JP2007025109A - 表示素子及び表示素子の製造方法 - Google Patents

表示素子及び表示素子の製造方法 Download PDF

Info

Publication number
JP2007025109A
JP2007025109A JP2005205408A JP2005205408A JP2007025109A JP 2007025109 A JP2007025109 A JP 2007025109A JP 2005205408 A JP2005205408 A JP 2005205408A JP 2005205408 A JP2005205408 A JP 2005205408A JP 2007025109 A JP2007025109 A JP 2007025109A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
backlight
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005205408A
Other languages
English (en)
Inventor
Masahiko Yamaguchi
雅彦 山口
Takuro Sugiura
琢郎 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005205408A priority Critical patent/JP2007025109A/ja
Publication of JP2007025109A publication Critical patent/JP2007025109A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 半透過反射型、又は透過型の液晶表示素子において、バックライト出射光の液晶表示パネル透過率を向上させ、輝度の向上及び消費電力低減を可能とした表示装置を提供する。
【解決手段】 液晶表示パネル2とバックライト3との間に、マイクロレンズアレイ4が、各マイクロレンズと液晶表示パネル2の画素電極52とが対応配置するように設けられ、液晶表示パネル2の画素内に設けられた透明電極(光透過表示部)24の中央部を集光点として、バックライト3からの出射光をマイクロレンズ4で集光するように構成している。
これにより、バックライト3の出射光が、透明電極(光透過表示部)24に対して平行に集光されるため、液晶表示パネル2の光の透過率が向上する。
従って、輝度が高く安定した表示品位を実現し、また、消費電力を低減した表示素子を実現することができる。
【選択図】 図1

Description

本発明は、液晶表示パネルと、この液晶表示パネルを照明するバックライトを備えた表示素子及び表示素子の製造方法に関する。
従来、液晶表示素子の分野においては、消費電力の低減が強く要求されており、画素の領域をできるだけ大きくして表示の明るさを向上することが求められている。このため、アクティブマトリクス基板全面に厚膜の絶縁膜を形成し、この絶縁膜の上に反射型の画素電極を形成したものが実用化されている。このように、絶縁膜上に画素電極を上置きする構造のものでは、絶縁膜下層に配された走査線や信号線等と上層に配された画素電極との間で電気的な短絡を生じない構成を採用できるため、これら配線上にオーバーラップさせるように広い面積で画素電極を形成することが可能となる。これにより、薄膜トランジスタ(Thin Film Transistor:以下、TFTと略記する)等のスイッチング素子や走査線,信号線の形成された領域を含めてほとんど全てを表示に寄与する画素領域とすることができ、開口率を高めて明るい表示を得ることができる。
また、反射型の画素電極を用いた液晶表示形態のみでは暗所での使用ができないため、液晶表示素子にバックライトを併設し、反射型液晶表示素子を部分的に透過表示可能な構成とした半透過反射型の液晶表示素子も広く使用されている。
半透過反射型の液晶表示素子では、1つの画素内を光透過表示部と光反射表示部に分割しているため、例えば、光反射表示部の面積を増やそうとすると光透過表示部の面積を減らす必要がある等、透過と反射の双方の表示形態でトレードオフの関係となる。このため、光透過表示部の面積を狭く設定した場合に、液晶表示素子の輝度ムラが生じる虞があった。
半透過反射型の液晶表示素子をバックライトによって透過表示した際の輝度ムラを無くすため、半透過型TFT液晶表示パネルとバックライトとの間にマイクロレンズアレイを配置し、バックライトの上面にプリズムシートを取り付けたものが提案されている(例えば、特許文献1)。
特開2003−107505号公報
特許文献1の液晶表示素子では、液晶表示パネルとバックライトの間に配置したマイクロレンズアレイにより、強い志向性を持った光を前記光透過表示部に照射するように構成されている。
しかしながら、特許文献1に記載の液晶表示素子では、マイクロレンズアレイをなす複数のレンズの内の1個のレンズと、液晶表示パネルの1個の光透過表示部とを対応させて集光するのみの構成であり、バックライト出射光の集光状態を最適化して光透過表示部に照射するものでは無い。このため、マイクロレンズアレイによって集光されたバックライトの光が傾いた状態で光透過表示部に入射され、液晶表示素子の可視角度が狭くなったりする虞があった。
また、特許文献1の液晶表示装置が備えるバックライト上面に取り付けられたプリズムシートの構成では、バックライトの出射光が20〜30°の範囲で拡散することにより、マイクロレンズアレイによる集光点が大きくずれ、LCDを透過する光量がロスしていた。
コンピュータやモバイル機器等に用いられる直視型の液晶表示素子においては、バックライトの出射光を、BEF(Brightness Enhanncement Film)等のレンズシートを用いて平行化した光を光透過表示部に照射する方法も提案されている。しかしながら、この場合は30〜40°の光の拡散があり、集光点が大きくずれる虞があるため、レンズ集光には適していない。
半透過型TFT液晶表示パネルでは、画素内にスイッチング素子や信号線が形成されているために、画素内の光透過表示部が画素中心からオフセットした位置にあることが多く、レンズと光透過表示部のとのアライメント(位置関係)が重要となる。
また、透過型の液晶表示素子の場合であっても、信号電圧保持用の容量部(Cs)等の非透過部があるため、バックライトの出射光がロスしてしまい、有効利用されていなかった。このため、半透過型の液晶表示素子と同様、集光手段を設け、且つ集光性を向上させるため、バックライトの出射光の平行度を向上させることが望まれていた。
本発明は上記事情に鑑みてなされたものであり、半透過反射型、又は透過型の液晶表示素子において、バックライト出射光の液晶表示パネル透過率を向上させ、輝度の向上及び消費電力低減を可能とした表示装置を提供することを目的とする。
上記課題を解決するため、本発明は、対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトが前記他方の基板側に配置された表示素子であって、前記バックライトは、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、前記液晶表示パネルとバックライトとの間には、集光手段が、該集光手段と前記画素電極とが対応配置するように設けられ、前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記集光手段で集光するように構成したことを特徴とする表示素子を提供する。
上述の構成によれば、バックライトの出射光が、光透過表示部に対して平行に集光されるため、液晶表示パネルの光の透過率が向上するという作用が得られる。
従って、輝度が高く安定した表示品位を実現し、また、消費電力を低減した表示素子が実現できる。
本発明の表示素子では、前記画素電極の各々における前記光透過表示部の面積が、前記画素電極に対する面積比で5〜90%の範囲であることが好ましく、10〜80%の範囲であればより好ましい。
バックライトの出射光を集光手段によって集光し、且つ、画素電極に対する光透過表示部の面積比を上述とすることにより、表示素子の輝度が一層向上する。
本発明の表示素子では、前記バックライトからの出射光は、該バックライトの出射面の法線に対する角度が±20°の範囲とされていることが好ましく、±10°の範囲とされていることがより好ましい。
バックライトの出射光を集光手段によって集光し、且つ、バックライトの出射光の角度を上述とすることにより、液晶表示パネルの光の透過率が一層向上するという作用が得られる。
本発明の表示素子では、前記集光手段が、前記液晶表示パネルの他方の基板の下面に形成されている構成としても良い。
本発明の表示素子では、前記集光手段を、マイクロレンズアレイ、レンチキュラーレンズ、フルネルレンズ、屈折率分布レンズの何れかで構成しても良い。
本発明の表示素子では、前記バックライトに備えられた前記プリズムシートは、入射面側に屈折面と反射面からなる突条の光屈折部が連続して複数設けられるとともに、前記入射面と反対側の出射面が平坦面とされてなり、前記プリズムシートの屈折率をnとし、前記出射面に対する前記屈折面の傾斜角度をθとし、前記出射面に対する前記反射面の傾斜角度をθとし、前記導光板から出射する光の、該導光板の法線に対する角度をαとした時、これらの関係が次式(1)
θ=1/2(180−θ−sin−1(sin(α−θ)/n)) ・・・(1)
で表されるように構成することが好ましい。
バックライトを上述の構成として、各角度の関係を規定することにより、バックライト出射光の、出射面法線に対する出射光の角度を所定範囲内として平行化することができる。
本発明は、対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトは、前記他方の基板側に配置され、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、前記液晶表示パネルとバックライトとの間には、マイクロレンズアレイが、各マイクロレンズと前記画素電極とが対応配置するように設けられ、前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記マイクロレンズで集光するように構成したことを特徴とする表示素子の製造方法であって、前記マイクロレンズアレイを、前記他方の基板の前記バックライト側の面に感光性屈折率変化材料を塗布した後、該感光性屈折率変化材料をマスク露光することによって形成したことを特徴とする表示素子の製造方法を提供する。
本発明は、対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトは、前記他方の基板側に配置され、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、前記液晶表示パネルとバックライトとの間には、マイクロレンズアレイが、各マイクロレンズと前記画素電極とが対応配置するように設けられ、前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記マイクロレンズで集光するように構成したことを特徴とする表示素子の製造方法であって、前記マイクロレンズアレイを、前記他方の基板の前記バックライト側の面に透明樹脂をインクジェット塗布することによって形成することを特徴とする表示素子の製造方法を提供する。
本発明の表示素子では、バックライトの導光板の液晶表示パネル側にプリズムシートを配置するとともに、導光板の裏側に反射板を配置し、液晶表示パネルとバックライトとの間に、集光手段が、該集光手段と液晶表示パネルの画素電極とが対応配置するように設けられ、液晶表示パネルの画素内に設けられた光透過表示部の中央部を集光点として、バックライトからの出射光を集光手段で集光するように構成している。
これにより、バックライトの出射光が、光透過表示部に対して平行に集光されるため、液晶表示パネルの光の透過率が向上する。
従って、輝度が高く安定した表示品位を実現し、また、消費電力を低減した表示素子を実現することができる。
以下、本発明に係る表示素子の実施の形態について、図面を参照して説明する。
なお、以下の全ての図面において、説明の都合上、各構成要素の厚さや寸法比等を、適宜異なるように示している。
図1A、B及び図2A、B、Cは、本発明の表示素子の一例を説明する図であり、この表示素子1は、液晶表示パネル2と、該液晶表示パネル2を裏側から照光するバックライト3と、液晶表示パネル2とバックライト3との間に配置されたマイクロレンズアレイ(集光手段)4とで概略構成される。
本実施形態の表示素子1に備えられたマイクロレンズアレイ4は、液晶表示パネル2が有する画素電極52内に設けられた透明電極(光透過表示部)24に対して、該透明電極24の中央部を集光点として、バックライト3の出射光を集光するものであり、図1Aに示す例では、マイクロレンズアレイ4を、液晶表示パネル2のアクティブマトリックス基板(他方の基板)5の下面に、偏光板43を介して形成している。
また、本実施形態の表示素子1に備えられた透明電極24は、画素電極52との面積比で5〜90%、より好ましくは10〜80%の面積となっている。
また、本実施形態の表示素子1に備えられたバックライト3は、該バックライト3から液晶表示パネル2に向けられた光の拡散角度が、バックライト3の出射面3aの法線Tに対する角度が±20°の範囲、より好ましくは±10°の範囲となるように構成されている。
また、本実施形態の表示素子1に備えられたバックライト3は、図1Bに示す光源32と、光源32の出射光を伝搬して表面から出射する導光板31とを有し、該導光板31の液晶表示パネル2側にプリズムシート33が配置されている。このプリズムシート33は、入射面側、つまり導光板31側に、図7Bに示す屈折面33aと反射面33bからなる突条の光屈折部が連続して複数設けられるとともに、入射面と反対側の出射面3aが平坦面とされてなり、プリズムシート33の屈折率をnとし、出射面3aに対する屈折面33aの傾斜角度をθとし、出射面3aに対する反射面33bの傾斜角度をθとし、導光板31から出射する光の、該導光板31の法線Tに対する角度をαとした時、これらの関係が次式(1)
θ=1/2(180−θ−sin−1(sin(α−θ)/n)) ・・・(1)
で表される。
上述の構成により、本実施形態の表示素子1に備えられたバックライト3は、該バックライト3から液晶表示パネル2に向けられた光の拡散角度が、バックライト3の出射面3aの法線Tに対する角度が±20°の範囲、より好ましくは±10°の範囲となるように構成されている。
液晶表示パネル2は、図1A、Bに概略構造を示すように、スイッチング素子が形成された側のアクティブマトリクス基板(下基板:他方の基板)5と、それに対して設けられた対向側の基板(上基板:一方の基板)6と、これらの基板5、6の間に基板5、6とシール材7とに囲まれて挟持されている光変調層としての液晶層8とを備えて構成されている。即ち、上述のように構成された基板5、6は、スペーサ(図示略)によって互いに一定に離間された状態で保持されるとともに、基板周辺部に熱硬化性のシール材7を塗布することにより、接着一体化されている。
アクティブマトリクス基板5は、図1A、B、図3Aに示すように、ガラスやプラスチック等からなる透明の基板本体5a上に、平面視それぞれ行方向(図3Aのx方向)と列方向(図3Aのy方向)に複数の走査線5bと信号線5cが相互に電気的に絶縁されて形成され、各走査線5b、信号線5cの交差部の近傍にTFT(スイッチング素子)51が形成されている。上記基板本体5a上において、画素電極52が形成される領域、TFT51が形成される領域、走査線5b及び信号線5cが形成される領域を、それぞれ画素領域、素子領域、配線領域と呼称することができる。
本実施形態のTFT51は逆スタガ型の構造を有し、本体となる基板本体5aの最下層部から順にゲート電極53、ゲート絶縁膜54、i型半導体層55、ソース電極56及びドレイン電極57が形成され、i型半導体層55の上であってソース電極56とドレイン電極57との間にはエッチングストッパ層58が形成され、更に、i型半導体層55とドレイン電極57との間、及びi型半導体層55とソース電極56との間にn型半導体層59が形成されている。
基板本体5aはガラスの他、合成樹脂等の絶縁性透明基板からなる。ゲート電極53は導電性の金属材料からなり、図3Aに示すように行方向に配設される走査線5bと一体に形成されている。ゲート絶縁膜54は酸化シリコン(SiOx)や窒化シリコン(SiNy)等のシリコン系の絶縁膜からなり、走査線5b及びゲート電極53を覆うように基板上に形成されている。
以上説明の如く構成されているTFT51の部分および走査線5bと信号線5cを覆うソース絶縁膜20Aが基板本体5a上に形成されている。
なお、本実施形態においては、スイッチング素子として逆スタガ型のTFT51を設けたが、スイッチング素子は他の積層構造の薄膜トランジスタあるいは薄膜ダイオード素子などのスイッチング素子を用いても良い。
更に、先のソース絶縁膜20Aの上には有機材料からなる絶縁膜20Bが積層され、この絶縁膜20B上にAlやAg等の高反射率の金属材料からなる光反射性の画素電極52が形成されている。
光反射性の画素電極52は、先の走査線5bと信号線5cとが囲む矩形状の領域よりも若干小さくなるような平面視矩形状になるように絶縁膜20B上に形成され、図3Aに示すように平面視した場合に上下左右に並ぶ画素電極52どうしが短絡しないように所定の間隔をあけてマトリクス状に配置されている。即ち、これらの画素電極52は、それらの端辺がそれらの下に位置する走査線5b及び信号線5cに沿うように配置されており、走査線5bと信号線5cが区画する領域のほぼ全域を画素領域とするように形成されている。なお、これらの画素領域の集合が液晶表示パネル2での表示領域に相当する。
絶縁膜20Bは、アクリル系樹脂、ポリイミド系樹脂、ベンゾシクロブテンポリマ(BCB)等からなる有機系の絶縁膜とされており、TFT51の保護機能を強化するようになっている。この絶縁膜20Bは、基板本体5a上において他の層に対して比較的厚く積層され、画素電極52とTFT51及び各種配線との絶縁を確実にし、画素電極52との間に大きな寄生容量が発生するのを防止する。
上述の絶縁膜20A、Bにおいて、先の各ソース電極56の一端部56aに達するようにコンタクトホール21が形成され、このコンタクトホール21の内部にはその上下に位置する画素電極52とソース電極56の一端部56aを電気的に接続する導電材料からなる接続部25が形成され、TFT51の動作により画素電極52に対する通電のスイッチングの切り替えができるように構成されている。
絶縁膜20Bにおいて、走査線5bと信号線5cとが囲む矩形状の領域の中央部に位置するように平面視短冊状の窪部22が形成され、この窪部22は絶縁膜20Bを貫通して絶縁膜20Aに達するように形成されている。窪部22の平面形状は、画素電極52の横幅の数分の1程度、画素電極52の縦幅の5〜6割程度とすることが好ましいが、総合的には、画素電極52との面積比が5〜90%の範囲であることが好ましく、10〜80%の範囲とすればより好ましい。
次に、窪部22の位置に相当する部分の画素電極52には、窪部22の底面に合致するような平面形状の透過部(透孔)23が形成され、この画素電極52の透過部23の下側に位置する窪部22の底面を覆うように透明電極材料からなる透明(画素)電極24が形成され、窪部22の内周面を覆うように延長形成された画素電極形成材料が窪部底面の透明電極24の周縁部まで到達されて光反射性の画素電極52に透明電極24が電気的に接続されている。従って光反射性の画素電極52と透明電極24は、TFT51のスイッチング動作によって同時駆動されて液晶層に電界を印加して液晶の駆動を行うことができるようになっている。
従って、各画素領域において、窪部22の形成部分が基板5の外側からの入射光(バックライト3から出射された光)を透過する光透過部30とされており、その他の領域、即ち、画素電極52の非透過部(透過部23が形成されていない部分)が基板6の外側からの入射光を反射する光反射表示部35とされている。
また、先の光反射性の画素電極52の3つが、後述するカラー表示のためのほぼ1つの画素領域に対応し、透過部23の底面積が透過表示の際の光通過領域に対応するので、先の画素電極52の面積に占める透過部23の面積割合を5〜90%の範囲とすることが好ましく、10〜80%の範囲とすればより好ましい。更に、本実施形態では画素電極52に透過部23を1つのみ形成したが、画素電極52に複数の透過部を形成しても良い。その場合には、複数の透過部を合わせた総面積を、画素電極52の面積の5〜90%の範囲とすることが好ましく、10〜80%の範囲とすればより好ましい。この場合、複数の透過部の形成位置に合わせて各透過部の下にそれぞれ窪部を設けることとなる。
上述のように構成された基板本体5a上には、更に画素電極52及び絶縁層20Bと窪部22を覆うようにポリイミド等からなる下基板側配向膜29a、29bが形成されている。これらの下基板側配向膜29a、29bにおいて、光透過部30、即ち、窪部22の底部側に形成されているのが配向膜29aであり、画素電極52上に形成されているのが配向膜29bである。
これらの配向膜29a、29bには、図1Aの矢印Rに示す方向(図1Aの断面図において左向き)にラビング処理が施されて、液晶の配向容易軸の方向が矢印Rに示す方向とされるとともに、プレティルト角が0゜を超えて10°以下、例えば1〜10゜の範囲、より好ましくは5〜10゜の範囲とされている。
対向側の基板6は、ガラスやプラスチック等からなる透光性の基板本体6aの液晶層8側の面に、カラーフィルタ層61とITO等の透明な対向電極(共通電極)62と上基板側配向膜63が形成されている。なお、図1Aに示す例では、基板本体6aの外面側に偏光板H1、位相差板H2、H3が、必要に応じて設けられる。前記カラーフィルタ層61はブラックマトリクスにより碁盤目状に区画された矩形状の領域に個々に赤色と青色と緑色の3原色のいずれかのカラー絵素が配置され、これらの矩形状の領域は先に図3Aを元に説明した平面視矩形状の画素電極52の形状と対応され、これら各画素電極52が対応する領域の液晶の透過率を調節することでカラー表示ができるように構成されている。
配向膜63、29bの膜厚は、例えば500〜600Å(0.05〜0.06μm)程度とされる。
バックライト3は、図1Aに示すように、液晶表示パネル2の裏面側、つまりアクティブマトリクス基板5側に配置され、図1Bに示すLED等からなる光源32と、平板状の透明なアクリル樹脂等からなる導光板31とを備え、光源32の出射光が導光板31の端面から入射して伝搬し、導光板31の表面から出射することによって、液晶表示パネル2を裏面側から照光するようにして構成されている、
また、図7に示すように、導光板31は、裏面側、つまり液晶表示パネル2とは反対側の面に形成されているプリズム形状の凹凸部等による光反射部で光路変更し、導光板31上面の表面31aから液晶表示パネル側に出射できるようになっている。
また、導光板31の表面31a側には、三角形状の凹凸によってプリズムをなすプリズムシート33が配置されている。このプリズムシート33は、入射面側、つまり導光板31側に、屈折面33aと反射面33bからなる突条の光屈折部が連続して複数設けられるとともに、入射面と反対側の出射面3aが平坦面とされてなり、出射面3aから液晶表示パネル2に対して光を出射する。
また、図8に示すように、導光板31の裏面31b側には、三角形状の凹凸が形成されて反射面34a、34bを有し、導光板31の裏面31b側から出射された光を該導光板31へ反射する反射板34が配置されている。
バックライト3と液晶表示パネル2との間には、必要に応じて偏光板43(図1A参照)と位相差板(図示略)が配置される。
本実施形態の表示素子1では、バックライト3を上述の構成とすることにより、バックライト3の出射面3aからの出射光を平行化している。
バックライト3の、導光板31の表面31aから出射される光の法線Tに対する角度αに合わせて、プリズムシート33の屈折面33aの出射面3aに対する傾斜角度θ、及び、反射面33bの出射面3aに対する傾斜角度θの、2つのプリズム角度を設定することにより、バックライト3からの出射光を平行化することができる。
図7に示すバックライト3の、プリズムシート33のプリズム角度の設定条件を以下に説明する。
図7Bに示す各々の角度β(屈折面33aの法線に対する入射光の角度)、γ(屈折面33aの法線に対する透過光の角度)、ε(法線Tに対する反射面33bの反射光角度)、ψ(法線Tに対する出射面3aからの出射光角度)の各角度は、プリズムシート33の屈折率をnとした時、以下の(2)〜(5)式で表される。
β=α−θ ・・・(2)
γ=sin−1(sinβ/n) ・・・(3)
ε=180−2θ−θ−γ ・・・(4)
ψ=sin−1(n*sinε) ・・・(5)
上記各式に示した各角度の内、ψ=ε=0°とした場合、傾斜角度θ、θは以下に示す(1)式に定まる。
θ=1/2(180−θ−sin−1(sin(α−θ)/n)) ・・・(1)
上記各式における傾斜角度θは、α=70°の時はθ>30°、α=75°の時はθ>20°、α=80°の時はθ>10°、α=85°の時はθ>0°の範囲内とすることが好ましい(図11乃至14参照)。また、傾斜角度θの範囲は、α、φ、θによって一義的に定まる。
角度ψ、εを0°とし、角度αを上記各角度の時の傾斜角度θを上述の範囲内とし、また、傾斜角度θが一義的に定まることにより、バックライト3の出射光の前記法線Tに対する拡散角度を±20°、好ましくは±10°の範囲内とし、略平行光とすることが可能とり、また、出射光の利用効率を高めることができる。
傾斜角度θ、θの好ましい角度範囲の詳細については、後述の実施例において、データを用いて説明する。
以下に、バックライト3の裏面31b側に配置された反射板34の、各傾斜角度の設定条件を説明する。
図8Bに示すように、導光板31からの出射光の法線Tに対する角度αと、導光板31からの出射光が反射面34aで反射した時、反射光の法線Tに対する角度βとの関係は、底面34cに対する反射面34aの傾斜角度θにより、以下の(6)式で決定される。また、底面34cに対する反射面34bの傾斜角度θは、以下の(7)式を満たすことが好ましい。
θ=(α−β)/2 ・・・(6)
90−α<θ≦90° ・・・(7)
図8Aに示すように、導光板31の裏面31bには、光源32の出射方向に対して滑らかに傾斜して対向した斜面部31cが形成されている。
本実施形態の表示素子1では、光源32から出射された光が、導光板31の斜面部31cから出射し、反射板34で反射して導光板31に対して垂直に入射及び透過して、該導光板31の表面31aから出射されるように構成している。
上記各式において、傾斜角度θは角度α、βによって一義的に定まる。また、傾斜角度θは90°―α≦θ≦90°の範囲内とすることが好ましい。
傾斜角度θ、θを上述とすることにより、バックライト3の背面側から出射される光を、反射板34によってバックライト3の方向に効率良く反射し、バックライト3の出射面3aから出射することが可能となる。
図16に、角度β=0°、つまりバックライト法線に対して平行とした場合の、角度αと傾斜角度θの関係を示すが、角度αが大きくなるほど、傾斜角度θは大きくなり、前記(7)式で表される傾斜角度θの好ましい角度範囲は広くなる。
図9に示すグラフは、図7に示すようなバックライトの、輝度角度分布の測定結果を示すものである。
ここで用いたバックライトは、導光板31から出射される光の法線Tに対する角度αが75°であり、プリズムシート33の屈折率nが1.49となっている。そして、このバックライトは、法線Tに対する反射面33bの反射光角度ε、及び法線Tに対する出射面3aからの出射光角度ψが0°となって平行化された光が出射面3aから出射するように、(1)式を用いて、プリズムシート33の各プリズムの傾斜角度を、θ=50°、θ=56.8°として設定したものである。
図9のグラフに示すように、本例で説明するバックライトは、法線Tに対して0°の角度での輝度が約1000(cd/m)でピークとなっており、また、法線Tを中心として−10°及び10°の角度における輝度が約350cd/mであり、また、−20°及び20°の角度における輝度が約100cd/mであり、この角度範囲において、輝度が100cd/m以上と高い数値を示している。
これに対し、法線Tを中心として−25°及び25°の角度における輝度は約30cd/mとなっており、±20°の角度範囲における輝度と比べて低くなっている。
この輝度角度分布グラフから、本実施形態で用いられるバックライトは、最も高い輝度が得られる角度範囲が、法線Tを中心とした概ね±20°の範囲、より好ましくは±10°の範囲となっており、高い平行度を有する光を出射できる構成となっていることが明らかである。
なお、図8に示すような、導光板31の裏側にプリズム状の反射板34が配置されたバックライトを用いた場合であっても、上述のような平行光が得られることは言うまでも無い。
マイクロレンズアレイ4は、液晶表示パネル2とバックライト3との間に配置され、バックライト3の出射光を集光して、液晶表示パネル2の透明電極24(光透過表示部)に集光して入射させるものである。
マイクロレンズアレイ4は、図2A、Cに示すように、TFT51が実装された基板本体5aの裏面側(偏光板43)やバックライト3の導光板31の表面に形成するか、又は、図2Cに示すように、基板本体5aと導光板31間に挿入しても良く、形成位置を適宜選択して配置できる。
マイクロレンズアレイのレンズ形状は、図2に示したものには限定されない。
図3B〜Eの断面図は、図3Aに示した画素電極52と各レンズとの対応関係を示している。
マイクロレンズアレイの形状は、図3Eの断面B−Bに示すような凸レンズ状のマイクロレンズアレイ4の他、例えば、図3Bの断面IIIA−IIIA及び図3Cの断面IIIB-IIIBに示す形状を併せて有する凹レンズ状のマイクロレンズアレイ4aであっても良い。
また、集光手段としては、マイクロレンズアレイの他、図3Bの断面IIIA-IIIA及び図3Dの断面IIIB−IIIBに示す形状を併せて有し、画素電極52の長手方向(図3Aにおいて上下方向)のみ集光するレンズを並べたレンチキュラーレンズ4bを用いても良い。
また、各画素に集光するように設けられた、フレネルレンズや屈折率分布ガラスを用いたものであっても良い。
マイクロレンズアレイ4の材質としては、基板本体5aにTFT51を形成する前に、基板本体5aの裏面側にマイクロレンズアレイ4を形成する場合、TFT51の成膜及び加工の際に形状変化を生じない材質を選択、採用することが好ましい。
基板本体5aにマイクロレンズアレイ4を形成する際、基板本体5a裏側(バックライト3側)に偏光板を貼る場合は、接着剤の屈折率が出来る限り1に近いものを選択することが好ましい。これにより、レンズ屈折が小さくなり、焦点距離が長くなる。
なお、基板本体5aの裏側に、画素電極52に対応した屈折率分布ガラスを作製した後、反対側の面にTFT51を設けても良い。
基板本体5aにTFT51を形成した後に、基板本体5a裏面側にレンズを形成する場合、スピンコートやwet現像等の加工によって配向膜が劣化しないよう注意する必要がある。
図2Aに示すように、マイクロレンズアレイ4を、液晶表示パネル2の裏側、つまり基板本体5aの裏側に形成する際は、透明電極24との間で近距離となる直下を避けて配置するのが好ましい。これにより、マイクロレンズアレイ4による集光が長焦点となり、振幅の小さなレンズが使用可能となるとともに、マイクロレンズアレイ4を平坦化する工程が不要となる。
マイクロレンズアレイ4を透明電極24の近距離直下に配置した場合、短焦点の集光となるために振幅が大きく形成が難しいマイクロレンズアレイが必要となること、マイクロレンズアレイの平坦化工程が必要となること(平坦膜は10μm以上の圧膜が必要)、平坦樹脂膜は200℃以上の高耐熱と1.3以下の低屈折率が必要となり材料が限定されること、平坦膜上に金属配線やTFT51を形成すると信頼性及び歩留まりが低下する等の虞があるためである。
図4A、Bに示すように、マイクロレンズアレイ4を用いることにより、画素電極52に対する開口率が低く、光が透過する角度範囲の狭い透明電極24に光を透過させる場合であっても、この透明電極24の中央部へ光を集光することができる。
図4Aに示すように、マイクロレンズアレイ4のレンズに入射する光が平行(0°)でなく、図示例のように、レンズ軸Rに対して20°の角度で入射する場合であっても、図4Bに示すようなマイクロレンズアレイ4の屈折、集光作用によって、透明電極24の中央部へ光を無駄なく集光することができる。
マイクロレンズアレイを、液晶表示パネル2の裏面側(バックライト3側)に設けられた下偏光板の表面に設置する方法について、図5、図6を用いて以下に説明する。
マイクロレンズフィルムを、液晶表示パネル2に貼り付けられた偏光板43上に直接形成する場合は、図5Aに示すように、まず偏光板43上にレンズ樹脂材料40を塗布してプリベークを行う。次に、図5Bに示すように、転写型45を用いてレンズ樹脂材料40を、液晶表示パネル2の画素電極52(図1A参照)にアライメントしながら、レンズ形状に転写成形した後、マスク露光及びベークを施す。これにより、マイクロレンズアレイ41が形成され、図5Cに示すように、マイクロレンズアレイ41をバックライト3側に向けてモジュール組み込みを行う。
マイクロレンズフィルムを、偏光板上に形成した後に該偏光板を液晶表示パネル2に貼り付ける場合は、図6Aに示すように、偏光板43上にレンズ樹脂材料40を塗布してプリベークを行う、次に、図6Bに示すように、転写型45を用いてレンズ樹脂材料40をレンズ形状に転写成形した後、マスク露光及びベークを施す。図6B、Dに示すように、表面にマイクロレンズアレイ42が形成された偏光板43を必要なサイズにカットした後、液晶表示パネル2に、画素電極52(図1A、図3A参照)にアライメントしながら貼合せる。
なお、レンズ樹脂材料としては、ポリシラン樹脂等の感光性屈折率変化材料を用いることが好ましい。
また、上記作製過程におけるベーク温度は、偏光板43の劣化温度以下とすることが好ましい。
また、マイクロレンズアレイの設置の際は、偏光板等のレンズ形成箇所に対し、透明樹脂をインクジェット塗布することによって、マイクロレンズフィルムを形成する方法を用いても良い。
図2Bに示す例のように、マイクロレンズアレイを、液晶表示パネル2とバックライト3の間に挿入配置する場合は、樹脂等の透明な耐熱板(図示略)上にレンズ樹脂材料を塗布して、レンズ形状に転写成形した後、マスク露光及びベークを施す。そして、液晶表示パネル2(偏光板43)とバックライト3の間に、レンズと画素電極52(図1A、図3A参照)をアライメントして、マイクロレンズアレイが形成された耐熱板をシャーシやケース等で固定する。この場合のマイクロレンズアレイの作成方法としては、図7を用いて説明した方法を用いることができるが、マイクロレンズアレイを液晶表示パネル2とバックライト3との間に挿入配置する方法は上述に限定されず、適宜決定して選択すれば良い。
図2Cに示すように、マイクロレンズアレイを、バックライト3の上面に設置する場合は、バックライト3上面側に設けられたプリズムシート33(図7参照)上に、レンズフィルム又はレンズ板からなるマイクロレンズアレイを設置し、液晶表示パネル2の画素電極52(図1A参照)に対して、バックライト3と共にアライメントして、モジュール組付けを行えば良い。
以上、説明したように、本実施形態の表示装置では、バックライトの導光板の液晶表示パネル側にプリズムシートを配置するとともに、導光板の裏側に反射板を配置し、液晶表示パネルとバックライトとの間に、マイクロレンズアレイが、各マイクロレンズと液晶表示パネルの画素電極とが対応配置するように設けられ、液晶表示パネルの画素内に設けられた光透過表示部の中央部を集光点として、マイクロレンズで集光するように構成している。
これにより、バックライトの出射光が、光透過表示部に対して平行に集光されるため、液晶表示パネルの光の透過率が向上する。
従って、輝度が高く安定した表示品位を実現し、また、消費電力を低減した表示素子を実現することができる。
以下に、本発明に係る表示装置の実施例について説明する。
半透過型TFT液晶表示素子のTFT基板本体裏面に、集光手段として厚さ0.1mmのマイクロレンズアレイを使用して、該マイクロレンズアレイを画素電極とアライメントして接着剤で貼り合せ、図1Aに示すような液晶表示パネル2を作製し、更に、図7に示すように、バックライトの導光板の表面側(液晶表示パネル側)にプリズムシートを配置して表示素子を作製した。
半透過型TFT液晶表示素子として、画素電極に対する透明電極の開口率が、面積比で30%となっており、画素電極の寸法が縦180μm×横60μm、透明電極の寸法が縦36μm×横40μmとなっているものを用いた。
バックライトとして、図7に示すような、導光板の表面側にプリズムシートが配置されたものを用いた。また、バックライトの導光板表面からの、法線に対する光の出射角度αは75°であり、前記プリズムシートの屈折率nは1.49であった。そして、図7Bに示すプリズムシートの各プリズムの傾斜角度を、前記(1)式を用いて、θ=50°、θ=56.8°として構成することにより、バックライト出射面からの出射光角度ψが0°となるような設定として、本発明に係る表示素子を得た。
本実施例のサンプルを用いて、図9A、Bのグラフ及びデータに示すような、バックライト出射光の輝度角度分布を測定したところ、バックライト法線に対して0°の角度における輝度が976.0cd/mであり、法線に対して10°の角度における輝度が370.3cd/m、法線に対して20°の角度における輝度が88.3cd/mであった。また、法線に対して25°の角度における輝度が54.4cd/mであった。
上述の輝度角度分布より、本例のバックライトは、最も高い輝度が得られる角度範囲が、法線Tを中心とした±20°の角度範囲、より好ましくは±10°の角度範囲となっており、高い平行度を有する光を出射できることが明らかである。
これにより、プリズムシートをバックライトの導光板上面に配置することにより、バックライト出射光の拡散角度が小さくなり、平行度が向上することが実証された。
実施例1において作製した表示素子を使用して、バックライトの出射光が法線に対して±10°の範囲となるように調整し、且つ、透明電極(光透過表示部)の画素電極に対する開口率を変位させて10%〜80%としたサンプル(実施例)、透明電極の画素電極に対する開口率を5%以下又は90%以上としたサンプル(比較例)を作製した。更に、各サンプルにおいて、マイクロレンズアレイを付けた状態と、マイクロレンズアレイを付けない状態(比較例)のサンプルを各々作製し、各サンプルを使用して、バックライト出射光の、透明電極の透過率を測定した。
図10A、Bに、透明電極の開口率とバックライト出射光の透過率との関係を示す。
透明電極の開口率を10%とした場合の光透過率は、マイクロレンズアレイを用いた時が40%、マイクロレンズアレイを用いなかった時が10%であり、マイクロレンズアレイを用いて集光することによって、大きな効果を奏することが確認できた。
また、透明電極の開口率を80%とした場合の光透過率は、マイクロレンズアレイを用いた時が98%、マイクロレンズアレイを用いなかった時が80%であり、マイクロレンズアレイを用いて集光することによって、大きな効果を奏することが確認できた。
また、透明電極の開口率を5%とした場合の光透過率は、マイクロレンズアレイを用いた時が20%、マイクロレンズアレイを用いなかった時が5%であり、マイクロレンズアレイを用いて集光することによって、一定以上の効果があることが確認できた。
一方、透明電極の開口率を100%とした場合の透過率は、マイクロレンズアレイを用いた時が98%、マイクロレンズアレイを用いなかった時が100%であり、マイクロレンズアレイを用いて集光するよりも、バックライトの出射光を透明電極へ向けて直射した方が効率良く光を透過でき、マイクロレンズアレイを用いることによる効果は確認できなかった。
これにより、バックライト出射光の拡散角度を±10°以下とすることによって、透明電極の開口率を5〜90%、好ましくは10〜80%とした場合の広範囲にわたり、マイクロレンズアレイを用いた集光効果が得られることが実証された。
以上、説明した実施例においては、図10Aのグラフ、図10Bの一覧表からもわかるように、透明電極の開口率が小さい場合は、レンズで集光された光が透過する角度範囲が狭くなる一方、透明電極の開口率が大きすぎると、マイクロレンズアレイ等の集光手段を用いて集光することによる効果が薄れることが明らかとなった。
このため、バックライトの出射光の拡散角度が大きい場合は、図10A、Bに示す開口率と透過率の関係において、マイクロレンズアレイ等の集光手段を用いることによる集光効果が得られる範囲が狭くなってしまう。
本発明に係る表示装置では、バックライトの出射光を平行化して集光しているため、集光手段を用いることによる効果が生じる開口率の範囲が広くなっている。つまり、バックライト上面側にプリズムシートを配置することにより、本発明に係る表示装置が備えるマイクロレンズアレイ等の集光手段による集光効果が一層向上することが明らかである。
図11乃至14に、プリズムシートの傾斜角度θ、θとバックライト出射光角度との関係を測定した実施例データを示す。また、図15Bに、図11乃至14のデータをプロットしたグラフを示す。
図15Aに示す光の届く高さHとプリズム高さhの関係が、H<hの関係であれば光の利用効率が良くなる。このため、θ、θの角度は、前記H<hの条件を満たす範囲であることが好ましい。
図7B及び図15Aに示す各角度及び寸法の関係は、以下の式で表される。
d=p*tanθ/(tanθ+tanθ
H≒(p+d)/tanα
h=d*tanθ
図11乃至14、及び図15Bに示すように、傾斜角度θは、α=70°の時はθ>30°、α=75°の時はθ>20°、α=80°の時はθ>10°、α=85°の時はθ>0°の範囲内とすることが好ましい。傾斜角度θの範囲は、α、φ、θによって一義的に定まる。
角度αが上記各角度の時の傾斜角度θを上述の範囲内とし、また、傾斜角度θが一義的に定まることにより、光の届く高さHとプリズム高さhの関係がH<hの条件を満たし、出射光の利用効率を高めることができる。また、上述したように、バックライトの出射光の前記法線Tに対する拡散角度を±20°、好ましくは±10°の範囲内とするのが可能となることが明らかである。
なお、H>hとした場合には、プリズムシートに入射される光の一部がθ側の面に当たらなくなり、光の利用効率が低下する。従って、H<hとなることが好ましい。
以下に、本発明に係る表示装置の作製例を示す。
[作製例1]
半透過型TFT液晶表示素子のTFT基板本体裏面に、レンチキュラーレンズ及び屈折率分布ガラスを画素電極とアライメントして接着剤で貼り合せた表示素子を、それぞれ作製した。各サンプルとも、実施例1のサンプルと同様の集光効果が得られた。
[作製例2]
透過型TFT液晶表示素子のTFT基板本体裏面に、作製例1と同様、厚さ0.1mmのマイクロレンズアレイを画素電極とアライメントして接着剤で貼り合せて表示素子を作製した。また、マイクロレンズアレイの他、レンチキュラーレンズ及び屈折率分布ガラスを用いたものを各々作製し、各サンプルとも、実施例1のサンプルと同様の集光効果が得られた。
[作製例3]
半透過型STN液晶表示素子に、作製例1と同様、厚さ0.1mmのマイクロレンズアレイを画素電極とアライメントして接着剤で貼り合せ、本発明に係る表示素子を作製した。マイクロレンズアレイの他、レンチキュラーレンズ及び屈折率分布ガラスを用いたものを各々作製し、各サンプルとも、実施例1のサンプルと同様の集光効果が得られた。
[作製例4]
半透過型TFT液晶表示素子のバックライト上にマイクロレンズアレイを貼り付け、液晶表示ユニットとバックライトとをアライメントしてシャーシで固定して、本発明に係る表示素子を作製した。実施例1のサンプルと同様の、マイクロレンズアレイによる集光効果が得られた。
[作製例5]
半透過型TFT液晶表示素子の、他方の基板のバックライト側の基板面にポリシラン樹脂を膜厚20μmで塗布し、液晶層面マークにアライメントしながら、紫外線を6J/cmで照射してマスク露光を行うことによって微細凹凸レンズを形成した後、200℃の温度でベークし、カット処理の後、液晶を注入して本発明に係る表示素子を作製した。
また、液晶表示素子に、半透過型STN液晶表示素子、及び、透過型TFT液晶表示素子を用いて、上述と同様に本発明に係る表示素子を作製した。
各サンプルとも、実施例1のサンプルと同様の、マイクロレンズアレイによる集光効果が得られた。
[作製例6]
半透過型TFT液晶表示素子の、他方の基板のバックライト側の基板面にポリシラン樹脂を膜厚20μmで塗布し、液晶層面マークにアライメントしながら、紫外線を6J/cmで照射してグレースケールマスク露光を行うことによって微細凹凸レンズを形成した後、200℃の温度でベークし、カット処理の後、液晶を注入して本発明に係る表示素子を作製した。
また、液晶表示素子として半透過型STN液晶表示素子、及び、透過型TFT液晶表示素子を用いて、上述と同様に本発明に係る表示素子を作製した。
各サンプルとも、実施例1のサンプルと同様の、マイクロレンズアレイによる集光効果が得られた。
[作製例7]
半透過型TFT液晶表示素子の、他方の基板のバックライト側の面に、透明樹脂を、液晶層面マークにアライメントしながらインクジェット塗布して微細凹凸レンズを形成した後、200℃の温度でベークし、カット処理の後、液晶を注入して本発明に係る表示素子を作製した。
また、液晶表示素子として半透過型STN液晶表示素子、及び、透過型TFT液晶表示素子を用いて、上述と同様に本発明に係る表示素子を作製した。
各サンプルとも、実施例1のサンプルと同様の、マイクロレンズアレイによる集光効果が得られた。
[作製例8]
作製例1〜7にて作製した表示素子に、バックライトをなす導光板の上面側にプリズムシートを設置した。この構成により、図9のグラフに示すようなバックライトの出射光が略平行化される効果が得られ、また、マイクロレンズアレイ等の集光手段による集光効果が確認できた。
[作製例9]
作製例1〜7にて作製した表示素子に、バックライトをなす導光板の下面側に反射板を設置して、本発明に係る表示素子を作製した。この構成により、図9のグラフに示すようなバックライトの出射光が略平行化される効果が得られ、また、マイクロレンズ等の集光手段による集光効果が確認できた。
本発明の表示素子の一例を示す断面図である。 本発明の表示素子の一例を示す概略図である。 本発明の表示素子の一例を示す図であり、Aは平面図、Bは図3AのIIIB−IIIB断面図、C〜Eは図3AのIIIC−IIIC断面図である。 本発明の表示素子の一例を示す概略図である。 本発明の表示素子の一例を示す図であり、マイクロレンズアレイを形成して表示素子を製造する過程を説明する図である。 本発明の表示素子の一例を示す図であり、マイクロレンズアレイを形成して表示素子を製造する過程を説明する図である。 本発明の表示素子の一例を示す概略図である。 本発明の表示素子の一例を示す図であり、バックライトの構成を説明する概略図である。 本発明の表示素子の一例を示す図であり、Aはバックライトの輝度分布角度を説明するグラフ、Bはデータである。 本発明の表示素子の実施例を説明する図であり、Aは透過率のグラフ、Bは透過率データの一覧である。 本発明の表示素子の実施例を説明する図であり、プリズムシートを備えたバックライトのデータである。 本発明の表示素子の実施例を説明する図であり、プリズムシートを備えたバックライトのデータである。 本発明の表示素子の実施例を説明する図であり、プリズムシートを備えたバックライトのデータである。 本発明の表示素子の実施例を説明する図であり、プリズムシートを備えたバックライトのデータである。 本発明の表示素子の実施例を説明する図であり、プリズムシートを備えたバックライトのデータである。 本発明の表示素子の一例を説明する図であり、バックライト反射板の角度と反射光の角度との関係を示す。
符号の説明
1…表示素子、2…液晶表示パネル、5…アクティブマトリックス基板(下基板:他方の基板)、52…画素電極、6…基板(上基板:一方の基板)、62…対向電極(共通電極)、63…上基板側配向膜、3…バックライト、3a…出射面、31…導光板、31a…表面、32…光源、33…プリズムシート、33a…屈折面、33b…反射面、34…反射板、4、4a、4b、41、42…マイクロレンズアレイ(集光手段)、8…液晶層、23…透過部、24…透明電極、29a、29b…下基板側配向膜、30…光透過部、35…光反射表示部、T…法線、

Claims (10)

  1. 対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトが前記他方の基板側に配置された表示素子であって、
    前記バックライトは、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、
    前記液晶表示パネルとバックライトとの間には、集光手段が、該集光手段と前記画素電極とが対応配置するように設けられ、
    前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記集光手段で集光するように構成したことを特徴とする表示素子。
  2. 前記画素電極の各々における前記光透過表示部の面積が、前記画素電極に対する面積比で5〜90%の範囲であることを特徴とする請求項1に記載の表示素子。
  3. 前記画素電極の各々における前記光透過表示部の面積が、前記画素電極に対する面積比で10〜80%の範囲であることを特徴とする請求項1に記載の表示素子。
  4. 前記バックライトからの出射光は、該バックライトの出射面の法線に対する角度が±20°の範囲とされていることを特徴とする請求項1〜3の何れか1項に記載の表示素子。
  5. 前記バックライトからの出射光は、該バックライトの出射面の法線に対する角度が±10°の範囲とされていることを特徴とする請求項1〜3の何れか1項に記載の表示素子。
  6. 前記集光手段が、前記液晶表示パネルの他方の基板の下面に形成されていることを特徴とする請求項1〜5の何れか1項に記載の表示素子。
  7. 前記集光手段は、マイクロレンズアレイ、レンチキュラーレンズ、フルネルレンズ、屈折率分布レンズの何れかであることを特徴とする請求項1〜6の何れかに記載の表示素子。
  8. 前記バックライトに備えられた前記プリズムシートは、入射面側に屈折面と反射面からなる突条の光屈折部が連続して複数設けられるとともに、前記入射面と反対側の出射面が平坦面とされてなり、
    前記プリズムシートの屈折率をnとし、
    前記出射面に対する前記屈折面の傾斜角度をθとし、前記出射面に対する前記反射面の傾斜角度をθとし、
    前記導光板から出射する光の、該導光板の法線に対する角度をαとした時、これらの関係が次式(1)
    θ=1/2(180−θ−sin−1(sin(α−θ)/n)) ・・・(1)
    で表されることを特徴とする請求項1〜7の何れかに記載の表示素子。
  9. 対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトは、前記他方の基板側に配置され、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、前記液晶表示パネルとバックライトとの間には、マイクロレンズアレイが、各マイクロレンズと前記画素電極とが対応配置するように設けられ、前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記マイクロレンズで集光するように構成したことを特徴とする表示素子の製造方法であって、
    前記マイクロレンズアレイを、前記他方の基板の前記バックライト側の面に感光性屈折率変化材料を塗布した後、該感光性屈折率変化材料をマスク露光することによって形成したことを特徴とする表示素子の製造方法。
  10. 対向配置された基板間に液晶が封入された液晶表示パネルと、該液晶表示パネルを照明するバックライトとを備え、前記一方の基板の液晶層側の面と前記他方の基板の液晶層側の面にそれぞれ電極と配向膜が形成され、前記他方の基板の電極の一部が光反射性の画素電極とされ、前記画素電極の一部に光透過部が形成され、該光透過部の形成領域に透明電極が形成されて光透過表示部とされ、前記光反射性の画素電極形成領域が光反射表示部とされ、前記バックライトは、前記他方の基板側に配置され、光源と、該光源の出射光が入射され、内部を伝搬した光を表面から出射する導光板と、該導光板の前記液晶表示パネル側に配置されたプリズムシートと、前記導光板の裏面側に配置された反射板とを備え、前記液晶表示パネルとバックライトとの間には、マイクロレンズアレイが、各マイクロレンズと前記画素電極とが対応配置するように設けられ、前記光透過表示部の中央部を集光点として、前記バックライトからの出射光を前記マイクロレンズで集光するように構成したことを特徴とする表示素子の製造方法であって、
    前記マイクロレンズアレイを、前記他方の基板の前記バックライト側の面に透明樹脂をインクジェット塗布することによって形成することを特徴とする表示素子の製造方法。

JP2005205408A 2005-07-14 2005-07-14 表示素子及び表示素子の製造方法 Withdrawn JP2007025109A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205408A JP2007025109A (ja) 2005-07-14 2005-07-14 表示素子及び表示素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205408A JP2007025109A (ja) 2005-07-14 2005-07-14 表示素子及び表示素子の製造方法

Publications (1)

Publication Number Publication Date
JP2007025109A true JP2007025109A (ja) 2007-02-01

Family

ID=37785988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205408A Withdrawn JP2007025109A (ja) 2005-07-14 2005-07-14 表示素子及び表示素子の製造方法

Country Status (1)

Country Link
JP (1) JP2007025109A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304523A (ja) * 2007-06-05 2008-12-18 Hitachi Displays Ltd 集光用のマイクロレンズアレイを備える液晶表示装置及びその製造方法
JP2010204415A (ja) * 2009-03-04 2010-09-16 Seiko Epson Corp 液晶装置及び電子機器
JP2010266553A (ja) * 2009-05-13 2010-11-25 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP2014106268A (ja) * 2012-11-26 2014-06-09 Lg Display Co Ltd 液晶表示装置およびその製造方法
CN110068948A (zh) * 2019-04-08 2019-07-30 成都工业学院 一种可变视区的显示装置
CN114415421A (zh) * 2022-01-27 2022-04-29 武汉华星光电技术有限公司 显示面板及显示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304523A (ja) * 2007-06-05 2008-12-18 Hitachi Displays Ltd 集光用のマイクロレンズアレイを備える液晶表示装置及びその製造方法
JP2010204415A (ja) * 2009-03-04 2010-09-16 Seiko Epson Corp 液晶装置及び電子機器
JP2010266553A (ja) * 2009-05-13 2010-11-25 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP2014106268A (ja) * 2012-11-26 2014-06-09 Lg Display Co Ltd 液晶表示装置およびその製造方法
CN110068948A (zh) * 2019-04-08 2019-07-30 成都工业学院 一种可变视区的显示装置
CN110068948B (zh) * 2019-04-08 2024-02-13 成都工业学院 一种可变视区的显示装置
CN114415421A (zh) * 2022-01-27 2022-04-29 武汉华星光电技术有限公司 显示面板及显示装置

Similar Documents

Publication Publication Date Title
KR100769506B1 (ko) 표시 소자 및 표시 소자의 제조 방법 그리고 표시 소자를구비한 전자 기기
US9588379B2 (en) Curved liquid crystal display panel
EP2372437B1 (en) Liquid crystal display device
KR100528626B1 (ko) 반투과·반사형 전기 광학 장치, 전자 기기, 및반투과·반사형 전기 광학 장치의 제조 방법
US20080303979A1 (en) Illumination unit and liquid crystal display device including the same
KR100654258B1 (ko) 표시 장치
KR100659249B1 (ko) Ocb모드 반투과 반사형 액정표시장치
KR101423113B1 (ko) 박막 트랜지스터 표시판 및 이의 제조 방법
US8934069B2 (en) Liquid crystal display device
CN111722444B (zh) 显示装置
US20060290852A1 (en) Transflective LCD device with enhanced light transmittance
US9360728B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2007025109A (ja) 表示素子及び表示素子の製造方法
US20180059469A1 (en) Display device
US20040212765A1 (en) Transflective liquid-crystal display device and electronic device including the same
JP2005352134A (ja) フィールドシーケンシャルocbモード半透過反射型液晶表示装置
US8619217B2 (en) Color filter substrate and liquid crystal display having the same
JP2007071939A (ja) 液晶表示装置及び電子機器
KR101370968B1 (ko) 반사투과형 액정표시장치
KR20080086688A (ko) 액정표시장치와 그 제조 방법
KR20070049719A (ko) 표시 기판, 이의 제조 방법 및 이를 갖는 표시 장치
KR100641630B1 (ko) 투과반사형 액정표시장치
KR100796759B1 (ko) 반투과형 액정표시장치
KR20070005236A (ko) 액정 표시 장치
JP2007072044A (ja) 液晶装置および電子機器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007