JP2007026716A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2007026716A
JP2007026716A JP2005203199A JP2005203199A JP2007026716A JP 2007026716 A JP2007026716 A JP 2007026716A JP 2005203199 A JP2005203199 A JP 2005203199A JP 2005203199 A JP2005203199 A JP 2005203199A JP 2007026716 A JP2007026716 A JP 2007026716A
Authority
JP
Japan
Prior art keywords
positive electrode
thickness
opening
less
alkaline dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203199A
Other languages
Japanese (ja)
Inventor
Seiichi Hikata
誠一 日方
Natsuki Toyoda
夏樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2005203199A priority Critical patent/JP2007026716A/en
Publication of JP2007026716A publication Critical patent/JP2007026716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline dry cell in which fall-off of a sealing body is prevented when a short circuit or a trouble in charge or the like occurs and which is superior in high-rate characteristics. <P>SOLUTION: The alkaline dry cell is equipped with a bottomed and cylindrical positive electrode can 1 with a thickness of its trunk part 6 of 0.185 mm or more and 0.215 mm or less and with a thickness of its opening part 5 of 1.1 times or more and 1.85 times or less of the thickness of the trunk part 6, a bag-shaped separator 11 arranged in the positive electrode can 1, a gelatinous negative electrode 15 filled into the separator 11, a positive electrode mixture 10 which is arranged between the inner peripheral face of the positive electrode can 1 and the separator 11 and which contains nickel oxyhydroxide, and the sealing body arranged at the opening part 5 of the positive electrode can 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルカリ乾電池に関するものである。   The present invention relates to an alkaline battery.

ノート型パソコン、CDプレーヤー、MDプレーヤー、液晶テレビ等の携帯用AV機器、携帯電話などのように超重負荷あるいは重負荷の用途が最近のアルカリ乾電池に要求されてきている。そのため、かつての電池に比較して容量的な増量が図られてきている。例えばアルカリ乾電池においては、正極合剤中の正極作用物質含有率の増加、負極ゲル中の負極作用物質量の増加および正極缶基材厚の薄肉化などが図られている。このため、万が一、電池に短絡等の不具合が生じたときの影響(例えば、発熱、ガス発生)も容量の増加に伴い、かなりのものとなり、従来の均一な厚みの正極缶ではこのような不具合が起こったときに、封口性を維持するのが難しくなってきている。   The use of ultra-heavy loads or heavy loads such as notebook personal computers, CD players, MD players, portable AV equipment such as liquid crystal televisions, and mobile phones has been required for recent alkaline batteries. For this reason, a capacity increase has been attempted as compared with the former battery. For example, in an alkaline battery, an increase in the content of a positive electrode active substance in the positive electrode mixture, an increase in the amount of the negative electrode active substance in the negative electrode gel, and a reduction in the thickness of the positive electrode can base material have been attempted. For this reason, in the unlikely event that a failure such as a short circuit occurs in the battery (for example, heat generation and gas generation), the capacity increases, and the conventional positive electrode can with a uniform thickness causes such a failure. When this happens, it is becoming difficult to maintain the sealing properties.

アルカリ乾電池では短絡によりガス発生が生じた際に樹脂製封口体に付属している安全弁が作動して安全性が確保される仕組みになっている。しかしながら、近年、需要が伸びている重負荷特性対応の電池では、不具合が起こった時のガス発生速度が早く、稀に弁作動より前に封口体が抜けることがある。   In the alkaline battery, when gas is generated due to a short circuit, a safety valve attached to the resin sealing body is activated to ensure safety. However, in recent years, batteries for heavy load characteristics, for which demand is increasing, have a high gas generation rate when a malfunction occurs, and the sealing body may occasionally come off before valve operation.

特許文献1には、電池の内容積を増加させ、かつ急激な温度変化による封口体樹脂の膨張・収縮による漏液を防止するために、胴部の厚さが0.18mm未満で、かつ封口部分の厚さが胴部分の厚さの1.4倍以上であるキルド鋼板製外装缶を使用することが記載されている。   In Patent Document 1, in order to increase the internal volume of a battery and prevent leakage due to expansion and contraction of the sealing body resin due to a rapid temperature change, the thickness of the body portion is less than 0.18 mm, and the sealing It is described that the outer can made of a killed steel plate whose thickness is 1.4 times or more of the thickness of the body portion is described.

しかしながら、特許文献1の外装缶では、ガス発生時に封口体が抜ける問題を解消することができなかった。   However, the outer can of Patent Document 1 cannot solve the problem that the sealing body comes off when gas is generated.

特許文献2には、金属ケースの基材がニッケルメッキ又はニッケル合金メッキ(Ni−Co,Ni−Ag)が施されたもので、金属ケースの開口部の厚さが基材の厚さを超えてこの基材の厚さの120%以下で、金属ケースの胴部の厚さが基材の厚さの60%〜100%であり、金属ケースのビッカース硬度を特定の範囲内に規定することによって、封口強度を向上させることが記載されている。
特開2002−151017号公報 特開平9−312150号公報
In Patent Document 2, the base material of the metal case is plated with nickel or nickel alloy (Ni—Co, Ni—Ag), and the thickness of the opening of the metal case exceeds the thickness of the base material. The thickness of the base of the metal case is 120% or less, the thickness of the body of the metal case is 60% to 100% of the thickness of the base, and the Vickers hardness of the metal case is specified within a specific range. Describes improving the sealing strength.
JP 2002-151017 A JP-A-9-312150

本発明は、短絡や充電等の不具合発生時の封口体の抜けが防止され、かつ重負荷特性に優れるアルカリ乾電池を提供することを目的とする。   An object of the present invention is to provide an alkaline dry battery that prevents the sealing body from coming off when a malfunction such as a short circuit or charging occurs and is excellent in heavy load characteristics.

本発明に係るアルカリ乾電池は、胴部の厚さが0.185mm以上、0.215mm以下で、かつ開口部の厚さが胴部の厚さの1.1倍以上、1.85倍以下である有底円筒形の正極缶と、
前記正極缶内に配置された袋状のセパレータと、
前記セパレータ内に充填されたゲル状負極と、
前記正極缶の内周面と前記セパレータの間に配置され、オキシ水酸化ニッケルを含有する正極合剤と、
前記正極缶の前記開口部に配置された封口体と
を具備することを特徴とするものである。
The alkaline dry battery according to the present invention has a body thickness of 0.185 mm or more and 0.215 mm or less, and an opening thickness of 1.1 times or more and 1.85 times or less of the thickness of the body part. A bottomed cylindrical positive electrode can,
A bag-shaped separator disposed in the positive electrode can;
A gelled negative electrode filled in the separator;
A positive electrode mixture that is disposed between the inner peripheral surface of the positive electrode can and the separator, and contains nickel oxyhydroxide,
And a sealing body disposed in the opening of the positive electrode can.

本発明によれば、短絡や充電等の不具合発生時の封口体の抜けが防止され、かつ重負荷特性に優れるアルカリ乾電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline dry battery which is prevented from detaching | sealing of the sealing body at the time of malfunctions, such as a short circuit and charge, and is excellent in a heavy load characteristic can be provided.

本発明に係るアルカリ乾電池は、胴部の厚さが0.185mm以上、0.215mm以下で、かつ開口部の厚さが胴部の厚さの1.1倍以上、1.85倍以下である有底円筒形の正極缶を備えるものである。   The alkaline dry battery according to the present invention has a body thickness of 0.185 mm or more and 0.215 mm or less, and an opening thickness of 1.1 times or more and 1.85 times or less of the thickness of the body part. A certain bottomed cylindrical positive electrode can is provided.

正極作用物質としてオキシ水酸化ニッケルを使用した正極を備えたアルカリ乾電池では、重負荷特性に優れる反面、短絡や充電等により流れる大電流での発熱量及びガス発生量が多くなることから、開口部が変形しやすく、封口体の抜けが生じやすい。   Alkaline batteries equipped with a positive electrode using nickel oxyhydroxide as the positive electrode active substance have excellent heavy load characteristics, but on the other hand, the amount of heat generated and the amount of gas generated by a large current flowing due to short circuit or charging increase. Is easily deformed, and the sealing body is easily removed.

上記正極缶によると、これを作製する際の座屈変形を抑えつつ、開口部の耐圧強度を向上することができる。その結果、オキシ水酸化ニッケルに起因する急激なガス発生の際にも開口部の変形を抑えることができ、封口体の抜けを防止することができる。従って、重負荷特性及び封口性に優れたアルカリ乾電池を実現することができる。   According to the positive electrode can, it is possible to improve the pressure strength of the opening while suppressing buckling deformation at the time of manufacturing the positive electrode can. As a result, it is possible to suppress the deformation of the opening even during a sudden gas generation caused by nickel oxyhydroxide, and to prevent the sealing body from coming off. Therefore, it is possible to realize an alkaline battery excellent in heavy load characteristics and sealing properties.

正極缶の開口部と胴部については、開口端からビード部までが開口部で、ビード部から底面までが胴部である。胴部の厚さを0.185mm未満にすると、正極缶を作製する際に座屈変形が生じやすくなり、また、ガス発生時の封口体の抜けも増加する。一方、胴部の厚さが0.215mmを超えると、高容量を得られなくなる。   About the opening part and trunk | drum of a positive electrode can, the part from an opening end to a bead part is an opening part, and a part from a bead part to a bottom face is a trunk | drum. When the thickness of the body portion is less than 0.185 mm, buckling deformation is likely to occur when producing the positive electrode can, and the omission of the sealing body at the time of gas generation increases. On the other hand, when the thickness of the body exceeds 0.215 mm, a high capacity cannot be obtained.

開口部の厚さを胴部厚さの1.1倍未満にすると、正極缶を作製する際の座屈変形が多くなり、また、ガス発生時の封口体の抜けも増加する。一方、1.85倍を超えると、正極缶を作製する際の座屈変形が多くなる。より好ましい範囲は、1.1倍以上、1.4倍以下である。   When the thickness of the opening is less than 1.1 times the thickness of the body, the buckling deformation at the time of producing the positive electrode can increases, and the omission of the sealing body at the time of gas generation also increases. On the other hand, when it exceeds 1.85 times, buckling deformation at the time of producing a positive electrode can increases. A more preferable range is 1.1 times or more and 1.4 times or less.

胴部の厚さ及び開口部の厚さについては、胴部と開口部それぞれにおいて任意の3箇所の厚さを測定し、その平均値とする。   As for the thickness of the trunk and the thickness of the opening, the thicknesses of three arbitrary positions are measured in the trunk and the opening, respectively, and the average values are obtained.

正極缶を構成する基材は鋼板であり、基材の表面にNi層もしくはNi合金層が形成されていることが望ましい。ガス発生量を低減する観点から、NiFe含有合金層が好ましい。NiFe含有合金層の形成は、絞り加工の前でも絞り加工の後でも良いが、合金層を均一に形成するため、絞り加工の前に行うことが望ましい。正極缶の好ましい作製方法として、鋼板の両面にニッケルメッキ後、熱処理をすることにより鋼板のFe成分とニッケルメッキ層とを反応させてNi−Fe合金メッキ層を形成した後、絞り加工を施す製法が挙げられる。   The base material constituting the positive electrode can is a steel plate, and it is desirable that a Ni layer or a Ni alloy layer be formed on the surface of the base material. From the viewpoint of reducing the amount of gas generated, a NiFe-containing alloy layer is preferable. The NiFe-containing alloy layer may be formed before drawing or after drawing, but it is desirable to perform the drawing before drawing in order to uniformly form the alloy layer. As a preferred method for producing a positive electrode can, after nickel plating on both surfaces of a steel plate, a heat treatment is performed to react the Fe component of the steel plate with a nickel plating layer to form a Ni-Fe alloy plating layer, followed by drawing. Is mentioned.

NiFe含有合金層は、NiとFeの二成分からなる合金から形成されていても、NiとFe以外の他の元素(例えばCo、Agなど)を含む三成分以上の合金から形成されていても良い。基材との密着性を良好にするためには、NiとFeの二成分からなる合金層であることが望ましい。   The NiFe-containing alloy layer may be formed of an alloy composed of two components of Ni and Fe, or may be formed of an alloy of three or more components containing elements other than Ni and Fe (for example, Co, Ag, etc.). good. In order to improve the adhesion to the substrate, an alloy layer composed of two components of Ni and Fe is desirable.

以下、正極合剤、ゲル状負極及びセパレータについて説明する。   Hereinafter, the positive electrode mixture, the gelled negative electrode, and the separator will be described.

1)正極合剤
正極合剤は、正極作用物質としてオキシ水酸化ニッケルを含むもので、必要に応じて導電剤及び結着剤を含有させることができる。正極作用物質としては、オキシ水酸化ニッケルのみを使用しても良いが、高容量を得るためには二酸化マンガンを併用することが望ましい。オキシ水酸化ニッケルと二酸化マンガンの混合物を使用する場合、正極作用物質中のオキシ水酸化ニッケルの含有率は40重量%以上、100重量%以下にすることが望ましい。一方、導電剤としては、例えば、黒鉛のような炭素材料等を挙げることができる。高容量化のために正極合剤中の炭素材料含有率は3〜10重量%にすることが好ましい。
1) Positive electrode mixture The positive electrode mixture contains nickel oxyhydroxide as a positive electrode active substance, and can contain a conductive agent and a binder as necessary. As the positive electrode active substance, only nickel oxyhydroxide may be used, but in order to obtain a high capacity, it is desirable to use manganese dioxide in combination. When a mixture of nickel oxyhydroxide and manganese dioxide is used, the content of nickel oxyhydroxide in the positive electrode active material is preferably 40% by weight or more and 100% by weight or less. On the other hand, examples of the conductive agent include carbon materials such as graphite. In order to increase the capacity, the carbon material content in the positive electrode mixture is preferably 3 to 10% by weight.

2)ゲル状負極
ゲル状負極には、例えば、無汞化亜鉛合金粉末、アルカリ電解液及びゲル化剤(例えばポリアクリル酸)を含むゲル状亜鉛負極を使用することができる。
2) Gelled negative electrode For the gelled negative electrode, for example, a gelled zinc negative electrode containing a non-catalyzed zinc alloy powder, an alkaline electrolyte and a gelling agent (for example, polyacrylic acid) can be used.

3)セパレータ
セパレータとしては、例えば、不織布などの絶縁性の多孔質シートを挙げることができる。セパレータは、親水性を有する材料から形成されていることが好ましい。
3) Separator Examples of the separator include an insulating porous sheet such as a nonwoven fabric. The separator is preferably formed from a hydrophilic material.

本発明のアルカリ乾電池の一実施形態を図1を参照して説明する。   An embodiment of the alkaline dry battery of the present invention will be described with reference to FIG.

正極缶(正極容器)1は、有底円筒状で、底面が外側に凸状に張り出しており、この凸部は正極端子2として機能する。また、正極缶1の開口端付近には、内方に突出した段差3(ビード部)が設けられている。正極缶1においては、開口端4からビード部3までが開口部5で、ビード部3から底面の正極端子2までが胴部6である。正極缶1を形成している板材7は、図2に示すように、鋼板からなる基材8と、基材8の内面側に形成されたメッキ層9aと、基材8の表面側に形成されたメッキ層9bとを備える。この正極缶1の胴部6の厚さは0.185mm以上、0.215mm以下で、かつ開口部5の厚さが胴部6の厚さの1.1倍以上、1.85倍以下である。   The positive electrode can (positive electrode container) 1 has a bottomed cylindrical shape, and the bottom surface protrudes outwardly, and this convex portion functions as the positive electrode terminal 2. Further, a step 3 (bead portion) protruding inward is provided near the open end of the positive electrode can 1. In the positive electrode can 1, the opening 5 is from the opening end 4 to the bead portion 3, and the body 6 is from the bead 3 to the positive electrode terminal 2 on the bottom surface. As shown in FIG. 2, the plate material 7 forming the positive electrode can 1 is formed on the base material 8 made of a steel plate, the plating layer 9 a formed on the inner surface side of the base material 8, and the surface side of the base material 8. A plated layer 9b. The thickness of the body 6 of the positive electrode can 1 is 0.185 mm or more and 0.215 mm or less, and the thickness of the opening 5 is 1.1 times or more and 1.85 times or less of the thickness of the body 6. is there.

正極缶1の胴部6のメッキ層9aには、黒鉛粉末を主成分とする導電性被膜(図示しない)が形成されている。   A conductive film (not shown) mainly composed of graphite powder is formed on the plating layer 9 a of the body 6 of the positive electrode can 1.

円筒形状の正極合剤10は、正極缶1内に収納され、その外周面が正極缶1の内面の導電性被膜と接している。正極合剤10は、例えば、オキシ水酸化ニッケルを含む正極作用物質と導電剤を混合し、これを成形型を用いて所定の圧力で中空円筒状に加圧成形することにより得られる。有底円筒状のセパレータ11は、正極合剤10の内周面と接している。   The cylindrical positive electrode mixture 10 is accommodated in the positive electrode can 1, and the outer peripheral surface thereof is in contact with the conductive coating on the inner surface of the positive electrode can 1. The positive electrode mixture 10 can be obtained, for example, by mixing a positive electrode active substance containing nickel oxyhydroxide and a conductive agent, and pressing the mixture into a hollow cylinder with a predetermined pressure using a molding die. The bottomed cylindrical separator 11 is in contact with the inner peripheral surface of the positive electrode mixture 10.

正極缶1の開口部5には封口体が配置されている。封口体は、二重環状構造の絶縁ガスケット12と、負極端子板13とを備えている。絶縁ガスケット12は、正極缶1内にセパレータ11の開口部を塞ぐように配置されている。絶縁ガスケット12の外周面は、正極缶1の開口部5及びビード部3の内面と接している。絶縁ガスケット12は、例えばナイロン6,6のようなポリアミド樹脂から形成されている。負極端子板13は、正極缶1の開口部に絶縁ガスケット12を介してカシメ固定されている。負極端子板13は、例えば、ニッケルメッキまたはニッケル合金メッキ層を形成した冷間圧延鋼板材のような金属から形成することが可能である。金属製ワッシャー14は、絶縁ガスケット12の二重環状部の間に介在されている。   A sealing body is disposed in the opening 5 of the positive electrode can 1. The sealing body includes a double annular insulating gasket 12 and a negative terminal plate 13. The insulating gasket 12 is disposed in the positive electrode can 1 so as to close the opening of the separator 11. The outer peripheral surface of the insulating gasket 12 is in contact with the opening 5 of the positive electrode can 1 and the inner surface of the bead portion 3. The insulating gasket 12 is made of a polyamide resin such as nylon 6 or 6, for example. The negative terminal plate 13 is caulked and fixed to the opening of the positive electrode can 1 via an insulating gasket 12. The negative electrode terminal plate 13 can be formed of a metal such as a cold rolled steel plate material on which a nickel plating or nickel alloy plating layer is formed. The metal washer 14 is interposed between the double annular portions of the insulating gasket 12.

ゲル状負極15は、セパレータ11内に充填されている。例えば真鍮製の負極集電棒16は、負極端子板13の内面に固定され、絶縁ガスケット12を貫通し、先端部がゲル状負極15中に挿入されている。   The gelled negative electrode 15 is filled in the separator 11. For example, the negative electrode current collector rod 16 made of brass is fixed to the inner surface of the negative electrode terminal plate 13, penetrates through the insulating gasket 12, and the tip is inserted into the gelled negative electrode 15.

[実施例]
以下、本発明の実施例について詳細に説明する。
[Example]
Examples of the present invention will be described in detail below.

(実施例1)
冷間圧延鋼板材の両面にニッケルメッキを施した後、熱処理を施すことによりNi−Fe合金メッキ層を形成した。得られた板材に絞り加工を施すことにより、胴部の厚さが0.185mmで、開口部の厚さが胴部厚の1.25倍である有底円筒形状の正極缶を作製した。
Example 1
After performing nickel plating on both surfaces of the cold rolled steel sheet material, a Ni—Fe alloy plating layer was formed by heat treatment. By subjecting the obtained plate material to a drawing process, a bottomed cylindrical positive electrode can having a body thickness of 0.185 mm and an opening thickness of 1.25 times the body thickness was produced.

この正極缶の内面に開口部のガスケットと接する部分を除いて黒鉛粉末を主成分とする導電性被膜を形成した。導電性被膜の塗布方法は、黒鉛粉末を主成分とする導電性塗料をメチルエチルケトン等の低沸点有機溶剤にて希釈し、スプレーガンによって霧状に正極缶内面に塗布することによって行ない、正極缶開口部のガスケットに接する部分には塗布しないようにした。導電塗料をスプレーガンにて塗布した後、乾燥機にて溶剤を蒸発させた。残った導電膜の厚さは1〜10μm程度が望ましい。   A conductive film mainly composed of graphite powder was formed on the inner surface of the positive electrode can except for the portion in contact with the gasket of the opening. The conductive coating is applied by diluting a conductive paint mainly composed of graphite powder with a low-boiling organic solvent such as methyl ethyl ketone, and spraying it on the inner surface of the positive electrode can with a spray gun. It was made not to apply to the part which touches the gasket of the part. After applying the conductive paint with a spray gun, the solvent was evaporated with a dryer. The thickness of the remaining conductive film is preferably about 1 to 10 μm.

二酸化マンガン粉末40重量%とオキシ水酸化ニッケル粉末60重量%とからなる正極作用物質に正極合剤中の含有量が7重量%となるように黒鉛粉末を混合し、これを成形型を用いて所定の圧力で中空円筒状に加圧成形することにより正極合剤を得た。   Graphite powder is mixed with a positive electrode active material composed of 40% by weight of manganese dioxide powder and 60% by weight of nickel oxyhydroxide powder so that the content in the positive electrode mixture is 7% by weight, and this is mixed with a mold. A positive electrode mixture was obtained by pressure forming into a hollow cylindrical shape at a predetermined pressure.

ビニロン及びポリビニルアルコール(PVA)繊維の不織布からなる有底円筒形状のセパレータを用意した。   A bottomed cylindrical separator made of a nonwoven fabric of vinylon and polyvinyl alcohol (PVA) fibers was prepared.

無汞化亜鉛合金粉末、アルカリ電解液及びゲル化剤としてのポリアクリル酸を混合し、ゲル状亜鉛負極を得た。   A non-glazed zinc alloy powder, an alkaline electrolyte, and polyacrylic acid as a gelling agent were mixed to obtain a gelled zinc negative electrode.

導電性被膜が形成された正極缶、正極合剤、セパレータ及びゲル状亜鉛負極を用いて、前述した図1に示すJIS規格LR6形(単3形)のアルカリ乾電池を組み立てた。   A JIS standard LR6 type (AA) alkaline dry battery shown in FIG. 1 was assembled using a positive electrode can, a positive electrode mixture, a separator, and a gelled zinc negative electrode on which a conductive film was formed.

(実施例2〜3及び比較例1〜4)
胴部厚さ及び胴部厚さに対する開口部厚さの倍率を下記表1に示すように設定すること以外は、前述した実施例1で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Examples 2-3 and Comparative Examples 1-4)
An alkaline dry battery having the same configuration as that described in Example 1 was assembled except that the barrel thickness and the ratio of the opening thickness to the barrel thickness were set as shown in Table 1 below.

上記アルカリ乾電池1種類毎に1000個ずつ用意し、外観検査により座屈変形の有無を調べた。また、各種類について新たに1000個用意し、600mAで充電した際の封口体の抜け数を調査した。さらに、各種類について新たに20個用意し、1200mAP(パルス)の負荷で放電させた際の容量(mAh)を測定し、その結果を下記表1に示す。

Figure 2007026716
1000 pieces were prepared for each of the above alkaline batteries, and the presence or absence of buckling deformation was examined by appearance inspection. Moreover, 1000 pieces were newly prepared for each type, and the number of omissions of the sealing body when charged at 600 mA was investigated. Furthermore, 20 pieces were newly prepared for each type, and the capacity (mAh) when discharged with a load of 1200 mAP (pulse) was measured. The results are shown in Table 1 below.
Figure 2007026716

表1から明らかなように、胴部厚さが0.185mm以上、0.215mm以下の実施例1〜3において、座屈変形及び封口体の抜けが少なく、かつ重負荷放電において高容量が得られた。   As is apparent from Table 1, in Examples 1 to 3 having a body thickness of 0.185 mm or more and 0.215 mm or less, there are few buckling deformations and omissions of the sealing body, and high capacity is obtained in heavy load discharge. It was.

これに対し、胴部厚さが0.185mm未満の比較例1,2では、座屈変形及び封口体の抜けが実施例1〜3よりも多かった。また、胴部厚さが0.215mmを超える比較例3,4では、外観および封口に問題は無いものの、容量において不利が生じた。   On the other hand, in Comparative Examples 1 and 2 having a body thickness of less than 0.185 mm, buckling deformation and omission of the sealing body were more than in Examples 1 to 3. Further, in Comparative Examples 3 and 4 where the body thickness exceeded 0.215 mm, there was no problem in appearance and sealing, but there was a disadvantage in capacity.

表1の結果から、正極缶の胴部厚は0.185mm以上、0.215mm以下が適切と考えられる。   From the results of Table 1, it is considered that the thickness of the body portion of the positive electrode can is 0.185 mm or more and 0.215 mm or less.

続いて、胴部厚を0.200mmと一定にし、開口部厚さの胴部厚さに対する倍率(0.8〜2.15倍)について同様の検討を行った。   Subsequently, the body thickness was kept constant at 0.200 mm, and the same examination was performed with respect to the magnification (0.8 to 2.15 times) of the opening thickness with respect to the body thickness.

(実施例4〜9及び比較例5〜8)
開口部厚さ及び胴部厚さに対する開口部厚さの倍率を下記表2に示すように設定すること以外は、前述した実施例1で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Examples 4-9 and Comparative Examples 5-8)
An alkaline dry battery having the same configuration as described in Example 1 was assembled except that the ratio of the opening thickness to the opening thickness and the trunk thickness was set as shown in Table 2 below.

得られたアルカリ乾電池について、外観検査による座屈変形の有無、封口体の抜け数及び1200mAPの負荷で放電させた際の容量を前述した条件で測定し、その結果を下記表2に示す。

Figure 2007026716
About the obtained alkaline dry battery, the presence or absence of buckling deformation by visual inspection, the number of seals removed, and the capacity when discharged with a load of 1200 mAP were measured under the conditions described above, and the results are shown in Table 2 below.
Figure 2007026716

表2から明らかなように、開口部厚さの胴部厚さに対する倍率が1.1倍以上、1.85倍以下の実施例4〜9によると、座屈変形及び封口体の抜けが少なく、かつ重負荷放電において高容量が得られた。   As is clear from Table 2, according to Examples 4 to 9 in which the magnification of the opening thickness with respect to the body thickness is 1.1 times or more and 1.85 times or less, buckling deformation and omission of the sealing body are small. In addition, a high capacity was obtained in heavy load discharge.

これに対し、倍率が1.1倍未満の比較例5,6では、座屈変形及び封口体の抜けが実施例4〜9よりも多かった。また、倍率が1.85倍を超える比較例7,8では、封口体の抜けがないものの、座屈変形が実施例4〜9よりも多かった。   On the other hand, in Comparative Examples 5 and 6 having a magnification of less than 1.1 times, buckling deformation and omission of the sealing body were more than in Examples 4 to 9. Moreover, in Comparative Examples 7 and 8 in which the magnification exceeded 1.85 times, the sealing body did not come off, but the buckling deformation was greater than in Examples 4 to 9.

表2の結果から、開口部厚さの胴部厚さに対する倍率は1.1倍以上、1.85倍以下が適切と考えられる。中でも、1.1倍以上、1.4倍以下にするのが、座屈変形の発生確率が皆無になるために好ましい。   From the results in Table 2, it is considered appropriate that the magnification of the opening thickness relative to the body thickness is 1.1 times or more and 1.85 times or less. Among them, the ratio of 1.1 times or more and 1.4 times or less is preferable because there is no probability of occurrence of buckling deformation.

(実施例10)
正極作用物質としてオキシ水酸化ニッケルのみを使用すること以外は、前述した実施例2で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Example 10)
An alkaline dry battery having the same configuration as that described in Example 2 was assembled except that only nickel oxyhydroxide was used as the positive electrode active substance.

(比較例9〜13)
胴部厚さ及び胴部厚さに対する開口部厚さの倍率を下記表3に示すように設定すること以外は、前述した実施例1で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Comparative Examples 9-13)
An alkaline dry battery having the same configuration as that described in Example 1 was assembled except that the barrel thickness and the ratio of the opening thickness to the barrel thickness were set as shown in Table 3 below.

(比較例14)
正極作用物質として二酸化マンガンのみを使用すること以外は、前述した比較例11で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Comparative Example 14)
An alkaline dry battery having the same configuration as that described in Comparative Example 11 was assembled except that only manganese dioxide was used as the positive electrode active substance.

(比較例15)
正極作用物質として二酸化マンガンのみを使用すること以外は、前述した実施例2で説明したのと同様な構成のアルカリ乾電池を組み立てた。
(Comparative Example 15)
An alkaline dry battery having the same configuration as that described in Example 2 was assembled except that only manganese dioxide was used as the positive electrode active substance.

得られたアルカリ乾電池について、外観検査による座屈変形の有無、封口体の抜け数及び1200mAPの負荷で放電させた際の容量を前述した条件で測定し、その結果を下記表3に示す。

Figure 2007026716
With respect to the obtained alkaline dry battery, the presence or absence of buckling deformation by appearance inspection, the number of seals removed, and the capacity when discharged with a load of 1200 mAP were measured under the above-mentioned conditions, and the results are shown in Table 3 below.
Figure 2007026716

表3から明らかなように、胴部厚さが0.185mm以上、0.215mm以下で、胴部厚に対する開口部厚の倍率が1.1倍以上、1.85倍以下で、かつオキシ水酸化ニッケルを使用する実施例1〜11によると、座屈変形及び封口体抜け数が少なく、かつ重負荷放電において高容量が得られた。   As is apparent from Table 3, the barrel thickness is 0.185 mm or more and 0.215 mm or less, the magnification of the opening thickness with respect to the barrel thickness is 1.1 times or more and 1.85 times or less, and oxywater According to Examples 1 to 11 using nickel oxide, the buckling deformation and the number of occlusions of the sealing body were small, and a high capacity was obtained in heavy load discharge.

これに対し、胴部厚さが0.185mm未満の比較例9,10では、胴部が薄いが故に外観が座屈してしまい、規格通りの電池を作ることが出来なかった。また、倍率が1.1倍の比較例9では封口体の抜けも発生している。比較例11、12に関しては、胴部厚が最適であっても、倍率が1.1倍未満と開口部厚が薄いか、倍率が1.85倍を超えて開口部が厚いと、外観に問題が発生しており、薄いものに関しては封口体抜けも発生している。胴部厚さが0.215mmを超える比較例13では座屈変形及び封口体抜けが無いものの、容量が劣っていた。   On the other hand, in Comparative Examples 9 and 10 in which the body thickness was less than 0.185 mm, the external body was buckled because the body was thin, and it was not possible to make a standard battery. Further, in Comparative Example 9 with a magnification of 1.1 times, the sealing body is also missing. As for Comparative Examples 11 and 12, even when the body thickness is optimal, if the aperture is thin with a magnification of less than 1.1 times, or the aperture is thick with a magnification exceeding 1.85 times, A problem has occurred, and the sealing body has also been removed for thin objects. In Comparative Example 13 in which the body thickness exceeded 0.215 mm, the capacity was inferior although there was no buckling deformation and no sealing body removal.

一方、二酸化マンガンのみを正極作用物質として使用する比較例14,15では、充電時のガス発生量が少ないため、実施例2と同様な構成の正極缶を使用した比較例15と、比較例11と同様な構成の正極缶を使用した比較例14とで、封口体抜け数に差が見られなかった。また、重負荷放電特性は劣ったものとなった。   On the other hand, in Comparative Examples 14 and 15 in which only manganese dioxide is used as the positive electrode active substance, since the amount of gas generated during charging is small, Comparative Example 15 using a positive electrode can having the same configuration as in Example 2 and Comparative Example 11 There was no difference in the number of occlusions of the sealing body in Comparative Example 14 using the positive electrode can having the same configuration as in FIG. Moreover, the heavy load discharge characteristics were inferior.

以上説明したように、正極缶胴部厚を0.185mm以上、0.215mm以下、正極缶開口部厚を胴部厚の1.1倍以上、1.85倍以下にすることにより、胴部分を開口部厚より薄くしたにもかかわらず、正極作用物質としてオキシ水酸化ニッケルを使用した際の封口体の抜けを防止することができ、安全、重負荷放電特性且つ封口性に優れたアルカリ乾電池を提供することができる。   As described above, the positive electrode can body thickness is 0.185 mm or more and 0.215 mm or less, and the positive electrode can opening portion thickness is 1.1 times or more and 1.85 times or less of the body thickness. Alkaline battery with excellent safety, heavy-load discharge characteristics and sealing performance, which can prevent the sealing body from falling out when nickel oxyhydroxide is used as the positive electrode active substance, despite the fact that the thickness of the opening is made thinner Can be provided.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明のアルカリ乾電池の一実施形態を示す模式的な断面図。1 is a schematic cross-sectional view showing an embodiment of an alkaline dry battery of the present invention. 図1のアルカリ乾電池の正極缶を構成する板材についての模式的な断面図。The typical sectional view about the board material which constitutes the positive electrode can of the alkaline dry battery of FIG.

符号の説明Explanation of symbols

1…正極缶、2…正極端子、3…ビード部、4…開口端、5…開口部、6…胴部、7…板材、8…基材、9a,9b…メッキ層、10…正極合剤、11…セパレータ、12…絶縁ガスケット、13…負極端子板、14…金属ワッシャー、15…ゲル状負極、16…負極集電棒。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode terminal, 3 ... Bead part, 4 ... Open end, 5 ... Opening part, 6 ... Trunk part, 7 ... Plate material, 8 ... Base material, 9a, 9b ... Plating layer, 10 ... Positive electrode combination Agent: 11 ... Separator, 12 ... Insulating gasket, 13 ... Negative electrode terminal plate, 14 ... Metal washer, 15 ... Gelled negative electrode, 16 ... Negative electrode current collector rod.

Claims (3)

胴部の厚さが0.185mm以上、0.215mm以下で、かつ開口部の厚さが胴部の厚さの1.1倍以上、1.85倍以下である有底円筒形の正極缶と、
前記正極缶内に配置された袋状のセパレータと、
前記セパレータ内に充填されたゲル状負極と、
前記正極缶の内周面と前記セパレータの間に配置され、オキシ水酸化ニッケルを含有する正極合剤と、
前記正極缶の前記開口部に配置された封口体と
を具備することを特徴とするアルカリ乾電池。
Bottomed cylindrical positive electrode can having a body thickness of 0.185 mm or more and 0.215 mm or less and an opening thickness of 1.1 times or more and 1.85 times or less of the thickness of the body part When,
A bag-shaped separator disposed in the positive electrode can;
A gelled negative electrode filled in the separator;
A positive electrode mixture containing nickel oxyhydroxide, disposed between the inner peripheral surface of the positive electrode can and the separator;
An alkaline dry battery comprising: a sealing member disposed in the opening of the positive electrode can.
前記開口部の厚さは前記胴部の厚さの1.1倍以上、1.4倍以下であることを特徴とする請求項1記載のアルカリ乾電池。   2. The alkaline dry battery according to claim 1, wherein a thickness of the opening is 1.1 times or more and 1.4 times or less of a thickness of the body part. 前記正極合剤はオキシ水酸化ニッケル及び二酸化マンガンを含有することを特徴とする請求項1または2記載のアルカリ乾電池。   The alkaline dry battery according to claim 1 or 2, wherein the positive electrode mixture contains nickel oxyhydroxide and manganese dioxide.
JP2005203199A 2005-07-12 2005-07-12 Alkaline dry cell Pending JP2007026716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203199A JP2007026716A (en) 2005-07-12 2005-07-12 Alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203199A JP2007026716A (en) 2005-07-12 2005-07-12 Alkaline dry cell

Publications (1)

Publication Number Publication Date
JP2007026716A true JP2007026716A (en) 2007-02-01

Family

ID=37787254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203199A Pending JP2007026716A (en) 2005-07-12 2005-07-12 Alkaline dry cell

Country Status (1)

Country Link
JP (1) JP2007026716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158472A (en) * 2007-12-07 2009-07-16 Panasonic Corp Alkaline battery and battery pack

Similar Documents

Publication Publication Date Title
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP3604879B2 (en) Battery manufacturing method
EP2051313A1 (en) Battery can and battery using the same
JP2007005092A (en) Battery can and its manufacturing method
WO2016158004A1 (en) Battery-can-forming steel sheet, and alkali battery
JPH11144690A (en) Battery and manufacture thereof
EP1229599A2 (en) Manufacturing method for sintered substrate of alkaline storage battery
CN100578841C (en) The thin-walled anode involucrum
JP2009170157A (en) Aa alkaline battery
JP2007026716A (en) Alkaline dry cell
JP2009129664A (en) Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof
JP2013143331A (en) Method for manufacturing alkaline secondary battery, and alkaline secondary battery manufactured by this manufacturing method
JP2003017010A (en) Alkaline dry battery
JP2007026715A (en) Alkaline dry cell
JPH10172521A (en) Alkaline battery
JP4130989B2 (en) Alkaline battery
JP3625008B2 (en) Alkaline battery
JP2001325924A (en) Alkaline battery
JP4038706B2 (en) Alkaline battery and method for producing the same
JP2007095334A (en) Hydrogen storage alloy electrode, method of manufacturing same and alkaline storage battery
WO2021192978A1 (en) Alkaline storage battery
KR100674524B1 (en) Hydrogen Absorbing Alloy Electrode, Method of Fabricating The Same and Alkaline Storage Battery
JPH10172522A (en) Alkaline battery
JP2008311198A (en) Battery can and battery provided with the same
JP2007157585A (en) Alkaline battery