JP2007029918A - NOx REDUCTION METHOD FOR EXHAUST GAS OF PLASMA TYPE ASH MELTING FURNACE - Google Patents

NOx REDUCTION METHOD FOR EXHAUST GAS OF PLASMA TYPE ASH MELTING FURNACE Download PDF

Info

Publication number
JP2007029918A
JP2007029918A JP2005220324A JP2005220324A JP2007029918A JP 2007029918 A JP2007029918 A JP 2007029918A JP 2005220324 A JP2005220324 A JP 2005220324A JP 2005220324 A JP2005220324 A JP 2005220324A JP 2007029918 A JP2007029918 A JP 2007029918A
Authority
JP
Japan
Prior art keywords
exhaust gas
reducing agent
catalytic
concentration
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005220324A
Other languages
Japanese (ja)
Other versions
JP4806991B2 (en
Inventor
Yoshitoshi Sekiguchi
善利 関口
Toshio Hama
利雄 濱
Yasuhiro Kusano
康弘 草野
Kazunori Nakamura
和範 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005220324A priority Critical patent/JP4806991B2/en
Publication of JP2007029918A publication Critical patent/JP2007029918A/en
Application granted granted Critical
Publication of JP4806991B2 publication Critical patent/JP4806991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To purify a NO<SB>x</SB>-containing exhaust gas discharged out of a non-transfer type plasma melting furnace by a common combustion gas treatment apparatus by reducing the purification load on the exhaust gas treatment apparatus by decreasing the NO<SB>x</SB>concentration before the exhaust gas is introduced into the exhaust gas treatment apparatus. <P>SOLUTION: In the case a NO<SB>x</SB>-containing exhaust gas discharged out of a non-transfer type plasma melting furnace is subjected to non-catalytic reduction treatment for nitrogen oxide removal, the method for decreasing the high NO<SB>x</SB>concentration in the exhaust gas discharged out of the non-transfer type plasma melting furnace involves steps of diluting a reducing agent with a dilution medium; adding the diluted reducing agent to the exhaust gas; and accordingly controlling the reducing agent concentration in the non-catalytic reaction zone or a non-catalytic reactor within a combusible range of the reducing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ノントランスファ方式のプラズマトーチを加熱源に用いた灰溶融炉から排出されるガス中の高濃度NOxを、還元剤としてアンモニアを用いて選択的に還元し、後流に設置する排ガス処理システムヘの浄化負荷を低減することを企図したものである。   The present invention selectively removes high concentration NOx in a gas discharged from an ash melting furnace using a non-transfer type plasma torch as a heating source using ammonia as a reducing agent and installs it in the downstream. It is intended to reduce the purification load on the processing system.

一般に、ノントランスファ方式のプラズマトーチの作動ガスには空気が用いられる。プラズマトーチ内では、作動ガスである空気が3000℃を超える高温まで昇温されるため、空気中の窒素が酸素により酸化され、30000ppmを越える高濃度のNOxが生成される。この高濃度NOxを分解するために高度な排ガス処理技術が求められる。そのため、湿式の排ガス処理や、高濃度硝酸系窒素を処理できる排水処理装置や、多量の脱硝触媒を用いなくてはならなかった。
特開平8−215536号公報(ごみ焼却炉の舞敢課税硝) 特開昭52−39834号公報(流動床炉の流動床上のフリーボード部に還元剤としてアンモニアガスを注入(排ガス中に0.1%以下) 特開平7−39720号公報(アンモニアの(3) か反応によるNOx、CO生成抑制)
In general, air is used as a working gas for a non-transfer type plasma torch. In the plasma torch, since the working gas air is heated to a high temperature exceeding 3000 ° C., nitrogen in the air is oxidized by oxygen, and high concentration NOx exceeding 30000 ppm is generated. In order to decompose this high concentration NOx, advanced exhaust gas treatment technology is required. Therefore, wet exhaust gas treatment, wastewater treatment equipment capable of treating high-concentration nitric acid-based nitrogen, and a large amount of denitration catalyst have to be used.
Japanese Patent Application Laid-Open No. 8-215536 (Trash glass for waste incinerator) JP 52-39834 A (injecting ammonia gas as a reducing agent into the free board portion on the fluidized bed of the fluidized bed furnace (0.1% or less in the exhaust gas) JP 7-39720 A (suppression of NOx and CO production by ammonia (3) reaction)

本発明は、上記の問題点に鑑み、ノントランスファ方式のプラズマ溶融炉から排出されるNOx含有排ガスを排ガス処理装置へ導入する前にNOx濃度を低減しておくことで、排ガス処理装置への浄化負荷を低減させ、一般的な燃焼排ガス処理装置にて上記排ガスを浄化するものである。   In view of the above problems, the present invention reduces the NOx concentration before introducing NOx-containing exhaust gas discharged from a non-transfer type plasma melting furnace into the exhaust gas treatment device, thereby purifying the exhaust gas treatment device. The load is reduced and the exhaust gas is purified by a general combustion exhaust gas treatment device.

請求項1による発明は、
ノントランスファ方式のプラズマ溶融炉から排出されるNOx含有排ガスを無触媒還元脱硝処理に付すに当たり、還元剤を希釈媒体にて希釈し、得られた希釈還元剤を排ガスに添加し、無触媒反応ゾーンまたは無触媒反応器内における還元剤濃度を還元剤の可燃範囲以下にすることを特徴とする、ノントランスファ方式のプラズマ溶融炉排ガスの高濃度NOx低減方法である。
The invention according to claim 1
When the NOx-containing exhaust gas discharged from the non-transfer type plasma melting furnace is subjected to non-catalytic reduction and denitration treatment, the reducing agent is diluted with a diluent medium, and the resulting diluted reducing agent is added to the exhaust gas to provide a non-catalytic reaction zone. Alternatively, the present invention is a method for reducing the high concentration NOx of non-transfer type plasma melting furnace exhaust gas, characterized in that the reducing agent concentration in the non-catalyst reactor is set below the flammable range of the reducing agent.

請求項2による発明は、
無触媒反応ゾーンまたは無触媒反応器の前流において排ガスに冷却用ガスを投入して無触媒反応ゾーンまたは無触媒反応器内の温度をコントロールし、および/または、無触媒反応ゾーンまたは無触媒反応器内において排ガスに希釈還元剤を添加することで無触媒反応ゾーンまたは無触媒反応器内の温度をコントロールする、請求項1記載の方法である。
The invention according to claim 2
Control the temperature in the non-catalytic reaction zone or non-catalytic reactor by introducing a cooling gas into the exhaust gas in the upstream of the non-catalytic reaction zone or non-catalytic reactor, and / or the non-catalytic reaction zone or non-catalytic reaction The method according to claim 1, wherein the temperature in the non-catalytic reaction zone or the non-catalytic reactor is controlled by adding a diluted reducing agent to the exhaust gas in the reactor.

請求項3による発明は、
無触媒反応ゾーンまたは無触媒反応器内における排ガス温度が800〜900℃である請求項1記載の方法である。
The invention according to claim 3
The method according to claim 1, wherein the exhaust gas temperature in the non-catalytic reaction zone or the non-catalytic reactor is 800 to 900 ° C.

請求項4による発明は、
希釈媒体が空気、水蒸気または不活性ガスである請求項1記載の方法である。
The invention according to claim 4
The method of claim 1, wherein the diluent medium is air, water vapor or an inert gas.

請求項5による発明は、
処理前のNOx含有排ガス中の酸素濃度が15〜30vol%である請求項1記載の方法である。
The invention according to claim 5
The method according to claim 1, wherein the oxygen concentration in the NOx-containing exhaust gas before treatment is 15 to 30 vol%.

請求項6による発明は、
処理前のNOx含有排ガス中のNOx濃度が10000〜30000ppmである請求項1記載の方法である。
The invention according to claim 6
The method according to claim 1, wherein the NOx concentration in the NOx-containing exhaust gas before treatment is 10,000 to 30,000 ppm.

請求項7による発明は、
還元剤がアンモニアであり、希釈還元剤中の還元剤濃度が1〜25vol%であり、および/または、無触媒反応ゾーンまたは無触媒反応器内における平均還元剤が0.4〜10vol%である請求項1記載の方法である。
The invention according to claim 7
The reducing agent is ammonia, the reducing agent concentration in the diluted reducing agent is 1 to 25 vol%, and / or the average reducing agent in the noncatalytic reaction zone or the noncatalytic reactor is 0.4 to 10 vol%. The method of claim 1.

請求項8による発明は、
還元剤が尿素であり、尿素の分解で生じるアンモニアの希釈還元剤中濃度が1〜25vol%であり、および/または、無触媒反応ゾーンまたは無触媒反応器内における平均還元剤が0.4〜10vol%である請求項1記載の方法である。
The invention according to claim 8 provides:
The reducing agent is urea, the concentration of ammonia produced by decomposition of urea is 1 to 25 vol%, and / or the average reducing agent in the non-catalytic reaction zone or the non-catalytic reactor is 0.4 to The method according to claim 1, which is 10 vol%.

本発明方法によれば、希釈還元剤を用いることで、ノントランスファ方式のプラズマトーチを加熱源に用いた灰溶融炉から排出されるガス中の高濃度NOxを高脱硝率で除去することができ、これにより後流に設置する排ガス処理システムヘの浄化負荷を低減することができる。   According to the method of the present invention, by using a dilute reducing agent, it is possible to remove high-concentration NOx in gas discharged from an ash melting furnace using a non-transfer type plasma torch as a heating source with a high denitration rate. Thus, the purification load on the exhaust gas treatment system installed downstream can be reduced.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
空気を作動ガスに用いるノントランスフア式プラズマトーチからは、30000ppmを越えるNOxを含む高温の空気が排出される。この排ガスを3秒程度滞留させることができる無触媒脱硝反応器を設け、排ガスを反応器へ流入する前に空気希釈することで排ガス温度を800〜900℃の範囲で調整し、反応器入ロから希釈していないアンモニアと、空気にて約10倍に空気希釈したアンモニアを注入し、反応器出口NOx濃度を計測する試験を行った。この結果、好条件では、99%を超える脱硝効果を得た。この結果を図1に示す。
Example 1
High-temperature air containing NOx exceeding 30000 ppm is discharged from a non-transfer type plasma torch that uses air as a working gas. A non-catalytic denitration reactor capable of retaining this exhaust gas for about 3 seconds is provided, and the exhaust gas temperature is adjusted in the range of 800 to 900 ° C. by diluting the exhaust gas before flowing into the reactor. The test was performed by injecting undiluted ammonia and air diluted about 10 times with air and measuring the NOx concentration at the outlet of the reactor. As a result, under favorable conditions, a denitration effect exceeding 99% was obtained. The result is shown in FIG.

この試験結果より、下記のことが判明した。   From the test results, the following was found.

○無触媒脱硝を高効率に進めるためには、アンモニアの可燃濃度範囲を下回る濃度に希釈する必要がある。 ○ In order to promote non-catalytic denitration with high efficiency, it is necessary to dilute to a concentration below the flammable concentration range of ammonia.

○反応時のガス温度が低いと、脱硝反応が進みにくい。 ○ If the gas temperature during the reaction is low, the denitration reaction is difficult to proceed.

○反応時のガス温度が高いと、アンモニアの可燃範囲が広がり、燃焼反応が進むため、脱硝反応が進みにくい。 ○ If the gas temperature during the reaction is high, the flammable range of ammonia is expanded and the combustion reaction proceeds, so the denitration reaction is difficult to proceed.

○ガス温度が高い場合、アンモニアの燃焼反応が進み、未反応残留アンモニアのリークがなくなる。 ○ When the gas temperature is high, the combustion reaction of ammonia proceeds and there is no leakage of unreacted residual ammonia.

○空気希釈アンモニアを高速で崖入し、撹拌が重要である。 ○ Stirring is important because the air-diluted ammonia enters the cliff at high speed.

つぎに、本発明による、ノントランスファ方式のプラズマ溶融炉排ガスのNOx低減方法を、従来技術と比較して示す。   Next, a method for reducing NOx of the non-transfer type plasma melting furnace exhaust gas according to the present invention will be described in comparison with the prior art.

本発明方法および従来法における脱硝性能データと性能比較データを図1〜図3に示す。なお、それぞれのテスト条件は表lの通りである。   Denitration performance data and performance comparison data in the method of the present invention and the conventional method are shown in FIGS. Each test condition is as shown in Table 1.

ノントランスファ方式のプラズマ溶融炉を用いる選択的無触媒還元では、従来法に比べて、100℃程度低い温度で高い脱硝性能が得られる。その理由として、排ガス中のNOx濃度の違いが考えられる。ノントランスファ方式のプラズマ溶融法では10000〜30000ppmのNOxが発生する。これに比べてボイラー排ガスやごみ焼却排ガスではNOx濃度は100〜200ppmであり、当然選択的無触媒還元法のために投入するNH も多く必要で、NOxとNH の接触効率が高くなることが考えられる。

Figure 2007029918
In selective non-catalytic reduction using a non-transfer type plasma melting furnace, high denitration performance can be obtained at a temperature lower by about 100 ° C. than in the conventional method. The reason is considered to be a difference in NOx concentration in the exhaust gas. In the non-transfer type plasma melting method, 10,000 to 30,000 ppm of NOx is generated. Compared to this, boiler exhaust gas and waste incineration exhaust gas have a NOx concentration of 100 to 200 ppm, naturally needing more NH 3 to be added for the selective non-catalytic reduction method, and the contact efficiency between NOx and NH 3 is increased. Can be considered.
Figure 2007029918

ボイラー排ガスやごみ焼却排ガスにおいて、従来行われていた選択的無触媒還元法は、そのほとんどが焼却炉内へのアンモニアや尿素の吹込みからなり、炉内温度800〜900℃程度でアンモニア比1〜1.5で脱硝率は40〜50%であった。脱硝率を高めようとすると高アンモニア比での反応が必要になり、リークアンモニアが急激に増加する。特に炉内吹込みの場合には、偏流や高温火炎等の影響で高い脱硝性能が得られない。   In the case of boiler exhaust gas and waste incineration exhaust gas, the selective non-catalytic reduction methods that have been conventionally carried out consist mainly of injecting ammonia or urea into the incinerator, with an in-furnace temperature of about 800 to 900 ° C. and an ammonia ratio of 1 The NOx removal rate was 40 to 50% at ˜1.5. In order to increase the denitration rate, a reaction at a high ammonia ratio is required, and the leaked ammonia increases rapidly. In particular, in the case of in-furnace blowing, high denitration performance cannot be obtained due to the influence of drift or high-temperature flame.

ノントランスファ方式のプラズマ灰溶融炉排ガス処理では、炉内温度が1400〜1500℃程度で、炉内吹込みによる選択的無触媒還元は不可能である(アンモニアの燃焼が早くて脱硝効率が低い)。幸い、ノントランスファ方式プラズマ灰溶融炉排ガス処理では排ガス量がボイラーやごみ焼却の排ガス量に比べて少ないことから、脱硝反応室を炉と分離した形で設け、脱硝反応室前流で空気吹込みによる排ガス温度調整を行うとともに、還元剤であるアンモニアを吹込み、これを空気で希釈し、NOxとアンモニアの混合性を高めた。   In the non-transfer type plasma ash melting furnace exhaust gas treatment, the furnace temperature is about 1400-1500 ° C., and selective non-catalytic reduction by in-furnace blowing is impossible (ammonia combustion is fast and denitration efficiency is low) . Fortunately, in the non-transfer type plasma ash melting furnace exhaust gas treatment, the amount of exhaust gas is small compared to the amount of exhaust gas from boilers and waste incineration, so a denitration reaction chamber is separated from the furnace, and air is blown in the upstream of the denitration reaction chamber The temperature of the exhaust gas was adjusted, and ammonia as a reducing agent was blown in, and this was diluted with air to improve the mixing ability of NOx and ammonia.

ボイラー炉やごみ焼却炉では炉内幅および高さが数mもあるので混合性を高めるのは困難であるが、ノントランスファー式プラズマ灰溶融炉排ガス処理装置では、脱硝反応室は炉内と分離しているので排ガス自身の偏流も少なく、脱硝反応室の幅および高さは1m未満であり、希釈空気による混合性がよい。また、ノントランスファー式プラズマ灰溶融炉排ガス処理の場合には、NOx濃度が高い分、投入するアンモニア量も多く、このアンモニアが脱硝反応前に燃焼・酸化されると計算上200〜300℃程度の排ガス温度の上昇を招き、反応操作のコントロールができない。投入アンモニアを希釈して燃焼・酸化を抑
え、脱硝反応を優先させてやることにより、発熱反応が緩やかになり、反応操作のコントロール可能になる。
It is difficult to improve the mixing properties of boiler furnaces and waste incinerators because the furnace width and height are several meters, but in non-transfer type plasma ash melting furnace exhaust gas treatment equipment, the denitration reaction chamber is separated from the inside of the furnace. Therefore, the drift of the exhaust gas itself is small, the width and height of the denitration reaction chamber are less than 1 m, and the mixing property by dilution air is good. Further, in the case of non-transfer type plasma ash melting furnace exhaust gas treatment, the amount of ammonia to be added is large due to the high NOx concentration. If this ammonia is burned and oxidized before the denitration reaction, it is calculated to be about 200 to 300 ° C. The exhaust gas temperature rises and the reaction operation cannot be controlled. By diluting the input ammonia to suppress combustion / oxidation and giving priority to the denitration reaction, the exothermic reaction becomes moderate and the reaction operation can be controlled.

実施例2
空気希釈されたアンモニアを還元剤として用い、無触媒反応ゾーン(反応器)内におけるアンモニア濃度(空気希釈)10vol%、モル比(NH /NOx)0.9〜1.0、反応温度850℃、反応時間約1.5秒で、無触媒脱硝反応を行った。この場合の還元剤濃度と脱硝率の関係を図4のグラフに示す。
Example 2
Using ammonia diluted in air as a reducing agent, ammonia concentration (air dilution) in a non-catalytic reaction zone (reactor) 10 vol%, molar ratio (NH / NOx) A non-catalytic denitration reaction was performed at 0.9 to 1.0, a reaction temperature of 850 ° C., and a reaction time of about 1.5 seconds. The relationship between the reducing agent concentration and the denitration rate in this case is shown in the graph of FIG.

実施例3
還元剤として尿素を用い、尿素の分解により生じたアンモニアの、無触媒反応ゾーン(反応器)内における濃度(空気希釈)10vol%、モル比(NH /NOx)0.9〜1.0、反応温度850℃、反応時間約1.5秒で、無触媒脱硝反応を行った。この場合の還元剤濃度と脱硝率の関係を図4のグラフに示す。
Example 3
Using urea as a reducing agent, the concentration of ammonia produced by the decomposition of urea in the non-catalytic reaction zone (reactor) (air dilution) 10 vol%, molar ratio (NH / NOx) A non-catalytic denitration reaction was performed at 0.9 to 1.0, a reaction temperature of 850 ° C., and a reaction time of about 1.5 seconds. The relationship between the reducing agent concentration and the denitration rate in this case is shown in the graph of FIG.

実施例4
空気希釈されたアンモニア(濃度:8vol%)を還元剤として用い、反応温度850℃で無触媒脱硝反応を行った。この場合の無触媒反応ゾーン(反応器)内におけるNOx含有排ガス滞留時間と脱硝率の関係を図5のグラフに示す。
Example 4
Non-catalytic denitration reaction was performed at a reaction temperature of 850 ° C. using ammonia diluted in air (concentration: 8 vol%) as a reducing agent. The relationship between the NOx-containing exhaust gas residence time and the denitration rate in the non-catalytic reaction zone (reactor) in this case is shown in the graph of FIG.

本発明方法によるモル比(NH /NOx)と脱硝率 およびリークアンモニアとの関係を示すグラフである。Molar ratio (NH / NOx) is a graph showing the relationship between NOx removal rate and leaked ammonia. 従来技術によるモル比(NH /NOx)と脱硝率 およびリークアンモニアとの関係を示すグラフである。Molar ratio (NH / NOx) is a graph showing the relationship between NOx removal rate and leaked ammonia. 本発明方法と従来技術の比較を示す、モル比(NH /NOx)と脱硝率 およびリークアンモニアとの関係を示すグラフである。The molar ratio (NH / NOx) is a graph showing the relationship between NOx removal rate and leaked ammonia. 還元剤濃度と脱硝率の関係を示すグラフである。It is a graph which shows the relationship between a reducing agent density | concentration and a denitration rate. 滞留時間と脱硝率の関係を示すグラフである。It is a graph which shows the relationship between residence time and a denitration rate.

Claims (8)

ノントランスファ方式のプラズマ溶融炉から排出されるNOx含有排ガスを無触媒還元脱硝処理に付すに当たり、還元剤を希釈媒体にて希釈し、得られた希釈還元剤を排ガスに添加し、無触媒反応ゾーンまたは無触媒反応器内における還元剤濃度を還元剤の可燃範囲以下にすることを特徴とする、ノントランスファ方式のプラズマ溶融炉排ガスの高濃度NOx低減方法。   In subjecting NOx-containing exhaust gas discharged from a non-transfer type plasma melting furnace to non-catalytic reduction denitration treatment, the reducing agent is diluted with a diluent medium, and the resulting diluted reducing agent is added to the exhaust gas to provide a non-catalytic reaction zone. Alternatively, a non-transfer type plasma melting furnace exhaust gas high-concentration NOx reduction method characterized in that the reducing agent concentration in the non-catalytic reactor is set to be equal to or less than the flammable range of the reducing agent. 無触媒反応ゾーンまたは無触媒反応器の前流において排ガスに冷却用ガスを投入して無触媒反応ゾーンまたは無触媒反応器内の温度をコントロールし、および/または、無触媒反応ゾーンまたは無触媒反応器内において排ガスに希釈還元剤を添加することで無触媒反応ゾーンまたは無触媒反応器内の温度をコントロールする、請求項1記載の方法。   Control the temperature in the non-catalytic reaction zone or non-catalytic reactor by introducing a cooling gas into the exhaust gas in the upstream of the non-catalytic reaction zone or non-catalytic reactor, and / or the non-catalytic reaction zone or non-catalytic reaction The method according to claim 1, wherein the temperature in the non-catalytic reaction zone or the non-catalytic reactor is controlled by adding a dilute reducing agent to the exhaust gas in the reactor. 無触媒反応ゾーンまたは無触媒反応器内における排ガス温度が800〜900℃である請求項1記載の方法。   The process according to claim 1, wherein the exhaust gas temperature in the non-catalytic reaction zone or the non-catalytic reactor is 800 to 900 ° C. 希釈媒体が空気、水蒸気または不活性ガスである請求項1記載の方法。   The method of claim 1, wherein the dilution medium is air, water vapor or an inert gas. 処理前のNOx含有排ガス中の酸素濃度が15〜30vol%である請求項1記載の方法。   The method according to claim 1, wherein the oxygen concentration in the NOx-containing exhaust gas before treatment is 15 to 30 vol%. 処理前のNOx含有排ガス中のNOx濃度が10000〜30000ppmである請求項1記載の方法。   The method according to claim 1, wherein the NOx concentration in the exhaust gas containing NOx before treatment is 10,000 to 30,000 ppm. 還元剤がアンモニアであり、希釈還元剤中のアンモニア濃度が1〜25vol%であり、および/または、無触媒反応ゾーンまたは無触媒反応器内における平均還元剤が0.4〜10vol%である請求項1記載の方法。   The reducing agent is ammonia, the ammonia concentration in the diluted reducing agent is 1 to 25 vol%, and / or the average reducing agent in the noncatalytic reaction zone or the noncatalytic reactor is 0.4 to 10 vol% Item 2. The method according to Item 1. 還元剤が尿素であり、尿素の分解で生じるアンモニアの希釈還元剤中濃度が1〜25vol%であり、および/または、無触媒反応ゾーンまたは無触媒反応器内における平均還元剤が0.4〜10vol%である請求項1記載の方法。

The reducing agent is urea, the concentration of ammonia produced by decomposition of urea is 1 to 25 vol%, and / or the average reducing agent in the non-catalytic reaction zone or the non-catalytic reactor is 0.4 to The method according to claim 1, which is 10 vol%.

JP2005220324A 2005-07-29 2005-07-29 NOx reduction method for exhaust gas from plasma ash melting furnace Expired - Fee Related JP4806991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220324A JP4806991B2 (en) 2005-07-29 2005-07-29 NOx reduction method for exhaust gas from plasma ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220324A JP4806991B2 (en) 2005-07-29 2005-07-29 NOx reduction method for exhaust gas from plasma ash melting furnace

Publications (2)

Publication Number Publication Date
JP2007029918A true JP2007029918A (en) 2007-02-08
JP4806991B2 JP4806991B2 (en) 2011-11-02

Family

ID=37789814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220324A Expired - Fee Related JP4806991B2 (en) 2005-07-29 2005-07-29 NOx reduction method for exhaust gas from plasma ash melting furnace

Country Status (1)

Country Link
JP (1) JP4806991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702743A (en) * 2011-04-27 2014-04-02 西门子公司 Method for reducing the emission of nitrogen oxides in the exhaust gas of a furnace during the thermal treatment of materials and furnace operated according to said method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211529A (en) * 1985-07-10 1987-01-20 Mitsubishi Heavy Ind Ltd Controlling method for amount of ammonia to be injected for denitration apparatus
JPH0365216A (en) * 1989-08-04 1991-03-20 Nkk Corp Two step diluting apparatus for noncatalytic ammonia denitrification
JPH06317311A (en) * 1993-03-08 1994-11-15 Kansai Electric Power Co Inc:The Nox reduction method for plasma furnace
JPH07127841A (en) * 1993-11-05 1995-05-16 Ebara Corp Treating method of waste gas of melting furnace
JPH0989213A (en) * 1995-09-22 1997-04-04 Hitachi Ltd Non-catalitic denitration device for fluidized bed boiler device
JPH105539A (en) * 1996-06-20 1998-01-13 Sekiyu Sangyo Kasseika Center Gas phase reducing method of nitrogen oxide contained in waste gas
JP2001179050A (en) * 1999-12-24 2001-07-03 Asahi Kasei Corp Method for treating nitrogen oxide by injection of ammonia
JP2002136837A (en) * 2000-11-01 2002-05-14 Taiheiyo Cement Corp Non-catalytic denitration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211529A (en) * 1985-07-10 1987-01-20 Mitsubishi Heavy Ind Ltd Controlling method for amount of ammonia to be injected for denitration apparatus
JPH0365216A (en) * 1989-08-04 1991-03-20 Nkk Corp Two step diluting apparatus for noncatalytic ammonia denitrification
JPH06317311A (en) * 1993-03-08 1994-11-15 Kansai Electric Power Co Inc:The Nox reduction method for plasma furnace
JPH07127841A (en) * 1993-11-05 1995-05-16 Ebara Corp Treating method of waste gas of melting furnace
JPH0989213A (en) * 1995-09-22 1997-04-04 Hitachi Ltd Non-catalitic denitration device for fluidized bed boiler device
JPH105539A (en) * 1996-06-20 1998-01-13 Sekiyu Sangyo Kasseika Center Gas phase reducing method of nitrogen oxide contained in waste gas
JP2001179050A (en) * 1999-12-24 2001-07-03 Asahi Kasei Corp Method for treating nitrogen oxide by injection of ammonia
JP2002136837A (en) * 2000-11-01 2002-05-14 Taiheiyo Cement Corp Non-catalytic denitration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702743A (en) * 2011-04-27 2014-04-02 西门子公司 Method for reducing the emission of nitrogen oxides in the exhaust gas of a furnace during the thermal treatment of materials and furnace operated according to said method

Also Published As

Publication number Publication date
JP4806991B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4512238B2 (en) Method for removing nitrogen oxides from a waste gas stream
JP5068935B2 (en) Method and system for removing NOx and mercury emissions from coal combustion
JP2006023076A (en) Method and system for operating combustion system
JP5459965B2 (en) Method for removing N2O in exhaust gas
AU2014349841B9 (en) Methods for treating waste gas streams from incineration processes by addition of ozone
WO2013065850A1 (en) Method for removing nitrogen oxides
EP3875167A1 (en) Improved nox removal method
JP5640120B1 (en) Simultaneous reduction method of nitrogen oxide and nitrous oxide by multistage reaction in fluidized bed combustion furnace
JP4806991B2 (en) NOx reduction method for exhaust gas from plasma ash melting furnace
RU2760254C2 (en) Method and system for removing solid particles and nitrogenous compounds from flue gas using ceramic filter and scr catalyst
JP2004167475A (en) Method for reducing waste oxide gas emissions
JP4446269B2 (en) Dry simultaneous desulfurization denitration equipment
KR102359124B1 (en) Method and system for removing hazardous compounds from flue gases using fabric filter bags with SCR catalyst
JP4760702B2 (en) Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas
JP2006026525A (en) Exhaust gas treatment system
JPH0975674A (en) Exhaust gas purifying apparatus
JP2003326135A (en) Purification method for exhaust gas and purification device for exhaust gas
EP3049175A2 (en) Methods for treating waste gas streams from incineration processes by addition of ozone
JPH08210618A (en) Incinerating method for solution containing acetonitrile
JP2004141716A (en) Treatment method for making oxidized form nitrogen-containing substance harmless
JP2001179050A (en) Method for treating nitrogen oxide by injection of ammonia
JPH10202062A (en) Method and device for denitrificating and dioxin-removing exhaust gas of incineration furnace
JP4491688B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
JPS6312328A (en) Denitration method
JP2011025123A (en) Exhaust gas treatment method and exhaust gas treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees