JP2007026027A - Character recognition program, character recognition device and character recognition method - Google Patents
Character recognition program, character recognition device and character recognition method Download PDFInfo
- Publication number
- JP2007026027A JP2007026027A JP2005206452A JP2005206452A JP2007026027A JP 2007026027 A JP2007026027 A JP 2007026027A JP 2005206452 A JP2005206452 A JP 2005206452A JP 2005206452 A JP2005206452 A JP 2005206452A JP 2007026027 A JP2007026027 A JP 2007026027A
- Authority
- JP
- Japan
- Prior art keywords
- character recognition
- character
- deterioration
- degree
- recognition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Character Discrimination (AREA)
Abstract
Description
本発明は、切り出された文字画像から文字を認識する文字認識プログラム、文字認識装置及び文字認識方法に関するものである。 The present invention relates to a character recognition program, a character recognition device, and a character recognition method for recognizing characters from a cut character image.
近年、デジタルビデオやデジタルカメラ、カメラ付き携帯電話の普及により、カメラに入力される画像が増加している。これらの画像中に含まれる文字を文字認識できれば、画像中の文字をトリガーとした情報検索が実現できる。 In recent years, with the spread of digital video, digital cameras, and camera-equipped mobile phones, the number of images input to the cameras has increased. If characters included in these images can be recognized, information retrieval using the characters in the image as a trigger can be realized.
しかし、スキャナ入力された文字画像が全般的に高品質であるのに対して、カメラ入力された画像は撮影対象との距離やぶれの程度により高品質な画像から低品質画像まで様々な劣化程度の文字を含む。様々な劣化程度の文字に対する認識方式として、従来よりいくつかの技術文献が知られる(例えば特許文献1〜5参照)。 However, while the character images input by the scanner are generally of high quality, the images input by the camera have various degrees of deterioration from high-quality images to low-quality images depending on the distance to the subject and the degree of blurring. Contains characters. Conventionally, several technical documents are known as recognition methods for characters with various degrees of degradation (see, for example, Patent Documents 1 to 5).
特許文献1では、濃淡画像に対して閾値を変えて2値化を行い、つぶれの程度の異なる複数の辞書を予め作成する。認識時には入力文字の劣化推定に基づいて最適な辞書を選択するようにする。 In Patent Document 1, binarization is performed on a grayscale image by changing a threshold value, and a plurality of dictionaries having different levels of collapse are created in advance. At the time of recognition, an optimal dictionary is selected based on the estimated deterioration of input characters.
特許文献2では、文字品質の異なる辞書を複数用意し、入力文書の品質に応じて辞書を使い分けるようにする。
In
特許文献3では、標準辞書と拡張辞書を作成し、標準辞書で認識できなかった文字を拡張辞書によって認識しようとする。具体的には、まず標準辞書で認識を行い、認識信頼度が低い場合にのみ、拡張辞書による認識を行う。
In
特許文献4では、2値パターンに対し、文字の劣化程度を推定し、それに基づいて文字特徴に補正を行う。 In Patent Document 4, a character deterioration degree is estimated for a binary pattern, and character characteristics are corrected based on the estimated character deterioration degree.
特許文献5では、2値の認識系と濃淡の認識系を持ち、前者で失敗した場合に後者で認識を行う。
カメラより入力された文字をスキャナ入力された文字と比較すると、一般的に低解像度で低品質であり、従来のOCR(Optical Character Reader)では必ずしも精度良く認識できない。そこで、低品質画像に適した文字認識方式がいくつか提案されているが、逆に、これらの方式では高品質の画像に対して従来のOCRほどの認識精度を出すことは可能となっていない。これらを融合する方式が提案されているが、高品質画像から低品質画像までを精度良く認識できる方式ではなかった。 When characters input from a camera are compared with characters input by a scanner, the resolution is generally low and the quality is low, and a conventional OCR (Optical Character Reader) cannot always be recognized accurately. Therefore, several character recognition methods suitable for low-quality images have been proposed, but conversely, these methods do not allow recognition accuracy as high as that of conventional OCR for high-quality images. . Although a method for fusing these has been proposed, it has not been a method capable of accurately recognizing high-quality images to low-quality images.
上記特許文献1では、入力文字の劣化推定に基づいて辞書の選択を行っているが、劣化推定において入力文字と参照パターンとの黒画素数の比を用いているため、複数のフォントが存在する状況では劣化推定を精度よく行うことが難しい。 In Patent Document 1, a dictionary is selected based on input character deterioration estimation. However, since the ratio of black pixels between the input character and the reference pattern is used in the deterioration estimation, there are a plurality of fonts. In some situations, it is difficult to accurately estimate deterioration.
特許文献2や特許文献3でも文字品質の異なる辞書を複数用意して使い分けているが、品質と文字認識方式が対応付けられておらず、高品質な文字に適した文字認識方式が低品質な文字には必ずしも最適ではないので、辞書の使い分けだけでは対応できない場合がある。
In
特許文献4では、2値パターンに対し、文字の劣化程度を推定し、それに基づいて文字特徴に補正を行っている。しかし、サイズの小さい低品質文字の場合、2値化によって文字の構造情報が失われ易いという問題がある。 In Patent Document 4, a character deterioration degree is estimated for a binary pattern, and character characteristics are corrected based on the estimated character deterioration degree. However, in the case of a low-quality character having a small size, there is a problem that character structure information is easily lost by binarization.
特許文献5では、2値ベースの認識系と濃淡画像ベースの認識系を持ち、前者で失敗した場合に後者で認識を行う。文書全体が低品質な場合、濃淡画像ベースの認識系を最初から用いたほうが認識精度が高くなるが、2値ベースの認識系で必ず認識して検証を行うこの方式では処理時間がかかるという問題がある。
本発明は、文字の劣化度に対応して最適な認識方式を選択することができて文字認識の信頼度を高めることができると共に、処理時間を要することなく迅速に文字認識を行うことができる文字認識プログラム、文字認識装置及び文字認識方法を提供することを目的としている。 According to the present invention, it is possible to select an optimum recognition method corresponding to the degree of deterioration of characters, to increase the reliability of character recognition, and to perform character recognition quickly without requiring processing time. An object of the present invention is to provide a character recognition program, a character recognition device, and a character recognition method.
上述した課題を解決するため、本発明は、文字認識をコンピュータに実行させる文字認識プログラムであって、切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップとをコンピュータに実行させる。 In order to solve the above-described problems, the present invention is a character recognition program for causing a computer to perform character recognition, dividing a grayscale image of a cutout character region into at least three density regions, and character based on these density regions. A deterioration degree estimation step for estimating the degree of deterioration of the character as a deterioration degree, and a character recognition method selection for selecting at least one character recognition method from a plurality of character recognition methods based on the deterioration degree estimated by the deterioration degree estimation step Causing the computer to execute a step and a recognition step of recognizing a character based on a recognition result by the character recognition method selected in the character recognition method selection step.
この文字認識プログラムにおいて、前記文字認識方式選択ステップでは、文字の方向特徴を用いる方式と文字の画素特徴を用いる方式からいずれか一方の方式を選択することを特徴とする。また、前記劣化度推定ステップでは、前記濃淡画像を白、黒、中間色の3つの濃度領域に分け、全体画像領域に対する前記中間色の画像領域の割合により文字の劣化度を推定することを特徴とする。 In this character recognition program, in the character recognition method selection step, one of a method using a character direction feature and a method using a character pixel feature is selected. In the deterioration level estimation step, the grayscale image is divided into three density regions of white, black, and intermediate colors, and the character deterioration level is estimated based on the ratio of the intermediate color image region to the entire image region. .
また、本発明は、文字認識を行う文字認識装置であって、切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを推定する劣化度推定部と、前記劣化度推定部により推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択部と、前記文字認識方式選択部により選択された文字認識方式による認識結果に基づいて文字を認識する認識部とを備える。 In addition, the present invention is a character recognition device that performs character recognition, and divides a gray-scale image of a cut-out character region into at least three density regions and estimates a degree of character degradation based on these density regions. An estimation unit, a character recognition method selection unit that selects at least one character recognition method from a plurality of character recognition methods based on the deterioration degree estimated by the deterioration degree estimation unit, and the character recognition method selection unit. A recognition unit for recognizing a character based on a recognition result obtained by the character recognition method.
なお、文字毎に文字の劣化度に対する各文字認識方式による認識率を記憶した記憶部を有し、前記文字認識方式選択部は、前記劣化度推定部により推定された劣化度に基づいて、前記記憶部に記憶された認識率を参照することにより、前記文字認識方式を選択することを特徴とすることができる。 Note that each character has a storage unit that stores a recognition rate of each character recognition method with respect to the degree of deterioration of the character, the character recognition method selection unit, based on the degree of deterioration estimated by the deterioration degree estimation unit, The character recognition method can be selected by referring to the recognition rate stored in the storage unit.
また、本発明は、文字認識を文字認識装置に実行させる文字認識方法であって、切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップとを備える。 The present invention is also a character recognition method for causing a character recognition device to perform character recognition, wherein a grayscale image of a cut out character region is divided into at least three density regions, and the degree of character degradation based on these density regions A degradation level estimation step for estimating a degradation level, a character recognition mode selection step for selecting at least one character recognition mode from a plurality of character recognition modes based on the degradation level estimated by the degradation level estimation step, and A recognition step for recognizing a character based on a recognition result obtained by the character recognition method selected in the character recognition method selection step.
以上に詳述したように、本発明によれば、文字の劣化度に対応して最適な認識方式を選択することができて文字認識の信頼度を高めることができると共に、処理時間を要することなく迅速に文字認識を行うことができる。 As described in detail above, according to the present invention, it is possible to select an optimum recognition method corresponding to the degree of deterioration of characters, increase the reliability of character recognition, and require processing time. Character recognition can be performed quickly.
以下、本発明の実施の形態について図面を参照しつつ説明する。なお、本実施の形態における文字認識装置は、文字認識機能が組み込まれたパーソナルコンピュータ(PC)、携帯情報端末機(PDA)、携帯電話機などで利用可能である。また、カメラ等で撮影された文字画像(電気信号)に留まらずFAX等による文字画像(電気信号)もその対象となる。 Embodiments of the present invention will be described below with reference to the drawings. Note that the character recognition device according to the present embodiment can be used in a personal computer (PC), a personal digital assistant (PDA), a mobile phone, or the like with a built-in character recognition function. Further, not only character images (electrical signals) photographed by a camera or the like but also character images (electrical signals) by FAX or the like are targeted.
図1は、本発明の実施の形態における文字認識装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a character recognition apparatus according to an embodiment of the present invention.
図1に示す文字認識装置は、文字を含む濃淡画像から文字領域を切り出す切り出し部1と、切り出された文字領域を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを推定する劣化度推定部2と、劣化度推定部2により推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択部3と、文字認識方式選択部3により選択された文字認識方式を用いて文字認識を行うと共に、その認識結果に基づいて最終的な文字を認識し出力する認識部4とを備えている。
The character recognition device shown in FIG. 1 divides a cut-out character region 1 from a grayscale image including characters and the cut-out character region into at least three density regions, and determines the degree of character degradation based on these density regions. Degradation
本実施の形態において、認識部4は方式対応文字認識部5と、それによる認識結果を統合する統合部6とを備えている。
In the present embodiment, the recognition unit 4 includes a method-compatible
方式対応文字認識部5は、大きく方式を分けて、文字の方向特徴を用いる1つ又は複数のそれぞれ異なる方式を含む第1文字認識方式(2値文字認識系)5Aと、文字の画素特徴(濃度特徴)を用いる1つ又は複数のそれぞれ異なる方式を含む第2文字認識方式(劣化文字認識系)5Bにより、それぞれ文字を認識する機能を有しており、これら第1、第2文字認識方式のうちのいずれかの方式が文字認識方式選択部3により選択されて機能する。
The system-compatible
上記各方式の特徴について簡単に説明すると、例えば、様々なフォントに対する文字認識のロバスト性は方向特徴(第1文字認識方式)を用いる方式の方が高く、ぼけなどによる文字の劣化については濃度特徴(第2文字認識方式)を用いる方式のほうが一般的に高いとされている。そこで、本実施の形態では、入力文字に対して算出した劣化度に対して、劣化度が予め決められた閾値より大きければ濃度特徴を用いる方式(第2文字認識系)を採用し、劣化度が小さければ方向特徴を用いる方式(第1文字認識系)を採用する。なお、各認識系のそれぞれにおいて、更にその認識系に属する複数の異なる方式を用意することができる。以下では、まず劣化度に応じて、2値文字認識系と劣化文字認識を使い分ける例を示している。 The characteristics of each of the above systems will be briefly described. For example, the robustness of character recognition with respect to various fonts is higher in the system using the direction feature (first character recognition system), and the character characteristics deterioration due to blurring is the density characteristics. The method using the (second character recognition method) is generally considered to be higher. Therefore, in the present embodiment, a method (second character recognition system) that uses density features is adopted if the degree of deterioration is greater than a predetermined threshold with respect to the degree of deterioration calculated for the input character. If is small, a method using a directional feature (first character recognition system) is adopted. In each recognition system, a plurality of different methods belonging to the recognition system can be prepared. In the following, an example in which the binary character recognition system and the deteriorated character recognition are used properly according to the degree of deterioration is shown.
統合部6は、方式対応文字認識部5により認識された認識結果から、後述するように、一つの文字認識結果を出力する。
The
以下、本発明の実施の形態の動作について図2のフローチャートを用いて説明する。 The operation of the embodiment of the present invention will be described below using the flowchart of FIG.
まず、文字認識を行う場合、切り出し部1により、入力される文字列を有する濃淡画像から文字の切り出しが行われ(ステップS1)、切り出された文字が入力される(ステップS2)。この切り出しは文字認識において従来より行われている公知の方法が用いられ、ここでの説明は省略する。 First, when performing character recognition, the cutout unit 1 cuts out characters from the grayscale image having the input character string (step S1), and the cutout characters are input (step S2). This cut-out uses a known method conventionally used in character recognition, and a description thereof is omitted here.
次に、劣化度推定部2が文字の劣化度を推定する(ステップS3)。この劣化度の推定動作について、図3のフローチャートに従って詳述する。
Next, the degradation
まず、入力された濃淡のある文字画像(0−255)に対してサイズ正規化を行い画素数をN×Nとする(ステップST1)。次に、定正準化を行った後、ノルムを1とする(ステップST2)。次に、各画素値が0−255の値に収まるように線形に濃度変換を行う(ステップST3)。そして、白、黒を除くグレー成分(1−254)の値を持つ画素数をカウントし(ステップST4)、次式で定義された劣化度を得る(ステップST5)。 First, size normalization is performed on the input shaded character image (0-255), and the number of pixels is set to N × N (step ST1). Next, after performing canonicalization, the norm is set to 1 (step ST2). Next, density conversion is linearly performed so that each pixel value falls within the range of 0 to 255 (step ST3). Then, the number of pixels having the value of the gray component (1-254) excluding white and black is counted (step ST4), and the degree of deterioration defined by the following equation is obtained (step ST5).
劣化度=100×グレー成分数/(N×N) Degree of degradation = 100 × number of gray components / (N × N)
なお、定正準化とは、ある特徴ベクトルに対し、ある既定された特徴ベクトルに直交する成分のみを残す操作をいう。文字の濃淡そのものを特徴とする場合、文字のつぶれの度合いが大きくなるほど、その文字画像中の黒画素成分が増えることになる。そしてつぶれの度合いが増していくにつれ最終的には全面黒画素となることが予想される。そこで、全面黒画素の特徴に直交する成分のみを残す操作を行う(飯島泰蔵, "パターン認識理論," 森北出版, 1989を参照)。 The canonicalization means an operation of leaving only a component orthogonal to a predetermined feature vector for a certain feature vector. When character shading itself is a feature, the black pixel component in the character image increases as the degree of character crushing increases. And as the degree of crushing increases, it is expected to eventually become full black pixels. Therefore, an operation is performed to leave only the components orthogonal to the characteristics of the entire black pixel (see Taizo Iijima, “Pattern Recognition Theory,” Morikita Publishing, 1989).
こうして劣化度が推定されると、次に文字認識方式選択部により推定された劣化度が閾値以上か否かが判断され(ステップS4)、劣化度が閾値以上でない場合は、文字認識方式選択部3は、方式対応文字認識部5における第1文字認識方式5Aである2値文字認識系を選択する(ステップS5)。そして、この第1文字認識方式5Aにおいて文字認識が行われると、次に統合部6は、第1文字認識方式5Aにおける認識方式が複数あるか否かを判断し(ステップS6)、複数ある場合は(ステップS6、Y)、認識結果の統合を行う(ステップS7)。
When the degree of deterioration is estimated in this way, it is then determined whether or not the degree of deterioration estimated by the character recognition method selection unit is equal to or greater than a threshold value (step S4). 3 selects a binary character recognition system that is the first
この認識結果の統合(ステップS7)においては、図4に示すように、認識された文字毎(カテゴリ毎)に認識結果の頻度を計数し、最大の頻度を有する文字を認識した文字として出力する。なお、ステップS6において、第1文字認識方式5Aにおける認識方式が一つと判断された場合は(ステップS6、N)、その方式によって認識された文字を認識文字として出力する。
In the integration of recognition results (step S7), as shown in FIG. 4, the frequency of recognition results is counted for each recognized character (for each category), and the character having the maximum frequency is output as a recognized character. . If it is determined in step S6 that there is one recognition method in the first
一方、ステップS4において、劣化度が閾値以上であると判断された場合は(ステップS4、Y)、文字認識方式選択部は3、方式対応文字認識部5における第2文字認識方式5Bである劣化文字認識系を選択する(ステップS8)。そして、この第2文字認識方式5Bにおいて文字認識が行われると、次に統合部6は、第2文字認識方式5Bにおける認識方式が複数あるか否かを判断し(ステップS9)、複数ある場合は(ステップS9、Y)、上述した認識結果の統合を行う(ステップS7)。
On the other hand, if it is determined in step S4 that the degree of deterioration is equal to or greater than the threshold (step S4, Y), the character recognition method selection unit is 3, and the deterioration corresponding to the second
この統合部6の動作については、第1文字認識方式(2値文字認識系)5Aが選択された場合と同様であり、以下の動作についての説明は省略する。
The operation of the
なお、第1文字認識方式(2値文字認識系)5Aとしては、下記のような方式が知られており、本実施の形態において用いられている。 As the first character recognition method (binary character recognition system) 5A, the following method is known and used in the present embodiment.
(1)孫寧,田原透,阿曽弘具,木村正行,
``方向線素特徴量を用いた高精度文字認識,''
信学論(D-II) vol.J74-D-II no.3,pp.330-339,Mar. 1991.
(2)鶴岡信治,栗田昌徳,原田智夫,木村文隆,三宅康二,
``加重方向指数ヒストグラム法による手書き漢字・ひらがな認識,''
信学論(D) vol.J70-D no.7,pp.1390-1397,July 1987.
(3)外郭方向寄与度特徴による文字認識方式
萩田他、"外郭方向寄与度特徴による手書き漢字の識別"
電子通信学会論文誌 '83/10 Vol.J66-D No.10, pp.1185-1192
(4)多元圧縮法による文字認識方式
▲裴▼他、"手書き漢字認識の一手法 −多元圧縮法と部分パターン法による認
識−"
電子通信学会論文誌 '85/4 Vol.J68-D No.4, pp.773-780
(5)方向パターンマッチング法による文字認識方式
斎藤他、"手書漢字の方向パターン・マッチング法による解析"
電子通信学会論文誌 '82/5 Vol.J65-D No.5, pp.550-557
(1) Sonning, Toru Tahara, Hiroki Aki, Masayuki Kimura,
`` High-precision character recognition using directional element features, ''
Theory of Science (D-II) vol.J74-D-II no.3, pp.330-339, Mar. 1991.
(2) Shinji Tsuruoka, Masanori Kurita, Tomio Harada, Fumitaka Kimura, Koji Miyake,
`` Handwritten kanji and hiragana recognition by weighted direction index histogram method, ''
Theory of Science (D) vol.J70-D no.7, pp.1390-1397, July 1987.
(3) Character recognition method based on outline direction contribution feature Hirota et al., "Identification of handwritten Chinese characters by outline direction contribution feature"
IEICE Transactions '83 / 10 Vol.J66-D No.10, pp.1185-1192
(4) Character recognition method by multi-component compression method ▲ 裴 ▼ and others, "One handwritten Kanji character recognition method-Recognition by multi-component compression method and partial pattern method-"
IEICE Transactions '85 / 4 Vol.J68-D No.4, pp.773-780
(5) Character recognition method by direction pattern matching method Saito et al., "Analysis by hand pattern kanji direction pattern matching method"
IEICE Transactions '82 / 5 Vol.J65-D No.5, pp.550-557
また、第2文字認識方式(劣化文字認識系)5Bでは、下記方式が知られている。 In the second character recognition method (degraded character recognition system) 5B, the following method is known.
J.Sun, Y.Hotta, Y.Katsuyama and S.Naoi, "Low Resolution Character Reco gnition by Dual Eigenspace and Synthetic Degraded Patterns," Proc. of the 1st ACM Workshop on Hardcopy Document Processing, pp.15-22, 2004. J. Sun, Y. Hotta, Y. Katsuyama and S. Naoi, "Low Resolution Character Recognition by Dual Eigenspace and Synthetic Degraded Patterns," Proc. Of the 1 st ACM Workshop on Hardcopy Document Processing, pp.15-22, 2004.
実施の形態2.
以下、本発明の実施の形態2について説明する。
実施の形態1では、劣化度に応じて二つの認識方式を選択的に使用する場合について説明した。実施の形態2では、文字劣化度に対応して最も高い認識率を有する文字認識方式を直接的に選択するようにした場合について説明する。
The second embodiment of the present invention will be described below.
In Embodiment 1, the case where the two recognition methods are selectively used according to the degree of deterioration has been described. In the second embodiment, a case will be described in which a character recognition method having the highest recognition rate corresponding to the degree of character deterioration is directly selected.
図5は、実施の形態2の構成を示すブロック図である。図5において、図1と同一符号は同一又は相当物を示しており、ここでの説明は省略する。実施の形態2においては、文字認識方式選択部3Aは、図6に示すように複数の文字認識方式毎に、劣化度と認識率を対応付けた劣化度/認識率対応テーブル11を備えており、このテーブル11に基づいて文字認識に用いる文字認識方式を選択する。なお、文字認識方式は実施の形態1で述べたように、必ずしも第1文字認識方式5Aと第2文字認識方式5Bとの区分がされていなくても良い。
FIG. 5 is a block diagram showing a configuration of the second embodiment. 5, the same reference numerals as those in FIG. 1 indicate the same or equivalent parts, and the description thereof is omitted here. In the second embodiment, the character recognition
図7は、このテーブルの作成動作を概念的に示す説明図であり、劣化度の低い(劣化なし)ものから、劣化度の大きいものにかけて、学習データを用意し、それを備えられた全ての認識方式により認識させて、その正解率より認識率を割り出し、それをテーブルに格納するようにしたものである。 FIG. 7 is an explanatory diagram conceptually showing the creation operation of this table. Learning data is prepared from those having a low degree of deterioration (no deterioration) to those having a high degree of deterioration, and all the tables provided with the learning data are prepared. The recognition rate is recognized by the recognition method, the recognition rate is determined from the correct answer rate, and the recognition rate is stored in a table.
以下、図8のフローチャートを用いて実施の形態2の動作について説明する。
まず、ステップS1からステップS3までの動作は実施の形態1のステップS1からステップS3までの動作と同一である。次に、ステップS14において、文字認識方式選択部3Aは、ステップS3において得られた劣化度をもとに、劣化度/認識率対応テーブル11を検索し、得られた劣化度において最も認識率の高い文字認識方式を選択する。認識部4はその方式対応文字認識部5により、この選択された文字認識方式を用いて文字認識を行うと共に、統合部6によりその認識結果を出力させる。
The operation of the second embodiment will be described below using the flowchart of FIG.
First, the operation from step S1 to step S3 is the same as the operation from step S1 to step S3 in the first embodiment. Next, in step S14, the character recognition
この場合、統合部6は、劣化度に対して文字認識方式選択部3Aにより複数の文字認識方式(第1文字認識方式又は第2文字認識方式を問わない)が選択された場合に、実施の形態1と同様に認識された文字別毎(カテゴリ毎)に認識結果の頻度を計数し、最大の頻度を有する文字を認識した文字として出力する。もちろん、選択された方式が一つの場合は、その方式による認識結果がそのまま認識文字として出力される。
In this case, the
本発明の実施の形態によれば、以下のような効果を奏する。 According to the embodiment of the present invention, the following effects can be obtained.
本発明の実施の形態では入力文字の劣化度をもとに認識方式を使い分けるようにしたので、2値画像から劣化度を算出する方式に比べて、濃淡画像から直接劣化度を推定することができ、2値化の影響を受けずに済む。また、劣化度毎に辞書を使い分ける方式に比べ、本発明の実施の形態では劣化度毎に認識方式を使い分けるため、より高精度な認識を実現することができる。また、劣化度に応じて文字認識方式を使い分けるため、複数の認識方式で順次認識する方式よりも高速に認識することができる。 In the embodiment of the present invention, the recognition method is selectively used based on the deterioration degree of the input character. Therefore, it is possible to estimate the deterioration degree directly from the grayscale image as compared with the method of calculating the deterioration degree from the binary image. Yes, it is not affected by binarization. In addition, compared with a method of using a dictionary for each degree of deterioration, according to the embodiment of the present invention, a recognition method is used for each degree of deterioration, so that more accurate recognition can be realized. In addition, since the character recognition method is selectively used according to the degree of deterioration, it can be recognized at higher speed than the method of sequentially recognizing with a plurality of recognition methods.
以上、本発明の実施の形態を第1、第2文字認識方式について説明したが、本発明は、これらの文字認識方式以外の文字認識方式についても適用できることは言うまでもない。 As mentioned above, although embodiment of this invention was described about the 1st, 2nd character recognition system, it cannot be overemphasized that this invention is applicable also to character recognition systems other than these character recognition systems.
また、本発明の実施の形態によれば、図2、図8において上述した各ステップを文字認識装置を構成するコンピュータに実行させるプログラムを文字認識プログラムとして提供することができる。上述したプログラムは、コンピュータにより読取り可能な記録媒体に記憶させることによって、言語解析装置を構成するコンピュータに実行させることが可能となる。ここで、上記コンピュータにより読取り可能な記録媒体としては、CD−ROMやフレキシブルディスク、DVDディスク、光磁気ディスク、ICカード等の可搬型記憶媒体や、コンピュータプログラムを保持するデータベース、或いは、他のコンピュータ並びにそのデータベースや、更に回線上の伝送媒体をも含むものである。 In addition, according to the embodiment of the present invention, a program for causing a computer constituting the character recognition apparatus to execute the steps described above with reference to FIGS. 2 and 8 can be provided as a character recognition program. By storing the above-described program in a computer-readable recording medium, the computer constituting the language analysis apparatus can be executed. Here, as the recording medium readable by the computer, a portable storage medium such as a CD-ROM, a flexible disk, a DVD disk, a magneto-optical disk, an IC card, a database holding a computer program, or another computer In addition, the database and the transmission medium on the line are also included.
(付記1)
文字認識をコンピュータに実行させる文字認識プログラムであって、
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、
前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、
前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップと
をコンピュータに実行させる文字認識プログラム。
(付記2)
付記1に記載の文字認識プログラムにおいて、
前記文字認識方式選択ステップでは、文字の方向特徴を用いる方式と文字の画素特徴を用いる方式からいずれか一方の方式を選択することを特徴とする文字認識プログラム。
(付記3)
付記1に記載の文字認識プログラムにおいて、
選択された文字認識方式について、更に複数の文字認識方式がある場合は、これらの文字認識方式から更に前記劣化度に基づいて少なくとも一つの文字認識方式を選択することを特徴とする文字認識プログラム。
(付記4)
選択された文字認識方式について、更に複数の文字認識方式がある場合、前記文字認識ステップは、これらの文字認識方式全てによる文字認識を行い、これらの認識結果に基づいて文字を認識することを特徴とする文字認識プログラム。
(付記5)
付記1乃至付記4のいずれかに記載の文字認識プログラムにおいて、
前記劣化度推定ステップでは、前記濃淡画像を白、黒、中間色の3つの濃度領域に分け、全体画像領域に対する前記中間色の画像領域の割合により文字の劣化度を推定することを特徴とする文字認識プログラム。
(付記6)
文字認識を行う文字認識装置であって、
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを推定する劣化度推定部と、
前記劣化度推定部により推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択部と、
前記文字認識方式選択部により選択された文字認識方式による認識結果に基づいて文字を認識する認識部と
を備える文字認識装置。
(付記7)
文字毎に文字の劣化度に対する各文字認識方式による認識率を記憶した記憶部を有し、
前記文字認識方式選択部は、前記劣化度推定部により推定された劣化度に基づいて、前記記憶部に記憶された認識率を参照することにより、前記文字認識方式を選択することを特徴とする文字認識装置。
(付記8)
文字認識を文字認識装置に実行させる文字認識方法であって、
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、
前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、
前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップと
を備える文字認識方法。
(Appendix 1)
A character recognition program for causing a computer to perform character recognition,
A degradation level estimation step of dividing the grayscale image of the clipped character region into at least three density regions and estimating the degree of degradation of the character as a degradation level based on these density regions;
A character recognition method selection step of selecting at least one character recognition method from a plurality of character recognition methods based on the deterioration level estimated by the deterioration level estimation step;
A character recognition program for causing a computer to execute a recognition step for recognizing a character based on a recognition result obtained by the character recognition method selected in the character recognition method selection step.
(Appendix 2)
In the character recognition program described in Appendix 1,
In the character recognition method selection step, a character recognition program that selects one of a method using a character direction feature and a method using a character pixel feature.
(Appendix 3)
In the character recognition program described in Appendix 1,
When there are a plurality of character recognition methods for the selected character recognition method, at least one character recognition method is further selected from these character recognition methods based on the degree of deterioration.
(Appendix 4)
When there are a plurality of character recognition methods for the selected character recognition method, the character recognition step performs character recognition by all these character recognition methods, and recognizes characters based on these recognition results. A character recognition program.
(Appendix 5)
In the character recognition program according to any one of supplementary notes 1 to 4,
In the deterioration level estimation step, the grayscale image is divided into three density regions of white, black, and intermediate colors, and character deterioration is estimated based on the ratio of the intermediate color image region to the entire image region. program.
(Appendix 6)
A character recognition device for character recognition,
A degradation degree estimation unit that divides the grayscale image of the clipped character region into at least three density regions and estimates the degree of character degradation based on these density regions;
A character recognition method selection unit that selects at least one character recognition method from a plurality of character recognition methods based on the deterioration degree estimated by the deterioration degree estimation unit;
A character recognition device comprising: a recognition unit that recognizes a character based on a recognition result by the character recognition method selected by the character recognition method selection unit.
(Appendix 7)
It has a storage unit that stores the recognition rate by each character recognition method with respect to the deterioration degree of the character for each character,
The character recognition method selection unit selects the character recognition method by referring to a recognition rate stored in the storage unit based on the degree of deterioration estimated by the deterioration degree estimation unit. Character recognition device.
(Appendix 8)
A character recognition method for causing a character recognition device to perform character recognition,
A degradation level estimation step of dividing the grayscale image of the clipped character region into at least three density regions and estimating the degree of degradation of the character as a degradation level based on these density regions;
A character recognition method selection step of selecting at least one character recognition method from a plurality of character recognition methods based on the deterioration level estimated by the deterioration level estimation step;
A character recognition method comprising: recognizing a character based on a recognition result obtained by the character recognition method selected in the character recognition method selection step.
1 切り出し部、2 劣化度推定部、3、3A 文字認識方式選択部、4 認識部、5 方式対応文字認識部、6 統合部(出力部)、11 劣化度/認識率対応テーブル。 DESCRIPTION OF SYMBOLS 1 Cutout part, 2 Deterioration degree estimation part, 3, 3A Character recognition system selection part, 4 Recognition part, 5 System corresponding | compatible character recognition part, 6 Integration part (output part), 11 Deterioration degree / recognition rate correspondence table
Claims (5)
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、
前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、
前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップと
をコンピュータに実行させる文字認識プログラム。 A character recognition program for causing a computer to perform character recognition,
A degradation level estimation step of dividing the grayscale image of the clipped character region into at least three density regions and estimating the degree of degradation of the character as a degradation level based on these density regions;
A character recognition method selection step of selecting at least one character recognition method from a plurality of character recognition methods based on the deterioration level estimated by the deterioration level estimation step;
A character recognition program for causing a computer to execute a recognition step for recognizing a character based on a recognition result obtained by the character recognition method selected in the character recognition method selection step.
前記文字認識方式選択ステップでは、文字の方向特徴を用いる方式と文字の画素特徴を用いる方式とからいずれか一方の方式を選択することを特徴とする文字認識プログラム。 The character recognition program according to claim 1,
In the character recognition method selection step, a character recognition program that selects either one of a method using a character direction feature and a method using a character pixel feature.
前記劣化度推定ステップでは、前記濃淡画像を白、黒、中間色の3つの濃度領域に分け、全体画像領域に対する前記中間色の画像領域の割合により文字の劣化度を推定することを特徴とする文字認識プログラム。 In the character recognition program according to claim 1 or 2,
In the deterioration level estimation step, the grayscale image is divided into three density regions of white, black, and intermediate colors, and character deterioration is estimated based on the ratio of the intermediate color image region to the entire image region. program.
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを推定する劣化度推定部と、
前記劣化度推定部により推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択部と、
前記文字認識方式選択部により選択された文字認識方式による認識結果に基づいて文字を認識する認識部と
を備える文字認識装置。 A character recognition device for character recognition,
A degradation degree estimation unit that divides the grayscale image of the clipped character region into at least three density regions and estimates the degree of character degradation based on these density regions;
A character recognition method selection unit that selects at least one character recognition method from a plurality of character recognition methods based on the deterioration degree estimated by the deterioration degree estimation unit;
A character recognition device comprising: a recognition unit that recognizes a character based on a recognition result by the character recognition method selected by the character recognition method selection unit.
切り出された文字領域の濃淡画像を少なくとも3つの濃度領域に分け、これら濃度領域に基づいて文字の劣化の度合いを劣化度として推定する劣化度推定ステップと、
前記劣化度推定ステップにより推定された劣化度に基づいて、複数の文字認識方式から少なくとも一つの文字認識方式を選択する文字認識方式選択ステップと、
前記文字認識方式選択ステップにより選択された文字認識方式による認識結果に基づいて文字を認識する認識ステップと
を備える文字認識方法。 A character recognition method for causing a character recognition device to perform character recognition,
A degradation level estimation step of dividing the grayscale image of the clipped character region into at least three density regions and estimating the degree of degradation of the character as a degradation level based on these density regions;
A character recognition method selection step of selecting at least one character recognition method from a plurality of character recognition methods based on the deterioration level estimated by the deterioration level estimation step;
A character recognition method comprising: recognizing a character based on a recognition result obtained by the character recognition method selected in the character recognition method selection step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005206452A JP4841881B2 (en) | 2005-07-15 | 2005-07-15 | Character recognition program, character recognition device, and character recognition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005206452A JP4841881B2 (en) | 2005-07-15 | 2005-07-15 | Character recognition program, character recognition device, and character recognition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007026027A true JP2007026027A (en) | 2007-02-01 |
JP4841881B2 JP4841881B2 (en) | 2011-12-21 |
Family
ID=37786701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005206452A Expired - Fee Related JP4841881B2 (en) | 2005-07-15 | 2005-07-15 | Character recognition program, character recognition device, and character recognition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4841881B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009037621A (en) * | 2007-08-03 | 2009-02-19 | Fujitsu Ltd | Method and device for identifying degraded character |
JP2012008791A (en) * | 2010-06-24 | 2012-01-12 | Hitachi Computer Peripherals Co Ltd | Form recognition device and form recognition method |
JP2020135295A (en) * | 2019-02-18 | 2020-08-31 | 京セラドキュメントソリューションズ株式会社 | Information processing system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07115493A (en) * | 1993-07-16 | 1995-05-02 | Sharp Corp | Picture processor |
JPH0962785A (en) * | 1995-08-23 | 1997-03-07 | Oki Electric Ind Co Ltd | Character recognition method and device therefor |
JPH1166240A (en) * | 1997-08-15 | 1999-03-09 | Ricoh Co Ltd | Method and device for character recognition |
JP2000155806A (en) * | 1998-11-19 | 2000-06-06 | Ricoh Co Ltd | Character recognition method and its device and dictionary preparation method and its device and character quality judgment method and recording medium |
JP2002269497A (en) * | 2001-03-07 | 2002-09-20 | Ricoh Co Ltd | Method and system for inputting document as being proxy for another and recording medium |
JP2003139718A (en) * | 2001-10-30 | 2003-05-14 | Nikon Corp | Device and method for inspecting surface |
-
2005
- 2005-07-15 JP JP2005206452A patent/JP4841881B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07115493A (en) * | 1993-07-16 | 1995-05-02 | Sharp Corp | Picture processor |
JPH0962785A (en) * | 1995-08-23 | 1997-03-07 | Oki Electric Ind Co Ltd | Character recognition method and device therefor |
JPH1166240A (en) * | 1997-08-15 | 1999-03-09 | Ricoh Co Ltd | Method and device for character recognition |
JP2000155806A (en) * | 1998-11-19 | 2000-06-06 | Ricoh Co Ltd | Character recognition method and its device and dictionary preparation method and its device and character quality judgment method and recording medium |
JP2002269497A (en) * | 2001-03-07 | 2002-09-20 | Ricoh Co Ltd | Method and system for inputting document as being proxy for another and recording medium |
JP2003139718A (en) * | 2001-10-30 | 2003-05-14 | Nikon Corp | Device and method for inspecting surface |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009037621A (en) * | 2007-08-03 | 2009-02-19 | Fujitsu Ltd | Method and device for identifying degraded character |
JP2012008791A (en) * | 2010-06-24 | 2012-01-12 | Hitachi Computer Peripherals Co Ltd | Form recognition device and form recognition method |
JP2020135295A (en) * | 2019-02-18 | 2020-08-31 | 京セラドキュメントソリューションズ株式会社 | Information processing system |
Also Published As
Publication number | Publication date |
---|---|
JP4841881B2 (en) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10733477B2 (en) | Image recognition apparatus, image recognition method, and program | |
US7787693B2 (en) | Text detection on mobile communications devices | |
US7215828B2 (en) | Method and system for determining image orientation | |
US5706364A (en) | Method of producing character templates using unsegmented samples | |
US7706610B2 (en) | Segmentation of objects by minimizing global-local variational energy | |
US8306262B2 (en) | Face tracking method for electronic camera device | |
US20050047656A1 (en) | Systems and methods of detecting and correcting redeye in an image suitable for embedded applications | |
US20060251328A1 (en) | Apparatus and method for extracting moving images | |
JP2002516440A (en) | Image recognition and correlation system | |
CN110766020A (en) | System and method for detecting and identifying multi-language natural scene text | |
JP2000132690A (en) | Image processing method and image processor using image division by making token | |
US8170332B2 (en) | Automatic red-eye object classification in digital images using a boosting-based framework | |
CN111242829A (en) | Watermark extraction method, device, equipment and storage medium | |
US8538191B2 (en) | Image correction apparatus and method for eliminating lighting component | |
US20230343119A1 (en) | Captured document image enhancement | |
JP5640622B2 (en) | Method for classifying red-eye object candidates, computer-readable medium, and image processing apparatus | |
US20100111439A1 (en) | Noise Reduction For Digital Images | |
US20130314755A1 (en) | Image capture device for extracting textual information | |
US8768058B2 (en) | System for extracting text from a plurality of captured images of a document | |
US8908970B2 (en) | Textual information extraction method using multiple images | |
JP4841881B2 (en) | Character recognition program, character recognition device, and character recognition method | |
JP4795737B2 (en) | Face detection method, apparatus, and program | |
US20060104506A1 (en) | Apparatus for processing an image and for character recognition in a mobile communication terminal, and method thereof | |
Yanadume et al. | Recognition of very low-resolution characters from motion images captured by a portable digital camera | |
CN113379001A (en) | Processing method and device for image recognition model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111005 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141014 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |