JP2007025527A - Active noise reduction apparatus - Google Patents

Active noise reduction apparatus Download PDF

Info

Publication number
JP2007025527A
JP2007025527A JP2005210920A JP2005210920A JP2007025527A JP 2007025527 A JP2007025527 A JP 2007025527A JP 2005210920 A JP2005210920 A JP 2005210920A JP 2005210920 A JP2005210920 A JP 2005210920A JP 2007025527 A JP2007025527 A JP 2007025527A
Authority
JP
Japan
Prior art keywords
generating means
active noise
noise reduction
processing circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005210920A
Other languages
Japanese (ja)
Inventor
Yoshio Nakamura
由男 中村
Masahide Onishi
将秀 大西
茂樹 ▲吉▼田
Shigeki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005210920A priority Critical patent/JP2007025527A/en
Priority to US11/572,848 priority patent/US20080310650A1/en
Priority to EP06768329A priority patent/EP1772852B1/en
Priority to PCT/JP2006/314451 priority patent/WO2007011011A1/en
Priority to CN2006800009762A priority patent/CN101040321B/en
Publication of JP2007025527A publication Critical patent/JP2007025527A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active noise reduction apparatus which is low in cost and is high in practicality as an active noise reduction apparatus for reducing random noises like load noises. <P>SOLUTION: Active noise reduction apparatus includes a sinusoidal wave generating means 102 for generating a sinusoidal wave of a prescribed frequency, a cosine wave generating means 103 for generating the cosine wave of the same frequency as that of the sinusoidal wave generating means 102, a processing circuit 101 having two coefficient updating means 106, 107 to update the respective coefficients of two 1-tap digital filters 104, 105 by determining the outputs obtained by adding the outputs from the 1-tap digital filters 104, 105 and a control signal of the phase opposite to the phase of the original noise is generated by an adjusting circuit 108 for adjusting the phase, amplitude from the processing circuit 101. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は車両の走行等により車室内に発生する不快な騒音いわゆるロードノイズに対し、逆位相かつ等振幅の干渉波を生成し干渉させることによって、騒音を低減する能動騒音低減装置に関するものである。   The present invention relates to an active noise reduction apparatus for reducing noise by generating and interfering with an interference wave having an opposite phase and an equal amplitude to an unpleasant noise so-called road noise generated in a passenger compartment of a vehicle or the like. .

従来の能動騒音低減装置としては、伝統的な手法として騒音を低減したい場所にマイクを設置し、そのマイクの信号をもとの騒音と逆位相となるように位相、振幅調整回路で処理し、それをスピーカ等の電気音響変換手段から干渉波として出力し、マイク位置での騒音を低減するといういわゆるフィードバック法が古くから知られている。   As a conventional active noise reduction device, a microphone is installed in a place where noise is to be reduced as a traditional method, and the signal of the microphone is processed by a phase and amplitude adjustment circuit so as to be in opposite phase to the original noise. A so-called feedback method has been known for a long time to output it as an interference wave from an electroacoustic conversion means such as a speaker to reduce noise at the microphone position.

また、いわゆるフィードフォワード法として、騒音と相関の高い信号を入力とし、その入力信号を騒音を低減したい場所に設置されたマイクの信号が小さくなるように適応するNタップの適応型デジタルフィルタで処理し、それをスピーカ等の電気音響変換手段から干渉波として出力し、マイク位置での騒音を低減する方法等が知られている。   Also, as a so-called feed-forward method, a signal highly correlated with noise is input, and the input signal is processed by an N-tap adaptive digital filter that adapts so that the signal of a microphone installed in a place where noise is desired to be reduced is reduced. A method of reducing the noise at the microphone position by outputting it as an interference wave from electroacoustic conversion means such as a speaker is known.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平3−203792号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-3-203792

上記記載の伝統的なフィードバック法の課題は、もとの騒音と等振幅、逆位相の信号を生成する位相振幅調整回路にある。これには、一般的にアナログ素子であるコンデンサや抵抗、オペアンプ等が用いられて構成されるが、これらのアナログ素子であるコンデンサや抵抗には公差があり、実際の量産状態では理想の設計値からの誤差が発生する。また、急峻な特性の実現や複雑な特性の実現には多くのアナログ素子が必要となり、コストやサイズが大きくなるという欠点があった。   The problem of the traditional feedback method described above lies in a phase amplitude adjustment circuit that generates a signal having the same amplitude and opposite phase as the original noise. This is generally configured using capacitors, resistors, operational amplifiers, etc., which are analog elements, but there are tolerances in these capacitors, resistors, which are analog elements, and ideal design values in actual mass production An error from occurs. In addition, a large number of analog elements are required to realize steep characteristics and complex characteristics, and there is a drawback that the cost and size are increased.

また、同じく上記記載のフィードフォワード法の課題としては、もとの騒音と逆位相・等振幅の信号を生成するNタップの適応デジタルフィルタにあり、これを実現させるために高速度の演算処理を行うデジタルシグナルプロセッサを用いなければならない。この高速のデジタルシグナルプロセッサは非常に高価であるため、コスト面で大きな阻害要因となっていた。   Similarly, the problem of the feedforward method described above is an N-tap adaptive digital filter that generates a signal having the same phase and amplitude as the original noise. To realize this, high-speed arithmetic processing is performed. A digital signal processor to do must be used. Since this high-speed digital signal processor is very expensive, it has been a major obstacle to cost.

このようにロードノイズのようなランダムな騒音を低減する従来の能動騒音低減装置は、コスト面の課題のほか、公差による設計値からの誤差、サイズ面などに課題があった。   As described above, the conventional active noise reduction apparatus that reduces random noise such as road noise has problems in terms of error, size from the design value due to tolerance, in addition to the problem of cost.

上記課題を解決するために、本発明はロードノイズ等のランダム騒音を能動的に低減する能動騒音低減装置であって、騒音と逆位相の制御信号を発生するための方法として、特定の周波数の正弦波を生成する正弦波生成手段と同一の周波数の余弦波を生成する余弦波生成手段と、前記正弦波生成手段及び余弦波生成手段からの出力を処理する2つの1タップデジタルフィルタと、前記2つの1タップデジタルフィルタからの出力を加算したものを出力とし、この出力と騒音を低減させたい位置に置かれたマイク等の変換手段からの信号とを加算したものと前記正弦波生成手段及び余弦波生成手段からの出力とで前記2つの1タップデジタルフィルタのそれぞれの係数を更新する2つの係数更新手段を持った処理回路と、この処理回路からの前記出力の位相、振幅を調整する調整回路により生成し、そしてこの信号をスピーカ等の変換手段により干渉音として放射することにより能動騒音低減装置を構成している。   In order to solve the above-described problems, the present invention is an active noise reduction device that actively reduces random noise such as road noise, and has a specific frequency as a method for generating a control signal having a phase opposite to that of noise. A cosine wave generating means for generating a cosine wave having the same frequency as the sine wave generating means for generating a sine wave, two one-tap digital filters for processing outputs from the sine wave generating means and the cosine wave generating means, The sum of outputs from two 1-tap digital filters is used as an output, and the sum of this output and a signal from a conversion means such as a microphone placed at a position where noise is desired to be reduced, and the sine wave generating means, A processing circuit having two coefficient updating means for updating respective coefficients of the two one-tap digital filters with an output from the cosine wave generating means; The output of the phase, and constitutes the active noise reducing device by generating the adjustment circuit for adjusting the amplitude and emits this signal as interference noise by the conversion means such as a speaker.

この構成により、アナログ素子を使用した場合に対し、アナログ素子固有の公差による誤差等の影響は発生しない。また、2つの適応型1タップデジタルフィルタの演算処理は非常に小さいものであり、フィードフォワード型のような高速のデジタルシグナルプロセッサ等も必要なく、安価なマイコンで能動騒音低減装置を実現することができる。   With this configuration, when an analog element is used, there is no influence of an error or the like due to a tolerance unique to the analog element. In addition, the arithmetic processing of the two adaptive one-tap digital filters is very small, and there is no need for a high-speed digital signal processor such as a feedforward type, and an active noise reduction device can be realized with an inexpensive microcomputer. it can.

以上説明したように、本発明における能動騒音低減装置によれば、フィードバック法における、もとの騒音と逆位相の制御信号をデジタル的にかつ簡単な構成で生成でき、アナログ素子を使ったものに比較してアナログ素子が持つ公差による誤差や素子数の増加等の問題を回避できるので、低コストで実用性の高い優れた能動騒音低減装置を実現することができる。   As described above, according to the active noise reduction apparatus of the present invention, a control signal having a phase opposite to that of the original noise in the feedback method can be generated digitally with a simple configuration, and an analog element is used. In comparison, problems such as errors due to tolerances of analog elements and an increase in the number of elements can be avoided, so that it is possible to realize an excellent active noise reduction apparatus that is inexpensive and highly practical.

以下、本発明における能動騒音低減装置の一実施の形態について説明する。図1は本発明の実施の形態における能動騒音低減装置の構成を示すブロック図である。   Hereinafter, an embodiment of an active noise reduction apparatus according to the present invention will be described. FIG. 1 is a block diagram showing a configuration of an active noise reduction apparatus according to an embodiment of the present invention.

処理回路101は特定の周波数の正弦波を発生する正弦波生成手段102、同一の周波数の余弦波を生成する余弦波生成手段103、正弦波生成手段102及び余弦波生成手段103のそれぞれの出力を処理する2つの1タップデジタルフィルタ104、105、入力と正弦波生成手段102、余弦波生成手段103との出力とが入力された2つの係数更新手段106、107からなり、これらの係数更新手段106、107はそれぞれに対応した1タップデジタルフィルタ104、105の係数を逐次更新している。処理回路101の出力は調整回路108により振幅及び位相を調整され、スピーカ等の第1の変換手段109に加えられる。マイク等の第2の変換手段110の出力は処理回路101の入力に加えられフィードバック型の能動騒音低減装置を構成している。   The processing circuit 101 outputs sine wave generation means 102 for generating a sine wave of a specific frequency, cosine wave generation means 103 for generating a cosine wave of the same frequency, sine wave generation means 102 and cosine wave generation means 103. Two coefficient updating units 106 and 107 to which two one-tap digital filters 104 and 105 to be processed, inputs and outputs from a sine wave generation unit 102 and a cosine wave generation unit 103 are input. , 107 sequentially update the coefficients of the 1-tap digital filters 104, 105 corresponding to each of them. The output of the processing circuit 101 is adjusted in amplitude and phase by the adjustment circuit 108 and is applied to the first conversion means 109 such as a speaker. The output of the second conversion means 110 such as a microphone is added to the input of the processing circuit 101 to constitute a feedback type active noise reduction apparatus.

ここで、図1に示した本発明の実施の形態における能動騒音低減装置の騒音低減メカニズムを説明するために、図1における処理回路101の入出力特性について説明する。   Here, in order to explain the noise reduction mechanism of the active noise reduction apparatus in the embodiment of the present invention shown in FIG. 1, the input / output characteristics of the processing circuit 101 in FIG. 1 will be described.

図2は図1における処理回路101において出力から入力への接続を除いたもののブロック図であり、ここに記載の標記を使用して処理回路101の入出力特性を説明する。ここで処理回路101の入力信号はCos(ωt+α)、正弦波生成手段102及び余弦波生成手段103の生成信号はそれぞれSinωot、Cosωotとする。また係数更新手段106、107は一般的にLMSアルゴリズムにより、それぞれに対応した1タップデジタルフィルタ104、105の係数を更新しているが、その係数更新式は2つの1タップデジタルフィルタ104、105の現在の係数をそれぞれBn、Anで表すと   FIG. 2 is a block diagram of the processing circuit 101 in FIG. 1 in which the connection from the output to the input is removed, and the input / output characteristics of the processing circuit 101 will be described using the notation described here. Here, the input signal of the processing circuit 101 is Cos (ωt + α), and the generated signals of the sine wave generating means 102 and the cosine wave generating means 103 are Sinωot and Cosωot, respectively. The coefficient updating means 106 and 107 generally update the coefficients of the 1-tap digital filters 104 and 105 corresponding to the LMS algorithm, respectively, but the coefficient update formula is that of the two 1-tap digital filters 104 and 105. The current coefficients are expressed as Bn and An, respectively.

Figure 2007025527
Figure 2007025527

ここでμは収束係数と呼ばれる小さな係数値である。   Here, μ is a small coefficient value called a convergence coefficient.

Figure 2007025527
Figure 2007025527

まず、適応フィルタの係数An、Bnの変化△An、△Bnは次の式で表される。   First, changes ΔAn and ΔBn of the coefficients An and Bn of the adaptive filter are expressed by the following equations.

Figure 2007025527
Figure 2007025527

ここで逐次更新された結果のAn、Bnは上式をそれぞれ積分して Here, An and Bn of the results updated sequentially are obtained by integrating the above equations.

Figure 2007025527
Figure 2007025527

また、A及びBの積分定数を0とし、ωx≫ωyなのでωxの項を無視すると Also, if the integration constant of A and B is 0 and ωx >> ωy, the term of ωx is ignored.

Figure 2007025527
Figure 2007025527

となる。 It becomes.

これにそれぞれ正弦波生成手段、余弦波生成手段102、103からの信号が加えられるので、それぞれ2つの1タップデジタルフィルタ105、104からの出力Ea、Ebは   Since the signals from the sine wave generating means and the cosine wave generating means 102 and 103 are added to this, the outputs Ea and Eb from the two 1-tap digital filters 105 and 104, respectively.

Figure 2007025527
Figure 2007025527

よって、出力Etは Therefore, the output Et is

Figure 2007025527
Figure 2007025527

すなわち、式(1)は入力としてCos(ωt+α)が加えられて出力される信号であり、ω<ω0の時には入力信号より位相が90°遅れ、ω=ω0で180°ω>ω0で90°進む。また振幅はω0=ωで無限大となり、ωがω0から離れるに従って|ω0−ω|に逆比例して低下していくのがわかる。   That is, Expression (1) is a signal output with Cos (ωt + α) added as an input. When ω <ω0, the phase is delayed by 90 ° from the input signal, and when ω = ω0, 180 ° ω> ω0 and 90 °. move on. It can also be seen that the amplitude becomes infinite when ω0 = ω, and decreases in inverse proportion to | ω0−ω | as ω moves away from ω0.

図3は上記により計算した図2のブロック図の伝達特性Et/Eiの特性例である。   FIG. 3 is a characteristic example of the transfer characteristic Et / Ei of the block diagram of FIG. 2 calculated as described above.

つぎに処理回路101の伝達特性を説明する。   Next, transfer characteristics of the processing circuit 101 will be described.

図4は図2のブロック図を処理回路101と同じ動作をするように、図2のブロック図の出力を入力にフィードバックした状態を表すブロック図である。図2で示した処理回路に相当する部分111の伝達関数をF(s)で表し、図3に示す特性であるとする。   FIG. 4 is a block diagram showing a state in which the output of the block diagram of FIG. 2 is fed back to the input so that the block diagram of FIG. Assume that the transfer function of the portion 111 corresponding to the processing circuit shown in FIG. 2 is represented by F (s) and has the characteristics shown in FIG.

このとき、図4のブロック図の伝達特性は   At this time, the transfer characteristic of the block diagram of FIG.

Figure 2007025527
Figure 2007025527

で表される。 It is represented by

式(2)で表される伝達特性例を図5に示す。図5から、処理回路101がω0を中心とするバンドパスフィルターの特性であることがわかる。またω0にて位相が180°であることもわかる。   FIG. 5 shows an example of the transfer characteristic represented by Expression (2). From FIG. 5, it can be seen that the processing circuit 101 has the characteristics of a bandpass filter centered on ω0. It can also be seen that the phase is 180 ° at ω0.

そして、ω0は正弦波生成手段102、余弦波生成手段103の発生周波数であるから、このバンドパス特性の中心周波数は正弦波生成手段102、余弦波生成手段103の発生周波数を可変することによって容易に変更することができる。また、式(1)によりμを可変することによってこのバンドパス特性の帯域幅も容易に可変することができる。図6は処理回路101のμを変化させたときの伝達特性例である。   Since ω0 is the generated frequency of the sine wave generating means 102 and cosine wave generating means 103, the center frequency of this bandpass characteristic can be easily changed by varying the generated frequencies of the sine wave generating means 102 and cosine wave generating means 103. Can be changed. Further, the bandwidth of this bandpass characteristic can be easily varied by varying μ according to the equation (1). FIG. 6 shows an example of transfer characteristics when μ of the processing circuit 101 is changed.

つぎに全体の消音のメカニズムについて説明する。   Next, the overall silencing mechanism will be described.

図7は本発明の実施の形態における能動騒音低減装置を電気回路的に簡略化して、その動作を説明するためのブロック図である。   FIG. 7 is a block diagram for explaining the operation of the active noise reduction apparatus according to the embodiment of the present invention by simplifying it in terms of an electric circuit.

112は処理回路101に相当する部分であり、その伝達特性はF1(S)で表され、113は調整回路108に相当する部分であり、その伝達特性はF2(S)で表される。また、114は第1の変換手段109と第2の変換手段110とそれらの間の空間伝達特性を含めたトータルの伝達特性を表す部分であり、その伝達特性はF3(S)で表されるものとする。入力Vnはもとの騒音に相当し、Veは制御後の騒音となる。 Reference numeral 112 denotes a portion corresponding to the processing circuit 101, the transfer characteristic of which is represented by F 1 (S), and 113, a portion corresponding to the adjustment circuit 108, whose transfer characteristic is represented by F 2 (S). . Reference numeral 114 denotes a portion representing the total transfer characteristics including the first transfer means 109, the second conversion means 110, and the spatial transfer characteristics between them, and the transfer characteristics are represented by F 3 (S). Shall be. The input Vn corresponds to the original noise, and Ve is the noise after control.

ここでVnとVeの関係式を導くと   Here is the relationship between Vn and Ve

Figure 2007025527
Figure 2007025527

となる。 It becomes.

この式の示すところは、1−F1(S)・F2(S)・F3(S)の絶対値が1より大きい場合には、制御後の騒音Veがもとの騒音Vnより小さくなることを示している。即ち、F1(S)・F2(S)・F3(S)を周波数特性的に表現すると、位相特性として180°でかつゲインが大きいほどその制御効果は大きくなるといえる。 This formula shows that when the absolute value of 1-F 1 (S), F 2 (S), F 3 (S) is greater than 1, the post-control noise Ve is smaller than the original noise Vn. It shows that it becomes. That is, if F 1 (S) · F 2 (S) · F 3 (S) is expressed in terms of frequency characteristics, it can be said that the phase effect is 180 ° and the greater the gain, the greater the control effect.

本発明の場合は、F1(S)は図5のような特性であるため、F2(S)・F3(S)をω0において位相が0°となるように選ぶ。一般的にF3(S)は第1の変換手段109と第2の変換手段110とそれらの間の空間伝達特性を含めた伝達関数であることから、任意に設定することはできず、もっぱらF2(S)すなわち調整回路108によって調整される。この調整回路108での設定は上記でも述べたがF2(S)・F3(S)をω0において位相が0°となるようにF2(S)を調整する。 In the case of the present invention, since F 1 (S) has the characteristics as shown in FIG. 5, F 2 (S) · F 3 (S) is selected so that the phase is 0 ° at ω 0. In general, F 3 (S) is a transfer function including the first transfer means 109, the second conversion means 110, and the spatial transfer characteristics between them, and thus cannot be arbitrarily set. F 2 (S), that is, adjustment is performed by the adjustment circuit 108. Setting in the adjustment circuit 108 adjusts the F 2 (S) As has been mentioned above becomes phase of 0 ° at F 2 (S) · F 3 a (S) ω0.

この調整回路108はアナログ回路でも構成できるが、デジタル回路にて構成した回路例を図8に示す。115は図1の処理回路101を簡略化し、2つの1タップデジタルフィルタ104、105の係数がそれぞれA、Bの時の状況を示したものであり、116はそれぞれ記載の係数を持つ1タップデジタルフィルタである。   Although the adjustment circuit 108 can be configured by an analog circuit, a circuit example configured by a digital circuit is shown in FIG. 115 simplifies the processing circuit 101 of FIG. 1, and shows the situation when the coefficients of the two one-tap digital filters 104 and 105 are A and B, respectively, and 116 is a one-tap digital having the coefficients described, respectively. It is a filter.

ここで記載のVout1、Vout2を計算すると   When Vout1 and Vout2 described here are calculated

Figure 2007025527
Figure 2007025527

だけ進んでいることがわかる。このように1タップデジタルフィルタ116の係数Sa、Sbを適当に選ぶことによって振幅、位相の調整が可能であり、アナログ回路のような公差による誤差も発生しない。 You can see that it ’s only progressing. Thus, by appropriately selecting the coefficients Sa and Sb of the 1-tap digital filter 116, the amplitude and phase can be adjusted, and errors due to tolerances such as analog circuits do not occur.

図9は互いに異なる周波数の処理回路101を複数個並列に接続した本発明の他の実施の形態における能動騒音低減装置の構成を示すブロック図である。   FIG. 9 is a block diagram showing a configuration of an active noise reduction apparatus according to another embodiment of the present invention in which a plurality of processing circuits 101 having different frequencies are connected in parallel.

117は互いに異なる周波数の処理回路を複数個並列に接続したブロック処理部である。このブロック処理部117の伝達特性例を図10に示す。これと図5を比較すると、バンドパス特性の通過帯域が広がった形となっており、これまでの説明からわかるように広い帯域の騒音低減が可能になることがわかる。   Reference numeral 117 denotes a block processing unit in which a plurality of processing circuits having different frequencies are connected in parallel. An example of the transfer characteristic of the block processing unit 117 is shown in FIG. Comparing this with FIG. 5, it can be seen that the passband of the bandpass characteristic is widened, and as can be seen from the above description, noise in a wide band can be reduced.

本発明の能動騒音低減装置は、元の騒音と逆位相の制御信号をデジタル的にかつ簡単な構成で生成でき、低コストで実用性の高い能動騒音低減装置を実現することができ、自動車の能動騒音低減装置への適用に有用である。   The active noise reduction device of the present invention can generate a control signal having a phase opposite to that of the original noise in a digital and simple configuration, and can realize an active noise reduction device with low cost and high practicality. It is useful for application to active noise reduction devices.

本発明の実施の形態における能動騒音低減装置のブロック図The block diagram of the active noise reduction apparatus in embodiment of this invention 処理回路の伝達特性を計算するためのブロック図Block diagram for calculating the transfer characteristics of a processing circuit 図2のブロック図における伝達特性例を示す図The figure which shows the example of a transfer characteristic in the block diagram of FIG. 処理回路の伝達特性を求めるためのブロック図Block diagram for determining transfer characteristics of processing circuit 処理回路の伝達特性例を示す図Diagram showing transfer characteristic example of processing circuit 処理回路のμを変化させた時の伝達特性例を示す図Diagram showing an example of transfer characteristics when μ of the processing circuit is changed 本発明の実施の形態における能動騒音低減装置の消音動作を説明するためのブロック図The block diagram for demonstrating the silencing operation | movement of the active noise reduction apparatus in embodiment of this invention 調整回路の構成例を示すブロック図Block diagram showing a configuration example of the adjustment circuit 本発明の他の実施の形態における能動騒音低減装置のブロック図The block diagram of the active noise reduction apparatus in other embodiment of this invention 本発明の他の実施の形態における能動騒音低減装置の処理回路の伝達特性例を示す図The figure which shows the example of the transfer characteristic of the processing circuit of the active noise reduction apparatus in other embodiment of this invention.

符号の説明Explanation of symbols

101 処理回路
102 正弦波生成手段
103 余弦波生成手段
104 1タップデジタルフィルタ
105 1タップデジタルフィルタ
106 係数更新手段
107 係数更新手段
108 調整回路
109 第1の変換手段(スピーカ)
110 第2の変換手段(マイク)
111 処理回路に相当する部分
112 処理回路の伝達関数
113 調整回路の伝達関数
114 第1の変換手段と第2の変換手段とそれらの間の空間伝達特性を含めた伝達関数
115 処理回路を簡略化したもの
116 1タップデジタルフィルタ
117 ブロック処理部
Reference Signs List 101 processing circuit 102 sine wave generating means 103 cosine wave generating means 104 1 tap digital filter 105 1 tap digital filter 106 coefficient updating means 107 coefficient updating means 108 adjustment circuit 109 first conversion means (speaker)
110 Second conversion means (microphone)
Reference numeral 111: part corresponding to processing circuit 112: transfer function of processing circuit 113: transfer function of adjustment circuit 114: transfer function including first transfer means, second conversion means, and spatial transfer characteristics between them 115: simplification of processing circuit 116 1-tap digital filter 117 Block processing unit

Claims (2)

特定の周波数の正弦波を生成する正弦波生成手段と同一の周波数の余弦波を生成する余弦波生成手段と、前記正弦波生成手段及び余弦波生成手段からの出力を処理する2つの1タップデジタルフィルタと、前記2つの1タップデジタルフィルタからの出力を加算したものを出力とし、この出力と入力とを加算したものと前記正弦波生成手段及び余弦波生成手段からの出力とで前記2つの1タップデジタルフィルタのそれぞれの係数を更新する2つの係数更新手段を持った処理回路と、この処理回路からの前記出力の位相、振幅を調整する調整回路と、この調整回路からの出力を音波、もしくは振動に変換する第1の変換手段と、前記処理回路の入力に接続された音波、もしくは振動を電気信号に変換する第2の変換手段から構成された能動騒音低減装置。 Cosine wave generating means for generating a cosine wave having the same frequency as the sine wave generating means for generating a sine wave having a specific frequency, and two one-tap digital processing for processing outputs from the sine wave generating means and the cosine wave generating means An output obtained by adding the outputs from the filter and the two one-tap digital filters is used as an output, and the output from the sine wave generating means and the cosine wave generating means is obtained by adding the output and the input. A processing circuit having two coefficient updating means for updating each coefficient of the tap digital filter, an adjustment circuit for adjusting the phase and amplitude of the output from the processing circuit, and an output from the adjustment circuit as a sound wave, or Active noise composed of first conversion means for converting to vibration, and second conversion means for converting sound waves or vibration connected to the input of the processing circuit into electrical signals. Reduction device. それぞれ異なった特定の周波数の正弦波及び余弦波を生成する処理回路を並列に接続したことを特徴とする請求項1に記載の能動騒音低減装置。 2. The active noise reduction apparatus according to claim 1, wherein processing circuits for generating sine waves and cosine waves having different specific frequencies are connected in parallel.
JP2005210920A 2005-07-21 2005-07-21 Active noise reduction apparatus Pending JP2007025527A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005210920A JP2007025527A (en) 2005-07-21 2005-07-21 Active noise reduction apparatus
US11/572,848 US20080310650A1 (en) 2005-07-21 2006-07-21 Active noise reducing device
EP06768329A EP1772852B1 (en) 2005-07-21 2006-07-21 Active noise reduction device
PCT/JP2006/314451 WO2007011011A1 (en) 2005-07-21 2006-07-21 Active noise reduction device
CN2006800009762A CN101040321B (en) 2005-07-21 2006-07-21 Active noise reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210920A JP2007025527A (en) 2005-07-21 2005-07-21 Active noise reduction apparatus

Publications (1)

Publication Number Publication Date
JP2007025527A true JP2007025527A (en) 2007-02-01

Family

ID=37668882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210920A Pending JP2007025527A (en) 2005-07-21 2005-07-21 Active noise reduction apparatus

Country Status (4)

Country Link
EP (1) EP1772852B1 (en)
JP (1) JP2007025527A (en)
CN (1) CN101040321B (en)
WO (1) WO2007011011A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247278A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Active type noise control device
JP2008247308A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Active type noise control device
JP2009045954A (en) * 2007-08-13 2009-03-05 Honda Motor Co Ltd Active type noise control device
WO2009144976A1 (en) 2008-05-29 2009-12-03 本田技研工業株式会社 Active noise controller
US8064612B2 (en) 2007-09-10 2011-11-22 Honda Motor Co., Ltd. Vehicular active vibratory noise control apparatus
US8098837B2 (en) 2007-03-30 2012-01-17 Honda Motor Co., Ltd. Active noise control apparatus
US11315542B2 (en) 2020-03-31 2022-04-26 Honda Motor Co., Ltd. Active noise control device
US11594209B2 (en) 2021-03-18 2023-02-28 Honda Motor Co., Ltd. Active noise control device
US11631392B2 (en) 2021-03-18 2023-04-18 Honda Motor Co., Ltd. Active noise control device
US11694670B2 (en) 2021-01-20 2023-07-04 Honda Motor Co., Ltd. Active noise control device and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9177542B2 (en) 2013-03-29 2015-11-03 Bose Corporation Motor vehicle adaptive feed-forward noise reduction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677677A (en) * 1985-09-19 1987-06-30 Nelson Industries Inc. Active sound attenuation system with on-line adaptive feedback cancellation
US5185801A (en) * 1989-12-28 1993-02-09 Meyer Sound Laboratories Incorporated Correction circuit and method for improving the transient behavior of a two-way loudspeaker system
JP3264951B2 (en) * 1991-09-18 2002-03-11 日産自動車株式会社 Active noise control device
JPH0883083A (en) * 1994-09-14 1996-03-26 Fuji Heavy Ind Ltd In-vehicle noise reducing device
JP3725959B2 (en) * 1997-03-14 2005-12-14 ティーオーエー株式会社 Transfer function identification device and active noise elimination device
JP4031875B2 (en) * 1998-09-17 2008-01-09 本田技研工業株式会社 Active vibration and noise suppression device
JP2001005463A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Acoustic system
JP2002333886A (en) * 2001-05-08 2002-11-22 Onkyo Corp Active noise controller
JP4079831B2 (en) * 2003-05-29 2008-04-23 松下電器産業株式会社 Active noise reduction device
JP3843082B2 (en) * 2003-06-05 2006-11-08 本田技研工業株式会社 Active vibration noise control device
JP4077383B2 (en) * 2003-09-10 2008-04-16 松下電器産業株式会社 Active vibration noise control device
EP1906384B1 (en) * 2005-07-21 2015-09-02 Panasonic Corporation Active noise reduction device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247278A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Active type noise control device
JP2008247308A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Active type noise control device
US8098837B2 (en) 2007-03-30 2012-01-17 Honda Motor Co., Ltd. Active noise control apparatus
US8111835B2 (en) 2007-03-30 2012-02-07 Honda Motor Co., Ltd. Active noise control apparatus
JP2009045954A (en) * 2007-08-13 2009-03-05 Honda Motor Co Ltd Active type noise control device
US8064612B2 (en) 2007-09-10 2011-11-22 Honda Motor Co., Ltd. Vehicular active vibratory noise control apparatus
WO2009144976A1 (en) 2008-05-29 2009-12-03 本田技研工業株式会社 Active noise controller
US8958568B2 (en) 2008-05-29 2015-02-17 Honda Motor Co., Ltd. Active noise controller
US11315542B2 (en) 2020-03-31 2022-04-26 Honda Motor Co., Ltd. Active noise control device
US11694670B2 (en) 2021-01-20 2023-07-04 Honda Motor Co., Ltd. Active noise control device and vehicle
US11594209B2 (en) 2021-03-18 2023-02-28 Honda Motor Co., Ltd. Active noise control device
US11631392B2 (en) 2021-03-18 2023-04-18 Honda Motor Co., Ltd. Active noise control device

Also Published As

Publication number Publication date
EP1772852A1 (en) 2007-04-11
EP1772852A4 (en) 2011-08-24
EP1772852B1 (en) 2012-10-24
WO2007011011A1 (en) 2007-01-25
CN101040321B (en) 2012-09-05
CN101040321A (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP2007025527A (en) Active noise reduction apparatus
JP5640063B2 (en) Adjustable active noise control
JP4979809B2 (en) Low delay signal processing based on high oversampling digital processing
CN101385387B (en) Digital circuit arrangements for ambient noise-reduction
Wu et al. A simplified adaptive feedback active noise control system
JP4350777B2 (en) Active vibration and noise control device for vehicle
JP2012226366A (en) Noise controller
JPWO2007011010A1 (en) Active noise reduction device
US8233633B2 (en) Noise control device
JP3581775B2 (en) Identification method of audio sound transmission system and characteristic setting method of audio filter
WO2015050431A1 (en) Method and apparatus for nonlinear compensation in an active noise control system
CN110246480A (en) Utilize the active noise cancellation systems of diagonalization electric-wave filter matrix
JP2008137636A (en) Active noise control device
JP2020106619A (en) Active type noise control system, setting method of active type noise control system and audio system
JPH11168792A (en) Sound field controller
US20080310650A1 (en) Active noise reducing device
Klippel Nonlinear adaptive controller for loudspeakers with current sensor
JP4843581B2 (en) Active noise control device
JP4977551B2 (en) Active noise control device
Akhtar A normalized filtered-x generalized fractional lower order moment adaptive algorithm for impulsive ANC systems
JP4590389B2 (en) Active vibration noise control device
CN108366331B (en) Audio processing device and audio processing method
JPH0540485A (en) Noise controller
JP2015106799A (en) Method and electronic apparatus
WO1992022054A1 (en) Noise control apparatus