JP2007029850A - Electrostatic atomizer apparatus - Google Patents

Electrostatic atomizer apparatus Download PDF

Info

Publication number
JP2007029850A
JP2007029850A JP2005216507A JP2005216507A JP2007029850A JP 2007029850 A JP2007029850 A JP 2007029850A JP 2005216507 A JP2005216507 A JP 2005216507A JP 2005216507 A JP2005216507 A JP 2005216507A JP 2007029850 A JP2007029850 A JP 2007029850A
Authority
JP
Japan
Prior art keywords
discharge electrode
water
electrostatic atomizer
lead member
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216507A
Other languages
Japanese (ja)
Other versions
JP3928649B2 (en
Inventor
Tomoharu Watanabe
智治 渡邉
Koichi Yoshioka
浩一 吉岡
Junji Imai
順二 今井
Kazuhisa Sadamatsu
和久 貞松
Jun Aida
純 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005216507A priority Critical patent/JP3928649B2/en
Publication of JP2007029850A publication Critical patent/JP2007029850A/en
Application granted granted Critical
Publication of JP3928649B2 publication Critical patent/JP3928649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomizer which enables quickly generating a charged microparticle water while a trouble of water supplying and adhesion removal is not required and also securing of insulation of a lead member and prevention of dew condensation can be achieved without enlarging the apparatus while intrusion of dew-condensed water of a discharge electrode in the side of a Peltier unit is securely prevented. <P>SOLUTION: The electrostatic atomizer generates water derived from moisture in air on the discharge electrode 4 by cooling the discharge electrode 4 with a cooling plate 2 of the Peltier unit 1, wherein the apparatus has a receiving frame body 17 with the shape of a vessel for sealing the cooling plate 2 and a circuit part C between a radiation plate 3 and the receiving frame body 17, and also the lead member 14 for applying a high voltage to the discharge electrode 4 is laid underground the receiving frame body 17. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、静電霧化現象によりナノメータサイズの帯電微粒子水を発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates nanometer-sized charged fine particle water by an electrostatic atomization phenomenon.

静電霧化装置とは、放電極に水を供給するとともに該放電極に高電圧を印加することで、放電極に保持される水を霧化させ、ナノメータサイズで高い電荷を持つ帯電微粒子水を発生させるものである(特許文献1参照)。帯電微粒子水の粒径は3〜数十nm程度であって、人体の角質細胞の大きさである70nmよりも小さな粒径であるため、この帯電微粒子水の暴露により角質層表面の奥までも水分が十分に補給されて、高い保湿効果が得られるようになっている。また、脱臭効果や毛髪の保湿効果等の他の効果も得られるので、多様な商品に備えることで多様な効果が得られるものである。   The electrostatic atomizer is a charged fine particle water having a high charge in the nanometer size by supplying water to the discharge electrode and applying a high voltage to the discharge electrode to atomize the water held in the discharge electrode. (See Patent Document 1). Since the particle size of the charged fine particle water is about 3 to several tens of nm and smaller than 70 nm, which is the size of the horny cells of the human body, the exposure to the charged fine particle water can cause the surface of the stratum corneum to reach the back. Moisture is sufficiently replenished to obtain a high moisturizing effect. Moreover, since other effects, such as a deodorizing effect and the moisturizing effect of hair, are also obtained, various effects are acquired by preparing for various goods.

しかし、上記の特許文献1に示されたような従来の静電霧化装置は、水の供給手段として、水を充填させる水タンクや、この水タンク内の水を毛細管現象により放電極にまで搬送させる水搬送部を備えた構造であり、このために使用者にとっては水タンク内に継続的に水を供給する手間が強いられるという問題や、水タンク内に補給する水が水道水のようなCa,Mg等の不純物を含む水であった場合にはこの不純物が空気中のCOと反応することで放電極にCaCO,MgO等が付着し、この付着物が帯電微粒子水の発生を妨げるという問題があった。 However, the conventional electrostatic atomizer as shown in the above-mentioned Patent Document 1 uses, as a water supply means, a water tank to be filled with water, and the water in this water tank to the discharge electrode by capillary action. It has a structure with a water transport section to be transported, which causes the user to be forced to supply water continuously into the water tank, and the water to be replenished in the water tank is like tap water. In the case of water containing impurities such as Ca and Mg, this impurity reacts with CO 2 in the air, so that CaCO 3 , MgO and the like adhere to the discharge electrode, and this adhering matter generates charged fine particle water. There was a problem of preventing.

そこで、上記問題を解決するために本発明者はまず、水の供給手段として水タンク等の代わりにペルチェユニットを備え、ペルチェユニットに備えてある冷却板に放電極を立設させるとともに、該放電極に高電圧印加用のリード部材を接続させる構成を考えた。上記構成によれば、空気中の水分を基にして放電極に直接水を生成させ、この生成水を放電極への高電圧印加によって素早く霧化させることができる。したがって水補給の手間が不要になるとともに、得られた水にはCa,Mg等の不純物が含まれないことからCaCO,MgO等の析出が防止される。 Therefore, in order to solve the above problem, the present inventor first provided a Peltier unit as a water supply means instead of a water tank or the like, and installed a discharge electrode on a cooling plate provided in the Peltier unit. The structure which connected the lead member for a high voltage application to the electrode was considered. According to the said structure, water can be directly produced | generated to a discharge electrode based on the water | moisture content in air, and this produced water can be rapidly atomized by the high voltage application to a discharge electrode. Therefore, the labor of water replenishment becomes unnecessary, and the obtained water does not contain impurities such as Ca and Mg, so that precipitation of CaCO 3 , MgO and the like is prevented.

ところが、上記構成の静電霧化装置は更に下記の各問題を有していた。まず第1の問題は、放電極を冷却板に立設しているために、放電極で生成された水が冷却板側からペルチェユニット内に侵入する場合があるといった問題である。   However, the electrostatic atomizer having the above-described configuration has the following problems. The first problem is that since the discharge electrode is erected on the cooling plate, water generated by the discharge electrode may enter the Peltier unit from the cooling plate side.

また第2の問題は、放電極に接続されるリード部材が大気中に露出しているために、リード部材の周囲との絶縁性の確保が困難であるとともに、放電極と共に冷却されるリード部材の表面に過剰結露が生じるので余分な冷却エネルギが必要となり、結果的に静電霧化効率が低下するという問題である。上記問題を解決するには、リード部材をゴム等の絶縁体によって被覆する方法も考えられるが、この場合にはリード部材の径がかなり太くなり、装置全体の大型化を招くことから好ましくない。
特許第3260150号公報
The second problem is that the lead member connected to the discharge electrode is exposed to the atmosphere, so that it is difficult to ensure insulation from the periphery of the lead member, and the lead member is cooled together with the discharge electrode. As a result, excessive condensation occurs on the surface of the film, so that extra cooling energy is required, resulting in a decrease in electrostatic atomization efficiency. In order to solve the above problem, a method of covering the lead member with an insulator such as rubber may be considered. However, in this case, the diameter of the lead member becomes considerably large, which leads to an increase in the size of the entire apparatus.
Japanese Patent No. 3260150

本発明は上記問題点に鑑みて発明したものであって、ペルチェユニットの冷却板に放電極を立設した構造にすることで、水補給や付着物除去の手間を不要にするとともに帯電微粒子水を素早く発生させることを可能とし、しかも、放電極の結露水がペルチェユニット内に侵入することを確実に防止するとともに、装置を大型化することなくリード部材の絶縁性確保及び結露防止を達成することのできる静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned problems, and has a structure in which a discharge electrode is erected on the cooling plate of the Peltier unit, thereby eliminating the need for water replenishment and removal of deposits, and charged fine particle water. In addition, it is possible to reliably prevent the dew condensation water from the discharge electrode from entering the Peltier unit, and to ensure insulation of the lead member and prevent condensation without increasing the size of the device. It is an object of the present invention to provide an electrostatic atomizer capable of performing the above.

上記課題を解決するために本発明に係る静電霧化装置を、冷却板2及び放熱板3で回路部分Cを挟持して成るペルチェユニット1と、該ペルチェユニット1の冷却板2上に立設される放電極4とを具備し、ペルチェユニット1の冷却板2により放電極4を冷却して該放電極4上に空気中の水分を基に水を生成させるとともに、放電極4に高電圧を印加することで、放電極4に保持される水を霧化させて帯電微粒子水を発生させる静電霧化装置であって、放電極4を貫通させた状態で放熱板3に固着させることで該放熱板3との間に冷却板2及び回路部分Cを収容する密閉空間Sを形成する収容枠体17を備えるとともに、高電圧を印加するために放電極4に接続されるリード部材14を上記収容枠体17内に埋設したものとする。   In order to solve the above problems, an electrostatic atomizer according to the present invention is provided on a Peltier unit 1 having a circuit portion C sandwiched between a cooling plate 2 and a heat radiating plate 3, and on the cooling plate 2 of the Peltier unit 1. The discharge electrode 4 is provided, and the discharge electrode 4 is cooled by the cooling plate 2 of the Peltier unit 1 to generate water on the discharge electrode 4 based on the moisture in the air. An electrostatic atomization device that generates charged fine particle water by atomizing water held by the discharge electrode 4 by applying a voltage, and is fixed to the heat radiating plate 3 with the discharge electrode 4 penetrating. A lead member connected to the discharge electrode 4 for applying a high voltage while having a housing frame 17 that forms a sealed space S for housing the cooling plate 2 and the circuit portion C between the heat sink 3 14 is embedded in the housing frame 17.

上記構成の静電霧化装置にあっては、静電霧化に供する水は放電極4に直接生成されるので使用者自身が水を補給する手間が不要であるとともに、生成された水には水道水のようなCaやMg等の不純物が含まれないことからCaCOやMgO等の析出付着が防止される。また、水は放電極4に直接生成されるので、運転開始後に帯電微粒子水を発生させるまでの時間が短くて済むという利点や、水を充填させておくためのタンクや該タンク内の水を放電極4にまで搬送するための搬送手段が不要であるから装置全体がコンパクト化されるという利点がある。 In the electrostatic atomizer having the above-described configuration, the water to be used for electrostatic atomization is directly generated at the discharge electrode 4, so that the user himself / herself does not need to replenish water and the generated water Does not contain impurities such as Ca and Mg like tap water, so that deposition of CaCO 3 and MgO is prevented. In addition, since water is directly generated at the discharge electrode 4, there is an advantage that it takes a short time to generate charged fine particle water after the start of operation, a tank for filling water, and water in the tank. There is an advantage that the entire apparatus is made compact because no transport means for transporting to the discharge electrode 4 is required.

しかも、本例の静電霧化装置にあっては上記の収容枠体17を用いて形成する密閉空間S内に冷却板2や回路部分Cを収容するので、放電極4側で生成された水が上記密閉空間S内に侵入することを確実に防止することが可能である。   Moreover, in the electrostatic atomizer of this example, the cooling plate 2 and the circuit portion C are accommodated in the sealed space S formed by using the accommodating frame 17, so that the electrostatic atomizer is generated on the discharge electrode 4 side. It is possible to reliably prevent water from entering the sealed space S.

加えて、上記の収容枠体17中にリード部材14に埋設させているので、リード部材14はこれを覆う特別な絶縁体を備える必要なく周囲との絶縁性が確保されるものである。またリード部材14は放電極4と共に冷却されるものの、埋設状態にあるリード部材14の表面積のうち大気に接する部分は少なく且つ温度低下も抑制されるので、リード部材14表面の過剰結露は防止されることとなり、結果的に余分な冷却エネルギを消費することがなく静電霧化効率も向上するものである。   In addition, since the lead member 14 is embedded in the housing frame 17, the lead member 14 need not be provided with a special insulator covering the lead member 14, and insulation with the surroundings is ensured. In addition, although the lead member 14 is cooled together with the discharge electrode 4, the surface area of the lead member 14 in the embedded state is small in contact with the atmosphere and the temperature drop is suppressed, so that excessive dew condensation on the surface of the lead member 14 is prevented. As a result, the electrostatic atomization efficiency is improved without consuming excess cooling energy.

また、上記構成の静電霧化装置が、放電極4と対向して位置する対向電極13を具備し、放電極4と対向電極13との間に高電圧を印可することで、放電極4に保持される水を霧化させて帯電微粒子水を発生させるものであることも好適である。このようにした場合には、放電極4と対向電極13との間の放電電流を確認することができるので、その電流値に基づいて放電霧化を安定制御することが可能である。   Moreover, the electrostatic atomizer of the said structure is equipped with the counter electrode 13 located facing the discharge electrode 4, and the discharge electrode 4 is applied by applying a high voltage between the discharge electrode 4 and the counter electrode 13. It is also preferable that the charged fine particle water is generated by atomizing the water held in the water. In this case, since the discharge current between the discharge electrode 4 and the counter electrode 13 can be confirmed, the discharge atomization can be stably controlled based on the current value.

更に、上記構成の静電霧化装置にあっては、対向電極13を支持するために上記収容枠体17と一体に形成された支持体12を具備することが好適である。このようにすることで、収容枠体17内に収容される冷却板2と支持体12に支持される対向電極13との位置決め、延いては放電極4と対向電極13との位置決めを容易且つ確実に行うことができる。   Furthermore, in the electrostatic atomizer having the above-described configuration, it is preferable to include the support 12 formed integrally with the housing frame 17 in order to support the counter electrode 13. By doing in this way, positioning of the cooling plate 2 accommodated in the housing frame 17 and the counter electrode 13 supported by the support body 12, and in turn, positioning of the discharge electrode 4 and the counter electrode 13 can be easily performed. It can be done reliably.

また、上記のリード部材14に形成される放電極接合部23が、放電極4に圧入接合されるものであることも好適である。このようにすることで、半田や導電性接着剤を用いずに放電極4とリード部材14とを電気的に接合させることができ、生産効率が向上する。加えて、対向電極13を具備するものである場合には、放電極4と対向電極13との位置決め精度が向上するので静電霧化効率が向上するものである。   It is also preferable that the discharge electrode joint portion 23 formed on the lead member 14 is press-fitted to the discharge electrode 4. By doing in this way, the discharge electrode 4 and the lead member 14 can be electrically joined without using solder or a conductive adhesive, and the production efficiency is improved. In addition, when the counter electrode 13 is provided, the positioning accuracy between the discharge electrode 4 and the counter electrode 13 is improved, so that the electrostatic atomization efficiency is improved.

また、上記のリード部材14が金属薄板を用いて形成したものであって、該金属薄板の端部を折畳んでコネクタ接合部24が形成してあることも好適である。このようにすることで、リード部材14を板厚が薄く熱抵抗が高いものとして熱リークを減少させることができ、更にコネクタ接合部24にあっては折畳みにより板厚を厚くすることで強度を向上させ、コネクタ抜き差しによる変形を防止することができる。   It is also preferable that the lead member 14 is formed using a thin metal plate, and the connector joining portion 24 is formed by folding an end portion of the thin metal plate. In this way, the lead member 14 can be made thin and have high thermal resistance to reduce heat leakage. Further, the connector joint 24 can be folded to increase the thickness to increase strength. It is possible to improve and prevent deformation due to connector insertion and removal.

本発明は、ペルチェユニットの冷却板に放電極を立設した構造にすることで水補給や付着物除去の手間を不要にするとともに帯電微粒子水を素早く発生させることを可能とし、しかも、放電極の結露水がペルチェユニット側に侵入することを確実に防止するとともに、装置を大型化することなくリード部材の絶縁性確保及び結露防止を達成することができるという効果を奏する。   The present invention has a structure in which a discharge electrode is erected on the cooling plate of the Peltier unit, so that it is possible to quickly generate charged fine particle water while eliminating the need for water replenishment and deposit removal. As a result, it is possible to reliably prevent the dew condensation water from entering the Peltier unit and to achieve insulation of the lead member and prevention of dew condensation without increasing the size of the apparatus.

以下、本発明を添付図面に示す実施形態に基いて説明する。図1には、本発明の実施形態における第1例の静電霧化装置の断面形状を示している。本例の静電霧化装置は、冷却板2と放熱板3とでペルチェ素子7を有する回路部分Cを挟持して成るペルチェユニット1を用いたもので、上記冷却板2上に放電極4を立設して冷却自在としている。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. In FIG. 1, the cross-sectional shape of the electrostatic atomizer of the 1st example in embodiment of this invention is shown. The electrostatic atomizer of this example uses a Peltier unit 1 in which a circuit portion C having a Peltier element 7 is sandwiched between a cooling plate 2 and a heat radiating plate 3, and a discharge electrode 4 is provided on the cooling plate 2. It can be cooled freely by standing up.

上記ペルチェユニット1は、絶縁性であり且つ熱伝導率の高い材料(本例ではアルミナ)から成りその片面側に電気回路6を形成してある一対の平板状の回路基板5を、互いの電気回路6側が向い合うように対向させ、少なくとも1対(本例では8対)列設してある焼結材又は熔製材から成るペルチェ素子7を両回路基板5間で挟持するとともに、各ペルチェ素子7と両側の電気回路6とを電気的及び機械的に接続されるように半田(本例ではSn−Sb)を用いて接合させたものであり、上記両側の電気回路6と複数のペルチェ素子7によりペルチェユニット1の回路部分Cを形成している。なお、上記の如く回路基板5に形成されてペルチェ素子7を直列接続させる電気回路6は、印刷又はエッチングによってCu、Ag、Ag−Pd、Ag−Pt、MoMn等を用いて形成するものであり、半田ぬれ性の向上や電気回路6の腐食防止を図るためには該電気回路6の表面にNi、Au鍍金を施すことが好適である。   The Peltier unit 1 is composed of a pair of flat circuit boards 5 each made of an insulating material having high thermal conductivity (alumina in this example) and having an electric circuit 6 formed on one side thereof. Each Peltier element 7 is sandwiched between the circuit boards 5 by sandwiching a Peltier element 7 made of a sintered material or a melted material facing at least one pair (eight pairs in this example) so as to face the circuit 6 side. 7 and the electric circuits 6 on both sides are joined using solder (Sn—Sb in this example) so as to be electrically and mechanically connected, and the electric circuits 6 on both sides and a plurality of Peltier elements are joined. 7, the circuit portion C of the Peltier unit 1 is formed. The electric circuit 6 formed on the circuit board 5 and connecting the Peltier elements 7 in series as described above is formed using Cu, Ag, Ag-Pd, Ag-Pt, MoMn, or the like by printing or etching. In order to improve solder wettability and prevent corrosion of the electric circuit 6, it is preferable to apply Ni and Au plating to the surface of the electric circuit 6.

一方の回路基板5上の電気回路6は、後述の収容枠体17の外側にまで延長されるものであり、この電気回路6の延長部分に半田付けされるペルチェ入力リード線8を介して為される回路部分Cへの通電によって、一方の回路基板5(即ち、これが冷却側の回路基板5となる)から他方の回路基板5(即ち、これが放熱側の回路基板5となる)に向けて熱が移動するように設けている。   The electric circuit 6 on one circuit board 5 is extended to the outside of a housing frame 17 which will be described later, and is connected via a Peltier input lead 8 that is soldered to the extended portion of the electric circuit 6. When the circuit portion C is energized, it is directed from one circuit board 5 (that is, the cooling circuit board 5) to the other circuit board 5 (that is, the heat dissipation circuit board 5). Heat is provided to move.

本例の静電霧化装置は、上記冷却側の回路基板5によって、絶縁性であり且つ熱伝導率の高い冷却板2を形成し、上記放熱側の回路基板5によって、同じく絶縁性であり且つ熱伝導率の高い放熱板3を形成したものであって、平面視における放熱板3の縦横寸法を冷却板2の縦横寸法よりも充分大きく形成することで、後述のように放熱板3と接合される容器状の収容枠体17と該放熱板3との間に、冷却板2や回路部分Cを密閉可能としている。寸法として具体的には、冷却板2が縦横寸法5.5×5.5mm、厚さ0.635mmであるのに対して、放熱板3が縦横寸法20×16mm、厚さが0.5mmである。なお、ペルチェ素子7は縦横寸法0.65×0.65mm、高さ1mmである。   The electrostatic atomizer of this example forms a cooling plate 2 that is insulative and has high thermal conductivity by the circuit board 5 on the cooling side, and is also insulative by the circuit board 5 on the heat dissipation side. In addition, the heat radiating plate 3 having a high thermal conductivity is formed, and the vertical and horizontal dimensions of the heat radiating plate 3 in plan view are sufficiently larger than the vertical and horizontal dimensions of the cooling plate 2, so that the heat radiating plate 3 and The cooling plate 2 and the circuit portion C can be hermetically sealed between the container-like storage frame 17 and the heat radiating plate 3 to be joined. Specifically, the cooling plate 2 has a vertical and horizontal dimension of 5.5 × 5.5 mm and a thickness of 0.635 mm, whereas the radiator plate 3 has a vertical and horizontal dimension of 20 × 16 mm and a thickness of 0.5 mm. is there. The Peltier element 7 has a vertical and horizontal dimension of 0.65 × 0.65 mm and a height of 1 mm.

放熱板3(即ち放熱側の回路基板5)の、電気回路6を形成してある側と反対側の面には、平面視において放熱板3よりも更に大きな縦横寸法となるように熱伝導率の高い材料(本例ではアルミニウム)を用いて形成した放熱フィン11を接続させている。上記接続は、放熱板3の周縁部に設けた貫通孔3aを通じて放熱板3側から放熱フィン11側にねじ部材10を螺合させることで行う。ここで、放熱板3と放熱フィン11との間には熱伝導グリースを介在させることが好適である。   On the surface of the heat radiating plate 3 (that is, the circuit board 5 on the heat radiating side) opposite to the side on which the electric circuit 6 is formed, the thermal conductivity so that the vertical and horizontal dimensions are larger than the heat radiating plate 3 in plan view. The radiating fins 11 formed using a high material (aluminum in this example) are connected. The connection is performed by screwing the screw member 10 from the heat radiating plate 3 side to the heat radiating fin 11 side through a through hole 3 a provided in the peripheral edge of the heat radiating plate 3. Here, it is preferable to interpose heat conductive grease between the heat radiating plate 3 and the heat radiating fins 11.

放熱フィン11の放熱板3と接続される側の面(図中の上面11a)の、放熱板3との接触部分を囲む周縁部分には、左右一対の支持体12を立設させている。上記支持体12は、絶縁性の材料(本例ではLCTやPBT)を用いて円柱状に形成したものであり、両支持体12の先端部に対向電極13を支持させている。対向電極13は、電気伝導率の高い材料(本例ではSUS)を用いたものであり、内径8mm、外径12mm、厚さ0.5mmである平面視リング状の本体部13aと、この本体部13aから延設される一対の接続部13bとで形成され、各接続部13bがそれぞれ支持体12に固定される構造になっている。   A pair of left and right supports 12 are erected on the peripheral portion surrounding the contact portion with the heat radiating plate 3 on the surface of the radiating fin 11 that is connected to the heat radiating plate 3 (upper surface 11a in the figure). The support 12 is formed in a columnar shape using an insulating material (in this example, LCT or PBT), and the counter electrode 13 is supported at the tips of both supports 12. The counter electrode 13 is made of a material having high electrical conductivity (SUS in this example), and has a ring-shaped main body 13a having an inner diameter of 8 mm, an outer diameter of 12 mm, and a thickness of 0.5 mm, and the main body. A pair of connection portions 13 b extending from the portion 13 a is formed, and each connection portion 13 b is fixed to the support 12.

放電極4は、電気伝導率及び熱伝導率の高い材料(本例ではCu)を用いて直径0.5mm、高さ8mmの細長い円柱形状に主体を形成するとともにその基端側に直径1mm、高さ0.5mmの台座部を形成し、更に先端側には図2(a)に示すような直径0.5mmの半球部を形成したものである。ここで、放電極4表面の腐食を抑制する場合には表面にNi、Au鍍金を施すことが好適である。   The discharge electrode 4 is formed of a main body in an elongated cylindrical shape having a diameter of 0.5 mm and a height of 8 mm using a material having high electrical conductivity and thermal conductivity (Cu in this example), and having a diameter of 1 mm on the base end side. A pedestal having a height of 0.5 mm is formed, and a hemispherical portion having a diameter of 0.5 mm as shown in FIG. Here, in order to suppress corrosion of the surface of the discharge electrode 4, it is preferable to apply Ni and Au plating to the surface.

放電極4の先端は上記半球形状以外であってもよく、例えば図2(b)〜(e)に示す形状とすることが好適である。図2(b)に示すものは円錐形状であり、図2(c)に示すものは円錐台形状であり、図2(d)に示すものは円柱状のネック部を介して球状体を支持した形状であり、図2(e)に示すものは円錐台状のネック部を介して球状体を支持した形状である。   The tip of the discharge electrode 4 may have a shape other than the hemispherical shape, and for example, it is preferable to have the shape shown in FIGS. 2 (b) has a conical shape, FIG. 2 (c) has a truncated cone shape, and FIG. 2 (d) supports a spherical body via a cylindrical neck portion. The shape shown in FIG. 2E is a shape in which a spherical body is supported via a truncated cone-shaped neck portion.

冷却板2(即ち冷却側の回路基板5)の電気回路6を形成してある側と逆側の面には、その中央位置に半径1mmの円状を成す凹凸部分(図示せず)を設けており、この凹凸部分に放電極4の台座部を位置決めして半田付けすることで、放電極4と冷却板2とを接合させている。上記半田としては熱伝導率の高い半田を用いるが、放電極4と冷却板2の接合に接着剤を用いる場合には当然に熱伝導率の高い接着剤を用いる。上記接合状態において、支持体12に支持される対向電極13は放電極4の先端から高さ3mmの位置に固定されるものであり、対向電極13の一方の接続部13bと、後述の収容枠体17内に埋設された状態で一端側を放電極4に電気的に接続させたリード部材14の他端側とを、高圧印加部15及び電流計16を介して電気的に接続させている。   On the surface of the cooling plate 2 (that is, the circuit board 5 on the cooling side) opposite to the side where the electric circuit 6 is formed, an uneven portion (not shown) having a circular shape with a radius of 1 mm is provided at the center position. The discharge electrode 4 and the cooling plate 2 are joined by positioning and soldering the pedestal portion of the discharge electrode 4 to the uneven portion. As the solder, a solder having a high thermal conductivity is used. However, when an adhesive is used for joining the discharge electrode 4 and the cooling plate 2, an adhesive having a high thermal conductivity is naturally used. In the joined state, the counter electrode 13 supported by the support 12 is fixed at a position 3 mm in height from the tip of the discharge electrode 4, and one connecting portion 13 b of the counter electrode 13 and a storage frame described later. The other end side of the lead member 14, which is embedded in the body 17 and electrically connected at one end side to the discharge electrode 4, is electrically connected via the high voltage application unit 15 and the ammeter 16. .

上記の収容枠体17は、平面視矩形状を成す底壁17aの周縁から図中下方に側周壁17bを延設して成る容器状の主体部分と、上記底壁17aの周縁から上記側周壁17bとは反対方向に延設される囲壁17dとを有するとともに、底壁17aの中央部分に貫通孔20を貫設させて成る部材であって、絶縁性であり且つ遮水性の高い材料(本例ではPBT)を用いて一体成形している。   The housing frame 17 includes a container-shaped main portion formed by extending a side peripheral wall 17b downward from the periphery of the bottom wall 17a having a rectangular shape in plan view, and the side peripheral wall from the periphery of the bottom wall 17a. 17b is a member having an enclosing wall 17d extending in a direction opposite to that of 17b and having a through-hole 20 penetrating through a central portion of the bottom wall 17a. In the example, PBT) is integrally formed.

そして、上記収容枠体17の開口を有する容器状の主体部分を被せて該収容枠体17内に冷却板2やペルチェ素子7を収容するとともに、底壁17aの貫通孔20に放電極4を挿通して収容枠体17外に突出させ、側周壁17bの先端縁である開口縁部17cを放熱板3と突き合せる。この状態で、収容枠体17の開口縁部17cと放熱板3との間、及び、収容枠体17の底壁17aと冷却板2との間を、エポキシ系樹脂やシリコン系樹脂から成る厚さ50μm〜500μm程度の接着剤21を介して固着させることで、収容枠体17と放熱板3とで囲まれる密閉空間S内にペルチェユニット1の回路部分Cや冷却板2を収容する。   Then, the container-shaped main portion having the opening of the housing frame 17 is covered to house the cooling plate 2 and the Peltier element 7 in the housing frame 17, and the discharge electrode 4 is placed in the through hole 20 of the bottom wall 17a. It is inserted and protruded out of the housing frame 17, and the opening edge portion 17 c, which is the tip edge of the side peripheral wall 17 b, is brought into contact with the heat sink 3. In this state, a thickness made of epoxy resin or silicon resin is formed between the opening edge 17c of the housing frame 17 and the heat radiating plate 3 and between the bottom wall 17a of the housing frame 17 and the cooling plate 2. The circuit part C and the cooling plate 2 of the Peltier unit 1 are housed in the sealed space S surrounded by the housing frame 17 and the heat radiating plate 3 by being fixed via an adhesive 21 having a thickness of about 50 μm to 500 μm.

リード部材14は、細長形状を成す導電性の金属薄板に図3(a)〜(c)に示すような曲げ加工を施すことで側面視クランク状に形成したものであって、長手方向の一端側に放電極接合部23を形成するとともに他端側にはコネクタ接合部24を形成してある。上記コネクタ接合部24は、金属薄板の端部を二つ折りに折畳むことで二重構造に形成したものであって、折畳みによって全体の板厚を厚くすることでコネクタの差込圧に耐え得る強度を付与している。これに対してリード部材14の上記コネクタ接合部24を除く部分(放電極接合部23を含む)は板厚が薄く、コネクタ接合部24や放電極4よりも熱抵抗が高い(即ち熱伝導率が低い)ものであるから熱リークが抑制されるようになっている。   The lead member 14 is formed in a crank shape in side view by bending a thin conductive metal sheet as shown in FIGS. 3A to 3C, and has one end in the longitudinal direction. A discharge electrode joint 23 is formed on the side, and a connector joint 24 is formed on the other end. The connector joint 24 is formed in a double structure by folding the end of a thin metal plate in half, and can withstand the insertion pressure of the connector by increasing the overall plate thickness by folding. Strength is given. On the other hand, the portion of the lead member 14 excluding the connector joint 24 (including the discharge electrode joint 23) has a thin plate thickness and higher thermal resistance than the connector joint 24 and the discharge electrode 4 (that is, thermal conductivity). Therefore, heat leakage is suppressed.

上記リード部材14は、その角部分に図3(d)に示すような潰し加工を施しておく。これによりリード部材14の断面積が小さくなるとともに、潰し加工時に加工硬化するので強度が増加されることとなる。上記潰し加工は、金型を用いて金属薄板から図3(a)の形状に型抜きする前に行うことが好適である。   The lead member 14 is subjected to a crushing process as shown in FIG. As a result, the cross-sectional area of the lead member 14 is reduced and the strength is increased since the work is hardened during crushing. The crushing process is preferably performed before the die is cut from the metal thin plate into the shape shown in FIG.

また上記リード部材14は、収容枠体17の底壁17a乃至囲壁17dに形成される厚肉部分18中に埋設されるとともに、一端側の放電極接合部23を貫通孔20内に突出させ、且つ他端側のコネクタ接合部24を囲壁17dから側方に突出させるものである。上記貫通孔20内において、放電極接合部23に貫設してある接続孔25に放電極4を圧入接合させ、この接合部分を含む貫通孔20全体にエポキシ樹脂製の封止剤26を充填させて封止する。   The lead member 14 is embedded in the thick portion 18 formed on the bottom wall 17a to the surrounding wall 17d of the housing frame 17, and the discharge electrode joint 23 on one end side protrudes into the through hole 20; Further, the connector joint 24 on the other end side is protruded laterally from the surrounding wall 17d. In the through hole 20, the discharge electrode 4 is press-fitted and joined to the connection hole 25 penetrating the discharge electrode joint portion 23, and the entire through hole 20 including the joint portion is filled with an epoxy resin sealing agent 26. Let it seal.

上記の如く本例の静電霧化装置は、電気回路6を介して電気的に接続される多数のペルチェ素子7の冷却側に、絶縁性であり且つ熱伝導率の高い材料から成る冷却板2を連結させ、放熱側には同じく絶縁性であり且つ熱伝導率の高い材料から成る放熱板3を連結させることで構成されるペルチェユニット1を、放電極4に水を供給するための手段として用いたものであって、このペルチェユニット1の冷却板2上に熱伝導率の高い半田或いは接着剤を介して立設される熱伝導率の高い柱状の放電極4と、放電極4の先端と対向して位置する対向電極13と、放電極4と対向電極13との間に高電圧を印加する高圧印加部15とを具備しているので、ペルチェユニット1内のペルチェ素子7等から成る回路部分Cへの通電により該ペルチェユニット1の冷却板2を介して放電極4自体を冷却し、放電極4の表面上に空気中の水分を基にして水を生成させるとともに、高圧印加部15によって放電極4側がマイナス電極となって電荷が集中するように放電極4と対向電極13との間に高電圧(本例では4.5kV)を印加させることで、放電極4上に直接生成されて保持される水を先端側に引き寄せるとともに先端部分で静電霧化現象により霧化させ、ナノメータサイズで高い電荷を持つ帯電微粒子水を発生させることができる。この帯電微粒子水は、対向電極13のリング状を成す本体部13aの中央穴を通過して静電霧化装置の外部へと放出される。   As described above, the electrostatic atomizer of this example has a cooling plate made of a material having an insulating property and a high thermal conductivity on the cooling side of a large number of Peltier elements 7 electrically connected through the electric circuit 6. Means for supplying water to the discharge electrode 4 of the Peltier unit 1 constructed by connecting the heat sinks 3 made of a material that is also insulative and has high thermal conductivity on the heat radiation side. A columnar discharge electrode 4 having a high thermal conductivity which is erected on the cooling plate 2 of the Peltier unit 1 via a solder or an adhesive having a high thermal conductivity; Since the counter electrode 13 located opposite to the tip and the high voltage applying unit 15 for applying a high voltage between the discharge electrode 4 and the counter electrode 13 are provided, the Peltier element 7 in the Peltier unit 1 and so on The Peltier unit is energized by energizing the circuit part C. The discharge electrode 4 itself is cooled via the cooling plate 2 of the first electrode, and water is generated on the surface of the discharge electrode 4 based on the moisture in the air. By applying a high voltage (4.5 kV in this example) between the discharge electrode 4 and the counter electrode 13 so that the electric charge is concentrated, the water generated and retained directly on the discharge electrode 4 is It can be attracted to the side and atomized by the electrostatic atomization phenomenon at the tip portion to generate charged fine particle water having a high charge in the nanometer size. The charged fine particle water passes through the central hole of the main body 13a that forms the ring shape of the counter electrode 13, and is discharged to the outside of the electrostatic atomizer.

ここでの静電霧化現象とは、放電極4と対向電極13との間に印加した電圧により放電極4に保持される水が帯電し、この帯電した水にクーロン力が働くことで該水の液面が局所的に円錐形状(テイラーコーン)を成すように盛り上がり、円錐形状となった水の先端に集中して高密度となった電荷の反発力で弾けるようにして水が分裂、飛散(レイリー分裂)して静電霧化を行う現象であると考えられる。   The electrostatic atomization phenomenon here is that water held in the discharge electrode 4 is charged by a voltage applied between the discharge electrode 4 and the counter electrode 13, and the Coulomb force acts on the charged water. The water level rises locally to form a conical shape (Taylor cone), and the water splits so that it can be repelled by the repulsive force of the electric charge that is concentrated and concentrated at the tip of the conical water. This is thought to be a phenomenon in which electrostatic atomization occurs due to scattering (Rayleigh splitting).

つまり、本例の静電霧化装置においては、使用者自身が水を補給する手間が不要であるとともに、生成された水には不純物が含まれないことから放電極4におけるCaCOやMgO等の析出付着が防止されるものである。しかも、水が放電極4に直接生成されるので静電霧化装置の運転を開始(即ち、ペルチェ素子7への通電を開始)してから帯電微粒子水を発生させるまでの時間が短くて済むという利点や、水を充填させておくためのタンクや該タンク内の水を放電極4にまで搬送するための搬送手段を備える必要がないので装置全体がコンパクト化されるという利点がある。 That is, in the electrostatic atomizer of this example, the user himself / herself does not need to replenish water, and the generated water does not contain impurities, so CaCO 3 , MgO, etc. in the discharge electrode 4. Is prevented from depositing. In addition, since water is directly generated at the discharge electrode 4, the time from the start of operation of the electrostatic atomizer (that is, the start of energization to the Peltier element 7) to the generation of charged fine particle water can be shortened. There is an advantage that the entire apparatus is made compact because there is no need to provide a tank for filling water and a transport means for transporting the water in the tank to the discharge electrode 4.

更に、本例の静電霧化装置にあっては容器状を成す収容枠体17内に冷却板2やペルチェ素子7を収容するとともに、冷却板2に立設される放電極4を収容枠体17の貫通孔20に挿通させて先端を外部に突出させ、この状態で上記収容枠体17の開口縁部17cを放熱板3上に接着させ、収容枠体17の底壁17aと冷却板2とを接着させているので、収容枠体17と放熱板3とで囲まれる密閉空間S内に冷却板2やペルチェ素子7が確実に密閉される。したがって、放電極4側で生成された水が上記密閉空間S内に侵入することが確実に防止されるものである。   Furthermore, in the electrostatic atomizer of this example, the cooling plate 2 and the Peltier element 7 are accommodated in the container-like housing frame 17, and the discharge electrode 4 standing on the cooling plate 2 is accommodated in the housing frame. The tip of the housing frame 17 is inserted outside through the through-hole 20 of the body 17 and the opening edge 17c of the housing frame 17 is adhered to the heat radiating plate 3 in this state, and the bottom wall 17a of the housing frame 17 and the cooling plate 2 is adhered, the cooling plate 2 and the Peltier element 7 are reliably sealed in the sealed space S surrounded by the housing frame 17 and the heat radiating plate 3. Therefore, water generated on the discharge electrode 4 side is reliably prevented from entering the sealed space S.

更に、冷却板2の放電極4との接合部分やペルチェユニット1内の回路部分Cに水が付着することでマイグレーションを生じるといった事態も防止される。ここでのマイグレーションとは、電流、電圧の存在下で、絶縁体の水の吸着に伴って金属材料が絶縁体の内部に移行する現象である。つまり、放電極4と冷却板2との接合部分におけるマイグレーションとは、水の吸着に伴って、放電極4を成す導電性の金属材料が冷却板2を成す絶縁材料の表面又は内部に移行する現象であり、ペルチェユニット1内の回路部分Cにおけるマイグレーションとは、水の吸着に伴って、回路部分Cを形成する金属材料が冷却板2や放熱板3を成す絶縁材料の表面又は内部に移行する現象である。   Furthermore, a situation in which migration occurs due to water adhering to the joint portion of the cooling plate 2 with the discharge electrode 4 or the circuit portion C in the Peltier unit 1 is also prevented. Migration here is a phenomenon in which a metal material moves into the insulator as the insulator adsorbs water in the presence of current and voltage. That is, the migration at the junction between the discharge electrode 4 and the cooling plate 2 means that the conductive metal material forming the discharge electrode 4 moves to the surface or inside of the insulating material forming the cooling plate 2 with the adsorption of water. The phenomenon is that the migration in the circuit part C in the Peltier unit 1 means that the metal material forming the circuit part C moves to the surface or inside of the insulating material forming the cooling plate 2 or the heat radiating plate 3 with the adsorption of water. It is a phenomenon.

加えて、本例の静電霧化装置にあっては上記の収容枠体17中に金属薄板から成るリード部材14に埋設させているので、リード部材14と周囲との絶縁性が確保されている。しかも放電極4と共にリード部材14も冷却されるものの、埋設してあることからリード部材14の表面積のうち大気に接する部分は少なく且つ温度低下も抑制されるので、リード部材14表面の過剰結露が防止されることとなり、結果的に余分な冷却エネルギを消費することがなく静電霧化効率も向上する。また、リード部材14を埋設することでコネクタ接合時に力がかかっても変形が生じ難くなり、品質が安定するものである。   In addition, since the electrostatic atomizer of this example is embedded in the lead member 14 made of a thin metal plate in the housing frame 17, the insulation between the lead member 14 and the surrounding area is ensured. Yes. In addition, although the lead member 14 is cooled together with the discharge electrode 4, since it is buried, there are few portions of the surface area of the lead member 14 that come into contact with the atmosphere and the temperature drop is suppressed, so excessive dew condensation on the surface of the lead member 14 is prevented. As a result, the electrostatic atomization efficiency is improved without consuming excessive cooling energy. In addition, since the lead member 14 is embedded, even if a force is applied at the time of connector joining, deformation hardly occurs and the quality is stabilized.

なお、放電極4における水の生成は、放電極4の冷却により周囲の空気が結露点以下にまで冷却されることで空気中の水分が結露して生成されるものが主であるが、ペルチェユニット1の冷却能力が強過ぎる場合には空気中の水分が放電極4に氷結してしまうことがあり、この場合には氷結した氷を溶解させることで水を生成することができる。溶解手段としてはペルチェユニット1への通電を低下又は停止させて放電極4の温度を上昇させることや、極性の逆転によりペルチェユニット1の冷却側と放熱側を一時的に入換えて放電極4を加熱することが適当である。   In addition, the generation of water in the discharge electrode 4 is mainly generated by condensation of moisture in the air by cooling the discharge electrode 4 so that the surrounding air is cooled below the dew point. If the cooling capacity of the unit 1 is too strong, moisture in the air may freeze on the discharge electrode 4, and in this case, water can be generated by melting the frozen ice. As the melting means, the temperature of the discharge electrode 4 is raised by lowering or stopping energization to the Peltier unit 1, or the discharge side 4 is temporarily switched between the cooling side and the heat dissipation side of the Peltier unit 1 by reversing the polarity. Is suitably heated.

また、上記の対向電極13を備えることなく、放電極4に対して高電圧を印加させることで帯電微粒子水を発生させる構成としても構わない。この場合、放電極4側がマイナス電極となって電荷が集中するように、対向電極13を備えた図示例の場合よりも更に高い電圧(例えば6kV)を印加すればよく、対向電極13を備えたものと比べて装置全体を小型化することができる。加えて、放電極4から放出される帯電微粒子水が対向電極13に付着することもないので、大気中に放出可能な帯電微粒子水の量を増加させることができる。これに対して、対向電極13を具備する図示例の静電霧化装置にあっては、電流計16(図1参照)を用いて放電極4と対向電極13との間の放電電流を確認することが可能なので、その電流値に基づいて静電霧化現象を安定制御することができるという利点がある。   In addition, a configuration may be adopted in which charged fine particle water is generated by applying a high voltage to the discharge electrode 4 without providing the counter electrode 13. In this case, a higher voltage (for example, 6 kV) may be applied than in the illustrated example provided with the counter electrode 13 so that the discharge electrode 4 side becomes a negative electrode and the charge is concentrated. The entire apparatus can be reduced in size as compared with the device. In addition, since the charged fine particle water discharged from the discharge electrode 4 does not adhere to the counter electrode 13, the amount of charged fine particle water that can be discharged into the atmosphere can be increased. On the other hand, in the electrostatic atomizer of the illustrated example having the counter electrode 13, the discharge current between the discharge electrode 4 and the counter electrode 13 is confirmed using an ammeter 16 (see FIG. 1). Therefore, there is an advantage that the electrostatic atomization phenomenon can be stably controlled based on the current value.

次に、本発明の実施形態における第2例の静電霧化装置について図4に基づいて説明するが、上記した第1例と同様の構成については同一符号を付して詳しい説明を省略し、第1例とは相違する特徴的な構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the second example according to the embodiment of the present invention will be described with reference to FIG. Only the characteristic configuration different from the first example will be described in detail below.

本例の静電霧化装置に備える収容枠体17は、対向電極13を支持するための支持体12を一体に形成したものであり、容器状を成す収容枠体17の開口縁部17cから外方に連結部30を延長させるとともに該連結部30の延長端に支持体12の基端部を連結させた形状である。上記支持体12は収容枠体17と一体に接着剤21を介して放熱板3上に接着される。また、上記収容枠体17の底壁17aの内底面には凸壁状の位置決め凹凸部31を形成しており、この凹凸部31内に冷却板2が嵌り込むことで冷却板2と収容枠体17との位置決めを行うようになっている。そして、本例にあっては上記位置決め凹凸部31を用いた位置決めを行ったうえで収容枠体17を冷却板2及び放熱板3に接着させることで、支持体12に支持される対向電極13の放電極4に対する位置決めを容易且つ確実に行うことができる。また上記の凸壁状の位置決め凹凸部31によって、収容枠体17と冷却板2とを接着させる接着剤21のはみ出しが防止されるので、冷却性能のばらつきも防止されるものである。なお、本例にあっては貫通孔20内に封止剤26を充填させていないが、第1例と同様に貫通孔20を封止させてあっても構わない。   The housing frame 17 provided in the electrostatic atomizer of this example is formed by integrally forming the support 12 for supporting the counter electrode 13, and from the opening edge 17 c of the housing frame 17 that forms a container shape. The connecting portion 30 is extended outward, and the base end portion of the support 12 is connected to the extended end of the connecting portion 30. The support 12 is bonded to the heat radiating plate 3 through the adhesive 21 integrally with the housing frame 17. In addition, a convex wall-shaped positioning uneven portion 31 is formed on the inner bottom surface of the bottom wall 17 a of the housing frame body 17, and the cooling plate 2 and the housing frame are fitted into the uneven portion 31. Positioning with the body 17 is performed. And in this example, after positioning using the said positioning uneven | corrugated | grooved part 31, the accommodation frame 17 is adhere | attached on the cooling plate 2 and the heat sink 3, and the counter electrode 13 supported by the support body 12 is carried out. The positioning with respect to the discharge electrode 4 can be performed easily and reliably. Further, since the protruding wall-shaped positioning uneven portion 31 prevents the adhesive 21 that adheres the housing frame 17 and the cooling plate 2 from protruding, variation in cooling performance is also prevented. In this example, the sealing agent 26 is not filled in the through hole 20, but the through hole 20 may be sealed as in the first example.

次に、本発明の実施形態における第3例の静電霧化装置について図5に基づいて説明するが、上記した第2例と同様の構成については同一符号を付して詳しい説明を省略し、第2例とは相違する特徴的な構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the third example according to the embodiment of the present invention will be described with reference to FIG. 5, but the same components as those of the second example described above are denoted by the same reference numerals and detailed description thereof is omitted. Only the characteristic configuration different from the second example will be described in detail below.

本例の収容枠体17内に埋設されるリード部材14には、第1例のような放電極4を圧入接合させる放電極接合部23を形成しておらず、リード部材14の一端側を貫通孔20内に突出させるとともに該突出部分と放電極4の台座部とをワイヤボンディングにより電気的に接合させている。上記ワイヤボンディングにはAuやAlから成る直径25μmのワイヤ40を用い、このワイヤ40を介在させることでリード部材14と放電極4との間の伝熱を抑制して該放電極4の冷却効率を向上させ、延いては静電霧化効率を向上させるものである。なお、図5(b)に鎖線で示すように、放電極4と電気的に接合するように冷却板2表面に形成してある電気回路41に上記ワイヤ40の一端を接合させても構わない。   The lead member 14 embedded in the housing frame 17 of this example is not formed with the discharge electrode joint portion 23 for press-fitting the discharge electrode 4 as in the first example, and one end side of the lead member 14 is connected to the lead member 14. While projecting into the through-hole 20, the projecting portion and the pedestal portion of the discharge electrode 4 are electrically joined by wire bonding. For the wire bonding, a wire 40 made of Au or Al and having a diameter of 25 μm is used, and by interposing this wire 40, the heat transfer between the lead member 14 and the discharge electrode 4 is suppressed, and the cooling efficiency of the discharge electrode 4 is reduced. Is improved, and as a result, electrostatic atomization efficiency is improved. 5B, one end of the wire 40 may be joined to the electric circuit 41 formed on the surface of the cooling plate 2 so as to be electrically joined to the discharge electrode 4, as indicated by a chain line. .

次に、本発明の実施形態における第4例の静電霧化装置について図6に基づいて説明するが、上記した第2例と同様の構成については同一符号を付して詳しい説明を省略し、第2例とは相違する特徴的な構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the fourth example according to the embodiment of the present invention will be described with reference to FIG. 6, but the same components as those of the second example described above are denoted by the same reference numerals and detailed description thereof is omitted. Only the characteristic configuration different from the second example will be described in detail below.

本例の収容枠体17内に埋設されるリード部材14は第2例のような1枚の金属薄板を曲げ加工して形成したものではなく、板厚の薄い平板状の金属薄板から成り一端側に放電極接合部23を有する放電極側リード部材50の他端側と、側面視クランク状であって板厚の厚い金属板から成り一端側にコネクタ接合部24を有するコネクタ側リード部材51の他端側とを、スポット溶接等で電気的に接合させることで形成している。上記リード部材14とすることで、板厚が厚く高強度のコネクタ側リード部材51においてコネクタの差込圧に耐え得る強度を確保するとともに、板厚が薄く熱抵抗の高い(即ち熱伝導率が低い)放電極側リード部材50において熱リークを抑制させることが可能である。   The lead member 14 embedded in the housing frame 17 of this example is not formed by bending a single metal thin plate as in the second example, but is composed of a flat metal thin plate with a small thickness. Connector-side lead member 51 having a discharge-electrode-side lead member 50 having a discharge-electrode joint 23 on the side and a connector-side lead member 51 made of a thick metal plate that is crank-shaped as viewed from the side. The other end of each is electrically joined by spot welding or the like. By using the lead member 14 as described above, the high-strength connector-side lead member 51 with a large plate thickness ensures the strength that can withstand the insertion pressure of the connector, and the plate thickness is thin and the thermal resistance is high (ie, the thermal conductivity is high). It is possible to suppress heat leakage in the discharge electrode side lead member 50.

次に、本発明の実施形態における第5例の静電霧化装置について図7に基づいて説明するが、上記した第1例と同様の構成については同一符号を付して詳しい説明を省略し、第1例とは相違する特徴的な構成についてのみ以下に詳述する。   Next, the electrostatic atomizer of the fifth example in the embodiment of the present invention will be described with reference to FIG. Only the characteristic configuration different from the first example will be described in detail below.

本例の容器状を成す収容枠体17にあっては開口縁部17cから外方にフランジ部60を延設し、このフランジ部60が放熱板3の外縁を超えて外方に伸びるように設けている。そして、上記フランジ部60の放熱板3を超える部分において、ねじ部材61を介して収容枠体17と放熱フィン11とをねじ止めさせている。放熱板3は第1例と同様に接着剤21を用いて収容枠体17と接着させており、放熱板3と放熱フィン11とが両者3,11を固着する収容枠体17を介して接続される構造である。即ち、本例にあっては放熱板3と放熱フィン11とを接続させるために、放熱板3に第1例のような貫通孔3aを形成するためのスペースを確保する必要がなく、したがって高価な基板コストを削減してコストダウンを図ることができる。   In the housing frame 17 having the container shape of the present example, a flange portion 60 is extended outward from the opening edge portion 17 c, and the flange portion 60 extends outward beyond the outer edge of the radiator plate 3. Provided. And in the part exceeding the heat sink 3 of the said flange part 60, the storage frame 17 and the radiation fin 11 are screwed through the screw member 61. As shown in FIG. As in the first example, the heat radiating plate 3 is bonded to the housing frame 17 using the adhesive 21, and the heat radiating plate 3 and the heat radiating fins 11 are connected via the housing frame 17 to which both 3 and 11 are fixed. Is the structure. That is, in this example, in order to connect the heat radiating plate 3 and the heat radiating fins 11, it is not necessary to secure a space for forming the through hole 3 a as in the first example in the heat radiating plate 3. The cost can be reduced by reducing the substrate cost.

なお、以上述べた各例の構成は、本発明の趣旨を逸脱しない限り適宜組合せ可能である。   The configurations of the examples described above can be combined as appropriate without departing from the spirit of the present invention.

本発明の実施形態における第1例の静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer of the 1st example in embodiment of this invention. 同上の静電霧化装置の放電極の外形を示す説明図であり、(a)〜(e)には各種の変形例を示している。It is explanatory drawing which shows the external shape of the discharge electrode of an electrostatic atomizer same as the above, (a)-(e) has shown the various modifications. 同上の静電霧化装置のリード部材を示す説明図であり、(a)は曲げ加工前の正面視状態、(b)は曲げ加工前の側面視状態、(c)は曲げ加工後の側面視状態、(d)は(c)のA−A´断面部分に施す潰し加工を説明するものである。It is explanatory drawing which shows the lead member of an electrostatic atomizer same as the above, (a) is a front view state before a bending process, (b) is a side view state before a bending process, (c) is a side surface after a bending process. The visual state, (d) illustrates the crushing process performed on the AA ′ cross section of (c). 本発明の実施形態における第2例の静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer of the 2nd example in embodiment of this invention. 本発明の実施形態における第3例の静電霧化装置を示す説明図であり、(a)は装置全体の断面形状、(b)は(a)の主要部を説明するものである。It is explanatory drawing which shows the electrostatic atomizer of the 3rd example in embodiment of this invention, (a) is the cross-sectional shape of the whole apparatus, (b) demonstrates the principal part of (a). 本発明の実施形態における第4例の静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer of the 4th example in embodiment of this invention. 本発明の実施形態における第5例の静電霧化装置の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the electrostatic atomizer of the 5th example in embodiment of this invention.

符号の説明Explanation of symbols

1 ペルチェユニット
2 冷却板
3 放熱板
4 放電極
12 支持体
13 対向電極
14 リード部材
17 収容枠体
23 放電極接合部
24 コネクタ接合部
C 回路部分
S 密閉空間
DESCRIPTION OF SYMBOLS 1 Peltier unit 2 Cooling plate 3 Heat sink 4 Discharge electrode 12 Support body 13 Counter electrode 14 Lead member 17 Housing frame body 23 Discharge electrode joint part 24 Connector joint part C Circuit part S Sealed space

Claims (5)

冷却板及び放熱板で回路部分を挟持して成るペルチェユニットと、該ペルチェユニットの冷却板上に立設される放電極とを具備し、ペルチェユニットの冷却板により放電極を冷却して該放電極上に空気中の水分を基に水を生成させるとともに、放電極に高電圧を印加することで、放電極に保持される水を霧化させて帯電微粒子水を発生させる静電霧化装置であって、放電極を貫通させた状態で放熱板に固着させることで該放熱板との間に冷却板及び回路部分を収容する密閉空間を形成する収容枠体を備えるとともに、高電圧を印加するために放電極に接続されるリード部材を上記収容枠体内に埋設することを特徴とする静電霧化装置。   A Peltier unit having a circuit part sandwiched between a cooling plate and a heat sink, and a discharge electrode standing on the cooling plate of the Peltier unit. The discharge electrode is cooled by the cooling plate of the Peltier unit and the discharge An electrostatic atomizer that generates water based on the moisture in the air and generates charged fine particle water by atomizing the water held by the discharge electrode by applying a high voltage to the discharge electrode. In addition, the housing includes a housing frame that forms a sealed space for housing the cooling plate and the circuit portion between the heat sink by fixing the discharge electrode to the heat sink and applying a high voltage. For this purpose, a lead member connected to the discharge electrode is embedded in the housing frame. 放電極と対向して位置する対向電極を具備し、放電極と対向電極との間に高電圧を印可することで、放電極に保持される水を霧化させて帯電微粒子水を発生させるものであることを特徴とする請求項1に記載の静電霧化装置。   A counter electrode located opposite to the discharge electrode, and by applying a high voltage between the discharge electrode and the counter electrode, water held by the discharge electrode is atomized to generate charged fine particle water The electrostatic atomizer according to claim 1, wherein 対向電極を支持するために上記収容枠体と一体に形成された支持体を具備することを特徴とする請求項2に記載の静電霧化装置。   The electrostatic atomizer according to claim 2, further comprising a support body integrally formed with the housing frame body to support the counter electrode. リード部材に形成される放電極接合部が、放電極に圧入接合されるものであること特徴とする請求項1〜3のいずれか一項に記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein the discharge electrode joint formed on the lead member is press-fitted to the discharge electrode. リード部材が金属薄板を用いて形成したものであって、該金属薄板の端部を折畳んでコネクタ接合部が形成してあることを特徴とする請求項1〜4のいずれか一項に記載の静電霧化装置。

The lead member is formed by using a thin metal plate, and the connector joining portion is formed by folding an end portion of the thin metal plate. Electrostatic atomizer.

JP2005216507A 2005-07-26 2005-07-26 Electrostatic atomizer Expired - Fee Related JP3928649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216507A JP3928649B2 (en) 2005-07-26 2005-07-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216507A JP3928649B2 (en) 2005-07-26 2005-07-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007029850A true JP2007029850A (en) 2007-02-08
JP3928649B2 JP3928649B2 (en) 2007-06-13

Family

ID=37789748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216507A Expired - Fee Related JP3928649B2 (en) 2005-07-26 2005-07-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP3928649B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185661A (en) * 2007-04-16 2007-07-26 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2009045551A (en) * 2007-08-20 2009-03-05 Panasonic Electric Works Co Ltd Electrostatic atomizer
JP2009045552A (en) * 2007-08-20 2009-03-05 Panasonic Electric Works Co Ltd Electrostatic atomizing device
JP2011036735A (en) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2011036739A (en) * 2009-08-06 2011-02-24 Mitsubishi Electric Corp Electrostatic atomizer and air conditioner
US9591438B2 (en) 2008-09-10 2017-03-07 Nextnav, Llc Wide area positioning system
EP3632572A4 (en) * 2017-05-31 2020-06-17 Leshow Electronic Technology Co. Ltd., Hangzhou Water droplet generating apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185661A (en) * 2007-04-16 2007-07-26 Matsushita Electric Works Ltd Electrostatic atomizing device
JP4706662B2 (en) * 2007-04-16 2011-06-22 パナソニック電工株式会社 Electrostatic atomizer
JP2009045551A (en) * 2007-08-20 2009-03-05 Panasonic Electric Works Co Ltd Electrostatic atomizer
JP2009045552A (en) * 2007-08-20 2009-03-05 Panasonic Electric Works Co Ltd Electrostatic atomizing device
US9591438B2 (en) 2008-09-10 2017-03-07 Nextnav, Llc Wide area positioning system
JP2011036735A (en) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2011036739A (en) * 2009-08-06 2011-02-24 Mitsubishi Electric Corp Electrostatic atomizer and air conditioner
EP3632572A4 (en) * 2017-05-31 2020-06-17 Leshow Electronic Technology Co. Ltd., Hangzhou Water droplet generating apparatus
JP2021045751A (en) * 2017-05-31 2021-03-25 杭州▲楽▼秀▲電▼子科技有限公司Leshow Electronic Technology Co.Ltd.,Hangzhou Water particle generator
US11498086B2 (en) 2017-05-31 2022-11-15 Leshow Electronic Technology Co. Ltd. Water droplet generating apparatus

Also Published As

Publication number Publication date
JP3928649B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3952044B2 (en) Electrostatic atomizer
JP3928649B2 (en) Electrostatic atomizer
JP3928648B2 (en) Electrostatic atomizer
JP3952052B2 (en) Electrostatic atomizer
JP4449859B2 (en) Electrostatic atomizer
JP5632634B2 (en) Electrostatic atomizer and method of manufacturing the same
JP4736915B2 (en) Electrostatic atomizer
JP4442444B2 (en) Electrostatic atomizer
WO2018193828A1 (en) Metal member-equipped substrate, circuit structure, and electrical connection box
JP4788594B2 (en) Electrostatic atomizer
JP4305534B2 (en) Electrostatic atomizer
JP5227281B2 (en) Electrostatic atomizer
JP4952294B2 (en) Electrostatic atomizer
JP4779803B2 (en) Electrostatic atomizer
JP4779778B2 (en) Electrostatic atomizer
JP4670712B2 (en) Electrostatic atomizer and assembly method thereof
US11342734B2 (en) Circuit assembly and electrical junction box
JP4872653B2 (en) Electrostatic atomizer
JP4329725B2 (en) Electrostatic atomizer
JP2011152501A (en) Electrostatic atomizer
JP5369022B2 (en) Electrostatic atomizer
JP4752582B2 (en) Electrostatic atomizer
JP2010227927A (en) Electrostatic atomization apparatus
JP5027593B2 (en) Electrostatic atomizer
JP2011152499A (en) Electrostatic atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070117

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R151 Written notification of patent or utility model registration

Ref document number: 3928649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees