constant over the entire circumference and length. A reinforcing fiber layer 2 in which steel cords as reinforcing fibers are embedded is provided between 1a and the outer rubber 1b. The dimensions of the rubber hose 1 are, for example, an inner diameter (D) of 50 mm to 300 mm, a central axial direction length (L) of 1000 mm to 5000 mm, and a central axial length (L) with respect to the inner diameter (D1) of one end (large diameter side end). The ratio (L / D1) is set to 8 to 40, and the wall thickness (t) is set to 10 mm to 30 mm.

次に、ゴムホース1の製造方法を説明する。まず、ゴムホース1に加硫成形するための加硫成形型について説明する。図2はゴムホースの加硫成形に使用する加硫成形型の断面図である。   Next, a method for manufacturing the rubber hose 1 will be described. First, a vulcanization mold for vulcanizing the rubber hose 1 will be described. FIG. 2 is a cross-sectional view of a vulcanization mold used for vulcanization molding of a rubber hose.

加硫成形型3は、外周面でゴムホース1の内面を形成する筒状の内型4と、内周面でゴムホース1の外面を形成する筒状の外型5と、内型4を支持するシャフト6とを備え、内型4の外周面と外型5の内周面とで未加硫ゴム筒7を加圧して加硫成形するようになっている。   The vulcanization mold 3 supports a cylindrical inner mold 4 that forms the inner surface of the rubber hose 1 on the outer peripheral surface, a cylindrical outer mold 5 that forms the outer surface of the rubber hose 1 on the inner peripheral surface, and the inner mold 4. A shaft 6 is provided, and the unvulcanized rubber cylinder 7 is pressurized and vulcanized by the outer peripheral surface of the inner mold 4 and the inner peripheral surface of the outer mold 5.

内型4は、例えばポリプロピレン(PP)などの合成樹脂からなり、一端及び他端の外径がゴムホース1の一端(大径側端)の内径(D1)及び他端(小径側端)の内径(D2)とそれぞれ等しく設定され、外周面が円錐台の側面を構成している。内型4の内径は、中心軸方向に一定かつシャフト6の外径よりもわずかに大きく設定され、内型4がシャフト6に外嵌される。   The inner mold 4 is made of, for example, a synthetic resin such as polypropylene (PP), and the outer diameter of one end and the other end is the inner diameter (D1) of one end (large diameter side end) of the rubber hose 1 and the inner diameter of the other end (small diameter side end). (D2) is set equal to each other, and the outer peripheral surface constitutes the side surface of the truncated cone. An inner diameter of the inner die 4 is set to be constant in the central axis direction and slightly larger than an outer diameter of the shaft 6, and the inner die 4 is fitted on the shaft 6.

外型5は、その全周に熱媒体を注入する空洞8が形成された鋼製の筒体とされ、注入口9から空洞8にシリコンオイルやグリセリンなどの熱媒体を低圧給入するようになっている。外型5の一端及び他端の内径は、ゴムホース1の一端(大径側端)の外径(D1+t)及び他端(小径側端)の外径(D2+t)とそれぞれ等しく設定され、外型5の内周面が円錐台の側面を構成している。外型5の外径は、中心軸方向に一定に設定されている。なお、図2に示す外型5は、3つの分割体5a、5b、5cを中心軸方向にボルト10で連結して構成されている。   The outer mold 5 is a steel cylinder in which a cavity 8 for injecting a heat medium is formed all around the outer mold 5, and a heat medium such as silicon oil or glycerin is supplied at a low pressure from the inlet 9 into the cavity 8. It has become. The inner diameter of one end and the other end of the outer mold 5 is set equal to the outer diameter (D1 + t) of one end (large-diameter side end) and the outer diameter (D2 + t) of the other end (small-diameter side end) of the rubber hose 1, respectively. The inner peripheral surface of 5 constitutes the side surface of the truncated cone. The outer diameter of the outer mold 5 is set to be constant in the central axis direction. The outer mold 5 shown in FIG. 2 is configured by connecting three divided bodies 5a, 5b, and 5c with bolts 10 in the central axis direction.

シャフト6は、その外径が中心軸方向に一定で中心軸方向長さが内型4及び外型5よりも長く設定された鋼管とされ、その一端付近に、軸直角方向に突出するフランジ11が溶接固定されている。フランジ11は、外型5の一端(大径側端)をボルト締結されると共に、内型4の一端側(大径側)への移動を規制するようになっている。   The shaft 6 is a steel pipe whose outer diameter is constant in the center axis direction and whose center axis direction length is set longer than that of the inner mold 4 and the outer mold 5, and a flange 11 projecting in a direction perpendicular to the axis near one end thereof. Is fixed by welding. The flange 11 is configured such that one end (large diameter side end) of the outer mold 5 is bolted and the movement of the inner mold 4 to one end side (large diameter side) is restricted.

次に、加硫成形型3を使用してゴムホース1を製造する手順を説明する。図3はゴムホースの加硫成形を示す模式図で、(a)は加硫成形前の状態を示し、(b)は加硫成形後の状態を示す。なお、図3における加硫成形型3は、図2に示した加硫成形型3を簡略して示したものであり、外型5は、その外径を中心軸方向に変化させて一定の肉厚で示し、フランジ11は、シャフト6の一端に一体に示している。   Next, a procedure for manufacturing the rubber hose 1 using the vulcanization mold 3 will be described. FIG. 3 is a schematic diagram showing vulcanization molding of a rubber hose. (A) shows a state before vulcanization molding, and (b) shows a state after vulcanization molding. The vulcanization mold 3 in FIG. 3 is a simplified illustration of the vulcanization mold 3 shown in FIG. 2, and the outer mold 5 has a constant outer diameter that is changed in the direction of the central axis. The flange 11 is shown integrally with one end of the shaft 6.

まず、内型4の外側に内面未加硫ゴムを巻き付けて、その外側に2層のスチールコードをそのバイアス方向を互いに交差させて配置し、その外側に外面未加硫ゴムを巻き付けることにより、内型4の外周側に未加硫ゴム筒7を形成する。この未加硫ゴム筒7を保持させたまま、内型4をシャフト6に外嵌して、内型4の一端(大径側端)をシャフト6のフランジ11に当接させる。   First, an inner surface unvulcanized rubber is wound around the outer side of the inner mold 4, and two layers of steel cords are arranged so that the bias directions intersect each other on the outer side, and the outer surface unvulcanized rubber is wound around the outer side, An unvulcanized rubber cylinder 7 is formed on the outer peripheral side of the inner mold 4. While holding the unvulcanized rubber cylinder 7, the inner die 4 is fitted onto the shaft 6, and one end (large diameter side end) of the inner die 4 is brought into contact with the flange 11 of the shaft 6.

次いで、シャフト6に外嵌したまま内型4を一端側から外型5に挿入し、中心軸方向に対して傾斜する内型4の外周面及び外型5の内周面を近接させ、内型4及び外型5に未加硫ゴム筒7を密着させる。すなわち、内型4を外型5にその大径側及び小径側の向きを合わせて挿入して、内型4の外周側の未加硫ゴム筒7を外型5の内周面に押し付ける。   Next, the inner mold 4 is inserted into the outer mold 5 from one end side while being fitted on the shaft 6, and the outer peripheral surface of the inner mold 4 and the inner peripheral surface of the outer mold 5 that are inclined with respect to the central axis direction are brought close to each other. The unvulcanized rubber cylinder 7 is brought into close contact with the mold 4 and the outer mold 5. That is, the inner mold 4 is inserted into the outer mold 5 so that the directions of the large diameter side and the small diameter side are aligned, and the unvulcanized rubber cylinder 7 on the outer peripheral side of the inner mold 4 is pressed against the inner peripheral surface of the outer mold 5.

このとき、内型4の一端(大径側端)は、シャフト6のフランジ11によって一端側(大径側)への移動が規制されている。さらに、フランジ11に外型5の一端(大径側端)をボルト締結することにより、外型5に対する内型4の一端(大径側端)の中心軸方向の移動を規制し、図3(a)の状態を得る。   At this time, the movement of one end (large diameter side end) of the inner mold 4 to one end side (large diameter side) is restricted by the flange 11 of the shaft 6. Further, by bolting one end (large diameter side end) of the outer mold 5 to the flange 11, the movement of one end (large diameter side end) of the inner mold 4 relative to the outer mold 5 in the direction of the central axis is restricted. The state (a) is obtained.

その後、注入口9から空洞8にシリコンオイルやグリセリンなどの熱媒体を低圧給入し、その熱媒体をヒーターで加熱しながら循環させて、外型5を加熱する。なお、熱媒体は、高圧水蒸気などどのようなものであってもよく、熱媒体を用いることなく、外型5を伝熱ヒーターで直接加熱するようにすることもできる。   Thereafter, a heat medium such as silicon oil or glycerin is fed into the cavity 8 from the injection port 9 at a low pressure, and the heat medium is circulated while being heated by a heater to heat the outer mold 5. The heating medium may be any type such as high-pressure steam, and the outer mold 5 can be directly heated with a heat transfer heater without using a heating medium.

外型5の熱が未加硫ゴム筒7を介して内型4に伝わり、この内型4を熱膨張させることにより、一端(大径側端)の移動を規制された内型4が他端側(小径側)に伸び、その他端が外型5の他端付近の平行部13に沿って他端側(小径側)に移動する。なお、外型5も熱膨張するが、内型4を構成する樹脂と外型5を構成する鋼材との熱膨張率の差により、外型5に対して相対的に内型4が他端側(小径側)に熱膨張する。   The heat of the outer mold 5 is transferred to the inner mold 4 through the unvulcanized rubber cylinder 7, and the inner mold 4 is thermally expanded, so that the inner mold 4 whose movement at one end (large-diameter side end) is restricted to the other. The other end extends to the other end side (smaller diameter side) along the parallel portion 13 near the other end of the outer mold 5. The outer mold 5 also thermally expands. However, the inner mold 4 is positioned at the other end relative to the outer mold 5 due to the difference in thermal expansion coefficient between the resin that forms the inner mold 4 and the steel that forms the outer mold 5. Thermal expansion to the side (small diameter side).

図3(b)に示すように、内型4が熱膨張して他端側(小径側)に伸びることによって、中心軸方向に対して傾斜する内型4の外周面が外型5の内周面に近接し、これに伴って、未加硫ゴム筒7を矢印14の方向に押し付けて加圧する力が発生する。内型4の外周面は、スチールコードのずれを生じさせることなく未加硫ゴムを十分に流動させて残留空気を排除しながら、未加硫ゴム筒7を強く安定した力で均一かつ徐々に加圧する。   As shown in FIG. 3 (b), the inner mold 4 is thermally expanded and extends to the other end side (small diameter side), so that the outer peripheral surface of the inner mold 4 inclined with respect to the central axis direction is the inner mold 5. Along with this, a force is generated that presses the unvulcanized rubber cylinder 7 in the direction of the arrow 14 and pressurizes it. The outer peripheral surface of the inner mold 4 uniformly and gradually moves the unvulcanized rubber cylinder 7 with a strong and stable force while sufficiently flowing the unvulcanized rubber without causing a deviation of the steel cord to eliminate residual air. Pressurize.

このように、内型4及び外型5間で未加硫ゴム筒7を加圧しつつ、未加硫ゴム筒7を加熱することにより、内面未加硫ゴム及び外面未加硫ゴムを加硫成形する。   In this way, by heating the unvulcanized rubber cylinder 7 while pressing the unvulcanized rubber cylinder 7 between the inner mold 4 and the outer mold 5, the inner unvulcanized rubber and the outer unvulcanized rubber are vulcanized. Mold.

加硫成形の完了後、内型4及びシャフト6を一端側(大径側)に引き抜き離型する。このとき、内型4及びゴムホース1が熱膨張しているが、内型4及び外型5が円錐台であることにより、外型5との間に離反応力が作用しているため、内型4及びシャフト6を冷却することなく容易に離型することができる。以上の製造方法により、内外面が滑らかでかつ高精度のゴム特性と寸法特性のゴムホース1を得る。   After completion of the vulcanization molding, the inner mold 4 and the shaft 6 are drawn to one end side (large diameter side) and released. At this time, the inner mold 4 and the rubber hose 1 are thermally expanded. However, since the inner mold 4 and the outer mold 5 are truncated cones, a reaction force is acting between the inner mold 4 and the inner mold 4. 4 and the shaft 6 can be easily released without cooling. By the above manufacturing method, the rubber hose 1 having smooth and highly accurate rubber characteristics and dimensional characteristics is obtained.

次に、本発明に係る製造方法と従来の製造方法とを比較する。表1は本発明に係る製造方法と従来の3種類の製造方法との比較を示す表である。   Next, the manufacturing method according to the present invention is compared with the conventional manufacturing method. Table 1 is a table showing a comparison between the manufacturing method according to the present invention and three conventional manufacturing methods.

Figure 2007030270
Figure 2007030270

従来の製造方法のうち、Aは、布巻き方式の加硫成形(布巻き加硫)を用いた製造方法であり、マンドレルに内面未加硫ゴム、スチールコード及び外面未加硫ゴムを積層して未加硫ゴム筒を形成し、その外周側を布締めして直接蒸気加硫する製造方法である。   Among conventional manufacturing methods, A is a manufacturing method using cloth-wrapping vulcanization molding (cloth-wrapping vulcanization), in which an inner surface unvulcanized rubber, a steel cord and an outer surface unvulcanized rubber are laminated on a mandrel. This is a manufacturing method in which an unvulcanized rubber cylinder is formed, and the outer peripheral side thereof is cloth-capped and directly steam vulcanized.

Bは、バッグ方式の加硫成形(内バッグ外金型加硫)を用いた製造方法であり、成形ドラムから外した未加硫ゴム筒にバッグを挿入し、二つ割りの長尺外金型にセットしてプレス加硫する製造方法である。   B is a manufacturing method using bag-type vulcanization molding (inner bag outer mold vulcanization). The bag is inserted into an unvulcanized rubber cylinder removed from the molding drum, and divided into two long outer molds. It is a manufacturing method that is set and press vulcanized.

Cは、Bのバッグと金型の内外を逆転(マンドレル外バッグ加硫)した製造方法であり、マンドレルの周りに未加硫ゴム筒を形成して、これを加硫缶の内部に装着したバッグに挿入し、バッグに外圧を掛けて外側から加圧加硫する方法である。   C is a manufacturing method in which the inside and outside of the bag and mold of B are reversed (bag vulcanization outside the mandrel), an unvulcanized rubber cylinder is formed around the mandrel, and this is mounted inside the vulcanizing can This is a method of inserting into a bag, applying external pressure to the bag, and pressurizing and vulcanizing from the outside.

これらの製造方法によって製造するゴムホース1の寸法は、中心軸方向長さが3000mm、大径側端の内径がφ136、小径側端の内径がφ115、大径側端の外径がφ188、小径側端の外径がφ167である。内面ゴム1a及び外面ゴム1bは、天然ゴム55度の耐摩耗性ゴムであり、補強繊維層2に、互いに交差する2層のスチールコードを55°のバイアス角度で埋設している。本発明及び従来の製造方法における加硫条件は、全て160℃×70分である。   The dimensions of the rubber hose 1 manufactured by these manufacturing methods are as follows. The length in the central axis direction is 3000 mm, the inner diameter of the large diameter end is φ136, the inner diameter of the small diameter end is φ115, the outer diameter of the large diameter end is φ188, and the small diameter side The outer diameter of the end is φ167. The inner rubber 1a and the outer rubber 1b are 55-degree natural rubber, and two reinforcing steel cords that cross each other are embedded in the reinforcing fiber layer 2 at a bias angle of 55 °. The vulcanization conditions in the present invention and the conventional production method are all 160 ° C. × 70 minutes.

表1が示すように、設備投資としては、従来の製造方法(A、B、C)が加硫缶を要し、さらに、製造方法Bが二つ割りの高価な金型及び加硫プレス(バッグ)を要し、製造方法Cが専用バッグ加硫設備(バッグ付の加硫缶)を要するのに対して、本発明は、安価な内型(円錐台円筒)及び外金型によって加硫成形することができる。   As Table 1 shows, as for capital investment, the conventional manufacturing method (A, B, C) requires a vulcanizing can, and furthermore, the manufacturing method B is divided into two expensive molds and vulcanizing press (bag). Manufacturing method C requires a dedicated bag vulcanization facility (vulcanized can with bag), whereas the present invention vulcanizes and molds with an inexpensive inner die (conical frustum cylinder) and outer die. be able to.

また、製造したゴムホース1の品質を比較すると、内径精度、外径精度、見栄え(外観)、生産性、繊維角度(スチールコードのずれ)、エアー残留の6つの項目のうち、内径精度又は外径精度のいずれかが同程度の品質であることを除いて、本発明が従来の製造方法(A、B、C)よりも優れていることがわかる。   In addition, when comparing the quality of the manufactured rubber hose 1, the inner diameter accuracy, outer diameter accuracy, appearance (appearance), productivity, fiber angle (displacement of steel cord), and air remaining are among the six items: inner diameter accuracy or outer diameter. It can be seen that the present invention is superior to the conventional manufacturing methods (A, B, C) except that any of the accuracy is of comparable quality.

上記構成によれば、未加硫ゴム筒7を十分な剛性のある内型4と外型5とで加圧して加硫成形するので、大型で非常に高価なバッグを不要にすると共に、バッグ方式や布巻き方式の加硫成形と比較して、ゴムホース1の寸法を極めて安定させることができる。特に、スラリー流体を圧送する耐摩耗ホースを製造する場合にも、スラリー流体の閉塞や異常流速を発生させる寸法変動を防止することができる。   According to the above configuration, the unvulcanized rubber cylinder 7 is vulcanized and molded by pressurizing with the sufficiently rigid inner mold 4 and outer mold 5, so that a large and very expensive bag is unnecessary, and the bag Compared with the vulcanization molding of the method or the cloth winding method, the size of the rubber hose 1 can be extremely stabilized. In particular, even when a wear-resistant hose that pumps the slurry fluid is manufactured, it is possible to prevent dimensional fluctuations that cause the slurry fluid to be blocked or have an abnormal flow velocity.

合成樹脂製の内型4と鋼製の外型5とを用いるので、両者を加熱しても熱膨張率の差を利用して、内型4で未加硫ゴム筒7を外型5に押圧することができる。具体的には、鋼材の線膨張率は、11〜16×10−6/℃、合成樹脂(ポリプロピレン、PP)の線膨張率は、8〜11×10−5/℃であり、合成樹脂の線膨張率は、鋼材の線膨張率の7〜10倍である。 Since the inner mold 4 made of synthetic resin and the outer mold 5 made of steel are used, the unvulcanized rubber cylinder 7 is changed to the outer mold 5 by using the difference in coefficient of thermal expansion even when both are heated. Can be pressed. Specifically, the linear expansion coefficient of the steel material is 11 to 16 × 10 −6 / ° C., and the linear expansion coefficient of the synthetic resin (polypropylene, PP) is 8 to 11 × 10 −5 / ° C. The linear expansion coefficient is 7 to 10 times the linear expansion coefficient of the steel material.

全長3000mmのゴムホース1を製造する際、加硫成形型3への組み込み温度を20℃、加硫温度を160℃に設定すると、内型4の中心軸方向の伸び量が8×10−5/℃×3000×(160−20)=33.6mmで、外型5の中心軸方向の伸び量が11×10−6/℃×3000×(160−20)=4.6mmであるため、相対的に内型4が29mm伸びることになる。 When the rubber hose 1 having a total length of 3000 mm is manufactured, if the temperature of incorporation into the vulcanization mold 3 is set to 20 ° C. and the vulcanization temperature is set to 160 ° C., the amount of elongation in the central axis direction of the inner mold 4 is 8 × 10 −5 / Since the elongation amount in the direction of the central axis of the outer mold 5 is 11 × 10 −6 / ° C. × 3000 × (160-20) = 4.6 mm at a temperature of × 3000 × (160−20) = 33.6 mm, Therefore, the inner mold 4 extends 29 mm.

内型4は、温度上昇に伴って徐々に熱膨張するので、内型4及び外型5とゴムとの離反や補強繊維のずれを生じさせることなく、未加硫ゴムを均一かつ十分に流動させて補強繊維層2との積層体に生じやすい残留空気を排除することができる。   Since the inner mold 4 gradually expands as the temperature rises, the unvulcanized rubber flows uniformly and sufficiently without causing separation between the inner mold 4 and the outer mold 5 and the rubber and displacement of the reinforcing fibers. Thus, residual air that is likely to be generated in the laminate with the reinforcing fiber layer 2 can be eliminated.

ゴムホース1の特定断面の面積を加硫前後で比較すると、例えば、未加硫ゴムが内型4及び外型5間に行き渡りつつ強く加圧されることにより、加硫前の13000mmが、加硫中に12459mmになる。これにより、加硫中に元の体積の96%まで圧縮されることになり、4%の圧縮量によって水分及び空気を十分に排除することができる。 Comparing the area of the specific cross section of the rubber hose 1 before and after vulcanization, for example, the unvulcanized rubber is strongly pressed while spreading between the inner mold 4 and the outer mold 5 so that 13000 mm 2 before vulcanization is It becomes 12459 mm 2 during vulcanization. Thereby, it compresses to 96% of the original volume during vulcanization, and moisture and air can be sufficiently eliminated by a compression amount of 4%.

つまり、通常の未加硫ゴムには、水分及び空気が合計で1.5%〜2%残留しており、これを加硫成形中に排出する必要がある。また、外型5に挿入しやすいように、未加硫ゴム筒7を内型4及び外型5間の空間よりも少なくとも1%程度小さく設定しておくので、加硫成形時の未加硫ゴムの圧縮量を合計3%以上に設定する必要がある。これに対して、圧縮量が4%であるので、水分及び空気を十分に排除することができる。   In other words, a total of 1.5% to 2% of moisture and air remain in ordinary unvulcanized rubber, and it is necessary to discharge this during vulcanization molding. Further, the unvulcanized rubber cylinder 7 is set to be at least about 1% smaller than the space between the inner mold 4 and the outer mold 5 so that it can be easily inserted into the outer mold 5. It is necessary to set the compression amount of rubber to 3% or more in total. On the other hand, since the compression amount is 4%, moisture and air can be sufficiently eliminated.

なお、圧縮量が5%を大きく上回ると、補強繊維層2を有する構造では、補強繊維の配置に不規則な変動を生じて、耐圧力の低下あるいは加圧時の異常変形を生じ、補強繊維層2のないゴムのみの構造では、余分なゴムが加硫成形型の隙間あるいはベントホールから排出される。   If the amount of compression greatly exceeds 5%, the structure having the reinforcing fiber layer 2 causes irregular fluctuations in the arrangement of the reinforcing fibers, resulting in a decrease in pressure resistance or abnormal deformation during pressurization. In the rubber-only structure without the layer 2, excess rubber is discharged from the vulcanization mold gap or vent hole.

内型4の外周面と外型5の内周面とを円錐台の側面から構成して中心軸方向に対して傾斜させるので、内型4の外型5への着脱が簡単であり、長尺なゴムホース1をも容易に製造することができる。さらに、内型4及びシャフト6を冷却する必要がない分、生産サイクルを早くし、エネルギー効率を高めることができる。なお、内型4を構成するポリプロピレンやナイロンは、ゴムと融着せず、離型剤などを用いずに簡単に脱型することができる。   Since the outer peripheral surface of the inner mold 4 and the inner peripheral surface of the outer mold 5 are composed of side surfaces of the truncated cone and are inclined with respect to the central axis direction, the inner mold 4 can be easily attached to and detached from the outer mold 5 and is long. A long rubber hose 1 can also be easily manufactured. Furthermore, since it is not necessary to cool the inner mold 4 and the shaft 6, the production cycle can be accelerated and the energy efficiency can be increased. Note that the polypropylene and nylon constituting the inner mold 4 do not fuse with rubber and can be easily removed without using a release agent or the like.

また、内型4が安価な樹脂製であり、外型5を二つ割り構造にする必要もないので、加硫成形型3の費用を安くすると共に、その組立解体を不要にすることができる。外型5は、加硫缶と比較すると非常に薄肉であり、軽量で安価な製造設備にすることができる。   Further, since the inner mold 4 is made of an inexpensive resin and the outer mold 5 does not need to be divided into two, it is possible to reduce the cost of the vulcanization mold 3 and eliminate the need for assembly and disassembly. The outer mold 5 is very thin compared to the vulcanized can, and can be made into a lightweight and inexpensive manufacturing facility.

外型5の空洞8にシリコンオイルあるいはグリセリンなどの熱媒体を注入して加熱するので、加硫缶のような高圧蒸気圧力設備を不要にすることができる。その際、熱媒体は、単に外型5を加熱する熱エネルギーがあればよく、高圧である必要がないので、低圧給入することができる。また、未加硫ゴム筒7の外周面の全面が外型5に直接接触して熱伝導を受けるので、未加硫ゴム筒7を効率よく加熱することができる。樹脂製の内型4は、直接蒸気と接することがないので、その分、劣化しにくい。   Since a heating medium such as silicon oil or glycerin is injected into the cavity 8 of the outer mold 5 and heated, high pressure steam pressure equipment such as a vulcanizing can can be dispensed with. At that time, the heat medium only needs to have heat energy for heating the outer mold 5 and does not need to be at a high pressure, so that it can be supplied at a low pressure. Further, since the entire outer peripheral surface of the unvulcanized rubber cylinder 7 is in direct contact with the outer mold 5 and receives heat conduction, the unvulcanized rubber cylinder 7 can be efficiently heated. Since the resin inner mold 4 does not come into direct contact with steam, it is less likely to deteriorate.

なお、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内において、適宜変更を加えることができる。例えば、内型4とシャフト6との間にパイプ状のスライド部材を介在させて、シャフト6に対して内型4をより確実に滑らせるようにしてもよい。また、内型4の内径とシャフト6の外径とを調節することで、内型4の熱膨張量を調節することもできる。   In addition, this invention is not limited to said embodiment, A change can be suitably added within the scope of the present invention. For example, a pipe-shaped slide member may be interposed between the inner mold 4 and the shaft 6 so that the inner mold 4 can slide more reliably with respect to the shaft 6. In addition, the amount of thermal expansion of the inner mold 4 can be adjusted by adjusting the inner diameter of the inner mold 4 and the outer diameter of the shaft 6.

内型4の材質は、ポリプロピレンに限らず、ナイロン66やその他の加硫温度に耐える材質を使用でき、シリコンゴムなどの耐熱ゴムの使用も可能である。さらに、内型4の材質を変更することで、熱膨張率を変えることもできる。   The material of the inner mold 4 is not limited to polypropylene, but nylon 66 and other materials that can withstand vulcanization temperatures can be used, and heat-resistant rubber such as silicon rubber can also be used. Further, the coefficient of thermal expansion can be changed by changing the material of the inner mold 4.

未加硫ゴム筒7を加熱する手段としては、外型5に熱媒体を注入する代わりに、内型4に熱媒体を注入したり、加硫成形型3の全体を加硫缶に入れて加熱したりしてもよい。また、本発明に係る製造方法で製造するゴム製筒体は、ゴムホース1に限らず、円錐台状の筒体であれば、あらゆるゴム製品を製造することができる。   As means for heating the unvulcanized rubber cylinder 7, instead of injecting a heat medium into the outer mold 5, a heat medium is injected into the inner mold 4, or the entire vulcanization mold 3 is put in a vulcanizing can. It may be heated. Further, the rubber cylinder manufactured by the manufacturing method according to the present invention is not limited to the rubber hose 1, and any rubber product can be manufactured as long as it is a truncated cone-shaped cylinder.

本発明に係る製造方法によって製造するゴムホースを示す図The figure which shows the rubber hose manufactured by the manufacturing method which concerns on this invention ゴムホースの加硫成形に使用する加硫成形型の断面図Cross section of vulcanization mold used for rubber hose vulcanization molding ゴムホースの加硫成形を示す模式図Schematic diagram showing rubber hose vulcanization molding

符号の説明Explanation of symbols

1 ゴムホース
2 補強繊維層
3 加硫成形型
4 内型
5 外型
6 シャフト
7 未加硫ゴム筒
1 Rubber hose 2 Reinforcing fiber layer 3 Vulcanization mold 4 Inner mold 5 Outer mold 6 Shaft 7 Unvulcanized rubber cylinder

Claims (9)

両端の内径及び外径が異なる円錐台状のゴム製筒体を製造する製造方法であって、円錐台の側面からなる外周面を有する筒状の内型の外周側に未加硫ゴム筒を配置して、前記内型を内型支持用のシャフトに外嵌し、次いで、円錐台の側面からなる内周面を有する外型に、該外型と大径側及び小径側の向きを合わせて前記内型を挿入し、その後、内型の大径側端部の外型に対する中心軸方向の移動を規制して、加硫成形用の熱によって内型を小径側に熱膨張させることにより、内型の外周側に配置した前記未加硫ゴム筒を外型の内周面に押圧して加硫成形することを特徴とするゴム製筒体の製造方法。   A manufacturing method for manufacturing a truncated cone-shaped rubber cylinder having different inner diameters and outer diameters at both ends, wherein an unvulcanized rubber cylinder is provided on the outer circumferential side of a cylindrical inner mold having an outer circumferential surface composed of side surfaces of the truncated cone. The inner mold is externally fitted to the shaft for supporting the inner mold, and then the outer mold and the outer mold having the inner peripheral surface composed of the side surfaces of the truncated cone are aligned with the outer mold and the large-diameter side and the small-diameter side. The inner mold is then inserted, and then the movement of the inner-diameter side end of the inner mold with respect to the outer mold in the central axis direction is restricted, and the inner mold is thermally expanded to the smaller-diameter side by heat for vulcanization molding. A method for producing a rubber cylinder, wherein the unvulcanized rubber cylinder disposed on the outer peripheral side of the inner mold is pressed against the inner peripheral surface of the outer mold and vulcanized. 前記内型を樹脂製とし、前記外型を前記内型よりも熱膨張率の小さい鋼製とし、両者の熱膨張率の差によって内型を小径側に膨張させることにより、内型で前記未加硫ゴム筒を外型に押圧することを特徴とする請求項1に記載のゴム製筒体の製造方法。   The inner mold is made of resin, the outer mold is made of steel having a smaller coefficient of thermal expansion than the inner mold, and the inner mold is expanded to the smaller diameter side due to the difference in thermal expansion coefficient between the two, so that The method for producing a rubber cylinder according to claim 1, wherein the vulcanized rubber cylinder is pressed against an outer mold. 前記内型をマンドレルとして利用することにより、前記内型の周りに前記未加硫ゴム筒を形成することを特徴とする請求項1又は2に記載のゴム製筒体の製造方法。   The method for producing a rubber cylinder according to claim 1 or 2, wherein the unvulcanized rubber cylinder is formed around the inner mold by using the inner mold as a mandrel. 請求項1、2又は3の製造方法によって円錐台状に製造されたことを特徴とするゴム製筒体。   A rubber cylinder manufactured in the shape of a truncated cone by the manufacturing method according to claim 1, 2 or 3. 補強繊維を埋設してなる補強繊維層が設けられたことを特徴とする請求項4に記載のゴム製筒体。   The rubber cylinder according to claim 4, further comprising a reinforcing fiber layer in which reinforcing fibers are embedded. 大径側端の内径(D)に対する中心軸方向長さ(L)の比(L/D)が8〜40に設定されたことを特徴とする請求項4又は5に記載のゴム製筒体。   The rubber cylinder according to claim 4 or 5, wherein the ratio (L / D) of the length (L) in the central axis direction to the inner diameter (D) of the large-diameter side end is set to 8 to 40. . 未加硫ゴム筒を両端の内径及び外径が異なる円錐台状のゴム製筒体に加硫成形するための加硫成形型であって、円錐台の側面からなる外周面を有し、外周側に前記未加硫ゴム筒を配置される筒状の樹脂製の内型と、該内型を支持するシャフトと、円錐台の側面からなる内周面を有し、前記内型よりも熱膨張率の小さい鋼製の外型とを備え、
前記内型は、前記シャフトに外嵌されて前記外型に大径側及び小径側の向きを合わせて挿入されると共に、大径側端部の外型に対する中心軸方向の移動を規制され、加硫成形用の熱による外型との熱膨張率の差によって小径側に膨張することにより、前記未加硫ゴム筒を外型の内周面に押圧して加硫成形することを特徴とする加硫成形型。
A vulcanization mold for vulcanizing and molding an unvulcanized rubber cylinder into a truncated cone-shaped rubber cylinder having different inner diameters and outer diameters at both ends, and having an outer peripheral surface composed of side surfaces of the truncated cone A cylindrical resin-made inner mold on which the unvulcanized rubber cylinder is disposed, a shaft that supports the inner mold, and an inner peripheral surface that is formed by a side surface of a truncated cone; With an outer mold made of steel with a small expansion coefficient,
The inner mold is externally fitted to the shaft and inserted into the outer mold with the orientation of the large diameter side and the small diameter side, and the movement of the large diameter side end portion in the central axis direction with respect to the outer mold is restricted, The unvulcanized rubber cylinder is pressed against the inner peripheral surface of the outer mold and vulcanized and molded by expanding to the small diameter side due to a difference in thermal expansion coefficient with the outer mold due to heat for vulcanization molding. Vulcanizing mold.
前記内型とシャフトとの間にパイプ状のスライド部材が介在されたことを特徴とする請求項7に記載の加硫成形型。   The vulcanization mold according to claim 7, wherein a pipe-like slide member is interposed between the inner mold and the shaft. 前記外型に、前記未加硫ゴム筒を加熱する加熱手段が設けられたことを特徴とする請求項7又は8に記載の加硫成形型。   The vulcanization mold according to claim 7 or 8, wherein a heating means for heating the unvulcanized rubber cylinder is provided in the outer mold.
JP2005214888A 2005-07-25 2005-07-25 Manufacturing method of cylindrical body made of rubber Withdrawn JP2007030270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214888A JP2007030270A (en) 2005-07-25 2005-07-25 Manufacturing method of cylindrical body made of rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214888A JP2007030270A (en) 2005-07-25 2005-07-25 Manufacturing method of cylindrical body made of rubber

Publications (1)

Publication Number Publication Date
JP2007030270A true JP2007030270A (en) 2007-02-08

Family

ID=37790117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214888A Withdrawn JP2007030270A (en) 2005-07-25 2005-07-25 Manufacturing method of cylindrical body made of rubber

Country Status (1)

Country Link
JP (1) JP2007030270A (en)

Similar Documents

Publication Publication Date Title
JP4477699B2 (en) Manufacturing method of reinforced rubber hose
US20120111464A1 (en) Method for manufacturing base tire, curing machine, and base tire
JP2007030421A (en) Manufacturing method of rubber cylindrical body
JPS6050569B2 (en) Method and device for manufacturing power transmission belt
JP2007030273A (en) Manufacturing method of rubber cylindrical body
JP2015505753A (en) A winding method for producing a rotationally symmetric tubular hollow body preform, an apparatus for producing a rotationally symmetric tubular hollow body preform, and a rotationally symmetric tubular hollow body preform Method of manufacturing an apparatus for manufacturing
JP2012111100A (en) Method of molding fiber-reinforced plastic
US2614056A (en) Method of and apparatus for forming tire bands and band so formed
JP5019005B1 (en) Resin tube folding method, resin tube coating roll manufacturing method
JP2003340824A (en) Method for vulcanizing and molding tire, and mold for molding tire
JP2007030270A (en) Manufacturing method of cylindrical body made of rubber
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
EP3266599B1 (en) Tire vulcanizing apparatus
JP2007015345A (en) Rubber crawler manufacturing device and method
JP6617437B2 (en) Method and apparatus for manufacturing tire vulcanizing bladder
US20170008218A1 (en) Molding device of inbuilt component fixing section of fuel tank
JP5105012B1 (en) Rubber roll manufacturing apparatus and rubber roll manufacturing method
JP5345461B2 (en) Tire vulcanizing apparatus and tire manufacturing method
JP2008142948A (en) Vulcanizing mold, resin collar, manufacturing method of cylindrical body made of rubber, and manufacturing method of rubber hose
CN106660283B (en) With the tyre vulcanized mould being most preferably closed
JP2016112777A (en) Method and device for producing pneumatic tire
JP2008200974A (en) Manufacturing method for rubber cylinder, manufacturing method for rubber tube, and vulcanization mold
CN109641412A (en) For tire curing method and apparatus
JP2009208400A (en) Tire production method and production equipment
JP2004058545A (en) Mold device for driving belt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007