JP2003098031A - Excitation device - Google Patents

Excitation device

Info

Publication number
JP2003098031A
JP2003098031A JP2001290615A JP2001290615A JP2003098031A JP 2003098031 A JP2003098031 A JP 2003098031A JP 2001290615 A JP2001290615 A JP 2001290615A JP 2001290615 A JP2001290615 A JP 2001290615A JP 2003098031 A JP2003098031 A JP 2003098031A
Authority
JP
Japan
Prior art keywords
measured
vibrating
electromagnet
turbine blade
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001290615A
Other languages
Japanese (ja)
Inventor
Masayuki Tomii
正幸 富井
Kazuishi Mori
一石 森
Katsuya Yamashita
勝也 山下
Shinya Iizuka
信也 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001290615A priority Critical patent/JP2003098031A/en
Publication of JP2003098031A publication Critical patent/JP2003098031A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate accurately a vibration characteristic regardless of the shape of a turbine blade 2. SOLUTION: The turbine blade 2 is excited by a magnetic force by supplying an electromagnet 3 with an electric power. Hereby, the mass of the electromagnet 3 does not exert an influence on the mass of the turbine blade 2, and a strong exciting force can be acquired. The vibration characteristic, therefore, can be evaluated accurately regardless of the shape of the turbine blade 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、軸流駆動
手段の翼等の被測定物を加振することで振動特性を評価
する加振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration device for evaluating vibration characteristics by vibrating an object to be measured such as a blade of an axial flow driving means.

【0002】[0002]

【従来の技術】軸流駆動機器であるガスタービン、蒸気
タービン、圧縮機の静翼や動翼に関する振動応力や共振
点を計測し、振動特性を解析・評価することは、機器の
耐久性等の特性を把握する上で重要であり、有限要素法
モデルの検証を行うことが可能となる。静翼や動翼は、
運転時にある程度の変形により摩擦力により振動が減衰
される構成となっているため、振動特性を評価するため
の加振はある程度大きな加振力を必要としている。ま
た、応力の限界を評価するためにも大きな加振力を必要
としている。このため、静翼や動翼を加振させる従来の
加振装置は、静翼や動翼に加振手段、例えば、圧電素子
を直接取り付けて静翼や動翼を大きな力の所望の周波数
で加振していた。
2. Description of the Related Art Measuring the vibration stress and resonance point of the stationary blades and moving blades of gas turbines, steam turbines, and compressors, which are axial-flow driven devices, and analyzing and evaluating the vibration characteristics is called the durability of the devices. It is important to understand the characteristics of, and it becomes possible to verify the finite element method model. The stationary and moving blades are
Since the vibration is damped by the frictional force due to some deformation during operation, the vibration for evaluating the vibration characteristics requires a large vibration force to some extent. Also, a large excitation force is required to evaluate the limit of stress. For this reason, the conventional vibration device for vibrating the stationary blade or the moving blade has a vibrating means such as a piezoelectric element directly attached to the stationary blade or the moving blade to directly move the stationary blade or the moving blade at a desired frequency with a large force. I was shaking.

【0003】[0003]

【発明が解決しようとする課題】近年、軸流駆動機器の
高性能化の要望に伴い、静翼や動翼は薄肉化される傾向
となってきている。薄肉化された静翼や動翼に圧電素子
等の加振手段を直接取り付ける加振装置の場合、加振手
段自体の質量が振動特性に影響を及ぼしてしまう虞があ
った。このため、加振手段の質量が静翼や動翼等の被測
定物の質量に影響を及ぼすことがなく、しかも、大きな
加振力が得られる加振装置の出現が望まれているのが現
状である。
In recent years, with the demand for higher performance of axial flow drive equipment, the vanes and moving blades are becoming thinner. In the case of a vibrating device in which a vibrating means such as a piezoelectric element is directly attached to a thin vane or a moving blade, the mass of the vibrating means itself may affect the vibration characteristics. Therefore, it is desired to develop a vibrating device in which the mass of the vibrating means does not affect the mass of the object to be measured such as the stationary blade and the moving blade, and moreover, a large vibrating force can be obtained. The current situation.

【0004】本発明は上記状況に鑑みてなされたもの
で、加振手段の質量が被測定物の質量に影響を及ぼすこ
とがなく、しかも、大きな加振力が得られる加振装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a vibrating device in which the mass of the vibrating means does not affect the mass of the object to be measured and a large vibrating force is obtained. The purpose is to

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、被測定物との相対質量が略零となる
状態で被測定物を加振させる加振手段を備えたことを特
徴とする。そして、加振手段は、電磁力または磁力によ
り被測定物を加振させる手段であることを特徴とする。
また、加振手段は、電磁石に電力を供給することで磁力
により被測定物を加振させる手段であることを特徴とす
る。
In order to achieve the above object, the structure of the present invention comprises a vibrating means for vibrating the object to be measured in a state where the relative mass with the object to be measured is substantially zero. Is characterized by. The vibrating means is a means for vibrating the object to be measured with an electromagnetic force or a magnetic force.
Further, the vibrating means is means for vibrating the object to be measured with a magnetic force by supplying electric power to the electromagnet.

【0006】そして、電磁石の取付部にロードセルを設
け、ロードセルの信号に応じて電磁石への供給電力を制
御する制御手段を設けたことを特徴とする。また、被測
定物に対する隙間を検出するギャップセンサを設け、ギ
ャップセンサの信号に応じて電磁石への供給電力を制御
する制御手段を設けたことを特徴とする。また、被測定
物に歪ゲージを取付け、歪ゲージの信号に応じて電磁石
への供給電力を制御する制御手段を設けたことを特徴と
する。また、複数の電磁石を備えたことを特徴とする。
また、空気圧により被測定物を加振させる空気加振手段
を更に備えたことを特徴とする。
A load cell is provided at the mounting portion of the electromagnet, and a control means for controlling the electric power supplied to the electromagnet according to the signal of the load cell is provided. Further, it is characterized in that a gap sensor for detecting a gap with respect to the object to be measured is provided, and a control means for controlling electric power supplied to the electromagnet according to a signal from the gap sensor is provided. Further, a strain gauge is attached to the object to be measured, and a control means for controlling the power supplied to the electromagnet according to the signal of the strain gauge is provided. Further, it is characterized in that a plurality of electromagnets are provided.
Further, it is characterized by further comprising air vibrating means for vibrating the object to be measured by air pressure.

【0007】また、加振手段は、被測定物に流される電
流により発生する電磁力により被測定物を加振させる手
段であることを特徴とする。また、被測定物に交流電流
が供給される一対の電極を取付け、一対の電極により被
測定物に流される電流に誘起される磁場との間で被測定
物に加振力を発生させる磁石を備えたことを特徴とす
る。また、交流電流により被測定物に渦電流を発生させ
るコイルを設け、コイルにより被測定物に発生する渦電
流に誘起される磁場との間で被測定物に加振力を発生さ
せる磁石を備えたことを特徴とする。また、被測定物に
交流電流が供給される非接触電極を設け、非接触電極に
より被測定物に流される電流に誘起される磁場との間で
被測定物に加振力を発生させる磁石を備えたことを特徴
とする。
The vibrating means is a means for vibrating the object to be measured by an electromagnetic force generated by an electric current flowing through the object to be measured. In addition, a pair of electrodes to which an alternating current is supplied is attached to the object to be measured, and a magnet that generates an exciting force on the object to be measured is generated between the pair of electrodes and the magnetic field induced by the current applied to the object to be measured. It is characterized by having. In addition, a coil is provided to generate an eddy current in the object to be measured by an alternating current, and a magnet is provided to generate an exciting force to the object to be measured with the magnetic field induced by the eddy current generated in the object to be measured by the coil. It is characterized by that. In addition, a non-contact electrode to which an alternating current is supplied to the object to be measured is provided, and a magnet for generating an exciting force on the object to be measured is generated between the non-contact electrode and the magnetic field induced by the current applied to the object to be measured. It is characterized by having.

【0008】[0008]

【発明の実施の形態】以下図面に基づいて本発明の加振
装置の実施形態例を説明する。図1乃至図9には本発明
の第1実施形態例乃至第9実施形態例に係る加振装置の
概略構成を示してある。尚、各実施形態例で同一部材に
は同一符号を付して重複する説明は省略してある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a vibrating device of the present invention will be described below with reference to the drawings. 1 to 9 show a schematic configuration of a vibrating device according to first to ninth embodiments of the present invention. In each embodiment, the same members are designated by the same reference numerals and duplicate description is omitted.

【0009】図示の実施形態例では、被測定物としてタ
ービン翼を例に挙げて説明してあるが、被測定物として
は、圧縮機やブロア等の他の軸流駆動機器の翼や、その
他、振動特性を評価する被測定物の加振に適用すること
ができる。
In the illustrated embodiment, a turbine blade is taken as an example of the object to be measured, but the object to be measured is a blade of another axial flow drive device such as a compressor or a blower, or the like. The present invention can be applied to vibration of an object to be measured for evaluating vibration characteristics.

【0010】図1に基づいて第1実施形態例を説明す
る。
A first embodiment will be described with reference to FIG.

【0011】固定治具1には被測定物としてのタービン
翼2の基端が固定されている。タービン翼2は磁性体で
構成されている。タービン翼2に隣接して電磁石3が配
設され、電磁石3には増幅器4を介して発振器5から電
力が供給されて所定周波数で励磁される。電磁石3の励
磁による電磁力により、タービン翼2が所望の周波数及
び所定の加振力で加振される。
A base end of a turbine blade 2 as an object to be measured is fixed to the fixing jig 1. The turbine blade 2 is made of a magnetic material. An electromagnet 3 is arranged adjacent to the turbine blade 2, and electric power is supplied to the electromagnet 3 from an oscillator 5 via an amplifier 4 and excited at a predetermined frequency. The turbine blade 2 is vibrated at a desired frequency and a predetermined vibrating force by the electromagnetic force generated by the excitation of the electromagnet 3.

【0012】このため、非接触でタービン翼2を加振す
ることができ、電磁石3の質量がタービン翼2の質量に
影響を及ぼすことがなく、電磁石3自体の質量が振動特
性に影響を及ぼさない状態で薄肉化されたタービン翼2
であっても振動特性を正確に評価することが可能にな
る。
Therefore, the turbine blade 2 can be excited without contact, the mass of the electromagnet 3 does not affect the mass of the turbine blade 2, and the mass of the electromagnet 3 itself affects the vibration characteristics. Turbine blade 2 thinned without
Even in this case, the vibration characteristic can be accurately evaluated.

【0013】図2に基づいて第2実施形態例を説明す
る。
A second embodiment will be described with reference to FIG.

【0014】電磁石3の取付部6にはロードセル7が設
けられ、ロードセル7の検出信号は制御手段としてのコ
ントローラ8に入力される。コントローラ8からはロー
ドセル7の検出信号に応じて発振器5に供給電力の制御
指令が出力され、発振器5の周波数特性に拘らず一定の
加振力が得られるように発振器5から電磁石3への供給
電力が制御される。また、必要な所望の加振力となるよ
うに発振器5の供給電力が制御される。
A load cell 7 is provided on the mounting portion 6 of the electromagnet 3, and a detection signal of the load cell 7 is input to a controller 8 as a control means. The controller 8 outputs a control command for power supply to the oscillator 5 in response to the detection signal of the load cell 7, and supplies the oscillator 5 to the electromagnet 3 so that a constant exciting force can be obtained regardless of the frequency characteristic of the oscillator 5. Power is controlled. Further, the electric power supplied to the oscillator 5 is controlled so as to obtain a desired and desired excitation force.

【0015】このため、非接触でタービン翼2を一定の
加振力、または所望の加振力で加振することができ、電
磁石3の質量がタービン翼2の質量に影響を及ぼすこと
がなく、電磁石3自体の質量が振動特性に影響を及ぼさ
ない状態で薄肉化されたタービン翼2であっても振動特
性を正確に評価することが可能になる。
Therefore, the turbine blade 2 can be excited in a non-contact manner with a constant exciting force or a desired exciting force, and the mass of the electromagnet 3 does not affect the mass of the turbine blade 2. The vibration characteristics can be accurately evaluated even in the thin turbine blade 2 in a state where the mass of the electromagnet 3 itself does not affect the vibration characteristics.

【0016】図3に基づいて第3実施形態例を説明す
る。
A third embodiment will be described with reference to FIG.

【0017】タービン翼2の先端部位にはタービン翼2
に対する隙間を検出するギャップセンサ9が配され、ギ
ャップセンサ9の検出信号はコントローラ8に入力され
る。コントローラ8からはギャップセンサ9の検出信号
に応じて発振器5に供給電力の制御指令が出力され、発
振器5の周波数特性に拘らず一定の隙間となるように、
即ち、一定の変位状態となるように発振器5の供給電力
が制御される。また、必要な所望の隙間となるように、
即ち、所望の変位状態となるように発振器5の供給電力
が制御される。
At the tip portion of the turbine blade 2, the turbine blade 2
A gap sensor 9 for detecting a gap is provided, and a detection signal of the gap sensor 9 is input to the controller 8. The controller 8 outputs a control command for the supplied power to the oscillator 5 according to the detection signal of the gap sensor 9 so that a constant gap is formed regardless of the frequency characteristic of the oscillator 5.
That is, the electric power supplied to the oscillator 5 is controlled so as to be in a constant displacement state. Also, so that the required and desired gap is obtained,
That is, the power supplied to the oscillator 5 is controlled so that the desired displacement state is achieved.

【0018】このため、非接触でタービン翼2を一定の
変位状態、または所望の変位状態で加振することがで
き、電磁石3の質量がタービン翼2の質量に影響を及ぼ
すことがなく、電磁石3自体の質量が振動特性に影響を
及ぼさない状態で薄肉化されたタービン翼2であっても
振動特性を正確に評価することが可能になる。
Therefore, the turbine blade 2 can be vibrated in a non-contact manner in a constant displacement state or a desired displacement state, the mass of the electromagnet 3 does not affect the mass of the turbine blade 2, and the electromagnet is not affected. Even if the turbine blade 2 is thinned in a state where the mass of 3 itself does not affect the vibration characteristics, the vibration characteristics can be accurately evaluated.

【0019】図4に基づいて第4実施形態例を説明す
る。
A fourth embodiment will be described with reference to FIG.

【0020】タービン翼2の基端部位にはタービン翼2
の歪を検出する歪ゲージ10が取り付けられ、歪ゲージ
10の検出信号はコントローラ8に入力される。コント
ローラ8からは歪ゲージ10の検出信号に応じて発振器
5に供給電力の制御指令が出力され、発振器5の周波数
特性に拘らず一定の歪となるように、即ち、一定の応力
を受けるように発振器5の供給電力が制御される。ま
た、必要な所望の歪となるように、即ち、所望の応力を
受けるように発振器5の供給電力が制御される。
At the base end portion of the turbine blade 2, the turbine blade 2
The strain gauge 10 for detecting the strain is attached, and the detection signal of the strain gauge 10 is input to the controller 8. The controller 8 outputs a control command for the power supply to the oscillator 5 according to the detection signal of the strain gauge 10 so that the strain becomes constant regardless of the frequency characteristic of the oscillator 5, that is, the constant stress is applied. The power supply of the oscillator 5 is controlled. Further, the electric power supplied to the oscillator 5 is controlled so as to obtain a necessary and desired strain, that is, to receive a desired stress.

【0021】このため、非接触でタービン翼2を一定の
応力状態、または所望の応力状態で加振することがで
き、電磁石3の質量がタービン翼2の質量に影響を及ぼ
すことがなく、電磁石3自体の質量が振動特性に影響を
及ぼさない状態で薄肉化されたタービン翼2であっても
振動特性を正確に評価することが可能になる。
Therefore, the turbine blade 2 can be vibrated in a constant stress state or a desired stress state without contact, the mass of the electromagnet 3 does not affect the mass of the turbine blade 2, and the electromagnet can be excited. Even if the turbine blade 2 is thinned in a state where the mass of 3 itself does not affect the vibration characteristics, the vibration characteristics can be accurately evaluated.

【0022】尚、上述したロードセル7、ギャップセン
サ9及び歪ゲージ10を適宜組み合わせて設け、加振力
制御、変位制御及び応力制御を適宜組み合わせることも
可能である。
The load cell 7, the gap sensor 9 and the strain gauge 10 described above may be provided in an appropriate combination to appropriately combine the excitation force control, the displacement control and the stress control.

【0023】図5に基づいて第5実施形態例を説明す
る。
A fifth embodiment will be described with reference to FIG.

【0024】タービン翼2に隣接して適宜箇所に3個の
電磁石3が配設され、電磁石3にはコントローラ8の指
令によりそれぞれ増幅器4を介して発振器5から電力が
個別に供給されて所定周波数で励磁される。3個の電磁
石3が個別に励磁されることにより電磁力により、ター
ビン翼2が任意の加振モードで加振される。
Three electromagnets 3 are arranged at appropriate positions adjacent to the turbine blades 2, and the electromagnets 3 are individually supplied with electric power from the oscillator 5 via the amplifiers 4 according to a command from the controller 8 to have a predetermined frequency. Is excited by. By exciting the three electromagnets 3 individually, the turbine blade 2 is excited in an arbitrary excitation mode by an electromagnetic force.

【0025】このため、非接触でタービン翼2を任意の
振動モードで加振することができ、電磁石3の質量がタ
ービン翼2の質量に影響を及ぼすことがなく、電磁石3
自体の質量が振動特性に影響を及ぼさない状態で薄肉化
されたタービン翼2であっても種々の振動モードでの振
動特性を正確に評価することが可能になる。また、一つ
の電磁石3の加振力を小さくしても大きな加振力を得る
ことができる。更に、コントローラ8の指令により各電
磁石3の励磁に位相差をつけることで、流体力等の加振
を模擬することができる。尚、電磁石3は2個または3
個以上の任意の数を設けることが可能である。
Therefore, the turbine blade 2 can be excited in any vibration mode without contact, the mass of the electromagnet 3 does not affect the mass of the turbine blade 2, and the electromagnet 3
Even if the turbine blade 2 is thinned in a state where its own mass does not affect the vibration characteristics, it is possible to accurately evaluate the vibration characteristics in various vibration modes. Further, even if the exciting force of one electromagnet 3 is reduced, a large exciting force can be obtained. Furthermore, by giving a phase difference to the excitation of each electromagnet 3 according to a command from the controller 8, it is possible to simulate vibration such as fluid force. In addition, the electromagnet 3 is two or three.
It is possible to provide an arbitrary number of one or more.

【0026】図6に基づいて第6実施形態例を説明す
る。
A sixth embodiment will be described with reference to FIG.

【0027】電磁石3に近接して空気圧によりタービン
翼2を加振する空気加圧手段としてのエアサイレン11
が設けられ、エアサイレン11からの空気圧を検出する
圧力計12が設けられている。圧力計12の検出信号は
コントローラ8に入力される。コントローラ8からは圧
力計12の検出信号に応じて発振器5に供給電力の制御
指令が出力され、エアサイレン11からの空気圧と電磁
石3の励磁が同調するように発振器5の供給電力が制御
される。
An air siren 11 as an air pressurizing means for vibrating the turbine blade 2 by air pressure in the vicinity of the electromagnet 3.
And a pressure gauge 12 for detecting the air pressure from the air siren 11. The detection signal of the pressure gauge 12 is input to the controller 8. The controller 8 outputs a control command for power supply to the oscillator 5 according to the detection signal of the pressure gauge 12, and the power supply to the oscillator 5 is controlled so that the air pressure from the air siren 11 and the excitation of the electromagnet 3 are synchronized. .

【0028】このため、非接触でタービン翼2を大きな
加振力で加振することができ、電磁石3の質量がタービ
ン翼2の質量に影響を及ぼすことがなく、電磁石3自体
の質量が振動特性に影響を及ぼさない状態で薄肉化され
たタービン翼2であっても振動特性を正確に評価するこ
とが可能になる。
Therefore, the turbine blade 2 can be vibrated in a non-contact manner with a large exciting force, the mass of the electromagnet 3 does not affect the mass of the turbine blade 2, and the mass of the electromagnet 3 itself vibrates. Even if the turbine blade 2 is thinned without affecting the characteristics, the vibration characteristics can be accurately evaluated.

【0029】図7に基づいて第7実施形態例を説明す
る。
A seventh embodiment will be described with reference to FIG.

【0030】タービン翼2の先端部と基端部には、ター
ビン翼2との相対質量が略零である一対の電極13a,
13bが取り付けられ、一対の電極13a,13bには
交流電源14から電力が供給される。タービン翼2の周
囲の加振部には磁石としての永久磁石15が設けられて
いる。尚、磁石としては電磁石を用いることも可能であ
る。タービン翼2は導電体であり、交流電源14から交
流の電力が供給されることで、一対の電極13a,13
bの間に交番電流Aが流される。交番電流Aが流される
ことで永久磁石15の間に磁場Gが誘起され、フレミン
グの法則によりタービン翼2に交流電流A及び磁場Gに
直交する方向の力Fが発生して加振力となる。
A pair of electrodes 13a, whose relative mass with the turbine blade 2 is substantially zero, is provided at the tip end portion and the base end portion of the turbine blade 2,
13b is attached, and electric power is supplied to the pair of electrodes 13a and 13b from the AC power supply 14. Permanent magnets 15 as magnets are provided in the vibration section around the turbine blades 2. An electromagnet can be used as the magnet. The turbine blade 2 is a conductor, and is supplied with AC power from the AC power supply 14 to generate a pair of electrodes 13 a, 13 a.
An alternating current A is passed during b. A magnetic field G is induced between the permanent magnets 15 when the alternating current A is passed, and a force F in a direction orthogonal to the alternating current A and the magnetic field G is generated in the turbine blade 2 according to Fleming's law and becomes an exciting force. .

【0031】このため、タービン翼2を自己加振するこ
とができ、加振手段の質量がタービン翼2の質量に影響
を及ぼすことがなく、加振手段自体の質量が振動特性に
影響を及ぼさない状態で薄肉化されたタービン翼2であ
っても振動特性を正確に評価することが可能になる。ま
た、タービン翼2が導電体であれば、磁性体でなくても
加振が可能になり、一対の電極13a,13b及び永久
磁石15の配置により任意の部位を加振することができ
る。
Therefore, the turbine blade 2 can be self-excited, the mass of the vibrating means does not affect the mass of the turbine blade 2, and the mass of the vibrating means itself affects the vibration characteristics. Even if the turbine blade 2 is thinned in the absence, it is possible to accurately evaluate the vibration characteristics. Further, if the turbine blade 2 is a conductor, it can be vibrated even if it is not a magnetic body, and an arbitrary portion can be vibrated by arranging the pair of electrodes 13a and 13b and the permanent magnet 15.

【0032】図8に基づいて第8実施形態例を説明す
る。
An eighth embodiment will be described with reference to FIG.

【0033】タービン翼2に近接してコイル16が配置
され、コイル16には交流電源14から電力が供給され
る。また、コイル16に対向して永久磁石17が配置さ
れている。交流電源14からコイル16に交流の電力が
供給されると、タービン翼2に渦電流Pが発生し、渦電
流Pに応じた磁場が誘起されて磁場と永久磁石17との
間で加振力が生じる。
A coil 16 is arranged close to the turbine blade 2, and electric power is supplied to the coil 16 from an AC power supply 14. Further, a permanent magnet 17 is arranged so as to face the coil 16. When AC power is supplied from the AC power supply 14 to the coil 16, an eddy current P is generated in the turbine blade 2, a magnetic field corresponding to the eddy current P is induced, and an exciting force is generated between the magnetic field and the permanent magnet 17. Occurs.

【0034】このため、タービン翼2を自己加振するこ
とができ、加振手段の質量がタービン翼2の質量に影響
を及ぼすことがなく、加振手段自体の質量が振動特性に
影響を及ぼさない状態で薄肉化されたタービン翼2であ
っても振動特性を正確に評価することが可能になる。ま
た、タービン翼2が導電体であれば、磁性体でなくても
加振が可能になり、コイル16及び永久磁石17の配置
により任意の部位を加振することができる。
Therefore, the turbine blade 2 can be self-excited, the mass of the vibrating means does not affect the mass of the turbine blade 2, and the mass of the vibrating means itself affects the vibration characteristics. Even if the turbine blade 2 is thinned in the absence, it is possible to accurately evaluate the vibration characteristics. If the turbine blade 2 is a conductor, it can be vibrated even if it is not a magnetic body, and an arbitrary portion can be vibrated by disposing the coil 16 and the permanent magnet 17.

【0035】図9に基づいて第9実施形態例を説明す
る。
A ninth embodiment will be described with reference to FIG.

【0036】タービン翼2の先端部には非接触の電極1
8が配置され、電極18には一方が接地された交流電源
19から交流の電力が供給される。電極18に対向して
磁石としての永久磁石17が設けられている。尚、磁石
としては電磁石を用いることも可能である。タービン翼
2は導電体であり、交流電源14から電極18に電力が
供給されることで、静電容量によりタービン翼2に交番
電流Aが流される。交番電流Aが流されることで磁場が
誘起され、永久磁石17によりタービン翼2に加振力が
生じる。
The electrode 1 which is not in contact with the tip of the turbine blade 2
8 is arranged, and AC power is supplied to the electrode 18 from an AC power supply 19 of which one side is grounded. A permanent magnet 17 as a magnet is provided facing the electrode 18. An electromagnet can be used as the magnet. The turbine blade 2 is a conductor, and when the AC power supply 14 supplies electric power to the electrode 18, an alternating current A is caused to flow through the turbine blade 2 due to electrostatic capacitance. A magnetic field is induced by the flow of the alternating current A, and an exciting force is generated in the turbine blade 2 by the permanent magnet 17.

【0037】このため、タービン翼2を自己加振するこ
とができ、加振手段の質量がタービン翼2の質量に影響
を及ぼすことがなく、加振手段自体の質量が振動特性に
影響を及ぼさない状態で薄肉化されたタービン翼2であ
っても振動特性を正確に評価することが可能になる。ま
た、タービン翼2が導電体であれば、磁性体でなくても
加振が可能になり、永久磁石17の配置により任意の部
位を加振することができる。尚、交流電源14の一方を
接地することなく非接触の電極18を先端部と基端部と
に設けて交流電源14を接続することも可能である。
Therefore, the turbine blade 2 can be self-excited, the mass of the vibrating means does not affect the mass of the turbine blade 2, and the mass of the vibrating means itself affects the vibration characteristics. Even if the turbine blade 2 is thinned in the absence, it is possible to accurately evaluate the vibration characteristics. Further, if the turbine blade 2 is a conductor, it can be vibrated even if it is not a magnetic body, and an arbitrary portion can be vibrated by disposing the permanent magnet 17. It is also possible to connect the AC power supply 14 by providing the non-contact electrode 18 at the tip and the base end without grounding one of the AC power supplies 14.

【0038】上述した加振装置は、加振手段の質量がタ
ービン翼2の質量に影響を及ぼすことがないので、薄肉
化されたタービン翼2であっても振動特性を正確に評価
することができ、しかも、摩擦により減衰を得るタービ
ン翼2であっても、減衰が得られる大きな力で加振を行
うことができ、必要な振動特性を正確に評価することが
できる。このため、静翼、動翼等の被測定物の振動特性
を精度良く得ることができ、設計マージンを小さくして
設計コストを削減することが可能になる。
In the above-described vibrating device, the mass of the vibrating means does not affect the mass of the turbine blade 2. Therefore, even if the turbine blade 2 is thin, the vibration characteristics can be accurately evaluated. Even if the turbine blade 2 can be damped by friction, it can be vibrated with a large force capable of dampening, and the required vibration characteristics can be accurately evaluated. Therefore, the vibration characteristics of the object to be measured such as the stationary blade and the moving blade can be accurately obtained, and the design margin can be reduced to reduce the design cost.

【0039】[0039]

【発明の効果】本発明の加振装置は、被測定物との相対
質量が略零となる状態で被測定物を加振させる加振手段
を備えたので、加振手段の質量が被測定物の質量に影響
を及ぼすことがなく、大きな加振力が得られる。この結
果、被測定物の形状に拘らず振動特性を正確に評価する
こと可能になる。
Since the vibrating device of the present invention is provided with the vibrating means for vibrating the object to be measured in a state where the relative mass to the object to be measured is substantially zero, the mass of the vibrating means is to be measured. A large excitation force can be obtained without affecting the mass of the object. As a result, the vibration characteristic can be accurately evaluated regardless of the shape of the object to be measured.

【0040】また、加振手段は、電磁力または磁力によ
り被測定物を加振させる手段であるので、非接触もしく
は被測定物との相対質量が略零となる状態で被測定物を
加振させることが可能になる。
Since the vibrating means is a means for vibrating the object to be measured by electromagnetic force or magnetic force, it vibrates the object to be measured in a non-contact state or in a state where the relative mass with the object to be measured is substantially zero. It is possible to let

【0041】また、加振手段は、電磁石に電力を供給す
ることで磁力により被測定物を加振させる手段であるの
で、非接触の状態で被測定物を加振させることが可能に
なる。
Further, since the vibrating means is a means for vibrating the object to be measured by the magnetic force by supplying electric power to the electromagnet, it is possible to vibrate the object to be measured in a non-contact state.

【0042】また、電磁石の取付部にロードセルを設
け、ロードセルの信号に応じて電磁石への供給電力を制
御する制御手段を設けたので、一定の加振力もしくは所
望の加振力で被測定物を加振することが可能になる。
Further, since the load cell is provided at the mounting portion of the electromagnet and the control means for controlling the electric power supplied to the electromagnet according to the signal of the load cell is provided, the object to be measured can be excited with a constant exciting force or a desired exciting force. Can be excited.

【0043】また、被測定物に対する隙間を検出するギ
ャップセンサを設け、ギャップセンサの信号に応じて電
磁石への供給電力を制御する制御手段を設けたので、一
定の変位状態もしくは所望の変位状態で被測定物を加振
することが可能になる。
Further, since the gap sensor for detecting the gap with respect to the object to be measured is provided and the control means for controlling the electric power supplied to the electromagnet according to the signal of the gap sensor is provided, the constant displacement state or the desired displacement state can be obtained. It becomes possible to excite the object to be measured.

【0044】また、被測定物に歪ゲージを取付け、歪ゲ
ージの信号に応じて電磁石への供給電力を制御する制御
手段を設けたので、一定の応力状態もしくは所望の応力
状態で被測定物を加振することが可能になる。
Further, since the strain gauge is attached to the object to be measured and the control means for controlling the electric power supplied to the electromagnet in accordance with the signal of the strain gauge is provided, the object to be measured is kept in a constant stress state or a desired stress state. It becomes possible to excite.

【0045】また、複数の電磁石を備えたので、任意の
加振モードで被測定物を加振することが可能になると共
に、一つの電磁石での加振力を小さくすることが可能に
なり、しかも、位相差をつけることで流体力等の加振を
模擬することが可能になる。
Further, since a plurality of electromagnets are provided, it becomes possible to excite the object to be measured in any excitation mode, and it is possible to reduce the excitation force of one electromagnet. Moreover, it is possible to simulate vibration such as fluid force by providing a phase difference.

【0046】また、空気圧により被測定物を加振させる
空気加振手段を更に備えたので、一つの電磁石で大きな
加振力を得ることが可能になる。
Further, since the air vibrating means for vibrating the object to be measured by the air pressure is further provided, it is possible to obtain a large vibrating force with one electromagnet.

【0047】また、加振手段は、被測定物に流される電
流により発生する電磁力により被測定物を加振させる手
段であるので、非接触もしくは被測定物との相対質量が
略零となる状態で被測定物を加振させることが可能にな
る。
Further, since the vibrating means is a means for vibrating the object to be measured by the electromagnetic force generated by the electric current applied to the object to be measured, it is non-contact or the relative mass with the object to be measured becomes substantially zero. It becomes possible to vibrate the object to be measured in this state.

【0048】また、被測定物に交流電流が供給される一
対の電極を取付け、一対の電極により被測定物に流され
る電流に誘起される磁場との間で被測定物に加振力を発
生させる磁石を備えたので、被測定物との相対質量が略
零となる状態で被測定物を加振させることが可能にな
る。
Further, a pair of electrodes to which an alternating current is supplied is attached to the object to be measured, and an exciting force is generated on the object to be measured between the pair of electrodes and a magnetic field induced by the current applied to the object to be measured. Since the magnet is provided, the object to be measured can be vibrated while the relative mass with the object to be measured is substantially zero.

【0049】また、交流電流により被測定物に渦電流を
発生させるコイルを設け、コイルにより被測定物に発生
する渦電流に誘起される磁場との間で被測定物に加振力
を発生させる磁石を備えたので、非接触で被測定物を加
振させることが可能になる。
A coil for generating an eddy current in the object to be measured by an alternating current is provided, and an exciting force is generated in the object to be measured with the magnetic field induced by the eddy current generated in the object to be measured by the coil. Since the magnet is provided, the object to be measured can be vibrated in a non-contact manner.

【0050】被測定物に交流電流が供給される非接触電
極を設け、非接触電極により被測定物に流される電流に
誘起される磁場との間で被測定物に加振力を発生させる
磁石を備えたので、非接触で被測定物を加振させること
が可能になる。
A non-contact electrode for supplying an alternating current to the object to be measured is provided, and a magnet for generating an exciting force on the object to be measured with the magnetic field induced by the current applied to the object to be measured by the non-contact electrode. Since it is provided, it becomes possible to vibrate the object to be measured without contact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態例に係る加振装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of a vibration device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態例に係る加振装置の概略
構成図。
FIG. 2 is a schematic configuration diagram of a vibrating device according to a second embodiment of the present invention.

【図3】本発明の第3実施形態例に係る加振装置の概略
構成図。
FIG. 3 is a schematic configuration diagram of a vibrating device according to a third embodiment of the present invention.

【図4】本発明の第4実施形態例に係る加振装置の概略
構成図。
FIG. 4 is a schematic configuration diagram of a vibrating device according to a fourth embodiment of the present invention.

【図5】本発明の第5実施形態例に係る加振装置の概略
構成図。
FIG. 5 is a schematic configuration diagram of a vibrating device according to a fifth embodiment of the present invention.

【図6】本発明の第6実施形態例に係る加振装置の概略
構成図。
FIG. 6 is a schematic configuration diagram of a vibrating device according to a sixth embodiment of the present invention.

【図7】本発明の第7実施形態例に係る加振装置の概略
構成図。
FIG. 7 is a schematic configuration diagram of a vibrating device according to a seventh embodiment of the present invention.

【図8】本発明の第8実施形態例に係る加振装置の概略
構成図。
FIG. 8 is a schematic configuration diagram of a vibrating device according to an eighth embodiment of the present invention.

【図9】本発明の第9実施形態例に係る加振装置の概略
構成図。
FIG. 9 is a schematic configuration diagram of a vibrating device according to a ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固定治具 2 タービン翼 3 電磁石 4 増幅器 5 発振器 6 取付部 7 ロードセル 8 コントローラ 9 ギャップセンサ 10 歪ゲージ 11 エアサイレン 12 圧力計 13a,13b 電極 14 交流電源 15 永久磁石 16 コイル 17 永久磁石 18 電極 19 交流電源 1 Fixing jig 2 turbine blades 3 electromagnet 4 amplifier 5 oscillators 6 Mounting part 7 load cell 8 controller 9 Gap sensor 10 strain gauge 11 air siren 12 pressure gauge 13a, 13b electrodes 14 AC power supply 15 Permanent magnet 16 coils 17 permanent magnet 18 electrodes 19 AC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 勝也 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 飯塚 信也 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuya Yamashita             2-1-1 Niihama, Arai-cho, Takasago City, Hyogo Prefecture             Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Shinya Iizuka             2-1-1 Niihama, Arai-cho, Takasago City, Hyogo Prefecture             Takasago Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 被測定物との相対質量が略零となる状態
で被測定物を加振させる加振手段を備えたことを特徴と
する加振装置。
1. A vibrating device comprising a vibrating means for vibrating an object to be measured in a state where a relative mass with the object to be measured is substantially zero.
【請求項2】 請求項1において、加振手段は、電磁力
または磁力により被測定物を加振させる手段であること
を特徴とする加振装置。
2. The vibrating device according to claim 1, wherein the vibrating means is a means for vibrating the object to be measured by electromagnetic force or magnetic force.
【請求項3】 請求項2において、加振手段は、電磁石
に電力を供給することで磁力により被測定物を加振させ
る手段であることを特徴とする加振装置。
3. The vibrating device according to claim 2, wherein the vibrating means is means for vibrating the object to be measured with a magnetic force by supplying electric power to an electromagnet.
【請求項4】 請求項3において、電磁石の取付部にロ
ードセルを設け、ロードセルの信号に応じて電磁石への
供給電力を制御する制御手段を設けたことを特徴とする
加振装置。
4. The vibrating device according to claim 3, wherein a load cell is provided in the mounting portion of the electromagnet, and control means is provided for controlling the electric power supplied to the electromagnet according to a signal of the load cell.
【請求項5】 請求項3において、被測定物に対する隙
間を検出するギャップセンサを設け、ギャップセンサの
信号に応じて電磁石への供給電力を制御する制御手段を
設けたことを特徴とする加振装置。
5. The vibration generator according to claim 3, further comprising a gap sensor for detecting a gap with respect to the object to be measured, and a control means for controlling electric power supplied to the electromagnet according to a signal from the gap sensor. apparatus.
【請求項6】 請求項3において、被測定物に歪ゲージ
を取付け、歪ゲージの信号に応じて電磁石への供給電力
を制御する制御手段を設けたことを特徴とする加振装
置。
6. The vibrating device according to claim 3, wherein a strain gauge is attached to the object to be measured, and control means for controlling the electric power supplied to the electromagnet according to the signal of the strain gauge is provided.
【請求項7】 請求項3において、複数の電磁石を備え
たことを特徴とする加振装置。
7. The vibrating device according to claim 3, comprising a plurality of electromagnets.
【請求項8】 請求項3において、空気圧により被測定
物を加振させる空気加振手段を更に備えたことを特徴と
する加振装置。
8. The vibrating device according to claim 3, further comprising air vibrating means for vibrating the object to be measured by air pressure.
【請求項9】 請求項2において、加振手段は、被測定
物に流される電流により発生する電磁力により被測定物
を加振させる手段であることを特徴とする加振装置。
9. The vibrating device according to claim 2, wherein the vibrating means is a means for vibrating the object to be measured by an electromagnetic force generated by an electric current flowing through the object to be measured.
【請求項10】 請求項9において、被測定物に交流電
流が供給される一対の電極を取付け、一対の電極により
被測定物に流される電流に誘起される磁場との間で被測
定物に加振力を発生させる磁石を備えたことを特徴とす
る加振装置。
10. The object to be measured according to claim 9, wherein a pair of electrodes to which an alternating current is supplied is attached to the object to be measured, and a magnetic field induced by a current applied to the object to be measured by the pair of electrodes is applied to the object to be measured. A vibrating device comprising a magnet for generating a vibrating force.
【請求項11】 請求項9において、交流電流により被
測定物に渦電流を発生させるコイルを設け、コイルによ
り被測定物に発生する渦電流に誘起される磁場との間で
被測定物に加振力を発生させる磁石を備えたことを特徴
とする加振装置。
11. A coil for generating an eddy current in an object to be measured by an alternating current according to claim 9, wherein the coil is applied to the object to be measured with a magnetic field induced by the eddy current generated in the object to be measured by the coil. A vibrating device comprising a magnet for generating a vibrating force.
【請求項12】 請求項9において、被測定物に交流電
流が供給される非接触電極を設け、非接触電極により被
測定物に流される電流に誘起される磁場との間で被測定
物に加振力を発生させる磁石を備えたことを特徴とする
加振装置。
12. The non-contact electrode to which an alternating current is supplied to the object to be measured according to claim 9, and the object to be measured between the object and the magnetic field induced by the current applied to the object to be measured by the non-contact electrode. A vibrating device comprising a magnet for generating a vibrating force.
JP2001290615A 2001-09-25 2001-09-25 Excitation device Withdrawn JP2003098031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290615A JP2003098031A (en) 2001-09-25 2001-09-25 Excitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290615A JP2003098031A (en) 2001-09-25 2001-09-25 Excitation device

Publications (1)

Publication Number Publication Date
JP2003098031A true JP2003098031A (en) 2003-04-03

Family

ID=19112892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290615A Withdrawn JP2003098031A (en) 2001-09-25 2001-09-25 Excitation device

Country Status (1)

Country Link
JP (1) JP2003098031A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710551A1 (en) * 2005-03-18 2006-10-11 Siemens Aktiengesellschaft Method of measuring the vibration characteristics of a turbine test blade
CN106248331A (en) * 2016-08-30 2016-12-21 中国人民解放军空军工程大学航空航天工程学院 Vibration amplifier and the test method of simulation blade high-order nonlinear vibrating fatigue
CN108519225A (en) * 2018-03-19 2018-09-11 江苏大学 A kind of detection device and method of blade of aviation engine high-temperature vibrating fatigue properties
JP2018163009A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Electromagnetic vibration exciter
CN109855829A (en) * 2018-12-25 2019-06-07 大连海事大学 Dynamic power machine blade vibration characteristic research experiment device
JP2020143977A (en) * 2019-03-06 2020-09-10 三菱日立パワーシステムズ株式会社 Vibration system, method for vibration, and program
CN112414657A (en) * 2020-11-23 2021-02-26 华能国际电力股份有限公司 Electromagnetic excitation device for gas turbine compressor blade vibration measurement
CN112781812A (en) * 2019-11-01 2021-05-11 上海羿弓氢能科技有限公司 Fatigue testing method for metal diaphragm of diaphragm compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710551A1 (en) * 2005-03-18 2006-10-11 Siemens Aktiengesellschaft Method of measuring the vibration characteristics of a turbine test blade
CN106248331A (en) * 2016-08-30 2016-12-21 中国人民解放军空军工程大学航空航天工程学院 Vibration amplifier and the test method of simulation blade high-order nonlinear vibrating fatigue
JP2018163009A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Electromagnetic vibration exciter
CN108519225A (en) * 2018-03-19 2018-09-11 江苏大学 A kind of detection device and method of blade of aviation engine high-temperature vibrating fatigue properties
CN109855829A (en) * 2018-12-25 2019-06-07 大连海事大学 Dynamic power machine blade vibration characteristic research experiment device
JP2020143977A (en) * 2019-03-06 2020-09-10 三菱日立パワーシステムズ株式会社 Vibration system, method for vibration, and program
JP7089489B2 (en) 2019-03-06 2022-06-22 三菱重工業株式会社 Vibration system, vibration method, and program
CN112781812A (en) * 2019-11-01 2021-05-11 上海羿弓氢能科技有限公司 Fatigue testing method for metal diaphragm of diaphragm compressor
CN112414657A (en) * 2020-11-23 2021-02-26 华能国际电力股份有限公司 Electromagnetic excitation device for gas turbine compressor blade vibration measurement

Similar Documents

Publication Publication Date Title
JP2997632B2 (en) Electromagnetic rotary vibration device for rotary body and vibration control device for rotary body using the same
US6668627B2 (en) Sensor apparatus with magnetically deflected cantilever
US10571361B2 (en) Inducing and monitoring a vibratory response in a component
US6286361B1 (en) Method and apparatus for remotely detecting pressure, force, temperature, density, vibration, viscosity and speed of sound in a fluid
US20120102701A1 (en) Method for reducing vibration amplitudes
Firrone et al. An electromagnetic system for the non-contact excitation of bladed disks
JP2014102117A (en) Dynamic characteristic measurement apparatus for centrifugal rotary machine, and centrifugal rotary machine
US20070113684A1 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
KR101224860B1 (en) Dynamic characteristics measuring apparatus of bearing, dynamic characteristics analysing system and dynamic characteristics analysing method of bearing
JPH01106902A (en) Method and device for testing rotary vane of turbine
JP2003098031A (en) Excitation device
US11105707B2 (en) Inducing and monitoring a vibratory response in a component
US5612495A (en) Non-destructive examination device
KR20110016666A (en) Non-contact type transducer for rod member having multi-loop coil
Bertini et al. One exciter per sector test bench for bladed wheels harmonic response analysis
Pan et al. A novel small motor measurement system based on ultrasonic bearings
JPH08297050A (en) Method for evaluating vibration of rotating body in static field
JP7089489B2 (en) Vibration system, vibration method, and program
Bertini et al. Design and optimization of a compact high-frequency electromagnetic shaker
Wang et al. An energy harvesting type ultrasonic motor
CN115169112A (en) Electromagnetic linear-angular vibration exciter and kinetic parameter identification method thereof
Maierhofer et al. Using the Dynamics of Active Magnetic Bearings to perform an experimental Modal Analysis of a Rotor System
JP2016017831A (en) Method of measuring non-steady hydrodynamic force acting on cascade and vibrator used for method of measuring non-steady hydrodynamic force acting on cascade
JP2004117323A (en) Vibration testing device and mode analysis method using the same
JP3282303B2 (en) Exciter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202