WO1992022054A1 - Noise control apparatus - Google Patents

Noise control apparatus Download PDF

Info

Publication number
WO1992022054A1
WO1992022054A1 PCT/JP1992/000680 JP9200680W WO9222054A1 WO 1992022054 A1 WO1992022054 A1 WO 1992022054A1 JP 9200680 W JP9200680 W JP 9200680W WO 9222054 A1 WO9222054 A1 WO 9222054A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
signal
cycle
period
sound
Prior art date
Application number
PCT/JP1992/000680
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Nagami
Kazuya Sako
Original Assignee
Fujitsu Ten Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3127632A external-priority patent/JPH0772837B2/en
Priority claimed from JP3195449A external-priority patent/JPH0719157B2/en
Application filed by Fujitsu Ten Limited filed Critical Fujitsu Ten Limited
Priority to US07/934,652 priority Critical patent/US5319715A/en
Priority to DE69227252T priority patent/DE69227252T2/en
Priority to EP92910577A priority patent/EP0598120B1/en
Publication of WO1992022054A1 publication Critical patent/WO1992022054A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/107Combustion, e.g. burner noise control of jet engines
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3031Hardware, e.g. architecture
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3042Parallel processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3045Multiple acoustic inputs, single acoustic output
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/511Narrow band, e.g. implementations for single frequency cancellation

Definitions

  • the present invention eliminates noise by outputting a signal having the same phase and the same sound pressure as the noise detected by the microphone from the speaker.
  • the noise frequency changes rapidly.
  • the present invention relates to a noise control device capable of following even when the noise control is performed.
  • the noise is detected by a microphone for noise source installed upstream of the duct, and the signal processing circuit sends a signal of opposite phase and equal sound pressure to the noise.
  • the signal is output from a speaker installed downstream of the duct, and the residual sound resulting from the silencing is detected by microphone and fed back.
  • This is a so-called 2-microphone 1-speaker type active noise control device that combines a voice system.
  • FIG. 1 is a diagram showing a first principle configuration of the present invention.
  • the noise control device includes a sound / electric signal converter 2 for detecting noise and converting it into an electric signal, and an electric signal for outputting supplementary sound waves for eliminating noise.
  • Sound wave transducer 3 a transfer characteristic simulation means 4, a difference signal calculation means 5, an adaptive filtering means 6, a cycle detection section 7, and a cycle adjustment section 8. The difference signal between the output of the filter 2 and the output of the adaptive filtering means 6 is calculated.
  • the transfer characteristic simulating means 4 is inserted between the adaptive filtering means 6 and the difference signal calculating means 5, and receives the electric signal / sound wave converter 3 and the electric signal / sonic wave from the adaptive filtering means 6. Simulates the transfer characteristics of the system that returns through the sound wave and electrical signal converter 2.
  • the cycle detector 7 detects the noise cycle of the noise source 1.
  • the cycle adjuster 8 changes the cycle of the output signal of the difference signal calculator 5 in accordance with the amount of change in the noise cycle.
  • the adaptive filtering means 6 is for outputting a supplementary sound wave to the electric signal / sound wave converter 3 based on the output signal means of the period adjusting unit 8 and the output of the sound wave / electric signal converter 2. Calculate the complement signal.
  • the adaptive filtering means 6 may directly input a signal obtained by adjusting the period of the noise signal from the noise source, and in this case, the transfer characteristic simulating means 4 and The difference signal calculation means 5 is omitted.
  • the output of the transfer characteristic simulating means 4 and the output of the sound wave-to-electric signal converter 2 are converted into a difference signal by the difference signal calculating means 5 to form a reproduced noise signal.
  • the amplitude and phase are adjusted by the adaptive filtering means 6 for inputting the input signal, and the supplementary signal causes the electric signal / sound wave converter 3 to output a supplementary sound wave to mute the noise.
  • the cycle detection unit 7 detects the noise cycle and monitors the fluctuation of the noise cycle.
  • the period adjuster 8 adjusts the period of the output signal of the difference signal calculating means 5, that is, the period of the input signal of the adaptive filtering means 6, according to the fluctuation of the noise period. (4)
  • the period of the sound wave coincides with the period of the noise at the silencing point. Therefore, even if the noise cycle changes sharply, it can follow.
  • FIG. 2 is a diagram showing a second principle configuration of the present invention.
  • the present invention provides an electric signal for eliminating noise from a noise source 1, a sound wave converter 3, and a residual sound eliminated by sound waves from the electric signal / sound wave converter 3.
  • the filter characteristics of the adaptive filtering means 6 are changed according to the predicted change of the noise period to the noise control device having the adaptive filtering means 6 for forming the supplementary signal of the noise.
  • Cycle detection control means 10 is provided.
  • the cycle detection control means 10 detects the noise cycle of the noise source 1, predicts a change in the noise cycle, and includes the adaptive filtering means 6 in accordance with the predicted change in the noise cycle. Update the multiplication coefficients set in the multiple multipliers. Further, the cycle detection control means 10 detects a noise cycle in the noise generation source 1, predicts a change in the noise cycle, and according to the predicted change in the noise cycle, the adaptive filter. The taps of a plurality of delay units included in the switching means 6 may be moved.
  • the period detection control means 10 is adapted to be adapted to the adaptive filter.
  • the multiplication coefficients of the plurality of multipliers included in the ring 6 are formed into a multidimensional vector to detect and predict a change in the vector and to perform a prediction according to the predicted change of the vector.
  • the multiplication coefficients of the plurality of multipliers may be updated and set.
  • an adaptive filter that inputs this noise signal based on the difference signal between the noise from the noise source 1 and the sound wave with the opposite phase equal sound pressure from the speaker 3
  • the compensation signal of the ring means 6 is adjusted for the amplitude and the phase, and the noise is eliminated.
  • the change in the noise cycle is detected by the cycle detection means, and the noise cycle is determined based on the transmission characteristics to the sound-absorbing point via the electric signal, the sound wave converter 3, etc.
  • the multiplication coefficients of a plurality of multipliers constituting the adaptive filtering means 6 are shift-controlled, and the period of the electric signal and the sound wave used from the sound wave converter 3 is at the sound deadening point. It will coincide with the period of the noise. Therefore, it is possible to follow even if the noise cycle changes sharply.The same function can be obtained even if the tap of the delay unit of the adaptive filtering means 6 is moved by the cycle detection control means 10.
  • the period detection control means 10 vectorizes the multiplication coefficient of the multiplier of the adaptive filtering 6, and the vector change is closely related to the noise period. By predicting the vector change, the noise period can be easily predicted, and by considering the transfer characteristics, even if the period change is steep, the period of the supplementary sound wave can be matched at the sound deadening point. And become possible. [Brief description of drawings]
  • FIG. 1 is a diagram showing a first principle configuration of the present invention.
  • FIG. 2 is a diagram showing a second principle configuration of the present invention.
  • FIG. 3 is a diagram showing a noise period control device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a cycle detection method of the cycle detector of FIG.
  • FIG. 5 is a diagram showing a configuration of the cycle adjusting unit in FIG.
  • FIG. 6 is a diagram showing a relationship between input and output signals of the cycle adjusting unit in FIG.
  • FIG. 7 is a diagram showing the relationship between the period change amount and its control amount calculation.
  • FIG. 8 is a diagram for explaining the function of the delay amount control unit.
  • FIG. 9 is a diagram showing a noise period control device according to a second embodiment of the present invention.
  • FIG. 10 is a diagram showing a noise cycle control device according to a third embodiment of the present invention.
  • FIG. 11 is a diagram showing a noise period control device according to a fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing a noise control device according to a fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of the cycle detection control means of FIG.
  • FIG. 14 is a diagram for explaining a cycle detection method of the cycle detector of FIG.
  • FIG. 15 is a diagram for explaining a method of predicting the amount of periodic change.
  • FIG. 16 is a diagram showing the adaptive filtering means of FIG.
  • FIG. 17 is a diagram for explaining the shift of the multiplication coefficient of a plurality of multipliers constituting the adaptive filtering means.
  • FIG. 18 is a diagram for explaining the tap movement of a plurality of delay units constituting the adaptive filtering means.
  • FIG. 19 is a diagram showing another modification of the cycle detection control means of FIG.
  • FIG. 3 is a diagram showing a noise period control device according to the first embodiment of the present invention.
  • This figure shows a noise source 1 such as a car engine or motor, and a sound wave from the noise source 1 propagates, cancels the noise near the sound deadening point and is captured as a residual sound, and the electric signal is captured.
  • Microphone 2 for converting to noise, speaker 3 for outputting supplementary sound waves for eliminating noise near the sound deadening point, and speaker 3 and microphone 3 from adaptive filtering means 6.
  • a transfer characteristic simulating means 4 for simulating a transfer characteristic of a system from the microphone 2 to the difference signal calculating means 5, and an output of the microphone 2 and an output of the transfer characteristic simulating means 4.
  • a difference signal calculating means 5 for calculating a difference signal; an adaptive filtering means 6 for calculating a compensation signal for outputting a compensation sound wave from the speaker 3 based on the calculation result of the difference signal calculating means 5; Cycle for detecting the noise cycle of the noise source 1
  • a detection unit 7, a period adjustment unit 8 that changes the period of the input signal of the adaptive filtering unit 6 according to the amount of change in the noise period, and an amplifier 101 of the microfin 2 (Analog To Digital Converter) AZD converter 102 that digitizes the output of amplifier 101 and outputs it to difference signal calculating means 5, and the output of adaptive filtering means 6 (D / A to digital converter) 103 that converts the analog signal into an analog signal, and an amplifier 104 that amplifies the output of the DZA converter 103 and output
  • the transfer characteristic simulating means 4, the difference signal calculating means 5, the adaptive filtering means 6, the cycle detecting section 7 and the cycle adjusting section 8 may be constituted by DSP (DigitalSinalProcessor).
  • FIG. 4 is a diagram for explaining a cycle detection method of the cycle detector of FIG.
  • This figure (a) shows a method for detecting the rotation timing of a vehicle engine or motor as the sound source 1.
  • a rectangular wave signal is input to the input ⁇ of the cycle detector 7, the cycle T is determined, and the output T is output to the cycle adjuster 8. This is because in the sound of a car, the sudden change in noise is caused by changes in the speed of the car engine.
  • This figure (c) shows the BPF (B and Pass Fi 1 ter) peak detection method for obtaining the noise period T after digitizing the noise signal input to the microphone.
  • a plurality of node path filters 1, 2,..., n, and an absolute value unit (ABS) connected to each node path filter 1, 2,..., n It consists of an averaging unit (LPF) connected to each absolute value unit, and a maximum band detection unit that detects the maximum value of each averaging unit, and detects the maximum frequency band of the noise level, The cycle of the maximum frequency band is used as the cycle of the noise signal.
  • This figure (d) shows a period detection method using an adaptive filter, in which a delay signal (D e 1 ay) for inputting the difference signal of the difference signal calculating means 5 and an output of the delay signal are input.
  • An adaptive filter (ADF) an adder for obtaining a difference signal between an output of the adaptive filter and a through input signal, and a least square method processing on the difference signal of the adder, to obtain an adaptive filter It consists of a least-squares method processing unit (LMS) that determines filter coefficients, and determines the period of the noise signal from the fixed coefficients of the adaptive filter.
  • LMS least-squares method processing unit
  • FIG. 5 is a diagram showing a configuration of the cycle adjusting unit of FIG.
  • the cycle adjusting unit 8 in the figure receives the difference signal of the difference signal calculating means 5, has M delay taps, and outputs a delay from the delay point to the adaptive filtering means 6 Memory 8 1 and delay memory 8 1
  • the delay amount control unit 82 that controls the delay amount by moving the delay point of the same
  • the period change amount detection unit 83 that detects the period change amount from the period data from the period detection unit 7, and the period change amount
  • FIG. 6 is a diagram showing the relationship between the input and output signals of the cycle adjusting unit in FIG. This figure (a) shows that the period of the delay memory 81 input signal is T8, and this figure (t>) shows that the period of the delay memory output signal is T4.
  • FIG. 7 is a diagram showing the relationship between the period change amount and its control amount calculation.
  • the period change detector 83 detects the period change as shown by 2 in the figure.
  • the position of the microphone mouth phone 2 is delayed by the transmission characteristic Hd as shown in the figure (2).
  • the control amount calculating unit 84 calculates data for changing the cycle earlier as shown by the curve in the figure with respect to the curve in the figure, taking the transfer characteristic H d into consideration.
  • the change in the period is shown as a straight line with respect to time, but this may be a curve.
  • the curve in the figure 4 is provided with a function, which is determined by fitting. You may.
  • the predicted period T4 for the period T3 of the current time (tt) is obtained.
  • FIG. 8 is a diagram for explaining a delay amount control unit.
  • the delay memory 81 is the input signal data at a fixed sampling period.
  • the input signal cycle T in and the output signal cycle T. u are translated displayed in ye number of taps, the period T input signal or et al cycle of in T.
  • the delay controller 82 moves the delay point at a certain speed V in order to obtain an output signal of u ,.
  • A represents the tap speed V in the case of the absolute amount of change.
  • To make u 27 taps
  • the adaptive filtering means 6 will be briefly described. Strictly speaking, the transfer characteristics of electric signals must be considered, but they are not directly related to the present invention, and are ignored for simplicity of description. .
  • noise S N of the noise source 1 the transfer characteristic up microphone B off O emissions 2 and H N0ISE, the complement No. ⁇ adaptive filter-ring means 6 and S c, adaptive Fi
  • H d The transfer characteristic of the system from the filtering means 6 to the difference signal calculating means 5 via the speaker 3 and the microphone 2 is defined as H d.
  • the difference signal S E is a calculation result of the difference calculation unit 5
  • I SE and the next and this for calculating a signal when detect only noise at microphone b off O emissions 2, enter the difference signal S E to the suitable ⁇ off I filter-ring means 6,
  • S M The supplementary signal Sc is calculated so that it becomes zero.
  • FIG. 9 is a diagram showing a noise cycle control device according to a second embodiment of the present invention.
  • the configuration of this drawing differs from that of the first embodiment in FIG. 3 in that the period detection unit 7 does not receive the signal for detecting the period from the noise source 1 and is shared with the period adjustment unit 8.
  • the difference signal from the feedback signal from the difference signal calculation means 5 is input.
  • the control amount calculation unit 84 of the period adjustment unit 8 has a function of predicting a change in the period
  • the delay amount control unit 82 uses the output of the period adjustment unit 8 to output the speaker 3.
  • the compensated tone corresponding to the preceding cycle and can be reproduced by the delay corresponding to H d with the transfer characteristic up to the silencing point of No. 2.
  • FIG. 10 is a diagram showing a noise cycle control device according to a third embodiment of the present invention. If the configuration of this diagram is different from that of the first embodiment in Fig. 2, it is connected to Microphone 105, which collects the noise signal directly from Noise Source 1, and Microphone 105.
  • AZD converter 107 connected to amplifier 106, which is connected to amplifier 106, and serves as input of period adjustment unit 8, and either output of AZD converter 107 or difference signal calculating means 5
  • a switch unit 108 which selects one of them as an alternative and is connected as an input of the period detection unit 7. That is, even if the period adjustment unit 8 directly receives the noise signal from the noise source 1 and the period detection unit 7 receives the AZD converter 107 or the difference signal calculation unit 5, the same applies as described above. The operation and effect of the invention can be obtained.
  • FIG. 11 is a diagram showing a noise period control device according to a fourth embodiment of the present invention.
  • the configuration of this diagram differs from that of the third embodiment in FIG. 9 in that the period detector 7 receives the timing signal of the noise source 1 as an input. In this configuration, the same operation and effect as described above can be obtained.
  • FIG. 12 is a diagram showing a noise control device according to a fifth embodiment of the present invention. The configuration of this drawing will be described.
  • the noise control device shown in this figure is a microphone for converting the noise from the noise source 1 such as the engine of a car into the electric signal by converting the residual sound of the noise, which is eliminated by the sound wave from the speaker 3 described below, into an electric signal.
  • An adaptive filter for controlling a filter coefficient based on a signal from the converter 103 and the AZD converter 102 to form an auxiliary signal for eliminating noise to the speaker 3; Filtering means 6 and a timing signal from the noise source 1 are input, and a sound signal from a microphone 105 or the like described later, or a noise from a difference signal calculating means 5 or the like is described later.
  • Input the reproduction signal detect the noise period, predict the period change, and A period detection control means 10 for controlling the adaptive filtering means 6 so as to be able to follow a steep change; a microphone 105 provided near the noise generating source 1; An amplifier 106 for amplifying the output of the clone 105, an A / D converter 107 for converting an analog output signal of the amplifier 106 to a digital signal, and the adaptive type amplifier.
  • Transfer characteristic simulating means 4 Simulated by the output of the filtering means 6, the transfer characteristic Hd from the output point to the input of the difference signal calculation means 5 to be described later via the speaker 3 and the microphone 2 Transfer characteristic simulating means 4, a difference signal calculating means 5 for calculating a difference signal between the output of the transfer characteristic simulating means 4 and the output of the A / D converter 102, and the adaptive filter And switch means 11 for selectively selecting an input signal of the ring means 6.
  • adaptive filtering means 6, period detection control means 10 Etc. are composed of DSP.
  • FIG. 13 is a diagram showing the configuration of the cycle detection control means of FIG.
  • the cycle detection control means 5 shown in the figure comprises a cycle detection section 1001, a cycle prediction section 1002, and a control section 1003 for controlling the coefficients of the adaptive filtering means 6. .
  • FIG. 14 is a view for explaining an example of the cycle detection method of the cycle detector 1001 in FIG.
  • This figure (a) shows the method of detecting the ignition timing of a vehicle engine or a motor or the tilling timing (rotation speed) as the noise source 1.
  • a rectangular wave signal is input to the input of the period detection unit 1001, and the period T is obtained and output to the period prediction unit 1002. This is because a steep change in vehicle noise is caused by changes in the number of revolutions of the vehicle engine.
  • This figure (b) shows the noise waveform from the microphone or vibrometer 9 near the car engine when the timing signal as shown in this figure (a) cannot be obtained. Is detected, and the period T of the noise signal is obtained from the time waveform peak. In this signal processing, when a certain noise signal level exceeds a certain level of the noise signal level, a period T can be obtained in the same manner as in FIG.
  • This figure (c) shows the BPF peak detection method for obtaining the noise period T after digitizing the noise signal input to the microphone.
  • a plurality of bandpass filters 1, 2,..., N an absolute value unit (ABS) connected to each bandpass filter 1, 2,.
  • Averaging section connected to absolute value section (LPF) and a maximum band detector that detects the maximum value of each averaging unit. The maximum frequency band of the noise level is detected, and the period of the maximum frequency band is used as the period of the noise signal. is there.
  • This figure (d) shows shall apply in the period detecting method using an adaptive full I filter, a delay unit for inputting the difference signal S R of the differential signal calculation means 5 and (D e 1 ay), the output of the delay device
  • An adaptive filter (ADF) to be input, an adder for obtaining a difference signal between the output of the adaptive filter and a through input signal, and a least square method processing of the difference signal of the adder for adaptive processing.
  • It consists of a least-squares method processing unit (LMS) that determines the coefficients of the type filter, and determines the period of the noise signal from the coefficients of the adaptive filter.
  • LMS least-squares method processing unit
  • FIG. 15 is a diagram for explaining a method of predicting a period change amount based on a detection period. If the period prediction unit 1002 changes so that the period becomes smaller at the time (to) when the initial period is constant as shown in the figure, the period detector 1001 The cyclic change is detected as in 1. On the other hand, in the conventional technique, the position of microphone 2 is delayed by the transfer characteristic Hd as shown in the figure. Here, for the sake of simplicity, the transfer characteristics and the like of the signal processing unit such as the adaptive filtering means 4 are ignored.
  • the cycle prediction unit 1002 calculates the data for changing the cycle earlier as shown by the curve 3 in the figure with respect to the curve 1 in the figure in consideration of the transfer characteristic H d.
  • the change in the period is shown by a straight line with respect to time, but this may be a curve.
  • the curve 3 in the figure is provided with a function, which is determined by fitting. Is also good.
  • the current Time (t,) the period T of the cycle T 2 expected for sought.
  • the control unit 1003 for the ADF coefficient and the like in FIG. 13 will be described later.
  • the adaptive filtering means 6 will be briefly described.
  • the switch means 11 selects the difference signal calculation means 5
  • the noise SN of the noise source 1 is set as H N0 1 SE
  • the transmission characteristic of the noise source 1 to the microphone 2 is set as H N0 1 SE.
  • Selecting emissions 9 microphone B off O adaptive to input signals from the down 9 off I filter Li in g unit 6 calculates a complement ⁇ No. S c I do.
  • FIG. 16 is a diagram showing the adaptive filtering means of FIG.
  • the adaptive filtering means 6 in the figure is constituted by a non-recursive filter, and more specifically, a series of delay units 60 1 for delaying one sampling period, and each of the delay units 6 0 1 , A plurality of adders 603 for adding the outputs of the multipliers 602, and an output of the microphone 2 to the least squares method.
  • coefficient updating means 604 for controlling the multiplication coefficient of each of the multipliers 602 so as to minimize the above.
  • the series of delay units 601 may be constituted by random access memory (RAM).
  • the input sampling data is shifted to the next address sequentially for each sampling.
  • the address value for inputting the sampling data may be shifted sequentially for each sampling.
  • FIG. 17 is a diagram for explaining a shift of a multiplication coefficient of a plurality of multipliers constituting the adaptive filtering.
  • This figure (a) schematically shows a coefficient sequence of the multiplier 602. Normally micro Multiplication factor of off O emissions each multiplier 6 Ri by the signal 2 0 2 (g ,, g 2 , ... g n) but is set, from the short cycle in the cycle prediction 1 0 0 2 to longer periods
  • the multiplication coefficients (gi, g 2,
  • FIG. 18 is a diagram for explaining the tap movement of the delay device constituting the adaptive filtering means. This figure (a) is usually a delay unit
  • the tap (T,, T 2,..., T n ) of 6001 is set, when the period prediction unit 1002 predicts a change from a short period to a long period, the ADF The taps (T,, T2,..., Tn ) are changed to (T '., T1, T2,... -T%),. T '.,..., T'-], T'0, T !, T 2,..., ⁇ resort-9),..., that is, toward the ⁇ -th delay unit, thereby increasing the amount of delay and extending the period.
  • FIG. 19 is a diagram showing another modification of the cycle detection control means of FIG.
  • the cycle detection unit 1001 of the cycle detection control means 10 receives the multiplication coefficient of the multiplier 62 of the adaptive filtering means 6 and forms the following ⁇ -dimensional vector.
  • V (t) gi (t) ⁇ g 2 (t) 'i 2 + ... 10 g solicit(t)' i n
  • the adaptive filtering means 6 sequentially draws (a), (b),
  • the noise period of the noise source is detected, and the period is controlled by predicting ahead from the characteristics of the noise period, so that it can follow a steep frequency change. It is now possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Exhaust Silencers (AREA)

Abstract

A noise control apparatus for eliminating noise capable of responding to abruptly changing noise frequency. The apparatus includes adaptive filtering means (6) for receiving a noise signal and controlling a filter coefficient on the basis on an error signal of an acoustoelectrical convertor (2) to produce a compensation signal for eliminating the noise to the convertor (3); transmission characteristics simulation means (4) for simulating transmission characteristics of a closed-loop system including the adaptive filtering means (6) and the acoustoelectrical convertor (3); difference signal operation means (5) for generating a noise signal from the difference between the error signal of the convertor (2) and the compensation signal sent from the adaptive filtering means (6) through the transmission characteristics simulation means (4); cycle detection unit (7) for detecting a noise cycle of a noise generation source (1), cycle adjustment unit (8) for changing the cycle of the noise signal of the difference signal operation means (5) in accordance with the change of the noise cycle, and cycle detection control means (10) for changing the filter coefficient in accordance with an estimated quantity of the noise cycle.

Description

明 細 書 騒 音 制 御 装 置  Document noise control device
〔技術の分野〕 [Field of technology]
本発明はマイ ク ロ フ ォ ンによ り検出された騒音と逆相等音 圧の信号をス ピーカから出力する こ と によ り騒音を消去し、 特に本発明では騒音の周波数が急峻に変化しても追従可能に する騒音制御装置に関する。  The present invention eliminates noise by outputting a signal having the same phase and the same sound pressure as the noise detected by the microphone from the speaker.Especially, in the present invention, the noise frequency changes rapidly. The present invention relates to a noise control device capable of following even when the noise control is performed.
〔背景技術〕 (Background technology)
従来内燃機関等から発生する騒音を低減するためにはマ フ ラ等の受動的な消音装置が使用されてきたが、 サイズ , 消音 特性等の観点から改善が望まれていた。  Conventionally, passive silencers such as mufflers have been used to reduce noise generated from internal combustion engines, etc., but improvements have been desired from the viewpoints of size, silencing characteristics, and the like.
これに対 し、 従来か、 ら音源から発生された騒音と逆位相 等音圧の補僙音をス ピーカから出力 し、 騒音を相殺する能動 型の騒音制御装置が提案されている。  On the other hand, an active noise control device that cancels the noise by outputting a complementary sound having the same phase and the same sound pressure as the noise generated from the sound source from the speaker has been proposed.
しかしながら、 この能動型の騒音制御装置自体の周波数特 性あるいは安定性等が充分でな く 実用化が遅れていた。  However, the frequency characteristics and stability of the active noise control device itself were not sufficient, and practical application was delayed.
近年ディ ジタル回路を使用 した信号処理技術が発展し、 取 り扱う こ とのでき る周波数範囲も拡大した結果、 実用的な騒 音制御装置が多数提案されている (例えば特開昭 63— 3 1 1396 号公報) 。  In recent years, the development of signal processing technology using digital circuits has expanded the frequency range that can be handled, and as a result, many practical noise control devices have been proposed (for example, see Japanese Patent Application Laid-Open No. 63-3 / 1988). 1 1396).
これはダク 卜の上流に設置した騒音源用のマイ ク ロ フ ォ ン で騒音を検出 し信号処理回路によ り騒音と逆相 · 等音圧の信 号をダク ト下流に設置したス ピーカから出力 し、 消音された 結果の残留音をマイ ク ロ フ ォ ンで検出 してフ ィ — ドバッ クす るフ ィ ー ドバッ ク系とフ ィ ー ドフ ォ ヮ ー ド系を組み合わせた いわゆる 2 マイ ク ロ フ ォ ン ' 1 ス ピーカ型の能動型の騒音制 御装置である。 The noise is detected by a microphone for noise source installed upstream of the duct, and the signal processing circuit sends a signal of opposite phase and equal sound pressure to the noise. The signal is output from a speaker installed downstream of the duct, and the residual sound resulting from the silencing is detected by microphone and fed back. This is a so-called 2-microphone 1-speaker type active noise control device that combines a voice system.
これに対し例えば自動車の室内等の騒音源の不明確なある 空間に対して消音効果を得るためには騒音源にマイ ク ロ フ ォ ンを設置する必要のないフ ィ一ドバッ ク系だけを用いた 1 マ イ ク 口フ ォ ン · 1 スピーカ構成の装置とする こ とが必要であ る o  On the other hand, in order to obtain a noise reduction effect in a space where the noise source is unclear such as in the interior of a car, for example, only a feedback system that does not require the installation of a microphone in the noise source is used. O One microphone mouth phone used · It must be a device with one speaker configuration o
しかしながらフ ィ ー ドバッ ク系だけの 1 マイ ク ロ フ ォ ン ' 1 スピーカで構成される能動型の騒音制御装置においては、 騒音源の騒音周期が急峻に変化する場合にはフ ィ ー ドバッ ク 系の欠点と して少な く と もス ピーカからマイ ク ロフ ォ ンまで の音波伝達特性分以上は遅れるので、 消音効果が低減する と いう問題があつた。  However, in an active noise control system consisting of one microphone '1 speaker with only a feedback system, if the noise period of the noise source changes sharply, the One of the drawbacks of the system is that it delays by at least the sound transmission characteristic from the speaker to the microphone, so that the noise reduction effect is reduced.
したがって本発明は上記問題点に鑑みて、 騒音周期の急峻 な変化に追従可能な靨音制御装置を提供する こ とを目的とす る。  Accordingly, it is an object of the present invention to provide a sound control device capable of following a steep change in a noise cycle in view of the above problems.
〔発明の開示〕 [Disclosure of the Invention]
第 1 図は本発明の第 1 の原理構成を示す図である。 本発明 である騒音制御装置は前記問題点を解決するために、 騒音を 検出し電気信号に変換する音波 · 電気信号変換器 2 と、 騒音 を消去するための補儍音波を出力する電気信号 . 音波変換器 3 と、 伝達特性模擬手段 4 、 差信号演算手段 5 、 適応型フ ィ ル夕 リ ング手段 6 、 周期検出部 7 及び周期調整部 8 を有する 差信号演算手段 5 は、 該音波 · 電気信号変換器 2 の出力 と 適応型フ ィ ルタ リ ング手段 6 の出力との差信号を演算する。 FIG. 1 is a diagram showing a first principle configuration of the present invention. In order to solve the above problems, the noise control device according to the present invention includes a sound / electric signal converter 2 for detecting noise and converting it into an electric signal, and an electric signal for outputting supplementary sound waves for eliminating noise. Sound wave transducer 3, a transfer characteristic simulation means 4, a difference signal calculation means 5, an adaptive filtering means 6, a cycle detection section 7, and a cycle adjustment section 8. The difference signal between the output of the filter 2 and the output of the adaptive filtering means 6 is calculated.
伝達特性模擬手段 4 は、 適応型フ ィ ルタ リ ング手段 6 と差 信号演算手段 5 との間に挿入され、 適応型フ ィ ルタ リ ング手 段 6 から前記電気信号 · 音波変換器 3及び該音波 · 電気信号 変換器 2 を経て元に戻る系の伝達特性を模擬する。  The transfer characteristic simulating means 4 is inserted between the adaptive filtering means 6 and the difference signal calculating means 5, and receives the electric signal / sound wave converter 3 and the electric signal / sonic wave from the adaptive filtering means 6. Simulates the transfer characteristics of the system that returns through the sound wave and electrical signal converter 2.
周期検出部 7 は、 前記.騒音発生源 1 の騒音周期を検出する 周期調整部 8 は、 前記騒音周期の変化量に応じて差信号演 算手段 5 の出力信号の周期を変化させる。 適応型フ ィ ルタ リ ング手段 6 は、 周期調整部 8 の出力信号手段と該音波 · 電気 信号変換器 2 の出力に基づいて該電気信号 · 音波変換器 3 に 補僙音波を出力するための補僙信号を演算する。 尚、 前記適 応型フ ィ ルタ リ ング手段 6 は前記騒音発生源からの騒音信号 を周期調整した信号を直接入力とするよ う に してもよ く 、 こ の場合上記伝達特性模擬手段 4及び差信号演算手段 5 は省略 される。  The cycle detector 7 detects the noise cycle of the noise source 1. The cycle adjuster 8 changes the cycle of the output signal of the difference signal calculator 5 in accordance with the amount of change in the noise cycle. The adaptive filtering means 6 is for outputting a supplementary sound wave to the electric signal / sound wave converter 3 based on the output signal means of the period adjusting unit 8 and the output of the sound wave / electric signal converter 2. Calculate the complement signal. The adaptive filtering means 6 may directly input a signal obtained by adjusting the period of the noise signal from the noise source, and in this case, the transfer characteristic simulating means 4 and The difference signal calculation means 5 is omitted.
第 1 図における騒音周期制御装置によれば、 伝達特性模擬 手段 4 と音波 · 電気信号変換器 2 の出力が差信号演算手段 5 によって差信号となり、 再生騒音信号を形成し、 この再生騒 音信号を入力する適応型フィ ルタ リ ング手段 6 によって振幅 位相が調整され、 この補僙信号によ り電気信号 · 音波変換器 3 から補價音波が出力されて騒音を消音する。 さ らに周期検 出部 7では騒音周期を検出 して該騒音周期の変動を監視し、 周期調整部 8 では騒音周期の変動に応じて差信号演算手段 5 の出力信号、 即ち適応型フィ ルタ リ ング手段 6 の入力信号の 周期を調整するため、 電気信号 · 音波変換器 3 からの補儍音 波の周期は消音点で騒音の周期と一致する こ とになる。 した がって騒音周期が急峻に変化しても追従可能になる。 According to the noise period control device shown in FIG. 1, the output of the transfer characteristic simulating means 4 and the output of the sound wave-to-electric signal converter 2 are converted into a difference signal by the difference signal calculating means 5 to form a reproduced noise signal. The amplitude and phase are adjusted by the adaptive filtering means 6 for inputting the input signal, and the supplementary signal causes the electric signal / sound wave converter 3 to output a supplementary sound wave to mute the noise. Further, the cycle detection unit 7 detects the noise cycle and monitors the fluctuation of the noise cycle. The period adjuster 8 adjusts the period of the output signal of the difference signal calculating means 5, that is, the period of the input signal of the adaptive filtering means 6, according to the fluctuation of the noise period. (4) The period of the sound wave coincides with the period of the noise at the silencing point. Therefore, even if the noise cycle changes sharply, it can follow.
第 2 図は本発明の第 2 の原理構成を示す図である。 本発明 は前記問題点を解決するために騒音発生源 1 からの騒音を消 去するための電気信号 , 音波変換器 3 と、 該電気信号 · 音波 変換器 3 からの音波で消去した騒音の残留音を誤差信号と し て電気信号に変換するための音波 · 電気信号変換器 2 と、 該 音波 · 電気信号変換器 2 の信号に基づき該電気信号 · 音波変 換器 3へ騒音を消去するための補儍信号を形成する適応型フ ィ ルタ リ ング手段 6 とを有する騒音制御装置に、 騒音周期の 予測変化に応じて適応型フ ィ ルタ リ ング手段 6 のフ ィ ル夕特 性を変更する周期検出制御手段 1 0 を設ける。  FIG. 2 is a diagram showing a second principle configuration of the present invention. In order to solve the above-mentioned problems, the present invention provides an electric signal for eliminating noise from a noise source 1, a sound wave converter 3, and a residual sound eliminated by sound waves from the electric signal / sound wave converter 3. A sound wave for converting sound into an electric signal as an error signal, an electric signal converter 2, and for eliminating noise to the electric signal, sound wave converter 3 based on the signal of the sound wave, electric signal converter 2. The filter characteristics of the adaptive filtering means 6 are changed according to the predicted change of the noise period to the noise control device having the adaptive filtering means 6 for forming the supplementary signal of the noise. Cycle detection control means 10 is provided.
周期検出制御手段 1 0 は前記騒音発生源 1 の騒音周期を検 出 し、 該騒音周期の変化を予測し、 該騒音周期の予測変化に 応じて、 前記適応型フィ ルタ リ ング手段 6 に包含される複数 の乗算器に設定されている乗算係数を更新設定せしめる。 また、 前記周期検出制御手段 1 0 は前記騒音発生源 1 に騒 音周期を検出 し、 該¾音周期の変化を予測して、 該騒音周期 の予測変化に応じて前記適応型フ ィ ルタ リ ング手段 6 に包含 される複数の遅延器のタ ッ プを移動せしめるよう に してもよ い。  The cycle detection control means 10 detects the noise cycle of the noise source 1, predicts a change in the noise cycle, and includes the adaptive filtering means 6 in accordance with the predicted change in the noise cycle. Update the multiplication coefficients set in the multiple multipliers. Further, the cycle detection control means 10 detects a noise cycle in the noise generation source 1, predicts a change in the noise cycle, and according to the predicted change in the noise cycle, the adaptive filter. The taps of a plurality of delay units included in the switching means 6 may be moved.
さ らに、 前記周期検出制御手段 1 0 は前記適応型フ ィ ルタ リ ング 6 に包含される複数の乗算器の乗算係数を複数次元の べク トルを形成して、 該べク ト ルの変化を検出 しかつ予測し 該べク ト ルの予測変化に応じて前記複数の乗算器の乗算係数 を更新設定するよ う に してもよい。 Further, the period detection control means 10 is adapted to be adapted to the adaptive filter. The multiplication coefficients of the plurality of multipliers included in the ring 6 are formed into a multidimensional vector to detect and predict a change in the vector and to perform a prediction according to the predicted change of the vector. The multiplication coefficients of the plurality of multipliers may be updated and set.
第 2 図における騒音制御装置によれば、 騒音発生源 1 から の騒音と ス ピーカ 3 からの逆相等音圧の音波との差信号によ り、 こ の騒音信号を入力する適応型フ ィ ルタ リ ング手段 6 の 補償信号が振幅、 位相につき調整されて騒音が消音される。 さ らに騒音周期が急に変化する と 、 周期検出手段によって騒 音周期変化が検出され、 電気信号 · ·音波変換器 3 等を介 した 消音点までの伝達特性を考慮した先の騒音周期の変化を予測 して、 適応型フ ィ ルタ リ ング手段 6 を構成する複数の乗算器 の乗算係数がシ フ ト制御され、 電気信号 , 音波変換器 3 から の補僂音波の周期は消音点で騒音の周期と一致する こ と にな る。 したがって騒音周期が急峻に変化しても追従可能になる , 周期検出制御手段 1 0 によって、 適応型フ ィ ルタ リ ング手 段 6 の遅延器のタ ッ プを移動 しても同様の働きが得られる。  According to the noise control device shown in FIG. 2, an adaptive filter that inputs this noise signal based on the difference signal between the noise from the noise source 1 and the sound wave with the opposite phase equal sound pressure from the speaker 3 The compensation signal of the ring means 6 is adjusted for the amplitude and the phase, and the noise is eliminated. Further, when the noise cycle changes suddenly, the change in the noise cycle is detected by the cycle detection means, and the noise cycle is determined based on the transmission characteristics to the sound-absorbing point via the electric signal, the sound wave converter 3, etc. By predicting the change, the multiplication coefficients of a plurality of multipliers constituting the adaptive filtering means 6 are shift-controlled, and the period of the electric signal and the sound wave used from the sound wave converter 3 is at the sound deadening point. It will coincide with the period of the noise. Therefore, it is possible to follow even if the noise cycle changes sharply.The same function can be obtained even if the tap of the delay unit of the adaptive filtering means 6 is moved by the cycle detection control means 10. Can be
さ らに周期検出制御手段 1 0 によ って、 適応型フ ィ ルタ リ ング 6 の乗算器の乗算係数がべク トル化され、 そのべク トル 変化が騒音周期と密接に関係するので、 べク トル変化の予測 によ り騒音周期が容易に予測でき、 前記伝達特性を考慮する こ と によ り 、 周期変化が急峻であっても補儐音波の周期を消 音点で一致させる こ とが可能になる。 〔図面の簡単な説明〕 Further, the period detection control means 10 vectorizes the multiplication coefficient of the multiplier of the adaptive filtering 6, and the vector change is closely related to the noise period. By predicting the vector change, the noise period can be easily predicted, and by considering the transfer characteristics, even if the period change is steep, the period of the supplementary sound wave can be matched at the sound deadening point. And become possible. [Brief description of drawings]
第 1 図は本発明の第 1 の原理構成を示す図である。  FIG. 1 is a diagram showing a first principle configuration of the present invention.
第 2 図は本発明の第 2 の原理構成を示す図である。  FIG. 2 is a diagram showing a second principle configuration of the present invention.
第 3 図は本発明の第 1 実施例に係る騒音周期制御装置を示 す図である。  FIG. 3 is a diagram showing a noise period control device according to the first embodiment of the present invention.
第 4 図は第 3 図の周期検出部の周期検出方法を説明する図 でのる。  FIG. 4 is a diagram for explaining a cycle detection method of the cycle detector of FIG.
第 5 図は第 3 図の周期調整部の構成を示す図である。  FIG. 5 is a diagram showing a configuration of the cycle adjusting unit in FIG.
第 6 図は第 5 図の周期調整部の入出力信号の関係を示す図 である。  FIG. 6 is a diagram showing a relationship between input and output signals of the cycle adjusting unit in FIG.
第 7 図は周期変化量及びその制御量算出の関係を示す図で ある。  FIG. 7 is a diagram showing the relationship between the period change amount and its control amount calculation.
第 8 図は遅延量制御部の機能を説明する図である。  FIG. 8 is a diagram for explaining the function of the delay amount control unit.
第 9 図は本発明の第 2実施例に係る騒音周期制御装置を示 す図である。  FIG. 9 is a diagram showing a noise period control device according to a second embodiment of the present invention.
第 1 0 図は本発明の第 3実施例に係る騒音周期制御装置を 示す図である。  FIG. 10 is a diagram showing a noise cycle control device according to a third embodiment of the present invention.
第 1 1 図は本発明の第 4実施例に係る騒音周期制御装置を 示す図である。  FIG. 11 is a diagram showing a noise period control device according to a fourth embodiment of the present invention.
第 1 2 図は本発明の第 5 の実施例に係る騒音制御装置を示 す図である。  FIG. 12 is a diagram showing a noise control device according to a fifth embodiment of the present invention.
第 1 3 図は第 1 2図の周期検出制御手段の構成を示す図で ある。  FIG. 13 is a diagram showing a configuration of the cycle detection control means of FIG.
第 1 4 図は第 1 3 図の周期検出部の周期検出方法を説明す る図である。 第 1 5 図は周期変化量の予測方法を説明する図である。 第 1 6 図は第 1 2 図の適応型フ ィ ルタ リ ン グ手段を示す図 で、ある。 FIG. 14 is a diagram for explaining a cycle detection method of the cycle detector of FIG. FIG. 15 is a diagram for explaining a method of predicting the amount of periodic change. FIG. 16 is a diagram showing the adaptive filtering means of FIG.
第 1 7 図は適応型フ ィ ルタ リ ング手段を構成する複数の乗 算器の乗算係数のシ フ トを説明する図である。  FIG. 17 is a diagram for explaining the shift of the multiplication coefficient of a plurality of multipliers constituting the adaptive filtering means.
第 1 8 図は適応型フ ィ ルタ リ ン グ手段を構成する複数の遅 延器のタ ッ プ移動を説明する図である。  FIG. 18 is a diagram for explaining the tap movement of a plurality of delay units constituting the adaptive filtering means.
第 1 9 図は第 1 2 図の周期検出制御手段の別の変形を示す 図である。  FIG. 19 is a diagram showing another modification of the cycle detection control means of FIG.
〔発明を実現する最良の形式〕 [Best mode for realizing the invention]
以下 · 本発明の実施例について図面を参照して説明する。 第 3 図は本発明の第 1 実施例に係る騒音周期制御装置を示 す図である。 本図の構成を説明する。 本図は自動車のェ ン ジ ン、 モータ等の騒音発生源 1 と、 該騒音発生源 1 からの音波 が伝搬して、 消音点付近で騒音を消去し残留音と して捕捉さ れ電気信号に変換するマイ ク ロ フ ォ ン 2 と、 消音点付近の騒 音を消去するための補儐音波を出力するス ピーカ 3 と、 適応 型フ ィ ルタ リ ン グ手段 6 からス ピーカ 3及びマイ ク ロ フ ォ ン 2 を経て差信号演算手段 5 へ至る系の伝達特性を模擬する伝 達特性模擬手段 4 と、 マイ ク ロ フ ォ ン 2 の出力と伝達特性模 擬手段 4 の出力との差信号を演算する差信号演算手段 5 と、 差信号演算手段 5 の演算結果に基づいてス ピーカ 3 から補償 音波を出力するための補償信号を演算する適応型フ ィ ルタ リ ング手段 6 と、 前記騒音発生源 1 の騒音周期を検出する周期 検出部 7 と、 前記騒音周期の変化量に応じて前記適応型フ ィ ルタ リ ング手段 6の入力信号の周期を変化させる周期謂整部 8 と、 マイ ク ロフ ィ ン 2の増幅器 1 0 1 と、 増幅器 1 0 1 の 出力をディ ジタル化して差信号演算手段 5へ出力する AZD (A n a l o g T o D i i t a l C o n v e r t o r ) 変換器 1 0 2 と、 適応型フ ィ ルタ リ ング手段 6 の出力を アナログ化する D /A ( D i g i t a l T o A n a 1 o g C o n v e r t o r ) 変換器 1 0 3 と、 D ZA変換器 1 0 3の出力を増幅してス ピーカ 3へ出力する増幅器 1 0 4 と を含む。 適応型フィ ルタ リ ング手段 6 はバン ドパスフ ィ ル夕 - 運延器及び増幅器で構成してもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a diagram showing a noise period control device according to the first embodiment of the present invention. The configuration of this drawing will be described. This figure shows a noise source 1 such as a car engine or motor, and a sound wave from the noise source 1 propagates, cancels the noise near the sound deadening point and is captured as a residual sound, and the electric signal is captured. Microphone 2 for converting to noise, speaker 3 for outputting supplementary sound waves for eliminating noise near the sound deadening point, and speaker 3 and microphone 3 from adaptive filtering means 6. A transfer characteristic simulating means 4 for simulating a transfer characteristic of a system from the microphone 2 to the difference signal calculating means 5, and an output of the microphone 2 and an output of the transfer characteristic simulating means 4. A difference signal calculating means 5 for calculating a difference signal; an adaptive filtering means 6 for calculating a compensation signal for outputting a compensation sound wave from the speaker 3 based on the calculation result of the difference signal calculating means 5; Cycle for detecting the noise cycle of the noise source 1 A detection unit 7, a period adjustment unit 8 that changes the period of the input signal of the adaptive filtering unit 6 according to the amount of change in the noise period, and an amplifier 101 of the microfin 2 (Analog To Digital Converter) AZD converter 102 that digitizes the output of amplifier 101 and outputs it to difference signal calculating means 5, and the output of adaptive filtering means 6 (D / A to digital converter) 103 that converts the analog signal into an analog signal, and an amplifier 104 that amplifies the output of the DZA converter 103 and outputs the amplified signal to the speaker 3. including. The adaptive filtering means 6 may be composed of a bandpass filter and an amplifier.
また伝達特性模擬手段 4、 差信号演算手段 5、 適応型フィ ルタ リ ング手段 6、 周期検出部 7及び周期調整部 8 は D S P ( D i g i t a l S i n a l P r o c e s s o r ) で 構成してもよい。  Further, the transfer characteristic simulating means 4, the difference signal calculating means 5, the adaptive filtering means 6, the cycle detecting section 7 and the cycle adjusting section 8 may be constituted by DSP (DigitalSinalProcessor).
第 4図は第 3図の周期検出部の周期検出方法を説明する図 である。 本図 ( a ) は ¾音発生源 1 と して自動車エン ジ ン又 はモータ等の回転タイ ミ ングを検出する方法である。 周期検 出部 7の入力①には矩形波の信号が入力 し、 この周期 Tがも とめられ、 その出力②から周期調整部 8へ出力される。 自動 車の竊音では急竣な ¾音変化は自動車エン ジ ンの回転数等の 変化によって生じるためである。  FIG. 4 is a diagram for explaining a cycle detection method of the cycle detector of FIG. This figure (a) shows a method for detecting the rotation timing of a vehicle engine or motor as the sound source 1. A rectangular wave signal is input to the input の of the cycle detector 7, the cycle T is determined, and the output T is output to the cycle adjuster 8. This is because in the sound of a car, the sudden change in noise is caused by changes in the speed of the car engine.
本図 ( b ) は本図 ( a ) のよう なタイ ミ ング信号が得られ ない場合には、 自動車エン ジ ン等の近傍にマイ ク ロフ ォ ンを 設置して、 騒音波形を検出 し、 その時間波形ピークから騒音 信号の周期 Tを得る こ とを示す。 この信号処理ではある一定 レベルを騒音信号レベルを越えたと きに矩形波を発生 してこ の矩形波が周期検出部 7へ入力するよ う にすれば本図 ( a ) と同様に して周期 Tが得られる。 In this figure (b), if the timing signal as shown in this figure (a) cannot be obtained, a microphone is installed near the car engine and the noise waveform is detected. Noise from the time waveform peak This shows that the signal period T is obtained. In this signal processing, a rectangular wave is generated when the noise signal level exceeds a certain level, and this rectangular wave is input to the period detection unit 7, so that the period T Is obtained.
本図 ( c ) はマイ ク ロ フ ォ ンに入力 した騒音信号をデイ ジ タル化した後に騒音周期 Tを求める B P F ( B a n d P a s s F i 1 t e r ピーク検出方法を示す。 こ の方法は、 複 数のノく ン ドパ ス フ イ ノレタ 1 , 2 , …, n と 、 各ノ ' ン ドパ ス フ ィ ルタ 1 , 2 , …, nに接続される絶対値化部 ( A B S ) と 、 各絶対値化部に接続される平均化部 ( L P F ) と、 各平均化 部の最大値を検出する最大バン ド検出部からな り、 騒音レべ ルの最大周波数帯を検出 して、 その最大周波数帯の周期を騒 音信号の周期とする ものであ る。  This figure (c) shows the BPF (B and Pass Fi 1 ter) peak detection method for obtaining the noise period T after digitizing the noise signal input to the microphone. A plurality of node path filters 1, 2,…, n, and an absolute value unit (ABS) connected to each node path filter 1, 2,…, n It consists of an averaging unit (LPF) connected to each absolute value unit, and a maximum band detection unit that detects the maximum value of each averaging unit, and detects the maximum frequency band of the noise level, The cycle of the maximum frequency band is used as the cycle of the noise signal.
本図 ( d ) は適応形フ ィ ルタを用いた周期検出方法であつ て、 差信号演算手段 5の差信号を入力する遅延器 ( D e 1 a y ) と、 該遅延器の出力を入力する適応型フ ィ ルタ ( A D F ) と、 適応型フ ィ ルタ の出力とスルーの入力信号の差信号をと る加算部と、 該加算部の差信号を最小二乗法処理して、 適応 型フ ィ ルタの係数を決定する最小二乗法処理部 ( L M S ) と からな り、 適応型フ ィ ルタ の固定された係数から騒音信号の 周期を求める。  This figure (d) shows a period detection method using an adaptive filter, in which a delay signal (D e 1 ay) for inputting the difference signal of the difference signal calculating means 5 and an output of the delay signal are input. An adaptive filter (ADF), an adder for obtaining a difference signal between an output of the adaptive filter and a through input signal, and a least square method processing on the difference signal of the adder, to obtain an adaptive filter It consists of a least-squares method processing unit (LMS) that determines filter coefficients, and determines the period of the noise signal from the fixed coefficients of the adaptive filter.
第 5図は第 3図の周期調整部の構成を示す図である。 本図 の周期調整部 8 は前記差信号演算手段 5の差信号を入力 し、 M個の遅延夕 ッ プを有し、 遅延ボイ ン 卜から適応型フ ィ ルタ リ ング手段 6へ出力する遅延メ モ リ 8 1 と、 遅延メ モ リ 8 1 の遅延ボイ ン トを移動して遅延量を制御する遅延量制御部 8 2 と、 周期検出部 7 からの周期データよ り周期変化量を検出 する周期変化量検出部 8 3 と、 周期変化量から遅延ポイ ン ト を移動させる遅延制御量を算出する制御量算出部 8 4 を含む 第 6図は第 5 図の周期調整部の入出力信号の関係を示す図 である。 本図 ( a ) は遅延メ モリ 8 1 入力信号の周期が T⑧ である ことを示し、 本図 ( t> ) は遅延メ モ リ 出力信号の周期 が T④になる ことを示す。 FIG. 5 is a diagram showing a configuration of the cycle adjusting unit of FIG. The cycle adjusting unit 8 in the figure receives the difference signal of the difference signal calculating means 5, has M delay taps, and outputs a delay from the delay point to the adaptive filtering means 6 Memory 8 1 and delay memory 8 1 The delay amount control unit 82 that controls the delay amount by moving the delay point of the same, the period change amount detection unit 83 that detects the period change amount from the period data from the period detection unit 7, and the period change amount FIG. 6 is a diagram showing the relationship between the input and output signals of the cycle adjusting unit in FIG. This figure (a) shows that the period of the delay memory 81 input signal is T⑧, and this figure (t>) shows that the period of the delay memory output signal is T④.
第 7 図は周期変化量及びその制御量算出の関係を示す図で ある。 本図に示すよう に当初周期が一定である時刻 ( t o ) で周期が小さ く なるよう に変化したとすると周期変化量検出 部 8 3では図中②のよう に周期変化量が検出される。 一方従 来の技術ではマイ ク 口フォ ン 2 の位置では図中⑤のよ う に伝 達特性 H dだけ遅れる こ とになる。 こ こで説明の簡単のため に、 適応型フ ィ ルタ リ ング手段 6等の信号処理部の伝達特性 等は無視している。 制御量算出部 8 4では上記伝達特性 H d を考慮して、 図中②の曲線に対して図中④の曲線のよう に早 めに周期を変化させるためのデータを算出する。 本図では周 期の変化を時間に対して直線で示しているが、 これは曲線で もよ く 、 その場合には図中④の曲線は関数を設けて、 これを フィ ッティ ングして求めてもよい。 このよう に して得られた 本図④の曲線において、 現時刻 ( t t ) の周期 T③に対して 予測される周期 T④が求められる。  FIG. 7 is a diagram showing the relationship between the period change amount and its control amount calculation. As shown in this figure, if the period changes so as to become smaller at the time (to) at which the initial period is constant, the period change detector 83 detects the period change as shown by ② in the figure. On the other hand, in the conventional technology, the position of the microphone mouth phone 2 is delayed by the transmission characteristic Hd as shown in the figure (2). Here, for the sake of simplicity, the transfer characteristics of the signal processing unit such as the adaptive filtering means 6 are ignored. The control amount calculating unit 84 calculates data for changing the cycle earlier as shown by the curve in the figure with respect to the curve in the figure, taking the transfer characteristic H d into consideration. In this figure, the change in the period is shown as a straight line with respect to time, but this may be a curve. In this case, the curve in the figure ④ is provided with a function, which is determined by fitting. You may. In the curve of Fig. 2 obtained in this way, the predicted period T④ for the period T③ of the current time (tt) is obtained.
第 8 図は遅延量制御部を説明する図である。 本図において 遅延メ モ リ 8 1 が一定のサンプ リ ング周期で入力信号データ を順次取り込み、 その入力信号の周期 T i n及び出力信号の周 期 T。u, がタ ッ プ数で換算表示され、 周期 T i nの入力信号か ら周期 T。u , の出力信号を得るために遅延制御部 8 2 は遅延 ボイ ン トをある速度 Vで移動する。 図中 Aは変化の絶対量で みた場合についてタ ッ プ速度 Vを説明する もので、 入力信号 周期 T i tl= 3 0 タ ッ プを出力信号周期 T。u t = 2 9 タ ッ プに するには、 タ ッ プを図に示すよ う に入力側の方向へ V = 1 タ ッ プ / 2 9 サ ンプルの速度で移動させる こ とを示す。 T。u t = 2 8 タ ッ プにするには V = 2 タ ッ プ Z 2 8 サンプル、 T。u = 2 7 タ ッ プにするには V = 3 タ ッ プノ 2 7 サンプル、 …、 T。u, = 1 5 タ ッ プにするには V = l 5 タ ツ プノ 1 5 サンプ ル、 T。u t = 1 4 にするには V - 1 6 タ ッ プノ 1 4 サンプル …、 一般には入力信号周期 T i„を出力信号周期 T。u t = T i n 一 n にする には V = n ( T ;„ - n ) 、 n : 周期シ フ ト量と すればよい。 FIG. 8 is a diagram for explaining a delay amount control unit. In this figure, the delay memory 81 is the input signal data at a fixed sampling period. The input signal cycle T in and the output signal cycle T. u, are translated displayed in ye number of taps, the period T input signal or et al cycle of in T. The delay controller 82 moves the delay point at a certain speed V in order to obtain an output signal of u ,. In the figure, A represents the tap speed V in the case of the absolute amount of change. The input signal cycle T itl = 30 taps and the output signal cycle T. To make ut = 29 taps, it is shown that the taps are moved in the direction of the input side at the speed of V = 1 taps / 29 samples as shown in the figure. T. ut = 28 taps to get V = 2 taps Z 28 samples, T. To make u = 27 taps V = 3 taps 27 samples,…, T. u , = 15 taps to make V = l5 taps 15 samples, T. To make ut = 14 V-16 taps 14 samples…, generally, the input signal period T i „is the output signal period T. To make ut = T in 1 n, V = n (T ; „-N), n: It is sufficient to set the period shift amount.
図中 Bでは変化の割合でみた場合について遅延量制御部の 移動が説明され、 入力信号周期 T i n= 3 0 タ ッ プを出力信号 周期 T。u l = ( 9 / 1 0 ) X 3 0 タ ッ プにするにはタ ッ プ速 度 V = 1 Z 9 タ ツ プノサンプルに し、 T。u, = ( 8 / 1 0 ) 3 0 タ ッ プにするには V = 2 / 8 タ ッ プ/サンプル、 …、 T。u t = ( 5 / 1 0 ) X 3 0 タ ッ プにするには V = 5 ノ 5 夕 ッ プ "サンプル、 T。u, = ( 4 / 1 0 ) X 3 0 タ ッ プにする には V = 6 / 4 タ ッ プ/サンプル、 …、 一般には入力信号周 期 T i nを出力信号周期 T。u, = ( k / 1 0 ) x T i nにするに は V = ( 1 0 — k ) ZK、 k / 1 0 : 周期シフ ト割合、 とす ればよい。 In B in the figure, the movement of the delay amount control unit is described for the rate of change, and the input signal period T in = 30 taps and the output signal period T. ul = (9/10) X 30 To make taps, tap speed V = 1 Z 9 Tap samples and T. u , = (8/10) 30 = taps V = 2/8 taps / sample,…, T. ut = ( 5/10 ) X 30 To make a tap V = 5 no 5 tap "sample, T. u , = (4/10) X 30 To make a tap V = 6/4 taps / sample,…, generally, input signal period T in is output signal period T. To make u , = (k / 10) x T in , V = (1 0 — k ) ZK, k / 10: Period shift ratio, and Just do it.
次に適応型フ ィ ルタ リ ング手段 6 について簡単に説明する 厳密には電気信号の伝達特性も考慮しなければな らないが本 発明と直接関係 しないので説明の簡単化のためこれらを無視 する。 騒音発生源 1 の騒音 S N と し、 マイ ク ロ フ ォ ン 2 まで のその伝達特性を H N0ISE と し、 適応型フィ ルタ リ ング手段 6の補儐信号を S c と し、 適応型フィ ルタ リ ング手段 6 から ス ピーカ 3及びマイ ク ロ フ ォ ン 2を経て差信号演算手段 5へ 至る系の伝達特性を H d.と し、 伝達特性模擬手段 4の伝達特 性 H d l について、 H d l = H dとする と、 マイ ク ロ フ ォ ンNext, the adaptive filtering means 6 will be briefly described. Strictly speaking, the transfer characteristics of electric signals must be considered, but they are not directly related to the present invention, and are ignored for simplicity of description. . And noise S N of the noise source 1, the transfer characteristic up microphone B off O emissions 2 and H N0ISE, the complement No.儐信adaptive filter-ring means 6 and S c, adaptive Fi The transfer characteristic of the system from the filtering means 6 to the difference signal calculating means 5 via the speaker 3 and the microphone 2 is defined as H d. The transfer characteristic H dl of the transfer characteristic simulating means 4 is If H dl = H d, the microphone
2から出力される信号 S M は、 S M = S N - H N O I S E + S cThe signal S M output from 2 is S M = SN-HNOISE + S c
H dとなる。 従って、 差演算部 5 における演算結果である差 信号 S E は、 S E = S M - S c · H d 1 = S M - S c - H d = S N * H NI SE となり、 騒音のみをマイ ク ロ フ ォ ン 2で検 出 した時の信号を演算する こ ととなり、 この差信号 S E を適 応型フ ィ ルタ リ ング手段 6 に入力 し、 S M = 0 となるよ う に 補儍信号 S cを演算する。 Hd. Accordingly, the difference signal S E is a calculation result of the difference calculation unit 5, S E = SM - S c · H d 1 = SM - S c - H d = S N * H N. I SE, and the next and this for calculating a signal when detect only noise at microphone b off O emissions 2, enter the difference signal S E to the suitable応型off I filter-ring means 6, S M = The supplementary signal Sc is calculated so that it becomes zero.
第 9図は本発明の第 2の実施例に係る騒音周期制御装置を 示す図である。 本図の構成が第 3図の第 1 実施例のものと異 なる ものは、 周期検出部 7が騒音発生源 1 から周期を検出す る信号を入力とせずに、 周期調整部 8 と共通に差信号演算手 段 5からのフィ一ドバッ ク性の差信号を入力とする こ とであ る。 これは周期謂整部 8 の制御量算出部 8 4が周期の変化の 予測をする機能をも っているので、 遅延量制御部 8 2 によ り 周期調整部 8の出力からス ピーカ 3を介してマイ ク ロ フ ォ ン 2 の消音点までの伝達特性が H d に相当する遅延分だけ先の 周期、 に対応した補價音を再生でき るからである。 FIG. 9 is a diagram showing a noise cycle control device according to a second embodiment of the present invention. The configuration of this drawing differs from that of the first embodiment in FIG. 3 in that the period detection unit 7 does not receive the signal for detecting the period from the noise source 1 and is shared with the period adjustment unit 8. The difference signal from the feedback signal from the difference signal calculation means 5 is input. This is because the control amount calculation unit 84 of the period adjustment unit 8 has a function of predicting a change in the period, and the delay amount control unit 82 uses the output of the period adjustment unit 8 to output the speaker 3. Through my crophone The reason for this is that the compensated tone corresponding to the preceding cycle and can be reproduced by the delay corresponding to H d with the transfer characteristic up to the silencing point of No. 2.
第 1 0 図は本発明の第 3 実施例に係る騒音周期制御装置を 示す図である。 本図の構成が図 2 の第 1 実施例と異なる もの は騒音発生源 1 から直接に騒音信号を採取するマイ ク ロ フ ォ ン 1 0 5 と、 マイ ク ロ フ ォ ン 1 0 5 に接続される増幅器 1 0 6 と、 増幅器 1 0 6 に接続され、 周期調整部 8 の入力 となる A Z D変換器 1 0 7 と、 A Z D変換器 1 0 7 の出力又は差信 号演算手段 5 のいずれか一方を択一的に選択 して周期検出部 7 の入力と して接続されるスィ ッ チ部 1 0 8 である。 すなわ ち、 周期調整部 8 が騒音発生源 1 からの騒音信号を直接入力 と し、 周期検出部 7 が A Z D変換器 1 0 7 又は差信号演算手 段 5 を入力と しても前記と同様の作用効果が得られる。  FIG. 10 is a diagram showing a noise cycle control device according to a third embodiment of the present invention. If the configuration of this diagram is different from that of the first embodiment in Fig. 2, it is connected to Microphone 105, which collects the noise signal directly from Noise Source 1, and Microphone 105. AZD converter 107 connected to amplifier 106, which is connected to amplifier 106, and serves as input of period adjustment unit 8, and either output of AZD converter 107 or difference signal calculating means 5 A switch unit 108 which selects one of them as an alternative and is connected as an input of the period detection unit 7. That is, even if the period adjustment unit 8 directly receives the noise signal from the noise source 1 and the period detection unit 7 receives the AZD converter 107 or the difference signal calculation unit 5, the same applies as described above. The operation and effect of the invention can be obtained.
第 1 1 図は本発明の第 4 実施例に係る騒音周期制御装置を 示す図である。 本図の構成が図 9 の第 3 実施例と異なる もの は周期検出部 7 が騒音発生源 1 のタ イ ミ ング信号を入力 とす る こ とである。 こ の構成においても前記と同様の作用効果が 得られる。  FIG. 11 is a diagram showing a noise period control device according to a fourth embodiment of the present invention. The configuration of this diagram differs from that of the third embodiment in FIG. 9 in that the period detector 7 receives the timing signal of the noise source 1 as an input. In this configuration, the same operation and effect as described above can be obtained.
以下本発明の実施例について図面を参照して説明する。 第 1 2 図は本発明の第 5 の実施例に係る騒音制御装置を示 す図である。 本図の構成を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 12 is a diagram showing a noise control device according to a fifth embodiment of the present invention. The configuration of this drawing will be described.
本図に示す騒音制御装置は自動車のエ ン ジ ン等の騒音発生 源 1 からの騒音を後述のス ピーカ 3 からの音波で消去した騒 音の残留音を電気信号に変換するためのマイ ク ロ フ ォ ン 2 と 該マイ ク 口フ ォ ン 2 の電気信号を増幅するための増幅器 1 0 1 と、 該増幅器 1 0 1 のアナロ グ信号をディ ジタル信号 に変換する A / D変換器 1 0 2 と、 前記騒音源 1 からの騒音 を消音点 P (図中) 付近で消去するためのス ピーカ 3 と、 該 スピーカ 3への出力を増幅する増幅器 1 0 4 と、 該増幅器 1 0 4へアナ口グ信号を供耠するためにディ ジタル信号をァナ ログ信号に変換する D Z A変換器 1 0 3 と、 前記 A Z D変換 器 1 0 2 からの信号に基づき、 フ ィ ルタ係数を制御して前 Ε· ス ピーカ 3へ騒音を消去するための補僳信号を形成する適応 型フ ィ ルタ リ ング手段 6 と、 前記騒音発生源 1 からのタイ ミ ング信号を入力 し、 後述するマイ ク ロフ ォ ン 1 0 5等からの 镊音信号又は、 差信号演算手段 5等からの騒音再現信号を入 力 し、 騒音周期を検出し、 周期変化を予測し、 周期予測変化 に応じて前記適応型フィ ルタ リ ング手段 6 を制御して急峻な 変化に追従可能とする周期検出制御手段 1 0 と、 前記騒音発 生源 1 の近傍に設置されたマイ ク ロフ ォ ン 1 0 5 と、 該マイ ク ロ フ オ ン 1 0 5 の出力を増幅する増幅器 1 0 6 と、 該増幅 器 1 0 6 のアナログ出力信号をディ ジタル信号に変換する A / D変換器 1 0 7 と、 前記適応型フ ィ ルタ リ ング手段 6 の出 力に接銃され、 その出力点からのス ピーカ 3 、 マイ ク ロフ ォ ン 2 を介して後述する差信号演算手段 5 の入力に至る伝達特 性 H dを模擬する伝達特性模擬手段 4 と、 該伝達特性模擬手 段 4 の出力と前記 A / D変換器 1 0 2 の出力との差信号を演 算する差信号演算手段 5 と、 前記適応型フ ィ ルタ リ ング手段 6 の入力信号を択一的に選択するスィ ッ チ手段 1 1 とを含む。 こ こに適応型フィ ルタ リ ング手段 6、 周期検出制御手段 1 0 等は D S Pで構成される。 The noise control device shown in this figure is a microphone for converting the noise from the noise source 1 such as the engine of a car into the electric signal by converting the residual sound of the noise, which is eliminated by the sound wave from the speaker 3 described below, into an electric signal. Amplifier for amplifying the electric signal of the microphone 2 and the microphone mouth 2 101, an A / D converter 102 for converting the analog signal of the amplifier 101 into a digital signal, and canceling the noise from the noise source 1 near a silencing point P (in the figure). , An amplifier 104 for amplifying the output to the speaker 3, and a DZA for converting a digital signal to an analog signal in order to supply an analog signal to the amplifier 104. An adaptive filter for controlling a filter coefficient based on a signal from the converter 103 and the AZD converter 102 to form an auxiliary signal for eliminating noise to the speaker 3; Filtering means 6 and a timing signal from the noise source 1 are input, and a sound signal from a microphone 105 or the like described later, or a noise from a difference signal calculating means 5 or the like is described later. Input the reproduction signal, detect the noise period, predict the period change, and A period detection control means 10 for controlling the adaptive filtering means 6 so as to be able to follow a steep change; a microphone 105 provided near the noise generating source 1; An amplifier 106 for amplifying the output of the clone 105, an A / D converter 107 for converting an analog output signal of the amplifier 106 to a digital signal, and the adaptive type amplifier. Simulated by the output of the filtering means 6, the transfer characteristic Hd from the output point to the input of the difference signal calculation means 5 to be described later via the speaker 3 and the microphone 2 Transfer characteristic simulating means 4, a difference signal calculating means 5 for calculating a difference signal between the output of the transfer characteristic simulating means 4 and the output of the A / D converter 102, and the adaptive filter And switch means 11 for selectively selecting an input signal of the ring means 6. Here, adaptive filtering means 6, period detection control means 10 Etc. are composed of DSP.
第 1 3 図は第 1 2 図の周期検出制御手段の構成を示す図で ある。 本図に示す周期検出制御手段 5 は周期検出部 1 0 0 1 と、 周期予測部 1 0 0 2 と、 適応型フ ィ ルタ リ ング手段 6 の 係数等の制御部 1 0 0 3 とからなる。  FIG. 13 is a diagram showing the configuration of the cycle detection control means of FIG. The cycle detection control means 5 shown in the figure comprises a cycle detection section 1001, a cycle prediction section 1002, and a control section 1003 for controlling the coefficients of the adaptive filtering means 6. .
第 1 4 図は第 1 3 図の周期検出部 1 0 0 1 の周期検出方法 の例を説明する図である。 本図 ( a ) は騒音発生源 1 と して, 自動車エ ン ジ ン又はモータ等の点火タイ ミ ング、 或いは回耘 タイ ミ ング (回転数) を検出する方法である。 周期検出部 1 0 0 1 の入力には矩形波の信号が入力 し、 こ の周期 Tがも と められ、 周期予測部 1 0 0 2 へ出力される。 自動車の騒音で は急峻な 音変化は自動車エンジ ンの回転数等の変化によつ て生じるためである。  FIG. 14 is a view for explaining an example of the cycle detection method of the cycle detector 1001 in FIG. This figure (a) shows the method of detecting the ignition timing of a vehicle engine or a motor or the tilling timing (rotation speed) as the noise source 1. A rectangular wave signal is input to the input of the period detection unit 1001, and the period T is obtained and output to the period prediction unit 1002. This is because a steep change in vehicle noise is caused by changes in the number of revolutions of the vehicle engine.
本図 ( b ) は本図 ( a ) のよ う なタイ ミ ング信号が得られ ない場合には、 自動車エ ン ジ ン等の近傍のマイ ク ロフ ォ ンま たは振動計 9 から騒音波形を検出 し、 その時間波形ピー クか ら騒音信号の周期 Tを得る こ とを示す。 こ の信号処理ではあ る騒音信号レベルが一定レベルの騒音信号レベルを越えたと きに矩形波を発生するよ う にすれば本図 ( a ) と同様に して 周期 Tが得られる。  This figure (b) shows the noise waveform from the microphone or vibrometer 9 near the car engine when the timing signal as shown in this figure (a) cannot be obtained. Is detected, and the period T of the noise signal is obtained from the time waveform peak. In this signal processing, when a certain noise signal level exceeds a certain level of the noise signal level, a period T can be obtained in the same manner as in FIG.
本図 ( c ) はマイ ク ロ フ ォ ンに入力 した騒音信号をデイ ジ タル化した後に騒音周期 Tを求める B P F ピーク検出方法を 示す。 この方法は、 複数のバ ン ドパス フ ィ ルタ 1 , 2 , …, n と、 各バ ン ドパス フ ィ ルタ 1 , 2 , …, nに接続される絶 対値化部 ( A B S ) と、 各絶対値化部に接続される平均化部 ( L P F ) と、 各平均化部の最大値を検出する最大バン ド検 出部からなり、 騒音レベルの最大周波数帯を検出 して、 その 最大周波数帯の周期を騒音信号の周期とする ものである。 本図 ( d ) は適応型フ ィ ルタを用いた周期検出方法であつ て、 差信号演算手段 5 の差信号 S R を入力する遅延器 (D e 1 a y ) と、 該遅延器の出力を入力する適応型フ ィ ルタ ( A D F ) と、 適応型フ ィ ルタの出力とスルーの入力信号の差信 号をと る加算部と、 該加算部の差信号を最小二乗法処理して、 適応型フ ィ ルタの係数を決定する最小二乗法処理部 ( L M S ) とからなり、 適応型フ ィ ルタの係数から騒音信号の周期を求 める。 This figure (c) shows the BPF peak detection method for obtaining the noise period T after digitizing the noise signal input to the microphone. In this method, a plurality of bandpass filters 1, 2,..., N, an absolute value unit (ABS) connected to each bandpass filter 1, 2,. Averaging section connected to absolute value section (LPF) and a maximum band detector that detects the maximum value of each averaging unit.The maximum frequency band of the noise level is detected, and the period of the maximum frequency band is used as the period of the noise signal. is there. This figure (d) shows shall apply in the period detecting method using an adaptive full I filter, a delay unit for inputting the difference signal S R of the differential signal calculation means 5 and (D e 1 ay), the output of the delay device An adaptive filter (ADF) to be input, an adder for obtaining a difference signal between the output of the adaptive filter and a through input signal, and a least square method processing of the difference signal of the adder for adaptive processing. It consists of a least-squares method processing unit (LMS) that determines the coefficients of the type filter, and determines the period of the noise signal from the coefficients of the adaptive filter.
第 1 5 図は検出周期に基づき周期変化量の予測方法を説明 する図である。 周期予測部 1 0 0 2 では本図に示すよ う に当 初周期が一定である時刻 ( t o ) で周期が小さ く なるよ う に 変化したとする と周期検出部 1 0 0 1 では図中①のよ う に周 期変化量が検出される。 一方従来の技術ではマイ ク ロ フ ォ ン 2 の位置では図中②のよう に伝達特性 H dだけ遅れる こ とに なる。 こ こで説明の簡単のために、 適応型フ ィ ルタ リ ング手 段 4等の信号処理部の伝達特性等は無視している。 周期予測 部 1 0 0 2では上記伝達特性 H dを考慮して、 図中①の曲線 に対して図中③の曲線のよう に早めに周期を変化させるため のデータを算出する。 本図では周期の変化を時間に対して直 線で示しているが、 これは曲線でもよ く 、 その場合には図中 ③の曲線は関数を設けて、 これをフィ ッティ ングして求めて もよい。 このよう にして得られた本図③の曲線において、 現 時刻 ( t , ) の周期 T , に対して予測される周期 Τ 2 が求め られる。 第 1 3 図の A D Fの係数等の制御部 1 0 0 3 につい ては後述する。 FIG. 15 is a diagram for explaining a method of predicting a period change amount based on a detection period. If the period prediction unit 1002 changes so that the period becomes smaller at the time (to) when the initial period is constant as shown in the figure, the period detector 1001 The cyclic change is detected as in ①. On the other hand, in the conventional technique, the position of microphone 2 is delayed by the transfer characteristic Hd as shown in the figure. Here, for the sake of simplicity, the transfer characteristics and the like of the signal processing unit such as the adaptive filtering means 4 are ignored. The cycle prediction unit 1002 calculates the data for changing the cycle earlier as shown by the curve ③ in the figure with respect to the curve ① in the figure in consideration of the transfer characteristic H d. In this figure, the change in the period is shown by a straight line with respect to time, but this may be a curve. In this case, the curve ③ in the figure is provided with a function, which is determined by fitting. Is also good. In the curve of Fig. 3 obtained in this way, the current Time (t,) the period T of the cycle T 2 expected for sought. The control unit 1003 for the ADF coefficient and the like in FIG. 13 will be described later.
次に適応型フ ィ ルタ リ ング手段 6 について簡単に説明する。 スィ ッ チ手段 1 1 が差信号演算手段 5 を選択する と、 騒音発 生源 1 の騒音 S N と し、 マイ ク ロフ ォ ン 2 までのその伝達特 性を H N0 1 S E と し、 適応型フ ィ ルタ リ ン グ手段 6 の補儐信号 を S c と し、 適応型フ ィ ルタ リ ング手段 6 からス ピーカ 3 を 介 してマ イ ク ロ フ ォ ン 2 に至る系の伝達特性を H S Pと し、 マ イ ク 口 フ ォ ン 2 から差信号演算手段 5 へ至る系の伝達特性を H ra i c と し、 伝達特性模擬手段 4 の伝達特性 H d 1 について、 H d 1 = H SP · H m i c = H d とする と、 マイ ク ロ フ ォ ン 2 か ら出力される残留音の信号 S M は、 S M = S N ' H N O I S E +Next, the adaptive filtering means 6 will be briefly described. When the switch means 11 selects the difference signal calculation means 5, the noise SN of the noise source 1 is set as H N0 1 SE, and the transmission characteristic of the noise source 1 to the microphone 2 is set as H N0 1 SE. the complement No.儐信the full i filter Li in g unit 6 and S c, the transfer characteristics of the system leading to adaptive full i filter-ring means 6 crows Ma and through the speaker 3 i click b off O emissions 2 and H SP, the transfer characteristics of the system ranging from the microstrip click port off O emissions 2 to differential signal calculation means 5 and H ra ics, the transfer characteristic H d 1 of the transfer characteristics simulating means 4, H d 1 = H When SP · H mi c = H d , the signal S M of microphones b off O emissions 2 or we output the residual sound, S M = SN 'HNOISE +
S c · Η ,Ρとなる。 従って、 差演算部 5 における演算結果で ある差信号 S R は、 S R = S M · H M I 一 S C · H d 1 =S c · Η, Ρ . Therefore, the difference signal S R as the calculation result in the difference calculation unit 5 is given by S R = S M · H MI- 1 SC · H d 1 =
S N * H N 0 I S E * H m ί c + S C * H S P * 1 m i c S C * H S P * H m i c = S N - H N O I S E ' H m i c とな り、 騒音のみをマイ ク 口フ ォ ン 2 で検出 した時の信号を演算する こ と となる。 また、 適応型フ ィ ルタ リ ング手段 6 の適応型フ ィ ルタ の係数を変更 するための制御信号と しては、 A Z D変換器 1 0 2 の出力 S E が与えられる。 適応塑フ ィ ルタ リ ング手段 6 は こ の制御信号 が零になるよ う に係数を変更する ものであり、 S E = S M ·SN * HN 0 ISE * H m ί c + SC * HSP * 1 mic - SC * HSP * H mi c = S N - HNOISE ' Ri Do and H mi c, detect only noise at microphone port off O emissions 2 The signal at this time is calculated. Further, as a control signal for changing the coefficients of the adaptive full I filter of the adaptive full I filter-ring unit 6 is given the output S E of AZD converter 1 0 2. The adaptive plastic filtering means 6 changes the coefficient so that this control signal becomes zero, and S E = SM
H m i c であるため S E = 0 のと き S M = 0 となる。 従って、 差信号演算手段 5 からの差信号 S R を被制御信号と して適応 型フ ィ ルタ リ ング手段 6 に入力 し、 制御信号と して A Z D変 換器 1 0 2 の出力 S E を入力する こ と によ って、 適応型フ ィ ルタ リ ング手段 6 は S E = 0 となるよう に補僙信号 S c を演 算する。 スィ ッチ手段 1 1 がマイ ク ロ フ ォ ン 9 を選択する と マイ ク ロ フ ォ ン 9 からの信号を入力 して適応型フ ィ ルタ リ ン グ手段 6 は補儍信号 S c を演算する。 Since H mi c, S M = 0 when S E = 0. Therefore, it inputs the difference signal S R from the differential signal calculation means 5 in the adaptive full I filter-ring means 6 and the controlled signal, AZD varying as the control signal I'm in and the child to enter the exchanger 1 0 2 of the output S E, adaptive off I filter-ring means 6 is arithmetic complement僙信No. S c in such a way that S E = 0. Sweep rate pitch means 1 1 mic B off O Selecting emissions 9 microphone B off O adaptive to input signals from the down 9 off I filter Li in g unit 6 calculates a complement儍信No. S c I do.
第 1 6 図は第 1 2図の適応型フ ィ ルタ リ ング手段を示す図 である。 本図の適応型フィ ルタ リ ング手段 6 は非巡回型フィ ルタによって構成され、 具体的には一サンプリ ング周期の遅 延を行う一連の遅延器 6 0 1 と、 各該遅延器 6 0 1 に接繞さ れる複数の乗算器 6 0 2 と、 各該乗算器 6 0 2 の出力を加算 する複数の加算器 6 0 3 と、 該マイ ク ロ フ ォ ン 2 の出力が、 最小二乗法により最小になるよう に各前記乗算器 6 0 2 の乗 算係数を制御する係数更新手段 6 0 4 とを含む。  FIG. 16 is a diagram showing the adaptive filtering means of FIG. The adaptive filtering means 6 in the figure is constituted by a non-recursive filter, and more specifically, a series of delay units 60 1 for delaying one sampling period, and each of the delay units 6 0 1 , A plurality of adders 603 for adding the outputs of the multipliers 602, and an output of the microphone 2 to the least squares method. And coefficient updating means 604 for controlling the multiplication coefficient of each of the multipliers 602 so as to minimize the above.
なお、 一連の遅延器 6 0 1 はラ ンダムアクセスメ モ リ (R A M ) で構成されてもよ く 、 この場合入力されたサンプリ ン グデータを 1 サンプリ ング毎に順次次のァ ド レスに シフ 卜す る或いはサンプリ ングデータを入力するァ ド レスの値を 1 サ ンプリ ング毎に順次シフ 卜するよう にすればよい。  Note that the series of delay units 601 may be constituted by random access memory (RAM). In this case, the input sampling data is shifted to the next address sequentially for each sampling. The address value for inputting the sampling data may be shifted sequentially for each sampling.
本図に示す適応型フ ィ ルタ リ ング手段 6 の乗算器 6 0 2 の 乗算係数 , g 2 , '·· , g„ について周期検出制御手段 1 0 の A D Fの係数等の制御部 1 0 0 3 ίきょる再設定を説明す る ο For the multiplication coefficient, g 2 , '·, g „of the multiplier 60 2 of the adaptive filtering means 6 shown in the figure, the control unit 100 of the ADF coefficient etc. of the cycle detection control means 10 3 Explain the reconfiguration ο
第 1 7 図は適応型フ ィ ルタ リ ングを構成する複数乗算器の 乗算係数のシフ トを説明する図である。 本図 ( a ) は乗算器 6 0 2の係数列を模式的に示すものである。 通常はマイ ク ロ フ ォ ン 2 の信号によ り各乗算器 6 0 2 の乗算係数(g ,, g 2 , … g n ) が設定されているが、 周期予測 1 0 0 2 で短い周期 から長い周期への変化が予測される と、 A D Fの係数等の制 御部 1 0 0 3 によ り 、 各乗算器 6 0 2の乗算係数(g i, g 2 ,FIG. 17 is a diagram for explaining a shift of a multiplication coefficient of a plurality of multipliers constituting the adaptive filtering. This figure (a) schematically shows a coefficient sequence of the multiplier 602. Normally micro Multiplication factor of off O emissions each multiplier 6 Ri by the signal 2 0 2 (g ,, g 2 , ... g n) but is set, from the short cycle in the cycle prediction 1 0 0 2 to longer periods When the change is predicted, the multiplication coefficients (gi, g 2,
… g n ) 力、、 ( g ' 。 , g 1 , 2 , …, π - 1 ) , …, ( ' - g ' - 7 , …, ' 0 , 1 , g 2 , …, g n - S ) となるよ う に、 すなわち n番目の乗算器 (遅延器) に向ってシ フ ト させ られる。 これによ り遅延量が長 く な り、 周期を長 く する こ と ができ る。 … Gn) force, (g '., G 1, 2,…, π-1),…, ('-g '-7,…,' 0, 1, g 2,…, g n -S) , That is, shifted toward the n-th multiplier (delay unit). As a result, the delay amount becomes longer, and the period can be made longer.
本図 ( b ) は上記の逆に、 周期予測部 1 0 0 2で長い周期 から短かい周期への変化が予測される と A D Fの係数等の制 御部 1 0 0 3 によ り各乗算器 6 0 2 の乗算係数 ( g : , g 2 In the figure (b), conversely, when a change from a long period to a short period is predicted by the period prediction unit 1002, each multiplication is performed by the control unit 1003 such as the ADF coefficient. Coefficient of the unit 60 2 (g:, g 2
…, g n ) 力、' ( g 2 , g S . …, g n , g ' , + l ) , ··· ,…, Gn) force, '(g 2, g S.…, Gn, g', + l), ···,
( g 1 0 , g 1 1 , ···, g„, g ' „+ 1 , ' n + 2, ···, g ' » + s). …となるよ う にすなわち 0番目の乗算器 (遅延器) に向って シ フ ト させられる。 これによ り遅延量が短か く な り、 周期を 短かく する こ とができ る。 ただし、 g ' は任意の最適値 (例 えば 0 ) とする。 (g 1 0, g 1 1, ···, g „, g '„ + 1,' n + 2 , ···, g '» + s). (Delay device). As a result, the amount of delay is shortened, and the period can be shortened. Here, g 'is an arbitrary optimal value (for example, 0).
第 1 8図は適応型フ ィ ルタ リ ング手段を構成する遅延器の タ ッ プ移動を説明する図である。 本図 ( a ) は通常、 遅延器 FIG. 18 is a diagram for explaining the tap movement of the delay device constituting the adaptive filtering means. This figure (a) is usually a delay unit
6 0 1 のタ ッ プ ( T , , T 2 , …, T n ) が設定されている が、 周期予測部 1 0 0 2で短かい周期から長い周期への変化 が予測されると、 A D Fの係数等の制御部 1 0 0 3 により、 タ ッ プ ( T , , T 2 , …, T n ) が ( T ' 。 , T 1 , T 2 , …- T… ) , ···, (T ' 。, …, T ' -】, T ' 0 , T! , T 2 , …, Τ„ - 9 ) , …となるよう にすなわち η番目の遅延 器に向ってシフ 卜 させられる。 これにより遅延量が長く なり 周期を長く する ことができる。 Although the tap (T,, T 2,…, T n ) of 6001 is set, when the period prediction unit 1002 predicts a change from a short period to a long period, the ADF The taps (T,, T2,…, Tn ) are changed to (T '., T1, T2,… -T…),. T '.,…, T'-], T'0, T !, T 2,…, Τ „-9),…, that is, toward the η-th delay unit, thereby increasing the amount of delay and extending the period.
本図 ( b ) は上記の逆に、 周期予測部 1 0 0 2で長い周期 から短かい周期への変化が予測される と A D Fの係数等の制 御部 1 0 0 3 によ り各遅延器 6 0 1 のタ ッ プ ( Τ ! , T 2 , -, T n) 力《 (: Τ 2 , Τ 3 , ···, τ η , Τ ' η + ι) , ·■· ( Τ 10,In the figure (b), when the change from the long cycle to the short cycle is predicted by the cycle prediction section 1002, the delay of the ADF coefficient etc. is controlled by the control section 1003. vessel 6 0 1 of data-up (Τ, T 2, -, T n!) force "(: Τ 2, Τ 3 , ···, τ η, Τ 'η + ι), · ■ · (Τ 10 ,
Τ 1 ,, ···, Τ„ , Τ ' η + Ι , Τ ' π + 2 , '··, Τ ' π ) , … となるよう にすなわち 0番目の乗算器へ向ってシフ 卜 させら れる。 これにより遅延量が短かく なり、 周期を短かく する こ とができる。 ただし、 Τ ' は、 任意の最違値 (例えば 0 ) で ある。 Τ, ·, Τ „, Τ 'η + Ι, Τ' π + 2 , '·,' π ),…, that is, shifted toward the 0th multiplier. As a result, the amount of delay can be shortened and the period can be shortened, where Τ 'is an arbitrary maximum value (for example, 0).
第 1 9図は第 1 2図の周期検出制御手段の別の変形を示す 図である。 周期検出制御手段 1 0の周期検出部 1 0 0 1 は適 応型フィ ルタ リ ング手段 6 の乗算器 6 0 2の乗算係数を入力 し、 次の η次元べク トルを形成する。  FIG. 19 is a diagram showing another modification of the cycle detection control means of FIG. The cycle detection unit 1001 of the cycle detection control means 10 receives the multiplication coefficient of the multiplier 62 of the adaptive filtering means 6 and forms the following η-dimensional vector.
V(t)= gi (t) · g2(t) ' i2+…十 g„ (t) ' in 適応型フィ ルタ リ ング手段 6 は逐次本図 ( a ) , ( b ) ,V (t) = gi (t) · g 2 (t) 'i 2 + ... 10 g „(t)' i n The adaptive filtering means 6 sequentially draws (a), (b),
( C ) のよう に乗算係数 ( g i , g 2 , ··· , g n ) が更新さ れるので、 周期予測部 5 0 2では、 t = 0 , 1 , 2 , …のよ う にべク トルを追跡して、 t時間後のべク トルが予測され、 この予測がなされる と、 このべク トルから乗算係数 ( g , , g 2 , …, g » ) を求め、 A D Fの係数等の制御部 1 0 0 3 により これらの乗算係数が乗算器 6 0 2へ設定される。 この よ う に適応型フ ィ ルタ リ ング手段 6 に包含される乗算器 6 0 2 の乗算係数を変更する こ と によ っ て、 或いは遅延器 6 0 1 の出力タ ッ プを移動させる こ と によ っ て、 適応型フ ィ ルタ リ ング手段 6 のフ ィ ルタ特性を変更する こ とができ る。 Since the multiplication coefficients (gi, g2,..., Gn ) are updated as shown in (C), the period prediction unit 502 generates a vector such as t = 0, 1, 2, 2,. The vector after time t is predicted by tracking the torque, and when this prediction is made, the multiplication coefficient (g,, g2,…, g ») is calculated from this vector, and the ADF coefficient etc. These multiplication coefficients are set in the multiplier 62 by the control unit 1003 of the control unit. this As described above, by changing the multiplication coefficient of the multiplier 602 included in the adaptive filtering means 6, or by moving the output tap of the delay unit 601. Thus, the filter characteristics of the adaptive filtering means 6 can be changed.
以上説明 したよ う に本発明によれば、 騒音発生源の騒音周 期を検出 し、 騒音周期の特徴から先を予測して周期を制御す るよ う に したので急峻な周波数変化に も追従可能になった。  As described above, according to the present invention, the noise period of the noise source is detected, and the period is controlled by predicting ahead from the characteristics of the noise period, so that it can follow a steep frequency change. It is now possible.
〔産業上の利用分野〕 . (Industrial applications)
エンジン、 モータ等の騒音をキャ ンセルするためのディ ジ タル信号処理装置にその応用を見出すこ とができ る。  Its application can be found in digital signal processing devices for canceling noise from engines and motors.

Claims

請 求 の 範 囲 The scope of the claims
1 . 騒音を発生する騒音発生源 ( 1 ) からの騒音と逆位相 等音圧の補俊音波を出力 し騒音を消去する騒音制御装置にお いて、 1. In a noise control device that outputs a compensatory sound wave of opposite phase and equal sound pressure to noise from a noise source (1) that generates noise and cancels the noise,
前記騒音と前記捕儐音波との残留音を検出 し該残留音を誤 差信号の電気信号に変換する音波 * 電気信号変換器 ( 2 ) と . 前記補僳音波を出力する電気信号 · 音波変換器 ( 3 ) と、 前記補儐音波を得るため前記誤差信号により フ ィ ルタ係数 を更新して補傻信号を形成する適応型フ ィ ルタ リ ング手段 ( 6 ) と、  A sound wave * electric signal converter (2) for detecting a residual sound of the noise and the captured sound wave and converting the residual sound to an electric signal of an error signal; and an electric signal / sound wave converter for outputting the supplementary sound wave. An adaptive filtering means (6) for updating a filter coefficient with the error signal to form an auxiliary signal to obtain the auxiliary sound wave;
前記連応型フ ィ ルタ リ ング手段 ( 6 ) の出力側に設けられ、 その出力から前記電気信号 · 音波変換器 ( 3 ) 及び前記音波 電気信号変換器 ( 2 ) を経て前記誤差信号と して戻るまでの 系の伝達特性を模擬する伝達特性模擬手段 ( 4 ) と、  It is provided on the output side of the corresponding type filtering means (6), and outputs from the output through the electric signal / sound wave converter (3) and the sound wave electric signal converter (2) as the error signal. A transfer characteristic simulating means (4) for simulating the transfer characteristic of the system until returning;
前記適応型フ ィ ルタ リ ング手段 ( 6 ) から前記伝達特性模 擬手段 ( 4 ) を経た補儻信号と、 前記音波 , 電気信号変換器 ( 2 ) からの前記誤差信号との差信号を演算して再生騒音信 号を形成する差信号演算手段 ( 5 ) と、  The difference signal between the adaptive filtering means (6) and the supplementary signal passed through the transfer characteristic simulation means (4) and the error signal from the sound wave / electric signal converter (2) is calculated. Difference signal calculating means (5) for forming a reproduced noise signal
前記騒音発生源 ( 1 ) から直接に騒音周期を検出する周期 検出部 ( 7 ) と、  A period detector (7) for directly detecting a noise period from the noise source (1);
前記 ¾音周期の変化量に応じて前記差信号演算手段 ( 5 ) の出力信号の周期を変化させて、 前記適応型フ ィ ルタ手段 ( 6 ) に基準信号と して出力する周期調整部 ( 8 ) とを備え る こ とを特徵とする騒音制御装置。 A period adjustment unit (5) that changes the period of the output signal of the difference signal calculation unit (5) according to the amount of change in the sound period, and outputs it as a reference signal to the adaptive filter unit (6). 8) A noise control device characterized by comprising:
2. 前記周期検出部 ( 7 ) が前記差信号演算手段 ( 5 ) の 再生騒音信号から騒音周期を検出する請求の範囲 1 記載の騒 音制御装置。 2. The noise control device according to claim 1, wherein the cycle detection section (7) detects a noise cycle from a reproduced noise signal of the difference signal calculation means (5).
3. 騒音を発生する騒音発生源 ( 1 ) からの騒音と逆位相 等音圧の補僙音波を出力 し騒音を消去する騒音制御装置にお いて、  3. In a noise control device that outputs complementary sound waves with the same phase and opposite sound pressure as the noise from the noise source (1) that generates noise, and cancels the noise,
前記騒音と前記補倂音波との残留音を検出 し、 該残留音を 誤差信号の電気信号に変換する音波 · 電気信号変換器 ( 2 ) と、  A sound / electric signal converter (2) for detecting a residual sound of the noise and the supplementary sound wave and converting the residual sound to an electric signal of an error signal;
前記捕儍音波を出力する電気信号 · 音波変換器 ( 3 ) と、 前記補俱音波を得るため前記誤差信号によ り フ ィ ルタ係数 を更新して補儐信号を形成する適応型フ ィ ルタ リ ング手段 ( 6 ) と、  An electric signal / sound wave converter (3) for outputting the captured sound wave; and an adaptive filter for forming a supplementary signal by updating a filter coefficient with the error signal to obtain the supplementary sound wave. Ring means (6);
前記騒音発生源 ( 1 ) の騒音周期を検出 し、 該騒音周期の 変化を予測し、 該騒音周期の予測変化に応じて、 前記適応型 フ ィ ルタ リ ング手段 ( 6 ) の フ ィ ルタ特性を変更する周期検 出制御手段 ( 1 0 ) とを備える こ とを特徵とする騒音制御装 置。  Detecting the noise period of the noise source (1), predicting a change in the noise period, and filtering characteristics of the adaptive filtering means (6) according to the predicted change in the noise period. A noise control device characterized by comprising a period detection control means (10) for changing the noise.
4. 前記周期検出制御手段 ( 1 0 ) は、 前記騒音発生源 ( 1 ) の J8音周期を検出 し、 該騒音周期の変化を予測し、 該 騒音周期の予測変化に応じて前記適応型フ ィ ルタ リ ング手段 ( 6 ) に包含される乗算器の乗算係数を更新設定せしめる こ とを特徵とする請求の範囲 3記載の騒音制御装置。  4. The cycle detection control means (10) detects the J8 sound cycle of the noise source (1), predicts a change in the noise cycle, and, in accordance with the predicted change in the noise cycle, the adaptive filter. 4. The noise control device according to claim 3, wherein the multiplication coefficient of the multiplier included in the filtering means (6) is updated and set.
5. 前記周期検出制御手段 ( 1 0 ) は、 前記騒音発生源 ( 1 ) の騒音周期を検出 し、 該騒音周期の変化を予測して、 該騒音周期の予測変化に応じて前記適応型フ ィ ルタ リ ング手 段 ( 6 ) に包含される遅延器の出力タ ップを移動せしめる こ とを特徴とする請求の範囲 3記載の騒音制御装置。 5. The cycle detection control means (10) detects a noise cycle of the noise source (1) and predicts a change in the noise cycle, The noise control according to claim 3, wherein an output tap of a delay unit included in the adaptive filtering means (6) is moved in accordance with the predicted change of the noise cycle. apparatus.
6. 前記周期検出制御手段 ( 1 0 ) は前記適応型フ ィ ルタ リ ング ( 6 ) に包含される複数の乗算器の乗算係数で複数次 元のべク トルを形成して、 該べク トルの変化を検出 しかつ予 測し、 該べク トルの予測変化に応じて前記複数の乗算器の乗 算係数を更新設定する こ とを特徵とする請求の範囲 4記載の 騒音制御装置。  6. The cycle detection control means (10) forms a multidimensional vector by the multiplication coefficients of the plurality of multipliers included in the adaptive filtering (6), and 5. The noise control device according to claim 4, wherein a change in torque is detected and predicted, and a multiplication coefficient of the plurality of multipliers is updated and set in accordance with the predicted change in the vector.
PCT/JP1992/000680 1991-05-30 1992-05-26 Noise control apparatus WO1992022054A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/934,652 US5319715A (en) 1991-05-30 1992-05-26 Noise sound controller
DE69227252T DE69227252T2 (en) 1991-05-30 1992-05-26 NOISE MONITORING DEVICE
EP92910577A EP0598120B1 (en) 1991-05-30 1992-05-26 Noise control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/127632 1991-05-30
JP3127632A JPH0772837B2 (en) 1991-05-30 1991-05-30 Noise cycle controller
JP3195449A JPH0719157B2 (en) 1991-08-05 1991-08-05 Noise control device
JP3/195449 1991-08-05

Publications (1)

Publication Number Publication Date
WO1992022054A1 true WO1992022054A1 (en) 1992-12-10

Family

ID=26463538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000680 WO1992022054A1 (en) 1991-05-30 1992-05-26 Noise control apparatus

Country Status (4)

Country Link
EP (1) EP0598120B1 (en)
CA (1) CA2086926C (en)
DE (1) DE69227252T2 (en)
WO (1) WO1992022054A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526111A2 (en) * 1991-07-31 1993-02-03 Fujitsu Ten Limited Automatic sound controlling apparatus
CN107801130A (en) * 2016-09-02 2018-03-13 现代自动车株式会社 Sound control apparatus and its control method for vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388080A (en) * 1993-04-27 1995-02-07 Hughes Aircraft Company Non-integer sample delay active noise canceller
EP0814456A3 (en) * 1996-06-17 1998-10-07 Lord Corporation Active noise or vibration control (ANVC) system and method including enhanced reference signals
DE10317502A1 (en) * 2003-04-16 2004-11-18 Daimlerchrysler Ag Evaluation method e.g. for analysis of sounds signals, evaluating sound signal, through band pass filter with sound signal is in frequency range of first band-pass filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164400A (en) * 1986-01-14 1987-07-21 Hitachi Plant Eng & Constr Co Ltd Electronic silencer system
JPS6458200A (en) * 1987-08-28 1989-03-06 Hitachi Plant Eng & Constr Co Electronic silence system
JPH01314500A (en) * 1988-05-04 1989-12-19 Nelson Ind Inc Method and apparatus for active sound attenuation
JPH0241954A (en) * 1988-08-03 1990-02-13 Kanto Auto Works Ltd Device for reducing sound confined in vehicle
JPH0270195A (en) * 1988-09-05 1990-03-09 Hitachi Plant Eng & Constr Co Ltd Electronic noise silencing system
JPH02218296A (en) * 1989-02-20 1990-08-30 Nissan Motor Co Ltd Controller for noise in vehicle
JPH02306845A (en) * 1989-05-22 1990-12-20 Isuzu Motors Ltd Device for reducing vehicle indoor noise
JPH0350998A (en) * 1989-07-19 1991-03-05 Fujitsu Ten Ltd Noise reduction device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164400A (en) * 1986-01-14 1987-07-21 Hitachi Plant Eng & Constr Co Ltd Electronic silencer system
JPS6458200A (en) * 1987-08-28 1989-03-06 Hitachi Plant Eng & Constr Co Electronic silence system
JPH01314500A (en) * 1988-05-04 1989-12-19 Nelson Ind Inc Method and apparatus for active sound attenuation
JPH0241954A (en) * 1988-08-03 1990-02-13 Kanto Auto Works Ltd Device for reducing sound confined in vehicle
JPH0270195A (en) * 1988-09-05 1990-03-09 Hitachi Plant Eng & Constr Co Ltd Electronic noise silencing system
JPH02218296A (en) * 1989-02-20 1990-08-30 Nissan Motor Co Ltd Controller for noise in vehicle
JPH02306845A (en) * 1989-05-22 1990-12-20 Isuzu Motors Ltd Device for reducing vehicle indoor noise
JPH0350998A (en) * 1989-07-19 1991-03-05 Fujitsu Ten Ltd Noise reduction device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0598120A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526111A2 (en) * 1991-07-31 1993-02-03 Fujitsu Ten Limited Automatic sound controlling apparatus
EP0526111A3 (en) * 1991-07-31 1994-06-08 Fujitsu Ten Ltd Automatic sound controlling apparatus
US5404409A (en) * 1991-07-31 1995-04-04 Fujitsu Ten Limited Adaptive filtering means for an automatic sound controlling apparatus
US5649016A (en) * 1991-07-31 1997-07-15 Fujitsu Ten Limited Automatic sound controlling method and apparatus for improving accuracy of producing a canceling sound
CN107801130A (en) * 2016-09-02 2018-03-13 现代自动车株式会社 Sound control apparatus and its control method for vehicle

Also Published As

Publication number Publication date
EP0598120A4 (en) 1994-07-27
DE69227252D1 (en) 1998-11-12
EP0598120A1 (en) 1994-05-25
EP0598120B1 (en) 1998-10-07
CA2086926C (en) 1996-09-17
CA2086926A1 (en) 1992-12-01
DE69227252T2 (en) 1999-03-25

Similar Documents

Publication Publication Date Title
EP0836736B1 (en) Digital feed-forward active noise control system
US5319715A (en) Noise sound controller
WO2007148509A1 (en) Echo suppressor
US20090133566A1 (en) Reverberation effect adding device
US5426704A (en) Noise reducing apparatus
WO1992022054A1 (en) Noise control apparatus
CN111161700B (en) Main channel time delay estimation method in space noise reduction system
EP0817166B1 (en) Noise control device
EP1074971B1 (en) Digital feed-forward active noise control system
JP2000341658A (en) Speaker direction detecting system
JPH0719157B2 (en) Noise control device
JP2935592B2 (en) Noise control device
JP3506442B2 (en) Noise control device
JPH04352197A (en) Noise period controller
JP3419866B2 (en) Noise reduction device
JPH0353698A (en) Active silencer
JP2996770B2 (en) Adaptive control device and adaptive active silencer
JPH04247497A (en) Active type silencing device
JPH0540482A (en) Noise controller
JP2535476B2 (en) Noise control device
JP3358275B2 (en) Silencer
JP2501717B2 (en) Noise control device
JP2941098B2 (en) Noise control device
JP2934928B2 (en) Active control device using adaptive digital filter
JPH0540483A (en) Noise controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 2086926

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992910577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992910577

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992910577

Country of ref document: EP

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2086926

Kind code of ref document: A

Format of ref document f/p: F