JP2007028813A - State deteminator in single-phase three-wire system and method therewith - Google Patents

State deteminator in single-phase three-wire system and method therewith Download PDF

Info

Publication number
JP2007028813A
JP2007028813A JP2005208114A JP2005208114A JP2007028813A JP 2007028813 A JP2007028813 A JP 2007028813A JP 2005208114 A JP2005208114 A JP 2005208114A JP 2005208114 A JP2005208114 A JP 2005208114A JP 2007028813 A JP2007028813 A JP 2007028813A
Authority
JP
Japan
Prior art keywords
fluctuation
power
phase
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005208114A
Other languages
Japanese (ja)
Inventor
Hidefumi Abe
英文 阿部
Osamu Naito
督 内藤
Takanori Sato
孝紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muroran Institute of Technology NUC
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Muroran Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Muroran Institute of Technology NUC filed Critical Tokyo Electric Power Co Inc
Priority to JP2005208114A priority Critical patent/JP2007028813A/en
Publication of JP2007028813A publication Critical patent/JP2007028813A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine a load state or an outlet assignment system by specifying the cause of momentary voltage fluctuations in charging or releasing load. <P>SOLUTION: A total power computer 21 obtains total electric power supplied to power wires in single-phase three-wire system, while an unbalanced power computer 22 computes unbalanced power which is a difference between first system power between one wire 12A and a neutral conductor 13, and second system power between another wire 12B and the neutral conductor 13. A total power fluctuation computer 23 computes fluctuations in total power and an unbalanced power fluctuation computer 25 computes fluctuations in unbalanced power. A determinator 24 determines possible causes for the voltage fluctuations, load states, and the outlet assignment system in the single-phase three wire system on the basis of the fluctuations in total power and the fluctuations in unbalanced power. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2つの電圧線と中性線とを有する単相三線式の電圧変動原因、負荷状態またはコンセント所属系統等を推定する単相三線式の状態判定装置および方法に関する。   The present invention relates to a single-phase three-wire state determination apparatus and method for estimating a cause of voltage fluctuation, a load state, or an outlet affiliation system of a single-phase three-wire type having two voltage lines and a neutral line.

単相三線式の配電系は2つの電圧線と中性線とを有し、各々の電圧線と中性線との間から100V系の配電線を引き出し、2つの電圧線間から200V系の配電線をそれぞれ引き出すようにしている。例えば、単相三線式の100V配電系では、200V系の配電線と2つの100V系の配電線とを引き出している。このような低圧配電系では電線が細く、負荷投入や負荷開放時に瞬時電圧変動など障害が発生する場合がある。その場合、障害を発生させた負荷が200V系の配電線に接続された負荷なのか、あるいは100V系に接続された負荷なのか、さらには、100V系の配電線のいずれに接続された負荷なのかを知ることは、瞬時電圧変動の対策を立てる上の基本となる。   The single-phase three-wire distribution system has two voltage lines and a neutral line. A 100 V distribution line is drawn from between each voltage line and the neutral line, and a 200 V system is drawn from between the two voltage lines. Each distribution line is pulled out. For example, in a single-phase three-wire 100V distribution system, a 200V distribution line and two 100V distribution lines are drawn. In such a low-voltage distribution system, the electric wire is thin, and a failure such as instantaneous voltage fluctuation may occur when the load is turned on or off. In that case, whether the load causing the failure is a load connected to a 200 V distribution line, a load connected to a 100 V system, or a load connected to any of the 100 V distribution lines It is fundamental to make a countermeasure against instantaneous voltage fluctuation.

ここで、単相三線式の配電系の入力電圧の降下または上昇があった場合、自動的にこれを検出し、回路の切り替えによって、常に設定範囲内の電圧値を出力して負荷に影響を与えないように電圧を調整するようにしたものがある(例えば、特許文献1参照)。
特開平8−191542号公報
Here, if there is a drop or rise in the input voltage of the single-phase three-wire distribution system, this is automatically detected, and the voltage value within the set range is always output by switching the circuit, affecting the load. There is one in which the voltage is adjusted so as not to be applied (see, for example, Patent Document 1).
JP-A-8-191542

ところが、特許文献1のものでは配電系の電圧を設定範囲内の電圧値に調整することができるが、負荷投入や負荷開放時の瞬時電圧変動の原因が200V系と2つの100V系のいずれなのかを特定できない。また、100V系での負荷分布を正確に把握できないとともに、各コンセントの属する100V系を特定できず対策の指針を得ることは困難である。   However, in Patent Document 1, the voltage of the distribution system can be adjusted to a voltage value within a set range, but the cause of the instantaneous voltage fluctuation at the time of loading or unloading is either 200V system or two 100V systems. It is not possible to identify. In addition, the load distribution in the 100V system cannot be accurately grasped, and the 100V system to which each outlet belongs cannot be specified, and it is difficult to obtain a countermeasure guideline.

一般に、2つの100V系の配電線に接続される負荷は不平衡であり、その不平衡の度合いが甚だしい場合には、配電線や屋内配線での損失増大や電圧アンバランスなどの問題が生じる。このため、不平衡負荷の状態を正確に把握し、その是正を可能にする手法が望まれているが、屋内配線で実際に負荷の接続されるコンセントが属する100V系の判定の困難さが不平衡是正でのネックとなる。このため任意のコンセントが属する100V系を判定する方法が望まれている。   In general, loads connected to two 100V distribution lines are unbalanced. When the degree of unbalance is excessive, problems such as increased loss and voltage imbalance in distribution lines and indoor wiring occur. For this reason, there is a demand for a technique that accurately grasps the state of an unbalanced load and makes it possible to correct it. However, it is difficult to determine the 100V system to which the outlet to which the load is actually connected by indoor wiring belongs. It becomes a bottleneck in balance correction. Therefore, a method for determining a 100V system to which an arbitrary outlet belongs is desired.

本発明の目的は、負荷投入や負荷開放時の瞬時電圧変動の原因を特定でき、負荷状態またはコンセント所属系統を判定できる単相三線式の状態判定装置および方法を提供することである。   An object of the present invention is to provide a single-phase three-wire state determination apparatus and method that can identify the cause of instantaneous voltage fluctuation when a load is applied or the load is released, and that can determine the load state or the outlet system.

請求項1の発明に係わる単相三線式の状態判定装置は、単相三線式の2つの電圧線のうちの一方の電圧線と中性線との間および他方の電圧線と中性線との間にそれぞれ注入される電力を演算する系統毎電力演算手段と、前記系統毎電力演算手段で演算された両系統の電力の和を前記単相三線式に注入される全電力として演算する全電力演算手段と、前記系統毎電力演算手段で演算された両系統の電力の差を前記単相三線式の2つの電圧線の不平衡電力として演算する不平衡電力演算手段と、前記全電力演算手段で得られた全電力の変動分を演算する全電力変動分演算手段と、前記不平衡電力演算手段で得られた不平衡電力の変動分を演算する不平衡電力変動分演算手段と、前記全電力演算手段で得られた全電力、前記不平衡電力演算手段で得られた不平衡電力、前記全電力変動分演算手段で得られた全電力変動分および前記不平衡電力変動分演算手段で得られた不平衡電力変動分に基いて単相三線式の電圧変動原因、負荷状態またはコンセント所属系統を判定する判定手段とを備えたことを特徴とする。   The single-phase three-wire state determination device according to the first aspect of the present invention includes a single-phase three-wire type voltage line between two voltage lines and a neutral line, and the other voltage line and neutral line. System power calculation means for calculating the power injected between each system, and the total power calculated by the power calculation means for each system as the total power injected into the single-phase three-wire system Power calculation means, unbalanced power calculation means for calculating the power difference between the two systems calculated by the system power calculation means as unbalanced power of the two voltage lines of the single-phase three-wire system, and the total power calculation A total power fluctuation calculating means for calculating the fluctuation of the total power obtained by the means, an unbalanced power fluctuation calculating means for calculating the fluctuation of the unbalanced power obtained by the unbalanced power calculating means, Total power obtained by the total power calculation means, obtained by the unbalanced power calculation means Causes of voltage fluctuation of a single-phase three-wire system based on the unbalanced power, the total power fluctuation obtained by the total power fluctuation calculating means, and the unbalanced power fluctuation obtained by the unbalanced power fluctuation calculating means And determining means for determining a load state or a system to which the outlet belongs.

請求項2の発明に係わる単相三線式の状態判定装置は、請求項1の発明において、前記判定手段は、前記全電力変動分が負であるときは瞬時電圧変動の原因は負荷開放であると判定し、前記全電力変動分が正であるときは瞬時電圧変動の原因は負荷投入であると判定することを特徴とする。   A single-phase, three-wire state determination device according to a second aspect of the present invention is the single-phase three-wire state determination device according to the first aspect, wherein the determination means causes an instantaneous voltage fluctuation when the total power fluctuation is negative. When the total power fluctuation is positive, it is determined that the cause of the instantaneous voltage fluctuation is the load application.

請求項3の発明に係わる単相三線式の状態判定装置は、請求項1または2の発明において、前記判定手段は、全電力変動分の絶対値が不平衡電力変動分の絶対値より大きいときは、瞬時電圧変動の原因は2つの電圧線間の200V系の負荷変動であると判定し、全電力変動分の絶対値と不平衡電力変動分の絶対値とがほぼ等しいときは、瞬時電圧変動の原因は各々の電圧線と中性線との間の100V系の負荷変動であると判定することを特徴とする。   A single-phase three-wire state determination device according to a third aspect of the present invention is the single-phase three-wire state determination device according to the first or second aspect, wherein the determination means is configured such that the absolute value of the total power fluctuation is greater than the absolute value of the unbalanced power fluctuation Determines that the cause of the instantaneous voltage fluctuation is a 200V load fluctuation between the two voltage lines, and when the absolute value of the total power fluctuation and the absolute value of the unbalanced power fluctuation are substantially equal, The cause of the fluctuation is determined to be a load fluctuation of a 100 V system between each voltage line and the neutral line.

請求項4の発明に係わる単相三線式の状態判定装置は、請求項1ないし請求項3のいずれか一の発明において、前記判定手段は、各々の電圧線と中性線との間の100V系の負荷変動が発生したとき、全電力変動分の正負により変動原因が負荷投入か負荷開放かを判定するとともに、不平衡電力変動分の正負により変動負荷の属する100V系を特定することを特徴とする。   According to a fourth aspect of the present invention, there is provided the single-phase three-wire state determination device according to any one of the first to third aspects, wherein the determination means is 100V between each voltage line and the neutral line. When a load change of the system occurs, it is determined whether the cause of the change is the input of the load or the load is released based on the positive / negative of the total power fluctuation, and the 100V system to which the variable load belongs is specified by the positive / negative of the unbalanced power fluctuation. And

請求項5の発明に係わる単相三線式の状態判定装置は、請求項1ないし4のいずれか一の発明において、前記判定手段は、コンセントに接続された負荷のオン/オフ時の不平衡電力変動分の正負に基いて、そのコンセントが属する所属系統を特定することを特徴とする。   According to a fifth aspect of the present invention, there is provided the single-phase three-wire state determination device according to any one of the first to fourth aspects, wherein the determination means is an unbalanced power when a load connected to an outlet is turned on / off. It is characterized in that the belonging system to which the outlet belongs is specified based on the positive and negative of the fluctuation.

請求項6の発明に係わる単相三線式の状態判定方法は、単相三線式の2つの電圧線のうちの一方の電圧線と中性線との間および他方の電圧線と中性線との間にそれぞれ注入される電力を演算し、演算された両系統の電力の和を前記単相三線式に注入される全電力として求め、演算された両系統の電力の差を前記単相三線式の2つの電圧線の不平衡電力として求め、前記全電力の変動分と前記不平衡電力の変動分とに基いて前記単相三線式の電圧変動原因、負荷状態またはコンセント所属系統を判定することを特徴とする。   The single-phase three-wire state determination method according to the invention of claim 6 is provided between one voltage line and a neutral line of two voltage lines of the single-phase three-wire type and between the other voltage line and the neutral line. Power calculated between the two systems, the sum of the calculated power of both systems is calculated as the total power injected into the single-phase three-wire system, and the calculated power difference between the two systems is calculated as the single-phase three-wire Obtained as the unbalanced power of the two voltage lines in the equation, and determines the cause of the voltage fluctuation, load state or outlet belonging system of the single-phase three-wire system based on the fluctuation of the total power and the fluctuation of the unbalanced power It is characterized by that.

本発明によれば、単相三線式に注入される全電力や2つの100V系の不平衡電力、それらの変動分を算出し、これらに基いて三相三線式の系統状態を判定するので、単相三線式の電圧変動原因、負荷状態またはコンセント所属系統を判定できる。   According to the present invention, the total power injected into the single-phase three-wire system, the two unbalanced power of the 100V system, and their fluctuations are calculated, and based on these, the system state of the three-phase three-wire system is determined. It is possible to determine the cause of voltage fluctuation, load status or outlet belonging system of single-phase three-wire system.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる単相三線式の状態判定装置11のブロック構成図である。   Embodiments of the present invention will be described below. FIG. 1 is a block diagram of a single-phase three-wire state determination device 11 according to an embodiment of the present invention.

まず、単相三線式の配電系統は、2つの電圧線12A、12Bと中性線13との3本の電線を有し、電圧線12Aをa相、中性線13をb相、電圧線12Bをc相とする。一方の電圧線12Aと中性線13とのab相間(以下、第1系統という)に単相電圧電源14Aが接続され、他方の電圧線12Bと中性線13とのbc相間(以下、第2系統という)に単相電圧電源14Bが接続されて100V系を形成し、一方の電圧線12Aと他方の電圧線12Bとのac相間で200V系を形成する。単相電圧電源14A、14Bにそれぞれ100V負荷Rab、Rbcが接続され、電圧線12A、12B間に200V負荷Racが接続される。   First, the single-phase three-wire distribution system has three electric wires of two voltage lines 12A and 12B and a neutral wire 13, the voltage wire 12A being a phase, the neutral wire 13 being b phase, and the voltage wire. Let 12B be the c phase. A single-phase voltage power source 14A is connected between the ab phase (hereinafter referred to as the first system) between one voltage line 12A and the neutral line 13, and between the bc phase (hereinafter referred to as the first line) between the other voltage line 12B and the neutral line 13. A single-phase voltage power supply 14B is connected to two systems) to form a 100V system, and a 200V system is formed between ac phases of one voltage line 12A and the other voltage line 12B. 100V loads Rab and Rbc are connected to the single-phase voltage power supplies 14A and 14B, respectively, and a 200V load Rac is connected between the voltage lines 12A and 12B.

通常、単相電圧電源14Aの電圧Vabおよび単相電源電圧14Bの電圧Vbcは同じ電圧値であり、例えば、一般家庭への配電の場合には100Vである。従って、その場合には、電圧線12A、12Bと中性線13との間に接続される負荷Rab、Rbcは100Vであり、電圧線12A、12B間に接続される負荷Racは200Vである。また、電圧Vab、Vbcが200Vである場合には、負荷Rab、Rbcは200Vであり、負荷Racは400Vである。   Normally, the voltage Vab of the single-phase voltage power supply 14A and the voltage Vbc of the single-phase power supply voltage 14B have the same voltage value, for example, 100 V in the case of power distribution to a general household. Therefore, in that case, the loads Rab and Rbc connected between the voltage lines 12A and 12B and the neutral line 13 are 100V, and the load Rac connected between the voltage lines 12A and 12B is 200V. When the voltages Vab and Vbc are 200V, the loads Rab and Rbc are 200V and the load Rac is 400V.

このような単相三線式の配電系統では、100V(200V)系負荷Rab、Rbcおよび200V(400V)系負荷Racが接続されるので、これらに負荷変動が生じた場合には瞬時電圧変動が生じたり不平衡負荷状態となったりすることがある。そこで、このような単相三線式の配電線に対して、本発明の実施の形態における単相三線式の状態判定装置11を接続し、瞬時電圧変動の原因、負荷状態またはコンセント所属系統を判定する。   In such a single-phase three-wire distribution system, 100V (200V) system loads Rab and Rbc and 200V (400V) system load Rac are connected. Or unbalanced load. Therefore, the single-phase three-wire state determination device 11 in the embodiment of the present invention is connected to such a single-phase three-wire distribution line, and the cause of instantaneous voltage fluctuation, the load state, or the outlet affiliated system is determined. To do.

電圧線12A、12Bに流れる電流Ia、Icはそれぞれ電流検出器15A、15Bで検出され、状態判定装置11のAD変換器17により所定のサンプリング周期でデジタル信号に変換されて記憶装置18に記憶される。同様に、単相電圧電源14A、14Bの電圧Vab、Vbcはそれぞれ電圧検出器16A、16Bで検出され、状態判定装置11のAD変換器17により所定のサンプリング周期でデジタル信号に変換されて記憶装置18に記憶される。   The currents Ia and Ic flowing through the voltage lines 12A and 12B are detected by the current detectors 15A and 15B, respectively, converted into digital signals at a predetermined sampling period by the AD converter 17 of the state determination device 11, and stored in the storage device 18. The Similarly, the voltages Vab and Vbc of the single-phase voltage power supplies 14A and 14B are detected by the voltage detectors 16A and 16B, respectively, and converted into digital signals at a predetermined sampling period by the AD converter 17 of the state determination device 11 to be stored in the storage device. 18 is stored.

演算制御装置19の系統毎電力演算手段20は、単相三線式の一方の電圧線12Aと中性線13との間に注入される電力Pab(以下、第1系統電力Pabという)、および他方の電圧線12Bと中性線13との間に注入される電力Pbc(以下、第2系統電力Pbcという)を演算するものである。第1系統電力Pabおよび第2系統電力Pbcは、記憶装置18に記憶された電圧線12A、12Bに流れる電流Ia、Icおよび単相電圧電源14A、14Bの電圧Vab、Vbcに基いて、(1)式および(2)式により演算される。なお、積分長Tは商用周波数fとしたとき(T=1/f)で与えられる。

Figure 2007028813
Figure 2007028813
The system power calculation means 20 of the calculation control device 19 includes a power Pab (hereinafter referred to as a first system power Pab) injected between one voltage line 12A of the single-phase three-wire system and the neutral line 13, and the other. The power Pbc injected between the voltage line 12B and the neutral line 13 (hereinafter referred to as second system power Pbc) is calculated. The first system power Pab and the second system power Pbc are (1) based on the currents Ia and Ic flowing in the voltage lines 12A and 12B stored in the storage device 18 and the voltages Vab and Vbc of the single-phase voltage power supplies 14A and 14B. ) And (2). Incidentally, integration length T is given by when the commercial frequency f N (T = 1 / f N).
Figure 2007028813
Figure 2007028813

系統毎電力演算手段20で演算された第1系統電力Pabおよび第2系統電力Pbcは、全電力演算手段21および不平衡電力演算手段22に入力される。全電力演算手段21は、(3)式に示すように、系統毎電力演算手段20で演算された第1系統電力Pabおよび第2系統電力Pbcの和を単相三線式に注入される全電力Pとして演算する。また、不平衡電力演算手段22は、(4)式に示すように、系統毎電力演算手段20で演算された第1系統電力Pabと第2系統電力Pbcとの差を単相三線式の2つの電圧線の不平衡電力Pとして演算する。すなわち、第1系統電力Pabが第2系統電力Pbcより大の場合を正とする不平衡電力Pを求める。 The first grid power Pab and the second grid power Pbc calculated by the grid power calculation means 20 are input to the total power calculation means 21 and the unbalanced power calculation means 22. The total power calculation means 21 is the total power injected into the single-phase three-wire system, as shown in the equation (3), by summing the first system power Pab and the second system power Pbc calculated by the system power calculation means 20. Calculate as PT . Further, the unbalanced power calculation means 22 calculates the difference between the first system power Pab and the second system power Pbc calculated by the system power calculation means 20 as shown in the equation (4) in a single-phase three-wire system. It is calculated as unbalanced power P U of two voltage lines. That is, the first system power Pab seeks imbalance power P U to the case of the larger than the second grid power Pbc positive.

=Pab+Pbc …(3)
=Pab−Pbc …(4)
全電力演算手段21で演算された全電力Pは全電力変動分演算手段23に入力され、不平衡電力演算手段22で演算された不平衡電力Pは不平衡電力変動分演算手段25および判定手段24に入力される。
P T = Pab + Pbc (3)
P U = Pab−Pbc (4)
The total power P T calculated by the total power computing means 21 is input to the total power variation calculating means 23, an unbalanced power P U calculated by the imbalance power calculating means 22 25, and imbalance power fluctuation calculating means Input to the determination means 24.

全電力変動分演算手段23は全電力Pの変動分ΔPを演算するものであり、例えば、現時点の全電力P(i)と1サイクル前の全電力P(i−1)との差分を全電力変動分ΔPとして演算し、その全電力変動分ΔPを判定手段24に出力する。同様に、不平衡電力変動分演算手段25は、不平衡電力Pの変動分ΔPを演算するものであり、例えば、現時点の不平衡電力P(i)と1サイクル前の不平衡電力P(i−1)との差分を不平衡電力変動分ΔPとして演算し、その不平衡電力変動分ΔPを判定手段24に出力する。なお、1サイクル前のデータに代えて数サイクル前のデータを用いて全電力変動分ΔPや不平衡電力変動分ΔPを求めるようにしてもよい。 The total power fluctuation calculating section 23 are those for calculating the variation [Delta] P T of the total power P T, for example, the total power P T of the current and (i) 1 cycle before full power P T and (i-1) the difference is calculated as the total power variation [Delta] P T, and outputs the total power fluctuation [Delta] P T to the determining means 24. Similarly, imbalance power variation calculating means 25 is for calculating the variation [Delta] P U of the imbalance power P U, for example, current imbalance power P U (i) one cycle before the imbalance power the difference between P T (i-1) is calculated as the imbalance power fluctuation [Delta] P U, and outputs the imbalance power fluctuation [Delta] P U to the determining means 24. Note that the total power fluctuation ΔP T and the unbalanced power fluctuation ΔP U may be obtained using data several cycles before instead of the data one cycle before.

瞬時電圧変動検出手段26は第1系統電圧Vabおよび第2系統電圧Vbcが瞬時電圧変動したことを検出するものであり、瞬時電圧変動検出手段26は第1系統電圧Vabまたは第2系統電圧Vbcの瞬時電圧変動を検出したときは、その旨を判定手段24に通知する。   The instantaneous voltage fluctuation detection means 26 detects that the first system voltage Vab and the second system voltage Vbc have changed instantaneously, and the instantaneous voltage fluctuation detection means 26 detects the first system voltage Vab or the second system voltage Vbc. When the instantaneous voltage fluctuation is detected, the determination means 24 is notified accordingly.

判定手段24は、瞬時電圧変動検出手段26が瞬時電圧変動を検出したときは、全電力変動分演算手段23で得られた全電力変動分ΔPおよび不平衡電力変動分演算手段25で得られた不平衡電力変動分ΔPに基いて、単相三線式の電圧変動原因を判定する。また、不平衡電力演算手段22で得られた不平衡電力Pに基いて、定常時の負荷状態を判定する。さらには、全電力変動分演算手段23で得られた全電力変動分ΔPおよび不平衡電力変動分演算手段25で得られた不平衡電力変動分ΔPに基いて、単相三線式のコンセント所属系統を判定する。そして、それらの判定結果を出力装置27に出力する。 Judging means 24, when the instantaneous voltage variation detection unit 26 detects an instantaneous voltage variation is obtained at full power variation [Delta] P T and imbalance power variation calculating means 25 obtained at full power variation calculating means 23 Based on the unbalanced power fluctuation ΔP U , the cause of the single-phase three-wire voltage fluctuation is determined. Further, based on the imbalance power P U obtained in an unbalanced power computing means 22 determines the load state of steady. Further, based on the total power fluctuation ΔP T obtained by the total power fluctuation calculating means 23 and the unbalanced power fluctuation ΔP U obtained by the unbalanced power fluctuation calculating means 25, a single-phase three-wire outlet Determine the affiliated line. Then, these determination results are output to the output device 27.

次に、判定手段24での電圧変動原因の判定、通常時の負荷状態の判定またはコンセント所属系統の判定について説明する。   Next, the determination of the cause of voltage fluctuation in the determination means 24, the determination of the normal load state, or the determination of the outlet affiliated system will be described.

[1]電圧変動原因の判定
(a)負荷の開放/投入の判定
図2は、判定手段24での電圧変動原因の判定処理内容を示すフローチャートである。判定手段24は、瞬時電圧変動があったときは、図2に示すように、全電力変動分ΔPを入力し(S1)、全電力変動分ΔPが負であるか否かを判定する(S2)。全電力変動分ΔPが負であるときは瞬時電圧変動の原因は負荷開放であると判定する(S3)。一方、ステップS2の判定で、全電力変動分ΔPが負でないときは、全電力変動分ΔPが正であるか否かを判定し(S4)、全電力変動分ΔPが正であるときは瞬時電圧変動の原因は負荷投入であると判定する(S5)。
[1] Determination of Cause of Voltage Fluctuation (a) Determination of Open / Close of Load FIG. When there is an instantaneous voltage fluctuation, the determination unit 24 inputs the total power fluctuation ΔP T (S1) as shown in FIG. 2, and determines whether or not the total power fluctuation ΔP T is negative. (S2). Cause instantaneous voltage fluctuation when full power fluctuation [Delta] P T is negative is determined to be open load (S3). On the other hand, in the judgment of step S2, when the total power fluctuation [Delta] P T is not negative, the total power variation [Delta] P T is determined whether is positive (S4), the total power variation [Delta] P T is positive When it is, it is determined that the cause of the instantaneous voltage fluctuation is load input (S5).

このように、負荷変動があったときには瞬時電圧変動が生じるので、その場合の瞬時電圧変動の原因としては、全電力変動分ΔPが正であるときは負荷投入による瞬時電圧変動であり、全電力変動分ΔPが負であるときは負荷開放による瞬時電圧変動であると判定する。 In this way, when there is a load fluctuation, an instantaneous voltage fluctuation occurs. Therefore, the cause of the instantaneous voltage fluctuation in that case is an instantaneous voltage fluctuation due to the load application when the total power fluctuation ΔP T is positive. When the power fluctuation amount ΔP T is negative, it is determined that the voltage fluctuation is an instantaneous voltage fluctuation due to the opening of the load.

(b)200V系/100V系の判定
次に、負荷変動が生じた系統は200V系か100V系かの判定について説明する。図3は、判定手段24での電圧変動原因が200V系か100V系かの判定処理内容を示すフローチャートである。図3に示すように、全電力変動分ΔPおよび不平衡電力変動分ΔPを入力し(S1)、それぞれの絶対値|ΔP|、|ΔP|を求める(S2)。そして、全電力変動分の絶対値|ΔP|が不平衡電力変動分の絶対値|ΔP|より大きいか否かを判定する(S3)。そして、全電力変動分の絶対値|ΔP|が不平衡電力変動分の絶対値|ΔP|より大きいときは、瞬時電圧変動の原因は2つの電圧線12A、12B間の200V系の負荷変動であると判定する(S4)。
(B) Determination of 200V system / 100V system Next, the determination of whether the system in which the load fluctuation has occurred is the 200V system or the 100V system will be described. FIG. 3 is a flowchart showing the contents of determination processing in the determination means 24 regarding whether the cause of voltage fluctuation is the 200V system or the 100V system. As shown in FIG. 3, the total power fluctuation ΔP T and the unbalanced power fluctuation ΔP U are input (S1), and the absolute values | ΔP T | and | ΔP U | are obtained (S2). Then, it is determined whether or not the absolute value | ΔP T | of the total power fluctuation is larger than the absolute value | ΔP U | of the unbalanced power fluctuation (S3). When the absolute value | ΔP T | of the total power fluctuation is larger than the absolute value | ΔP U | of the unbalanced power fluctuation, the cause of the instantaneous voltage fluctuation is the load of the 200V system between the two voltage lines 12A and 12B. It is determined that it is a fluctuation (S4).

一方、ステップS3の判定で、全電力変動分の絶対値|ΔP|が不平衡電力変動分の絶対値|ΔP|より大きくないときは、全電力変動分の絶対値|ΔP|と不平衡電力変動分の絶対値|ΔP|とがほぼ等しいか否かを判定し、全電力変動分の絶対値|ΔP|と不平衡電力変動分の絶対値|ΔP|とがほぼ等しいときは、瞬時電圧変動の原因は各々の電圧線12A、12Bと中性線13との間の100V系の負荷変動であると判定する(S6)。 On the other hand, if the absolute value | ΔP T | of the total power fluctuation is not larger than the absolute value | ΔP U | of the unbalanced power fluctuation in the determination in step S3, the absolute value | ΔP T | the absolute value of the imbalance power fluctuation | [Delta] P U | and it is determined whether approximately equal, the absolute value of the total power fluctuation | [Delta] P T | unbalanced power fluctuation in the absolute value | [Delta] P U | Togahobo If equal, it is determined that the cause of the instantaneous voltage fluctuation is a 100V load fluctuation between the voltage lines 12A, 12B and the neutral line 13 (S6).

このように、不平衡電力変動分の絶対値|ΔP|は、100V系の負荷変動の不平衡を示すので、負荷変動が生じた場合に、全電力変動分の絶対値|ΔP|が不平衡電力変動分の絶対値|ΔP|より大きいときは、200V系の負荷変動であると判定できる。一方、全電力変動分の絶対値|ΔP|と不平衡電力変動分の絶対値|ΔP|とがほぼ等しいときは、全電力変動分がそのまま100V系の負荷変動分に反映されているので、100V系の負荷変動であると判定できる。 Thus, the absolute value | ΔP U | for the unbalanced power fluctuation indicates an unbalance of the load fluctuation of the 100V system. Therefore, when the load fluctuation occurs, the absolute value | ΔP T | When the absolute value of the unbalanced power fluctuation is larger than | ΔP U |, it can be determined that the load fluctuation is 200V. On the other hand, when the absolute value | ΔP T | of the total power fluctuation is almost equal to the absolute value | ΔP U | of the unbalanced power fluctuation, the total power fluctuation is reflected as it is in the load fluctuation of the 100V system. Therefore, it can be determined that the load fluctuation is 100V.

(c)100V系の負荷の投入/開放の判定
次に、100V系の負荷の投入/開放の判定について説明する。図4は、判定手段24での100V系の負荷の投入/開放の判定処理内容を示すフローチャートである。図4に示すように、全電力変動分ΔPおよび不平衡電力変動分ΔPを入力し(S1)、全電力変動分ΔPが正であるか否かを判定する(S2)。全電力変動分ΔPが正であるときは、不平衡電力変動分ΔPが正であるか否かを判定し(S3)、不平衡電力変動分ΔPが正であるときは、第1系統(ab相間)の負荷投入であると判定する(S4)。ステップS3の判定で、不平衡電力変動分ΔPが正でないときは、不平衡電力変動分ΔPが負であるか否かを判定する(S5)。不平衡電力変動分ΔPが負であるときは第2系統(bc相間)の負荷投入であると判定する(S6)。
(C) Determination of input / release of 100V load Next, determination of input / release of a 100V load will be described. FIG. 4 is a flowchart showing the content of determination processing for turning on / off the 100V system load by the determination means 24. As shown in FIG. 4, the total power fluctuation ΔP T and the unbalanced power fluctuation ΔP U are input (S1), and it is determined whether or not the total power fluctuation ΔP T is positive (S2). When full power variation [Delta] P T is positive, the imbalance power fluctuation [Delta] P U is determined whether is positive (S3), when the imbalance power fluctuation [Delta] P U is positive, first It is determined that the system (between ab phases) is loaded (S4). If it is determined in step S3 that the unbalanced power fluctuation ΔP U is not positive, it is determined whether or not the unbalanced power fluctuation ΔP U is negative (S5). When the unbalanced power fluctuation ΔP U is negative, it is determined that the second system (between bc phases) is loaded (S6).

つまり、全電力変動分ΔPが正のときは負荷変動は投入であり、不平衡電力Pが正のときは第1系統電力Pabが第2系統電力Pbcより大きいときであるので、全電力変動分ΔPおよび不平衡電力変動分ΔPの双方が正であるときは、第1系統(ab相間)の負荷投入であると判定する。同様に、全電力変動分ΔPが正で不平衡電力変動分ΔPが負であるときは、第2系統(bc相間)の負荷投入であると判定する。 That is, a load variation is turned on when full power fluctuation [Delta] P T is positive, so when the imbalance power P U is positive is the first system power Pab is when larger than the second grid power Pbc, total power When both the variation ΔP T and the unbalanced power variation ΔP U are positive, it is determined that the load is applied to the first system (between the ab phases). Similarly, when the total power fluctuation ΔP T is positive and the unbalanced power fluctuation ΔP U is negative, it is determined that the load is applied to the second system (between the bc phases).

一方、ステップS2の判定で、全電力変動分ΔPが正でないときは、不平衡電力変動分ΔPが負であるか否かを判定する(S7)。不平衡電力変動分ΔPが負であるときは、第1系統(ab相間)の負荷開放であると判定する(S8)。ステップS7の判定で、不平衡電力変動分ΔPが負でないときは、不平衡電力変動分ΔPが正であるか否かを判定する(S9)。不平衡電力変動分ΔPが正であるときは第2系統(bc相間)の負荷開放であると判定する(S10)。 On the other hand, if it is determined in step S2 that the total power fluctuation ΔP T is not positive, it is determined whether or not the unbalanced power fluctuation ΔP U is negative (S7). When the unbalanced power fluctuation ΔP U is negative, it is determined that the load of the first system (between the ab phases) is released (S8). If it is determined in step S7 that the unbalanced power fluctuation amount ΔP U is not negative, it is determined whether or not the unbalanced power fluctuation amount ΔP U is positive (S9). When the unbalanced power fluctuation ΔP U is positive, it is determined that the load of the second system (between the bc phases) is released (S10).

つまり、全電力変動分ΔPが負のときは負荷変動は開放であり、不平衡電力Pが負のときは第1系統電力Pabが第2系統電力Pbcより小さいときであるので、全電力変動分ΔPが負で不平衡電力変動分ΔPが負であるときは、第1系統(ab相間)の負荷開放であると判定する。同様に、全電力変動分ΔPが負で不平衡電力変動分ΔPが正であるときは、第2系統(bc相間)の負荷開放であると判定する。 That is, the load fluctuation when the total power fluctuation [Delta] P T is negative is open, so when the imbalance power P U is negative is when the first system power Pab smaller than the second grid power Pbc, total power When the variation ΔP T is negative and the unbalanced power variation ΔP U is negative, it is determined that the load of the first system (between the ab phases) is released. Similarly, when the total power fluctuation ΔP T is negative and the unbalanced power fluctuation ΔP U is positive, it is determined that the load of the second system (between the bc phases) is released.

このように、判定手段24は各々の電圧線12A、12Bと中性線13との間の100V系の負荷変動が発生したとき、全電力変動分ΔPの正負により変動原因が負荷投入か負荷開放かを判定するとともに、不平衡電力変動分ΔPの正負により変動負荷の属する100V系を特定する。 As described above, when the 100V load fluctuation between the voltage lines 12A and 12B and the neutral line 13 occurs, the determination means 24 determines whether the cause of the fluctuation is the load input or not depending on whether the total power fluctuation ΔP T is positive or negative. Whether it is open or not is determined, and the 100V system to which the fluctuating load belongs is specified by whether the unbalanced power fluctuation ΔP U is positive or negative.

[2]定常時の負荷状態の判定
判定手段24は、瞬時電圧変動検出手段26による瞬時電圧変動の検出がない状態で不平衡電力Pを監視する。図5は、判定手段24での定常時の負荷状態の判定処理内容を示すフローチャートである。図5に示すように、不平衡電力演算手段22で得られた不平衡電力Pを入力し(S1)、不平衡電力Pが正であるか否かを判定する(S2)。そして、不平衡電力Pが正である場合には、ab相間(第1系統)の負荷がbc相間(第2系統)の負荷より大であると判定する(S3)。一方、ステップS3の判定で、不平衡電力Pが正でない場合には、不平衡電力Pが負であるか否かを判定し(S4)、不平衡電力Pが負であるである場合には、bc相間(第2系統)の負荷がab相間(第1系統)の負荷より大であると判定する(S6)。これにより、定常時においても100V系である第1系統および第2系統の負荷の大小を検出できる。
[2] determining the determination means 24 of the load condition of the steady state monitors the imbalance power P U in the absence of detection of the instantaneous voltage variation due to instantaneous voltage change detecting unit 26. FIG. 5 is a flowchart showing the determination processing contents of the load state at the steady state in the determination means 24. As shown in FIG. 5, enter the imbalance power P U obtained in an unbalanced power computing means 22 (S1), it determines whether the imbalance power P U is positive (S2). When the imbalance power P U is positive, it is determined that the load of the ab phases (first line) is greater than the load of bc phases (second line) (S3). On the other hand, in the judgment of step S3, if the imbalance power P U is not positive is the imbalance power P U is equal to or negative (S4), imbalance power P U is negative In this case, it is determined that the load between the bc phases (second system) is larger than the load between the ab phases (first system) (S6). Thereby, the magnitude of the load of the 1st system and the 2nd system which are 100V systems can be detected also at the time of steady state.

[3]コンセント所属系の特定
次に、判定手段24は、コンセントに接続された負荷のオン/オフ時の不平衡電力変動分ΔPの正負に基いて、そのコンセントが属する所属系統を特定する。図6は、判定手段24でのコンセントが属する所属系統を特定するための判定処理内容を示すフローチャートである。図6に示すように、第1系統か第2系統かが不明であるコンセントに負荷を接続する(S1)。そして、コンセントに接続した負荷をオンオフする(S2)。コンセントに接続された負荷のオンオフにより、全電力変動分ΔPおよび不平衡電力変動分ΔPが変動するので、その変動を監視して、そのコンセントが属する所属系統を特定することになる。
[3] Identification of outlet affiliated system Next, the determination unit 24 identifies the affiliated system to which the outlet belongs based on the positive / negative of the unbalanced power fluctuation ΔP U when the load connected to the outlet is turned on / off. . FIG. 6 is a flowchart showing the contents of determination processing for identifying the affiliation system to which the outlet belongs in the determination means 24. As shown in FIG. 6, a load is connected to an outlet where the first system or the second system is unknown (S1). Then, the load connected to the outlet is turned on / off (S2). Since the total power fluctuation ΔP T and the unbalanced power fluctuation ΔP U fluctuate due to the on / off of the load connected to the outlet, the fluctuation is monitored and the belonging system to which the outlet belongs is specified.

すなわち、全電力変動分ΔPおよび不平衡電力変動分ΔPを入力し(S3)、全電力変動分ΔPが正であるか否かを判定する(S4)。全電力変動分ΔPが正であるときは、さらに不平衡電力変動分ΔPが正であるか否かを判定し(S5)、不平衡電力変動分ΔPが正であるときは、負荷が接続されたコンセントは、ab相間(第1系統)に属すると判定する(S6)。一方、ステップS5の判定で、不平衡電力変動分ΔPが正でないときは、不平衡電力変動分ΔPが負であるか否かを判定し(S7)、不平衡電力変動分ΔPが負であるときは、負荷が接続されたコンセントは、bc相間(第2系統)に属すると判定する(S8)。 That is, the total power fluctuation ΔP T and the unbalanced power fluctuation ΔP U are input (S3), and it is determined whether or not the total power fluctuation ΔP T is positive (S4). When full power variation [Delta] P T is positive, it is determined whether further imbalance power fluctuation [Delta] P U is positive (S5), when the imbalance power fluctuation [Delta] P U is positive, the load Is determined to belong to the ab phase (first system) (S6). On the other hand, the determination in step S5, when the imbalance power fluctuation [Delta] P U is not positive, the imbalance power fluctuation [Delta] P U is equal to or negative (S7), the imbalance power fluctuation [Delta] P U When it is negative, it is determined that the outlet connected to the load belongs to the bc phase (second system) (S8).

このように、全電力変動分ΔPが正であることから負荷投入されたと判断でき、さらに第1系統電力Pabが第2系統電力Pbcより大きいときに不平衡電力Pが正となるように定めているので、不平衡電力変動分ΔPが正のときは第1系統に負荷投入されたと判定でき、不平衡電力変動分ΔPが負のときは第2系統に負荷投入されたと判定できる。 Thus, it can be determined that the total power variation [Delta] P T is load application since it is positive, as further first system power Pab is the imbalance power P U is positive when greater than the second grid power Pbc Therefore, when the unbalanced power fluctuation ΔP U is positive, it can be determined that the load is applied to the first system, and when the unbalanced power fluctuation ΔP U is negative, it can be determined that the load is applied to the second system. .

次に、ステップS4の判定で、全電力変動分ΔPが正でないときは、不平衡電力変動分ΔPが負であるか否かを判定し(S9)、不平衡電力変動分ΔPが負であるときは、ab相間(第1系統)の負荷開放であると判定する(S10)。また、不平衡電力変動分ΔPが負でないときは、不平衡電力変動分ΔPが正であるか否かを判定し(S11)、不平衡電力変動分ΔPが正であるときは、bc相間(第2系統)の負荷開放であると判定する(S12)。 Next, if it is determined in step S4 that the total power fluctuation ΔP T is not positive, it is determined whether or not the unbalanced power fluctuation ΔP U is negative (S9), and the unbalanced power fluctuation ΔP U is determined. When it is negative, it is determined that the load between the ab phases (first system) is released (S10). Further, when the imbalance power fluctuation [Delta] P U is not negative, the imbalance power fluctuation [Delta] P U is determined whether is positive (S11), when the imbalance power fluctuation [Delta] P U is positive, It is determined that the load between the bc phases (second system) is released (S12).

この場合は、全電力変動分ΔPが負であることから負荷開放されたと判断でき、さらに第1系統電力Pabが第2系統電力Pbcより大きいときに不平衡電力Pが正となるように定めているので、不平衡電力変動分ΔPが負のときは第1系統で負荷開放されたと判定でき、不平衡電力変動分ΔPが正のときは第2系統で負荷開放されたと判定できる。 In this case, it can be determined that the total power variation [Delta] P T is load open because it is negative, as further first system power Pab is the imbalance power P U is positive when greater than the second grid power Pbc Therefore, when the unbalanced power fluctuation amount ΔP U is negative, it can be determined that the load is released in the first system, and when the unbalanced power fluctuation amount ΔP U is positive, it can be determined that the load is released in the second system. .

従って、100V系の電源コンセントが第1系統(ab相間)なのか第2系統(bc相間)なのかを知ることができるので、実際の負荷不平衡状態の改善に役立つ。すなわち、当該コンセントに接続する負荷のオンオフによりいずれの系統に属するかを判定できる。   Therefore, it is possible to know whether the 100V system power outlet is the first system (between the ab phases) or the second system (between the bc phases), which is useful for improving the actual load unbalance state. In other words, it is possible to determine which system belongs to an on / off load connected to the outlet.

本発明の実施の形態に係わる単相三線式の状態判定装置のブロック構成図。The block block diagram of the single-phase three-wire-type state determination apparatus concerning embodiment of this invention. 本発明の実施の形態における判定手段での電圧変動原因の判定処理内容を示すフローチャート。The flowchart which shows the determination processing content of the voltage fluctuation cause in the determination means in embodiment of this invention. 本発明の実施の形態における判定手段での電圧変動原因が200V系か100V系かの判定処理内容を示すフローチャート。The flowchart which shows the determination processing content whether the voltage fluctuation cause in the determination means in embodiment of this invention is a 200V type | system | group or a 100V type | system | group. 本発明の実施の形態における判定手段での100V系の負荷の投入/開放の判定処理内容を示すフローチャート。The flowchart which shows the determination processing content of the input / release of a 100V type | system | group load in the determination means in embodiment of this invention. 本発明の実施の形態における判定手段での定常時の負荷状態の判定処理内容を示すフローチャート。The flowchart which shows the determination processing content of the load state at the time of the steady state in the determination means in embodiment of this invention. 本発明の実施の形態における判定手段でのコンセントが属する所属系統を特定するための判定処理内容を示すフローチャート。The flowchart which shows the determination processing content for specifying the affiliation system to which the outlet in the determination means in embodiment of this invention belongs.

符号の説明Explanation of symbols

11…状態判定装置、12…電圧線、13…中性線、14…単相電圧電源、15…電流検出器、16…電圧検出器、17…AD変換器、18…記憶装置、19…演算制御装置、20…系統毎電力演算手段、21…全電力演算手段、22…不平衡電力演算手段、23…全電力変動分演算手段、24…判定手段、25…不平衡電力変動分演算手段、26…瞬時電圧変動検出手段、27…出力装置 DESCRIPTION OF SYMBOLS 11 ... State determination apparatus, 12 ... Voltage line, 13 ... Neutral line, 14 ... Single phase voltage power supply, 15 ... Current detector, 16 ... Voltage detector, 17 ... AD converter, 18 ... Memory | storage device, 19 ... Calculation Control device, 20: System power calculation means, 21: Total power calculation means, 22 ... Unbalanced power calculation means, 23 ... Total power fluctuation calculation means, 24 ... Determination means, 25 ... Unbalance power fluctuation calculation means, 26 ... Instantaneous voltage fluctuation detecting means, 27 ... Output device

Claims (6)

単相三線式の2つの電圧線のうちの一方の電圧線と中性線との間および他方の電圧線と中性線との間にそれぞれ注入される電力を演算する系統毎電力演算手段と、
前記系統毎電力演算手段で演算された両系統の電力の和を前記単相三線式に注入される全電力として演算する全電力演算手段と、
前記系統毎電力演算手段で演算された両系統の電力の差を前記単相三線式の2つの電圧線の不平衡電力として演算する不平衡電力演算手段と、
前記全電力演算手段で得られた全電力の変動分を演算する全電力変動分演算手段と、
前記不平衡電力演算手段で得られた不平衡電力の変動分を演算する不平衡電力変動分演算手段と、
前記全電力変動分演算手段で得られた全電力変動分および前記不平衡電力変動分演算手段で得られた不平衡電力変動分に基いて単相三線式の電圧変動原因を判定する判定手段とを備えたことを特徴とする単相三線式の状態判定装置。
A system-by-system power calculation means for calculating power injected between one voltage line and a neutral line of the two voltage lines of the single-phase three-wire system and between the other voltage line and the neutral line; ,
Total power calculation means for calculating the sum of the powers of both systems calculated by the system power calculation means as the total power injected into the single-phase three-wire system,
Unbalanced power computing means for computing the power difference between the two systems computed by the system power computing means as unbalanced power of the two voltage lines of the single-phase three-wire system,
A total power fluctuation calculating means for calculating a fluctuation of the total power obtained by the total power calculating means;
Unbalanced power fluctuation calculating means for calculating the fluctuation of the unbalanced power obtained by the unbalanced power calculating means;
Determining means for determining a single-phase three-wire voltage fluctuation cause based on the total power fluctuation obtained by the total power fluctuation computing means and the unbalanced power fluctuation obtained by the unbalanced power fluctuation computing means; A single-phase, three-wire state determination device characterized by comprising:
前記判定手段は、前記全電力変動分が負であるときは瞬時電圧変動の原因は負荷開放であると判定し、前記全電力変動分が正であるときは瞬時電圧変動の原因は負荷投入であると判定することを特徴とする請求項1記載の単相三線式の状態判定装置。   The determination means determines that the cause of the instantaneous voltage fluctuation is an open load when the total power fluctuation is negative, and the cause of the instantaneous voltage fluctuation is a load input when the total power fluctuation is positive. The single-phase three-wire state determination device according to claim 1, wherein the state determination device is determined to be present. 前記判定手段は、前記全電力変動分の絶対値が不平衡電力変動分の絶対値より大きいときは、瞬時電圧変動の原因は2つの電圧線間の200V系の負荷変動であると判定し、全電力変動分の絶対値と不平衡電力変動分の絶対値とがほぼ等しいときは、瞬時電圧変動の原因は各々の電圧線と中性線との間の100V系の負荷変動であると判定することを特徴とする請求項1または2記載の単相三線式の状態判定装置。   When the absolute value of the total power fluctuation is larger than the absolute value of the unbalanced power fluctuation, the determination unit determines that the cause of the instantaneous voltage fluctuation is a 200 V load fluctuation between two voltage lines, When the absolute value of the total power fluctuation and the absolute value of the unbalanced power fluctuation are approximately equal, it is determined that the cause of the instantaneous voltage fluctuation is a 100V load fluctuation between each voltage line and the neutral line. The single-phase three-wire state determination apparatus according to claim 1 or 2, wherein 前記判定手段は、各々の電圧線と中性線との間の100V系の負荷変動が発生したとき、全電力変動分の正負により変動原因が負荷投入か負荷開放かを判定するとともに、不平衡電力変動分の正負により変動負荷の属する100V系を特定することを特徴とする請求項1ないし請求項3のいずれか一記載の単相三線式の状態判定装置。   The determination means determines whether the cause of the change is a load on or a load release based on the positive / negative of the total power fluctuation when a 100V load fluctuation occurs between each voltage line and the neutral line. The single-phase three-wire state determination device according to any one of claims 1 to 3, wherein a 100V system to which a fluctuating load belongs is specified based on whether the power fluctuation is positive or negative. 前記判定手段は、コンセントに接続された負荷のオン/オフ時の不平衡電力変動分の正負に基いて、そのコンセントが属する所属系統を特定することを特徴とする請求項1ないし4のいずれか一記載の単相三線式の状態判定装置。   5. The system according to claim 1, wherein the determination unit specifies a system to which the outlet belongs, based on whether the unbalanced power fluctuation at the time of turning on / off the load connected to the outlet is positive or negative. The single-phase three-wire state determination device according to one. 単相三線式の2つの電圧線のうちの一方の電圧線と中性線との間および他方の電圧線と中性線との間にそれぞれ注入される電力を演算し、
演算された両系統の電力の和を前記単相三線式に注入される全電力として求め、
演算された両系統の電力の差を前記単相三線式の2つの電圧線の不平衡電力として求め、
前記全電力の変動分と前記不平衡電力の変動分とに基いて前記単相三線式の電圧変動原因、負荷状態またはコンセント所属系統を判定することを特徴とする単相三線式の状態判定方法。
Calculating the electric power injected between one of the two voltage lines of the single-phase three-wire system and the neutral line and between the other voltage line and the neutral line;
Calculate the sum of the calculated power of both systems as the total power injected into the single-phase three-wire system,
The difference between the calculated powers of both systems is determined as the unbalanced power of the two voltage lines of the single-phase three-wire system,
A single-phase three-wire state determination method, wherein the single-phase three-wire voltage fluctuation cause, load state, or outlet affiliation system is determined based on the total power fluctuation and the unbalanced power fluctuation .
JP2005208114A 2005-07-19 2005-07-19 State deteminator in single-phase three-wire system and method therewith Pending JP2007028813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208114A JP2007028813A (en) 2005-07-19 2005-07-19 State deteminator in single-phase three-wire system and method therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208114A JP2007028813A (en) 2005-07-19 2005-07-19 State deteminator in single-phase three-wire system and method therewith

Publications (1)

Publication Number Publication Date
JP2007028813A true JP2007028813A (en) 2007-02-01

Family

ID=37788836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208114A Pending JP2007028813A (en) 2005-07-19 2005-07-19 State deteminator in single-phase three-wire system and method therewith

Country Status (1)

Country Link
JP (1) JP2007028813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029402A (en) * 2013-07-30 2015-02-12 財團法人工業技術研究院 Electric apparatus identification method, device and system
JP2020048305A (en) * 2018-09-18 2020-03-26 日本電気株式会社 Derivation device, derivation method, and derivation program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280654A (en) * 1986-05-29 1987-12-05 I Raiteingu Syst:Kk Power detecting circuit
JP2004340852A (en) * 2003-05-19 2004-12-02 Central Res Inst Of Electric Power Ind Operation state estimating method of electrical equipment and monitoring system of electric equipment
JP2005137070A (en) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc System linkage inverter and power source system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280654A (en) * 1986-05-29 1987-12-05 I Raiteingu Syst:Kk Power detecting circuit
JP2004340852A (en) * 2003-05-19 2004-12-02 Central Res Inst Of Electric Power Ind Operation state estimating method of electrical equipment and monitoring system of electric equipment
JP2005137070A (en) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc System linkage inverter and power source system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029402A (en) * 2013-07-30 2015-02-12 財團法人工業技術研究院 Electric apparatus identification method, device and system
US9733286B2 (en) 2013-07-30 2017-08-15 Industrial Technology Research Institute Method for identifying electric appliance and apparatus and system thereof
JP2020048305A (en) * 2018-09-18 2020-03-26 日本電気株式会社 Derivation device, derivation method, and derivation program
JP7206731B2 (en) 2018-09-18 2023-01-18 日本電気株式会社 Derivation device, derivation method and derivation program

Similar Documents

Publication Publication Date Title
CN107431441B (en) Method for detecting failure rectifier or rectifier source in UPS
CN104364988A (en) Method for identifying fault by current differential protection and device thereof
EP3028366B1 (en) Uninterruptible power supply control
CN106329474A (en) Protection device and method of operating same, computer program product, and electrical installation
JP6419977B2 (en) Voltage fluctuation suppressing apparatus and method
CN109298354B (en) Method and device for detecting fault of zero line input of uninterruptible power supply
US20120057377A1 (en) Uninterruptible power supply with a dual gain voltage regulator controlling an inverter output voltage based on active and reactive components of current
JP2010016990A (en) Electric power supply system and control method therefor
JP2007028813A (en) State deteminator in single-phase three-wire system and method therewith
WO2022038792A1 (en) Connected dc power distribution system, electric power conditioning method, and program
JP2003116225A (en) Distributed power supply system
CN115549132A (en) Current adjusting method and device and electronic equipment
JP2004023922A (en) Voltage compensating circuit for parallelly operated inverter
CN108242899A (en) For controlling the method for inverter
CN109690932A (en) Power supply device
JP7358007B2 (en) Vehicle charging system
JP2003061248A (en) Power supply system change-over mechanism
JP6459923B2 (en) Power storage system, control device, operation method
JP6407691B2 (en) Power converter
CN113381413B (en) AC-DC hybrid micro-grid power coordination control method and device
JP3408966B2 (en) Power command device and power command method
JP2015508498A (en) Method and system for estimating discharge capacity of electrical energy storage device
US20240030741A1 (en) Systems and Methods for Self-Learning of Transformer Inrush Characteristics to Optimize Transfer Times in Static Transfer Switch
JP3662443B2 (en) System stabilization device
JP7257887B2 (en) power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406