JP2007030063A - Press-in device - Google Patents

Press-in device Download PDF

Info

Publication number
JP2007030063A
JP2007030063A JP2005213757A JP2005213757A JP2007030063A JP 2007030063 A JP2007030063 A JP 2007030063A JP 2005213757 A JP2005213757 A JP 2005213757A JP 2005213757 A JP2005213757 A JP 2005213757A JP 2007030063 A JP2007030063 A JP 2007030063A
Authority
JP
Japan
Prior art keywords
press
fitting
magnetostrictive element
change
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213757A
Other languages
Japanese (ja)
Inventor
Fumio Kawahara
文雄 河原
Toshio Hashimoto
利夫 橋本
Yoshio Fukaya
良男 深谷
Shusuke Oshima
秀典 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIWA E TEC KK
Meiwa eTec Co Ltd
Original Assignee
MEIWA E TEC KK
Meiwa eTec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIWA E TEC KK, Meiwa eTec Co Ltd filed Critical MEIWA E TEC KK
Priority to JP2005213757A priority Critical patent/JP2007030063A/en
Publication of JP2007030063A publication Critical patent/JP2007030063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Press Drives And Press Lines (AREA)
  • Automatic Assembly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a press-in device, achieving press-in with small load, inexpensive and small-sized. <P>SOLUTION: This press-in device includes: an exciter unit 3 having a built-in super-magnetostrictive element periodically elastically deformed according to a periodically changing magnetic field to excite a part P to be pressed in; an air cylinder 2 pressing the excited part P through the exciter unit 3 to press the part P in a member R to be pressed in; and a driving circuit 51 for applying the periodically changing magnetic field to the super-magnetostrictive element to elastically deform the super-magnetostrictive element, wherein the driving circuit 51 sets the frequency and/or intensity of the magnetic field change so as to gradually change. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧入装置に関し、特に、振動を利用して圧入を行う圧入装置に関する。   The present invention relates to a press-fitting device, and more particularly to a press-fitting device that performs press-fitting using vibration.

エンジンのシリンダヘッドのポート開口内にバルブシートを圧入する圧入装置等においては、従来、油圧シリンダで圧入ヘッドを作動させて1〜2t程度の大きな荷重をバルブシートに印加することにより圧入している。なお、特許文献1には超音波を印加しながら圧入する方法が記載されている。
特開昭50−36343
In a press-fitting device or the like that press-fits a valve seat into a port opening of a cylinder head of an engine, conventionally, the press-fitting head is operated by a hydraulic cylinder to apply a large load of about 1 to 2 t to the valve seat. . Patent Document 1 describes a method of press-fitting while applying ultrasonic waves.
JP 50-36343 A

しかし、上記従来の圧入装置は、圧入に大きな荷重を要するために装置が大型化するという問題があった。   However, the conventional press-fitting device has a problem that the device is enlarged because a large load is required for press-fitting.

そこで本発明はこのような課題を解決するもので、小さな荷重で圧入を行うことができる安価かつ小型の圧入装置を提供することを目的とする。   Therefore, the present invention solves such a problem, and an object thereof is to provide an inexpensive and small press-fitting device capable of press-fitting with a small load.

上記目的を達成するために、本第1発明では、周期的に変化する磁界に応じて周期的に伸縮変形して、圧入すべき部品(P)を起振する超磁歪素子(32)と、起振された部品(P)を、超磁歪素子(32)を介して押圧して、部品(P)を被圧入部材(R)に圧入する押圧手段(2)と、周期的に変化する磁界を超磁歪素子(32)に作用させて当該超磁歪素子(32)を伸縮変形させる駆動手段(51)とを備え、かつ駆動手段(51)は圧入過程において、上記磁界変化の周波数および/又は強度を漸次変更するように設定されている。   In order to achieve the above object, in the first invention, a giant magnetostrictive element (32) which vibrates and deforms periodically in response to a periodically changing magnetic field and vibrates a component (P) to be press-fitted, A pressing means (2) for pressing the excited component (P) through the giant magnetostrictive element (32) to press the component (P) into the press-fitted member (R), and a periodically changing magnetic field Is applied to the giant magnetostrictive element (32) to expand and contract the giant magnetostrictive element (32), and the drive means (51) has a frequency of the magnetic field change and / or in the press-fitting process. The intensity is set to change gradually.

本第1発明においては、磁界の作用により伸縮変形させられる超磁歪素子で圧入すべき部品を起振しつつ圧入しているから、小さな荷重で圧入を行うことができる。そして、圧入時には磁界変化の周波数および/又は強度を漸次変更して、超磁歪素子による部品の起振周波数と起振量を最適なものにするから、圧入がよりスムーズになされる。   In the first aspect of the invention, since the parts to be press-fitted are vibrated while being vibrated by the giant magnetostrictive element that is expanded and contracted by the action of the magnetic field, the press-fitting can be performed with a small load. Then, at the time of press-fitting, the frequency and / or intensity of the magnetic field change is gradually changed to optimize the vibration frequency and amount of vibration of the component by the giant magnetostrictive element, so that the press-fitting is performed more smoothly.

本第2発明では、圧入荷重に応じた上記超磁歪素子(32)の透磁率変化を検出してこれに応じた検出信号を発する検出手段(34,52)をさらに設ける。   In the second invention, detection means (34, 52) for detecting a change in the magnetic permeability of the giant magnetostrictive element (32) according to the press-fitting load and generating a detection signal corresponding thereto is further provided.

本第2発明において、超磁歪素子はこれに印加される荷重(すなわち圧入荷重)に応じてその透磁率が変化する。したがって、圧入荷重を検出するためのロードセル等を使用することなく、上記検出手段により圧入荷重の変化を簡易かつ安価に検出することができる。そして、検出された圧入荷重の変化より、圧入の可否を判定することもできる。   In the second aspect of the present invention, the permeability of the giant magnetostrictive element changes according to the load applied to it (ie, press-fit load). Therefore, the change of the press-fit load can be detected easily and inexpensively by the detecting means without using a load cell or the like for detecting the press-fit load. Then, it is possible to determine whether or not press-fitting is possible based on the detected change in the press-fitting load.

本第3発明では、複数の上記部品(P)について、各部品(P)を圧入する際の上記磁界変化の周波数および/又は強度の変更過程を記憶しておく記憶手段と、圧入される各部品(P)に応じて、記憶された上記変更過程の一つを選択して駆動手段(51)に実行させる選択手段とをさらに設ける。   In the third invention, for the plurality of parts (P), storage means for storing the change process of the frequency and / or strength of the magnetic field change when the parts (P) are press-fitted, and the press-fitted each According to the component (P), there is further provided selection means for selecting one of the stored change processes and causing the drive means (51) to execute it.

本第3発明においては、圧入する部品が変更されても、これに最適な圧入条件が即座に選択されてスムーズな圧入がなされる。   In the third aspect of the invention, even if the parts to be press-fitted are changed, the optimum press-fitting conditions are immediately selected and smooth press-fitting is performed.

なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the said parenthesis shows the correspondence with the specific means as described in embodiment mentioned later.

以上のように、本発明によれば、小さな荷重で圧入を行うことができ、圧入装置を安価で小型のものとできる。   As described above, according to the present invention, press-fitting can be performed with a small load, and the press-fitting device can be made inexpensive and small.

図1に圧入装置の構成を示す。図1において、架台STに支持されて圧入器1が設けられており、当該圧入器1はエアシリンダ2と、エアシリンダ2の下面に固定された起振体3と、当該起振体3の下面に固定されてエアシリンダ2によって上下に移動させられる圧入ヘッド4とを備えている。   FIG. 1 shows the configuration of the press-fitting device. In FIG. 1, a press-fitting device 1 is provided supported by a gantry ST. The press-fitting device 1 includes an air cylinder 2, a vibration body 3 fixed to the lower surface of the air cylinder 2, and the vibration body 3. And a press-fitting head 4 which is fixed to the lower surface and moved up and down by the air cylinder 2.

図2に起振体3の詳細を示す。起振体3にはハウジング31の中心に棒状の超磁歪素子32が配設されており、その周囲には検出用コイル33と駆動用コイル34が重ね巻きされている。駆動用コイル34は駆動回路51に接続されており、駆動回路51は駆動用の交流電力を駆動コイル34へ供給する。駆動回路51は定電流源(実効値)で、圧入工程において駆動用コイル34への供給電流の周波数と振幅を後述のように変更することができる。検出用コイル33はコンピュータ等で構成される検出回路52に接続されている。検出回路52は定電圧源(実効値)で、例えば周波数100Hzで電圧200Vを検出回路52から検出用コイル33に印加して、図3に示すように超磁歪素子32への印加荷重を変化させると、これに応じてほぼ直線的に検出コイル33の電流が変化する。この電流値を検出することで、エアシリンダ31から超磁歪素子32への印加荷重(すなわち圧入荷重)を正確に知ることができる。   FIG. 2 shows details of the vibrator 3. The vibrator 3 is provided with a rod-like giant magnetostrictive element 32 at the center of a housing 31, and a detection coil 33 and a drive coil 34 are wound around the periphery of the element. The driving coil 34 is connected to the driving circuit 51, and the driving circuit 51 supplies driving AC power to the driving coil 34. The drive circuit 51 is a constant current source (effective value), and the frequency and amplitude of the supply current to the drive coil 34 can be changed as described later in the press-fitting process. The detection coil 33 is connected to a detection circuit 52 constituted by a computer or the like. The detection circuit 52 is a constant voltage source (effective value), for example, a voltage of 200 V is applied from the detection circuit 52 to the detection coil 33 at a frequency of 100 Hz, and the applied load to the giant magnetostrictive element 32 is changed as shown in FIG. In response to this, the current of the detection coil 33 changes substantially linearly. By detecting this current value, it is possible to accurately know the load applied from the air cylinder 31 to the giant magnetostrictive element 32 (ie, press-fit load).

図2において、駆動用コイル34の周囲には、超磁歪素子32の線形変形範囲を拡大するためのバイアス磁界を生成する永久磁石35が配設されている。超磁歪素子32の下面にはプッシュロッド35の基端が当接し、その先端はハウジング31外へ突出して、ここに圧入ヘッド4(図1)が結合されている。プッシュロッド36とハウジング31内壁との間には皿バネ37が設けられて、超磁歪素子32に予荷重を付与している。   In FIG. 2, a permanent magnet 35 that generates a bias magnetic field for expanding the linear deformation range of the giant magnetostrictive element 32 is disposed around the drive coil 34. The base end of the push rod 35 abuts on the lower surface of the giant magnetostrictive element 32, and the tip of the push rod 35 protrudes out of the housing 31, and the press-fitting head 4 (FIG. 1) is coupled thereto. A disc spring 37 is provided between the push rod 36 and the inner wall of the housing 31 to apply a preload to the giant magnetostrictive element 32.

表1には、駆動回路51から駆動用コイル34へ供給される電流値(A)と周波数(Hz)によって超磁歪素子32の振幅(μm)がどのように変化するのか、その一例を示す。これによると、周波数が高くなると全体として振幅は小さくなり、また、電流値が大きくなると全体として振幅は大きくなる。なお、括弧内の数字は駆動回路51の電源容量による限界電流であり、実際の出力電流はこの限界電流に抑えられている。   Table 1 shows an example of how the amplitude (μm) of the giant magnetostrictive element 32 varies depending on the current value (A) and the frequency (Hz) supplied from the drive circuit 51 to the drive coil 34. According to this, as the frequency increases, the amplitude decreases as a whole, and as the current value increases, the amplitude increases as a whole. The numbers in parentheses are limit currents due to the power supply capacity of the drive circuit 51, and the actual output current is suppressed to this limit current.

Figure 2007030063
Figure 2007030063

このような圧入装置で部品P(図1)を被圧入部材R内に圧入する場合には、エアシリンダ2を下方へ伸長させて圧入ヘッド4の先端を部品Pに当て、この状態で圧入荷重を次第に上げて当該荷重が所定値に達した後に、駆動用コイル34に通電して周期的な交番磁界を生じさせる。超磁歪素子32は交番磁界によって周期的に伸縮変形させられて圧入ヘッド4を起振し、この状態で圧入工程が進行させられる。検出回路52では検出用コイル34の電流から圧入荷重を検出して、その変化より圧入の各工程を判定する。   When the component P (FIG. 1) is press-fitted into the press-fitted member R with such a press-fitting device, the air cylinder 2 is extended downward, the tip of the press-fitting head 4 is applied to the component P, and the press-fitting load in this state After the load reaches a predetermined value, the drive coil 34 is energized to generate a periodic alternating magnetic field. The giant magnetostrictive element 32 is periodically expanded and contracted by an alternating magnetic field to oscillate the press-fitting head 4, and the press-fitting process proceeds in this state. The detection circuit 52 detects the press-fit load from the current of the detection coil 34, and determines each process of press-fitting based on the change.

すなわち、図4には正常な圧入工程における荷重変化の一例を示し、図のa点、b点、c点、d点はそれぞれ、圧入ヘッド4が部品Pに当接した点、超磁歪素子32による起振が開始された点、圧入が開始された点、圧入が終了した点である。これによると、圧入の開始(c点)から圧入荷重は次第に低下していき、圧入が完了すると(d点)、いわゆる底付きによって圧入荷重は急増する。このような圧入荷重の変化より正常な圧入か否かや、圧入の開始・完了を検出することができる。   That is, FIG. 4 shows an example of a load change in a normal press-fitting process, and points a, b, c, and d in FIG. 4 are points where the press-fitting head 4 is in contact with the component P, respectively, and the giant magnetostrictive element 32. This is the point where the vibration is started, the point where the press-fitting is started, and the point where the press-fitting is finished. According to this, the press-fit load gradually decreases from the start of press-fitting (point c), and when the press-fit is completed (point d), the press-fit load increases rapidly due to so-called bottoming. It is possible to detect whether or not the press-fitting is normal and the start / completion of the press-fitting from the change of the press-fitting load.

また、図5には各周波数において超磁歪素子32の振動が規制される荷重(BF)の一例を示す。これによると、超磁歪素子32の800Hz程度までの振動を保障するにはエアシリンダ2による圧入荷重は200Kgf程度までにしておく必要がある。   FIG. 5 shows an example of a load (BF) that restricts the vibration of the giant magnetostrictive element 32 at each frequency. According to this, in order to ensure the vibration of the giant magnetostrictive element 32 up to about 800 Hz, the press-fit load by the air cylinder 2 needs to be up to about 200 kgf.

表2には、円形開口内にリング体を圧入した場合の実験結果を示す。圧入代が30μmの時に、エアシリンダによる圧入荷重を200Kgfにすると、超磁歪素子を振動させなくても圧入を完了させることができる。ここで、圧入荷重を軽減して100Kgfとし、超磁歪素子を駆動電流1A、450Hzで振動させると、15mmの圧入ストロークのうち3mm程度しか圧入が進行しない。これに対して、圧入荷重を100Kgfにしても、超磁歪素子の駆動電流の周波数を450Hzから600Hzの間で漸次変化させると、特に500Hz付近で圧入が大きく進行して全ストロークの圧入が完了する。   Table 2 shows the experimental results when the ring body is press-fitted into the circular opening. If the press-fitting allowance is 30 μm and the press-fitting load by the air cylinder is 200 kgf, the press-fitting can be completed without vibrating the giant magnetostrictive element. Here, when the press-fitting load is reduced to 100 kgf and the giant magnetostrictive element is vibrated at a drive current of 1 A and 450 Hz, the press-fitting proceeds only about 3 mm out of the 15 mm press-fitting stroke. On the other hand, even if the press-fitting load is 100 kgf, if the frequency of the driving current of the giant magnetostrictive element is gradually changed between 450 Hz and 600 Hz, the press-fitting progresses greatly especially in the vicinity of 500 Hz and the press-fitting of the full stroke is completed. .

圧入代が70μmの時に、圧入荷重を200Kgfにして超磁歪素子を駆動電流1A、450Hzで振動させても、15mmの圧入ストロークのうち3mm程度しか圧入が進行しない。これに対して同一圧入荷重で、超磁歪素子の駆動電流の周波数を450Hzから800Hzの間で漸次変化させると、特に500Hz付近で圧入が大きく進行して全ストロークの圧入が完了する。   Even when the press-fitting allowance is 70 μm and the press-fitting load is 200 kgf and the giant magnetostrictive element is vibrated at a drive current of 1 A and 450 Hz, the press-fitting proceeds only about 3 mm out of the 15 mm press-fitting stroke. On the other hand, when the frequency of the drive current of the giant magnetostrictive element is gradually changed between 450 Hz and 800 Hz with the same press-fitting load, the press-fitting proceeds greatly especially in the vicinity of 500 Hz, and the press-fitting of the full stroke is completed.

圧入代が90μmの時に、圧入荷重を250Kgfにして超磁歪素子を駆動電流1A、550Hzで起振しても、15mmの圧入ストロークのうち6mm程度しか圧入が進行しない。これに対して同一圧入荷重で、超磁歪素子の駆動電流の周波数を450Hzから700Hzの間で漸次変化させると、特に550Hz付近で圧入が大きく進行して全ストロークの圧入が完了する。   Even when the press-fitting allowance is 90 μm and the giant magnetostrictive element is vibrated at a drive current of 1 A and 550 Hz with a press-fitting load of 250 kgf, the press-fitting proceeds only about 6 mm out of the 15 mm press-fitting stroke. On the other hand, when the frequency of the drive current of the giant magnetostrictive element is gradually changed between 450 Hz and 700 Hz with the same press-fitting load, the press-fitting greatly progresses especially in the vicinity of 550 Hz, and the press-fitting of the full stroke is completed.

Figure 2007030063
Figure 2007030063

本発明の一実施形態における圧入装置の全体構成を示す図である。It is a figure showing the whole press-fitting device composition in one embodiment of the present invention. 起振体の縦断面図である。It is a longitudinal cross-sectional view of a vibration body. 圧入荷重と検出用コイル電流の関係を示すグラフである。It is a graph which shows the relationship between a press-fit load and a coil current for detection. 圧入工程での圧入荷重の変化を示すグラフである。It is a graph which shows the change of the press-fit load in a press-fit process. 駆動電流の周波数とBFの関係を示すグラフである。It is a graph which shows the relationship between the frequency of a drive current, and BF.

符号の説明Explanation of symbols

1…圧入器、2…エアシリンダ(押圧手段)、3…起振体、32…超磁歪素子、33…検出用コイル(検出手段)、34…駆動用コイル(駆動手段)、4…圧入ヘッド、51…駆動回路(駆動手段)、52…検出回路(検出手段)、P…部品、R…被圧入部材7。 DESCRIPTION OF SYMBOLS 1 ... Press-fit device, 2 ... Air cylinder (pressing means), 3 ... Excitation body, 32 ... Giant magnetostrictive element, 33 ... Detection coil (detection means), 34 ... Drive coil (drive means), 4 ... Press-fit head , 51... Drive circuit (drive means), 52... Detection circuit (detection means), P.

Claims (3)

周期的に変化する磁界に応じて周期的に伸縮変形して、圧入すべき部品を起振する超磁歪素子と、起振された部品を、前記超磁歪素子を介して押圧して、前記部品を前記被圧入部材に圧入する押圧手段と、周期的に変化する磁界を前記超磁歪素子に作用させて当該超磁歪素子を伸縮変形させる駆動手段とを備え、かつ前記駆動手段は圧入過程において、前記磁界変化の周波数および/又は強度を漸次変更するように設定されていることを特徴とする圧入装置。 A super-magnetostrictive element that periodically expands and contracts in response to a periodically changing magnetic field, and vibrates a part to be press-fitted, and the vibrated part is pressed through the super-magnetostrictive element, and the part Pressing means for press-fitting into the pressed-in member, and driving means for causing the super-magnetostrictive element to expand and deform by applying a periodically changing magnetic field to the super-magnetostrictive element, and the driving means in the press-fitting process, A press-fitting device, which is set so as to gradually change the frequency and / or intensity of the magnetic field change. 圧入荷重に応じた前記超磁歪素子の透磁率変化を検出してこれに応じた検出信号を発する検出手段をさらに設けた請求項1に記載の圧入装置。 The press-fitting device according to claim 1, further comprising detection means for detecting a change in magnetic permeability of the giant magnetostrictive element according to a press-fitting load and generating a detection signal according to the change. 前記複数の部品について、各部品を圧入する際の前記磁界変化の周波数および/又は強度の変更過程を記憶しておく記憶手段と、圧入される各部品に応じて、記憶された前記変更過程の一つを選択して前記駆動手段に実行させる選択手段とをさらに設けた請求項1又は2に記載の圧入装置。 For the plurality of parts, storage means for storing a change process of the frequency and / or strength of the magnetic field change when each part is press-fitted, and the change process stored according to each press-fitted part. The press-fitting device according to claim 1, further comprising selection means for selecting one and causing the driving means to execute the selection.
JP2005213757A 2005-07-25 2005-07-25 Press-in device Pending JP2007030063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213757A JP2007030063A (en) 2005-07-25 2005-07-25 Press-in device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213757A JP2007030063A (en) 2005-07-25 2005-07-25 Press-in device

Publications (1)

Publication Number Publication Date
JP2007030063A true JP2007030063A (en) 2007-02-08

Family

ID=37789935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213757A Pending JP2007030063A (en) 2005-07-25 2005-07-25 Press-in device

Country Status (1)

Country Link
JP (1) JP2007030063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295198A1 (en) * 2009-09-15 2011-03-16 Sonplas GmbH Device and method for joining and/or processing an interference fit assembly
EP2450179A1 (en) * 2009-07-03 2012-05-09 Sanwa System Engineering Co., Ltd. Compression molding method for powder and device therefor
CN103157983A (en) * 2013-04-09 2013-06-19 河北亚大汽车塑料制品有限公司 Packing press and nylon tube packing pressing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450179A1 (en) * 2009-07-03 2012-05-09 Sanwa System Engineering Co., Ltd. Compression molding method for powder and device therefor
EP2450179A4 (en) * 2009-07-03 2013-11-06 Sanwa System Engineering Co Ltd Compression molding method for powder and device therefor
EP2295198A1 (en) * 2009-09-15 2011-03-16 Sonplas GmbH Device and method for joining and/or processing an interference fit assembly
CN103157983A (en) * 2013-04-09 2013-06-19 河北亚大汽车塑料制品有限公司 Packing press and nylon tube packing pressing method
CN103157983B (en) * 2013-04-09 2016-01-27 河北亚大汽车塑料制品有限公司 A kind of pressing machine and nylon tube pressing method

Similar Documents

Publication Publication Date Title
CN101055040A (en) Electric-powered air release valve and blood pressure gauge
JP4989492B2 (en) Semiconductor element bonding apparatus and semiconductor element bonding method using the same
CN201618681U (en) Vibration exciter
JP2007030063A (en) Press-in device
US11014192B2 (en) Smart ultrasonic stack and method of controlling ultrasonic system having a smart ultrasonic stack
JP2004160475A (en) Friction stir welding apparatus using bobbin tool, and its welding method
JP2006315112A (en) Press fitting device
JP2006316930A (en) Solenoid valve driving controller
JP4188207B2 (en) pump
JP2005110488A (en) Apparatus and method for driving ultrasonic actuator
JP2013111676A (en) Press fitting method and press fitting device
JP2007007767A (en) Press-fitting device
JP5669444B2 (en) Vibration type driving device
KR101936381B1 (en) Method for testing back-EMF detection function of a vibration motor driving IC and device for the same
JP4461105B2 (en) Assembly method of carriage assembly
JP3138309B2 (en) How to start ultrasonic motor
JP2003098031A (en) Excitation device
JP4891885B2 (en) Resonance point tracking drive
JP2008246657A (en) Apparatus and method for processing propelling force
JP5137396B2 (en) Mobile device
Mangeot Operation of a quasi-static piezomotor in transitory frequency range up to resonance
JP2008256110A (en) Vibration damping device and offset correction method for vibration damping device
JP2009186187A (en) Detection circuit and detecting method
US20220014081A1 (en) Vibration motor and tactile device
DE50109875D1 (en) Vibrating diaphragm PUMP