JP2007024260A - Rolling member and roller bearing using the same - Google Patents

Rolling member and roller bearing using the same Download PDF

Info

Publication number
JP2007024260A
JP2007024260A JP2005210147A JP2005210147A JP2007024260A JP 2007024260 A JP2007024260 A JP 2007024260A JP 2005210147 A JP2005210147 A JP 2005210147A JP 2005210147 A JP2005210147 A JP 2005210147A JP 2007024260 A JP2007024260 A JP 2007024260A
Authority
JP
Japan
Prior art keywords
rolling
mass
less
steel
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210147A
Other languages
Japanese (ja)
Other versions
JP4608379B2 (en
Inventor
Takayasu Takubo
孝康 田窪
Isao Hirai
功 平井
Yukio Matsubara
幸生 松原
Kazuhiko Yoshida
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005210147A priority Critical patent/JP4608379B2/en
Publication of JP2007024260A publication Critical patent/JP2007024260A/en
Application granted granted Critical
Publication of JP4608379B2 publication Critical patent/JP4608379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling member having well-balanced workability and strength while maintaining preferable forgeability, and a roller bearing using the rolling member. <P>SOLUTION: The rolling member is formed of steel containing alloy elements of 0.5% to 0.7% C by mass, more than 0% and not less than 1.2% Si by mass, 0.2% to 1.2% Mn by mass, more than 0% and not less than 0.3% Cu by mass, more than 0% and not less than 0.20% Ni by mass, and the balance Fe with inevitable impurities. The contents of Cu and Ni fulfill the following expression (1): (1) [Cu]/[Ni]≤2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、転動部品およびこれを用いた転がり軸受に関し、より特定的には、炭素鋼によって形成された転動部品およびこれを用いたフランジ付き転がり軸受に関する。   The present invention relates to a rolling component and a rolling bearing using the rolling component, and more particularly to a rolling component formed of carbon steel and a flanged rolling bearing using the rolling component.

自動車の足回りなどに用いられる転動部品、特にボルトを連結するためのフランジを有するハブ軸受のハブ輪や、等速ジョイントの軌道輪などのフランジ付き転がり軸受を構成する転動部品などは、その形状が複雑である。このため、鍛造性や加工性に鑑みて、フランジ付き転がり軸受を構成する転動部品にはS53Cのような中炭素鋼が用いられており、転動部品における高面圧が作用する転がり接触部位には高周波焼入が施されている。S53Cは、C、Si、Mn、P、およびSの各々の含有量が、C:0.50〜0.56%、Si:0.15〜0.35%、Mn0.60〜0.90%、P:0.030%以下、およびS:0.035%以下である鋼である。今後の技術動向として、省資源化、省エネ化、コンパクト化などに対応するため、特に上記のような転動部品にはコンパクト化や薄肉化が要求されており、それに伴い転動部品の使用条件も過酷になりつつある。   Rolling parts used for automobile undercarriage, etc., especially hub parts of hub bearings with flanges for connecting bolts, rolling parts constituting flanged rolling bearings such as constant velocity joint races, etc. Its shape is complicated. For this reason, in consideration of forgeability and workability, a medium carbon steel such as S53C is used for the rolling parts constituting the flanged rolling bearing, and the rolling contact part where high surface pressure acts on the rolling parts. Has been induction hardened. In S53C, the content of each of C, Si, Mn, P, and S is C: 0.50 to 0.56%, Si: 0.15 to 0.35%, Mn 0.60 to 0.90% , P: 0.030% or less, and S: 0.035% or less. In order to cope with resource saving, energy saving, compactness, etc. as future technological trends, especially the rolling parts as described above are required to be compact and thin, and accordingly the usage conditions of the rolling parts Is getting harsh.

このような要求に対する素材面での対策として、従来、CrやMoなどの高価な合金元素を鋼に添加することによって高強度化が図られてきた。特開2004−315890号公報(特許文献1)には、転がり軸受の素材として、C:0.7〜1.1質量%、Si:0.2〜2.0質量%、Mn:0.4〜2.5質量%、Cr:1.6〜4.0質量%、Mo:0.1〜0.5質量%、Al:0.010〜0.050質量%を含有し、残部Feおよび不可避的不純物からなる鋼材を用いた技術が開示されている。
特開2004−315890号公報
Conventionally, as a countermeasure against such demands, high strength has been achieved by adding expensive alloy elements such as Cr and Mo to steel. In JP 2004-315890 A (Patent Document 1), as a rolling bearing material, C: 0.7 to 1.1 mass%, Si: 0.2 to 2.0 mass%, Mn: 0.4 -2.5% by mass, Cr: 1.6-4.0% by mass, Mo: 0.1-0.5% by mass, Al: 0.010-0.050% by mass, balance Fe and inevitable A technique using a steel material made of mechanical impurities is disclosed.
JP 2004-315890 A

しかしながら、上記合金元素を鋼に添加すると、コストの増大を招くだけでなく鍛造性や加工性の悪化を招く。さらに、省資源という観点から時代にそぐわず、調達に関しても不利になる。   However, the addition of the above alloy elements to steel not only causes an increase in cost but also causes deterioration in forgeability and workability. Furthermore, from the viewpoint of resource saving, it is not suitable for the times and disadvantageous in terms of procurement.

また、従来においては、鋼に含まれる不純物が鍛造性の悪化を招いていた。鍛造性を悪化させる不純物としては、主にSやPやCuなどが挙げられる。これらのうちSやPについては、近年の製鋼技術の進歩により鍛造性に関して十分に無害化できるレベルまで低減できるようになっている。一方、Cuについては、電炉鋼の場合には現状でも0.1質量%程度が不可避的に残留する。これは、電炉鋼はリサイクルされた鉄屑を資源として活用して製造された鋼であるため、高炉鋼に比べて鋼に含まれる非鉄材料の割合が高いことが影響している。今後、スクラップのリサイクル率が向上すれば、Cuの残留量はさらに増えるものと予想される。Cuは鋼中における溶解度が低く、そのため粒界析出して粒界強度を低下させる。このことは、今後さらに複雑な形状の鍛造に対応する上で、鍛造時の割れを引き起こす要因になると考えられる。   Conventionally, impurities contained in steel have caused deterioration of forgeability. Examples of impurities that deteriorate the forgeability include S, P, and Cu. Among these, S and P can be reduced to a level at which the forgeability can be made sufficiently harmless by recent progress in steelmaking technology. On the other hand, about 0.1% by mass of Cu remains unavoidably even in the case of electric furnace steel. This is because the electric furnace steel is a steel manufactured by utilizing recycled iron scrap as a resource, and therefore, the ratio of non-ferrous materials contained in the steel is higher than that of the blast furnace steel. If the scrap recycling rate is improved in the future, the residual amount of Cu is expected to increase further. Cu has a low solubility in steel, and therefore precipitates at grain boundaries and lowers the grain boundary strength. This is considered to be a factor that causes cracking during forging when dealing with forging with more complicated shapes in the future.

上記のように、従来の転動部品には、良好な鍛造性を維持しつつ良好な加工性と強度とのバランスをとるのが難しいという問題があった。この問題は、フランジ付き転がり軸受を構成する転動部品に限らず、転動部品全般に共通する問題であった。   As described above, the conventional rolling parts have a problem that it is difficult to balance good workability and strength while maintaining good forgeability. This problem is not limited to the rolling parts constituting the flanged rolling bearing, but is a problem common to all rolling parts.

したがって、本発明の目的は、良好な鍛造性を維持しつつ良好な加工性と強度とのバランスを持つことのできる転動部品およびこれを用いた転がり軸受を提供することである。   Accordingly, an object of the present invention is to provide a rolling component capable of maintaining a balance between good workability and strength while maintaining good forgeability, and a rolling bearing using the rolling component.

本発明の転動部品は、合金元素としてC:0.5質量%以上0.7質量%以下、Si:0より大きく1.2質量%以下、Mn:0.2質量%以上1.2質量%以下、Cu:0より大きく0.3質量%以下、Ni:0より大きく0.20質量%以下を含有し、かつCuおよびNiの各々の含有量が(1)式を満たし、かつ残部がFeおよび不可避的不純物よりなる鋼によって形成されている。   In the rolling component of the present invention, C: 0.5% by mass or more and 0.7% by mass or less as an alloy element, Si: greater than 0 and 1.2% by mass or less, Mn: 0.2% by mass or more and 1.2% by mass % Or less, Cu: greater than 0 and 0.3 mass% or less, Ni: greater than 0 and 0.20 mass% or less, and each content of Cu and Ni satisfies the formula (1), and the balance is It is made of steel made of Fe and inevitable impurities.

[Cu]/[Ni]≦2・・・(1)
本願発明者らは、CuおよびNiの各々の含有量が(1)式を満たすようにNiを鋼に添加すると、CuとNiとFeとによって金属間化合物が形成され、Cuの鋼中への溶解度が向上することを見出した。これにより、Cuが無害化されて粒界析出しなくなり、非調質状態(焼入れ焼戻し処理をしない状態)で良好な鍛造性を維持することができる。
[Cu] / [Ni] ≦ 2 (1)
When the present inventors add Ni to steel such that each content of Cu and Ni satisfies the formula (1), an intermetallic compound is formed by Cu, Ni, and Fe, and Cu enters the steel. It has been found that the solubility is improved. As a result, Cu is rendered harmless and no grain boundary precipitation occurs, and good forgeability can be maintained in a non-tempered state (a state in which quenching and tempering is not performed).

また、本願発明者らは、C,Si、およびMnの量を適正に調整した鋼を転動部品の素材として用いることによって、非調質状態で良好な鍛造性を維持しつつ良好な加工性と強度とのバランスをとることができることを見出した。   In addition, the inventors of the present application use a steel in which the amounts of C, Si, and Mn are appropriately adjusted as a rolling part material, thereby maintaining good workability while maintaining good forgeability in a non-tempered state. And found that it is possible to balance strength.

鋼におけるCの含有割合を0.5質量%以上とすることにより、転動部品において高面圧が作用する部分である転がり接触部位に高周波焼入を施す場合に、高周波焼入によって安定した高硬度を得ることができる。鋼におけるCの含有割合を0.7質量%以下とすることにより素材硬度が上昇しにくくなるので、加工性の著しい低下を防止することができる。また、鋼におけるCの含有割合を0.7質量%以下とすることにより、成分偏析防止のための高温拡散熱処理や、炭化物球状化などの特別な熱処理が不要になるため、製造コストを低下させることができる。   By making the content ratio of C in steel 0.5% by mass or more, when high-frequency quenching is performed on a rolling contact portion that is a portion where a high surface pressure acts on a rolling part, a high level stabilized by induction quenching is achieved. Hardness can be obtained. By making the C content in steel 0.7% by mass or less, the material hardness is unlikely to increase, so that a significant decrease in workability can be prevented. In addition, when the C content in the steel is 0.7% by mass or less, a high-temperature diffusion heat treatment for preventing component segregation and a special heat treatment such as carbide spheroidization are not required, thereby reducing manufacturing costs. be able to.

鋼におけるSiの含有割合を0より大きく1.2質量%以下とすることにより、冷間加工性および熱間加工性の低下を防止することができる。   By making the content rate of Si in steel larger than 0 and 1.2 mass% or less, it is possible to prevent a decrease in cold workability and hot workability.

鋼におけるMnの含有割合を0.2質量%以上とすることにより、不純物として鋼に微量に含まれるSをMnと化合させてMnSとして析出されることができる。これにより、Sが結晶粒界に偏析することを防止することができる。鋼におけるMnの含有割合を1.2質量%以下とすることにより、加工性や被削性の低下を防止することができる。これは、Mnは鋼の焼入性を向上させる有効な元素である一方、セメンタイト中においてFe原子と置換して複合炭化物を形成し、素材硬度を上昇させる効果を有するので、添加しすぎると加工性や被削性が低下するためである。   By setting the content ratio of Mn in the steel to 0.2% by mass or more, S contained in a small amount as an impurity can be combined with Mn and precipitated as MnS. Thereby, it can prevent that S segregates to a crystal grain boundary. By making the content rate of Mn in steel 1.2 mass% or less, the fall of workability and machinability can be prevented. This is because Mn is an effective element for improving the hardenability of steel, while it has the effect of increasing the hardness of the material by substituting with Fe atoms in cementite to increase the material hardness. This is because the workability and machinability deteriorate.

Cuは生成錆を非晶質化して腐食ピットの生成を抑制する効果があるので、鋼がCuを含有することにより転動部品の応力腐食割れに対する耐性が向上する。鋼におけるCuの含有割合を0.3質量%以下とすることにより、Cuが粒界析出することを防止できる。   Since Cu has the effect of making the generated rust amorphous and suppressing the formation of corrosion pits, the resistance of the rolling parts to stress corrosion cracking is improved when the steel contains Cu. By setting the content ratio of Cu in the steel to 0.3% by mass or less, Cu can be prevented from precipitating at grain boundaries.

鋼におけるNiの含有割合を0.2質量%以下とすることにより、Niを添加しすぎて硬度が上昇することがなくなり、被削性の低下を抑止することができる。また、鋼における焼入れ性を効果的に向上することができる。さらに、良好な被削性および焼入れ性を確保しつつ、Niを多量に添加することによるコストの増加を抑止することができる。   By setting the Ni content in the steel to 0.2% by mass or less, Ni is not added excessively, so that the hardness does not increase, and a decrease in machinability can be suppressed. Moreover, the hardenability in steel can be improved effectively. Furthermore, an increase in cost due to the addition of a large amount of Ni can be suppressed while ensuring good machinability and hardenability.

なお、焼準や調質をすることによっても鋼の高強度化を図ることができるが、製造工程が増加する分だけコストの増加に繋がる。本発明によれば、非調質状態で良好な鍛造性を維持しつつ高強度化を図ることができるので、コストの増加を招かない。   Note that the strength of the steel can be increased also by normalizing and tempering, but this leads to an increase in cost due to an increase in the number of manufacturing steps. According to the present invention, it is possible to increase the strength while maintaining good forgeability in a non-tempered state, so that the cost is not increased.

本発明の転動部品において好ましくは、C、Si、およびMnの各々の含有量から(2)式で求まるHが(3)式を満たす鋼によって形成されている。   In the rolling component of the present invention, preferably, H obtained by the formula (2) from the contents of C, Si, and Mn is formed of steel satisfying the formula (3).

H=244.8[C]+29.1[Si]+58.7[Mn]+55.7・・・(2)
230≦H≦260・・・(3)
上記Hの値を230以上にすることにより、転動部品の回転曲げ疲労限度が350MPa以上とすることができる。また、上記Hの値を260以下にすることにより、非調質状態での硬度が高すぎることがなくなり、良好な加工性を確保することができる。
H = 244.8 [C] +29.1 [Si] +58.7 [Mn] +55.7 (2)
230 ≦ H ≦ 260 (3)
By setting the value of H to 230 or more, the rotational bending fatigue limit of the rolling component can be 350 MPa or more. Further, by setting the value of H to 260 or less, the hardness in the non-tempered state is not too high, and good workability can be ensured.

本発明の転がり軸受は、内周に転走面を有する外方部材と、この転走面の各々に対向する転走面を有する内方部材と、外方部材と内方部材との間に介在する複数の転動体とを備え、外方部材、内方部材、および転動体のうち少なくともいずれか1つの部材が上記の転動部品によって構成される。   The rolling bearing of the present invention includes an outer member having a rolling surface on the inner periphery, an inner member having a rolling surface facing each of the rolling surfaces, and the outer member and the inner member. A plurality of intervening rolling elements, and at least one of the outer member, the inner member, and the rolling element is constituted by the above-described rolling component.

これにより、良好な鍛造性を維持しつつ、良好な加工性と強度とのバランスを持った転がり軸受とすることができる。   Thereby, it can be set as the rolling bearing with the balance of favorable workability and intensity | strength, maintaining favorable forgeability.

本発明の転がり軸受において好ましくは、外方部材または内方部材のいずれか一方は車輪に取り付けるためのフランジ部を有している。   In the rolling bearing according to the present invention, preferably, either the outer member or the inner member has a flange portion to be attached to the wheel.

フランジ部を有している転動部品は、フランジ部を有していない転動部品に比べて形状が複雑であるため、より高い鍛造性および加工性が要求される。このため、本発明の転動部品が好適である。   Since the rolling component having the flange portion has a more complicated shape than the rolling component not having the flange portion, higher forgeability and workability are required. For this reason, the rolling component of this invention is suitable.

本発明の転動部品およびこれを用いた転がり軸受によれば、良好な鍛造性を維持しつつ良好な加工性と強度とのバランスをとることができる。   According to the rolling component of the present invention and the rolling bearing using the rolling component, it is possible to balance good workability and strength while maintaining good forgeability.

以下、本発明の一実施の形態について説明する。
図1は、本発明の一実施の形態における車輪軸受装置を示す概略断面図である。図2は、図1の要部拡大図である。
Hereinafter, an embodiment of the present invention will be described.
FIG. 1 is a schematic cross-sectional view showing a wheel bearing device according to an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of FIG.

図1および図2を参照して、本実施の形態における転がり軸受としての車輪軸受装置10は、ホイール28およびタイヤ29などの回転側部材を、外方部材4などの固定側部材に対して回転可能に支持するものである。この車輪軸受装置10は、フランジ付き転がり軸受であり、外方部材4と、内方部材1と、転動体としての複数の円すいころ5a、5bとを備えている。外方部材4は内方部材1の周囲に配置されている。円すいころ5a、5bは内方部材1と外方部材4との間に介在している。本実施の形態においては、外方部材4、内方部材1、および円すいころ5a、5bが転動部材に相当する。   Referring to FIGS. 1 and 2, wheel bearing device 10 as a rolling bearing in the present embodiment rotates a rotating side member such as wheel 28 and tire 29 with respect to a fixed side member such as outer member 4. It is possible to support. The wheel bearing device 10 is a rolling bearing with a flange, and includes an outer member 4, an inner member 1, and a plurality of tapered rollers 5a and 5b as rolling elements. The outer member 4 is disposed around the inner member 1. The tapered rollers 5 a and 5 b are interposed between the inner member 1 and the outer member 4. In the present embodiment, the outer member 4, the inner member 1, and the tapered rollers 5a and 5b correspond to rolling members.

外方部材4は、内周面に複列の転走面4a、4bを有している。本実施の形態においては、複列の転走面4a、4bは、外方部材4の内周面に直接形成されている。   The outer member 4 has double-row rolling surfaces 4a and 4b on the inner peripheral surface. In the present embodiment, the double-row rolling surfaces 4 a and 4 b are directly formed on the inner peripheral surface of the outer member 4.

内方部材1は、ハブ輪2と内輪3a、3bとからなる。ハブ輪2の外周面の中央部には内輪3aがハブ輪2に外嵌固定されている。ハブ輪2の外周面の内端側(図2中右側)には内輪3bがハブ輪2に外嵌固定されている。これにより、ハブ輪2と内輪3a、3bとは一体化して内方部材1を形成している。内方部材1は、複列の転走面4a、4bの各々に対向する複列の転走面7a、7bを有している。転走面4a、4bおよび転走面7a、7bにより形成される転走面はテーパ状である。本実施の形態においては、複列の転走面7a、7bは、内輪3a、3bの外周面に形成されている。   The inner member 1 includes a hub ring 2 and inner rings 3a and 3b. An inner ring 3 a is fitted and fixed to the hub wheel 2 at the center of the outer peripheral surface of the hub wheel 2. An inner ring 3 b is externally fitted and fixed to the hub ring 2 on the inner end side (right side in FIG. 2) of the outer peripheral surface of the hub ring 2. Thereby, the hub ring 2 and the inner rings 3a and 3b are integrated to form the inner member 1. The inner member 1 has double-row rolling surfaces 7a and 7b that face each of the double-row rolling surfaces 4a and 4b. The rolling surface formed by the rolling surfaces 4a and 4b and the rolling surfaces 7a and 7b is tapered. In the present embodiment, the double-row rolling surfaces 7a and 7b are formed on the outer peripheral surfaces of the inner rings 3a and 3b.

第1列(図2中中央部)の円すいころ5aは、第1の保持器17aにより転動自在に保持されて、外方部材4と内輪3aとの間に固定されている。第2列(図2中右側)の円すいころ5bは、第2の保持器17bにより転動自在に保持されて、外方部材4と内輪3bとの間に固定されている。この構成により、内方部材1は外方部材4に対して回転自在に保持されている。   The tapered rollers 5a in the first row (center portion in FIG. 2) are rotatably held by a first cage 17a and are fixed between the outer member 4 and the inner ring 3a. The tapered rollers 5b in the second row (right side in FIG. 2) are rotatably held by the second cage 17b and are fixed between the outer member 4 and the inner ring 3b. With this configuration, the inner member 1 is held rotatably with respect to the outer member 4.

ハブ輪2の中心部にはスプライン孔15が設けられていて、等速ジョイントのステム軸27がスプライン孔15に係合可能となっている。また、ハブ輪2の軸方向外側(図2中左側)には、フランジ部としての車輪取付けフランジ8が設けられている。車輪取付けフランジ8に嵌合されたハブボルト20によって、ホイール28およびタイヤ29がハブ輪2に回転支持されている。また、外方部材4は外周面の軸方向中央部に車体取付けフランジ9を有している。車体取付けフランジ9により、外方部材4はナックルなどの懸架装置(図示なし)に固定されている。   A spline hole 15 is provided at the center of the hub wheel 2, and a stem shaft 27 of a constant velocity joint can be engaged with the spline hole 15. A wheel mounting flange 8 as a flange portion is provided on the outer side in the axial direction of the hub wheel 2 (left side in FIG. 2). The wheel 28 and the tire 29 are rotatably supported on the hub wheel 2 by the hub bolt 20 fitted to the wheel mounting flange 8. The outer member 4 has a vehicle body mounting flange 9 at the axially central portion of the outer peripheral surface. The outer member 4 is fixed to a suspension device (not shown) such as a knuckle by a vehicle body mounting flange 9.

なお、外方部材4の内周面の両端部とハブ輪2の外周面の中央部および内端部との間には、シールリング19a、19bが設置されている。これにより、円すいころ5a、5bが保持されている空間と外部とが遮断されている。   Seal rings 19 a and 19 b are installed between both end portions of the inner peripheral surface of the outer member 4 and the central portion and inner end portion of the outer peripheral surface of the hub wheel 2. Thereby, the space in which the tapered rollers 5a and 5b are held is blocked from the outside.

本実施の形態の転動部品は、合金元素としてC:0.5質量%以上0.7質量%以下、Si:0より大きく1.2質量%以下、Mn:0.2質量%以上1.2質量%以下、Cu:0より大きく0.3質量%以下、Ni:0より大きく0.20質量%以下を含有し、かつCuおよびNiの各々の含有量が上記(1)式を満たし、かつ残部がFeおよび不可避的不純物よりなる鋼によって形成されており、好ましくは、C、Si、およびMnの各々の含有量から上記(2)式で求まるHが上記(3)式を満たす鋼によって形成されている。   In the rolling part of the present embodiment, C: 0.5% by mass or more and 0.7% by mass or less as an alloy element, Si: greater than 0 and 1.2% by mass or less, Mn: 0.2% by mass or more. 2 mass% or less, Cu: greater than 0 and 0.3 mass% or less, Ni: greater than 0 and 0.20 mass% or less, and each content of Cu and Ni satisfies the above formula (1), And the balance is formed of steel composed of Fe and inevitable impurities, and preferably, the steel satisfying the above formula (3) where H obtained by the above formula (2) from the respective contents of C, Si, and Mn. Is formed.

本実施の形態の転動部品によれば、Cuが無害化されて粒界析出しなくなり、C、Si、およびMnの添加量を適正に調整することにより、非調質状態で良好な鍛造性を維持しつつ良好な加工性と強度とのバランスをとることができる。   According to the rolling part of the present embodiment, Cu is rendered harmless and no grain boundary precipitation occurs, and by appropriately adjusting the amount of addition of C, Si, and Mn, good forgeability in a non-tempered state It is possible to balance good workability and strength while maintaining the above.

また、本実施の形態の車輪軸受装置10は、内周に転走面4a、4bを有する外方部材4と、この転走面4a、4bの各々に対向する転走面7a、7bを有する内方部材1と、外方部材4と内方部材1との間に介在する複数の円すいころ5a、5bとを備えている。外方部材4、内方部材1、および円すいころ5a、5bが上記の転動部品によって構成されている。これにより、良好な鍛造性を維持しつつ、転がり軸受の良好な加工性と強度とのバランスをとることができる。   Further, the wheel bearing device 10 of the present embodiment includes an outer member 4 having rolling surfaces 4a and 4b on the inner periphery, and rolling surfaces 7a and 7b facing the rolling surfaces 4a and 4b, respectively. An inner member 1 and a plurality of tapered rollers 5 a and 5 b interposed between the outer member 4 and the inner member 1 are provided. The outer member 4, the inner member 1, and the tapered rollers 5a and 5b are constituted by the above rolling parts. Thereby, it is possible to balance the good workability and strength of the rolling bearing while maintaining good forgeability.

さらに、内方部材1は、車輪に取り付けるための車体取付けフランジ9を有しているため、形状が複雑である。このため、より高い鍛造性および加工性が要求される。したがって、上記転動部品が好適である。   Furthermore, since the inward member 1 has the vehicle body attachment flange 9 for attaching to a wheel, a shape is complicated. For this reason, higher forgeability and workability are required. Therefore, the rolling component is suitable.

なお、本実施の形態においては、内方部材1に車輪取付けフランジ8を設けた車輪軸受装置10の場合について示したが、本発明は、たとえば図3のように、外方部材4に車輪取付けフランジ8を設けた車輪軸受装置10にも適応可能である。なお、図3においては、転導体として円すいころの代わりに剛球5c,5dを用いている。図3に示されるその他の構造については、同一の部材には同一の符号を付し、その説明を省略する。   In the present embodiment, the case of the wheel bearing device 10 in which the inner member 1 is provided with the wheel mounting flange 8 has been described. However, the present invention can be applied to the outer member 4 as shown in FIG. The present invention can also be applied to a wheel bearing device 10 provided with a flange 8. In FIG. 3, hard balls 5c and 5d are used as rolling elements instead of tapered rollers. For the other structures shown in FIG. 3, the same reference numerals are assigned to the same members, and the description thereof is omitted.

また、本実施の形態においては、第1列の円すいころ5aの各々によって構成される転がり軸受と、第2列の円すいころ5bの各々によって構成される転がり軸受とによって車輪軸受装置10が形成されている場合について示した。しかし、本発明の転がり軸受は、このような場合に限定されるものではなく、少なくとも1列の転がり軸受であればよい。   Further, in the present embodiment, the wheel bearing device 10 is formed by the rolling bearing constituted by each of the first row tapered rollers 5a and the rolling bearing constituted by each of the second row tapered rollers 5b. Shown for the case. However, the rolling bearing of the present invention is not limited to such a case, and may be at least one row of rolling bearings.

また、本実施の形態においては、転がり軸受がフランジ付き転がり軸受である場合について示したが、本発明はフランジ付き転がり軸受に限定されるものではなく、転がり軸受全般に適用することができる。   In the present embodiment, the case where the rolling bearing is a flanged rolling bearing has been described. However, the present invention is not limited to the flanged rolling bearing, and can be applied to all rolling bearings.

また、本実施の形態においては、外方部材4、内方部材1、および円すいころ5a、5bの全てに上記転動部品が用いられる場合について示したが、本発明の転がり軸受はこのような場合に限定されるものではなく、外方部材、内方部材、および転動体のうち少なくともいずれか1つの部材に上記転動部品が用いられればよい。   Moreover, in this Embodiment, although the case where the said rolling component was used for all the outer members 4, the inner members 1, and the tapered rollers 5a and 5b was shown, the rolling bearing of this invention is such It is not limited to a case, The said rolling components should just be used for at least any one member among an outer member, an inner member, and a rolling element.

本実施例では、本発明の転動部品の鍛造性について調べた。始めに、S53Cをベースにして、Cuの含有量とNiの含有量との割合を変化させて、試料A1〜A10および試料B1〜B10となる鋼をそれぞれ製造した。また、いずれの鋼においても、C、Si、およびMnの含有量を、それぞれC:0.5質量%以上0.7質量%以下、Si:0より大きく1.2質量%以下、Mn:0.2質量%以上1.2質量%以下とした。そしてこれらの鋼を用いて、直径20mm、長さ30mmの円筒形状の試験片の各々を成形した。その後、非調質状態の硬度を模擬するため、試験片の各々に1200℃で1時間の熱処理を施した後空冷し、本発明品である試料A1〜A10の各々と、比較品であるおよび試料B1〜B10の各々とを得た。   In this example, the forgeability of the rolling component of the present invention was examined. First, based on S53C, steels to be samples A1 to A10 and samples B1 to B10 were manufactured by changing the ratio of the Cu content and the Ni content, respectively. In any steel, the contents of C, Si, and Mn are respectively C: 0.5 mass% to 0.7 mass%, larger than Si: 0 to 1.2 mass%, Mn: 0 .2% by mass or more and 1.2% by mass or less. Using these steels, cylindrical test pieces each having a diameter of 20 mm and a length of 30 mm were formed. Thereafter, in order to simulate the hardness of the non-tempered state, each of the test pieces was subjected to a heat treatment at 1200 ° C. for 1 hour and then air-cooled, and each of the samples A1 to A10, which is the product of the present invention, was a comparative product and Samples B1 to B10 were obtained.

次に、試料A1〜A10および試料B1〜B10の各々に対して、端面を拘束した状態で50%の据え込み率で据え込み変形を与えた。そして、据え込み変形によって導入された欠陥量を、水素をトレーサとして調べた。具体的には、据え込み変形前と据え込み変形後とにおいて、試験片の所定の採取位置から一辺が4mmの立方体の試料を切り出して、この立方体試料に対して10mA/cm2の電流密度で20時間の間、陰極電界水素チャージを施した。水素チャージの電解液には、チオシアン酸アンモニウムを3g/L添加した3%食塩水を用いた。水素チャージが終了してから10分後、3℃/minで昇温して300℃になるまでに放出された水素量をガスクロマトグラフによって測定した。その結果を表1および図4に示す。なお、表1におけるΔHdは、据え込み変形後の試験片から放出された水素量から据え込み変形前の試験片から放出された水素量を差し引いた値である。ΔHdが大きいほど変形によって欠陥が導入されやすくなっている。 Next, upset deformation was applied to each of Samples A1 to A10 and Samples B1 to B10 at an upsetting rate of 50% with the end faces restrained. Then, the amount of defects introduced by upsetting deformation was investigated using hydrogen as a tracer. Specifically, a cube sample having a side of 4 mm is cut out from a predetermined sampling position of the test piece before and after upsetting deformation, and a current density of 10 mA / cm 2 is applied to this cube sample. Cathodic field hydrogen charge was applied for 20 hours. A 3% saline solution added with 3 g / L of ammonium thiocyanate was used as the electrolyte solution for hydrogen charging. Ten minutes after the completion of hydrogen charging, the amount of hydrogen released until the temperature was increased to 300 ° C. at 3 ° C./min was measured by a gas chromatograph. The results are shown in Table 1 and FIG. In Table 1, ΔH d is a value obtained by subtracting the amount of hydrogen released from the test piece before upsetting deformation from the amount of hydrogen released from the test piece after upsetting deformation. As ΔH d is larger, defects are more easily introduced by deformation.

Figure 2007024260
Figure 2007024260

表1および図4を参照して、[Cu]/[Ni]の値が2.00以下である試料A1〜A10では、ΔHdが0.00〜0.01wt−ppmと低い値となっている。一方、[Cu]/[Ni]の値が2.00を超える試料B1〜B10では、ΔHdが0.01〜0.12wt−ppmと高い値になっている。この結果から、本発明の転動部品は良好な鍛造性を有していることが分かる。 With reference to Table 1 and FIG. 4, in samples A1 to A10 in which the value of [Cu] / [Ni] is 2.00 or less, ΔH d is a low value of 0.00 to 0.01 wt-ppm. Yes. On the other hand, in samples B1 to B10 in which the value of [Cu] / [Ni] exceeds 2.00, ΔH d is a high value of 0.01 to 0.12 wt-ppm. From this result, it can be seen that the rolling component of the present invention has good forgeability.

鍛造後に空冷されたままの非調質状態での硬度が低すぎると、十分な疲労強度が得られない。今後、転動部品の使用条件が過酷になり、非焼入硬化部にも大きな負荷が繰り返し作用する場合を考えると、転動部品の回転曲げ疲労限度(107回疲労強度)が350MPa以上であることが望ましい。ここで、従来から、回転曲げ疲労限度σwb(MPa)と硬度H(HV)との間にσwb=1.54×Hなる関係式が成り立つことが知られている。この関係式に従えば、非調質状態の硬度は230HV以上必要ということになる。一方、非調質状態での硬度が高すぎると、その後に複雑な切削加工や穴あけを行なう場合、良好な加工性が得られない。具体的には、260HV以下であることが望ましい。 If the hardness in the non-tempered state that is air-cooled after forging is too low, sufficient fatigue strength cannot be obtained. In the future, when the rolling parts use conditions become severe and a large load repeatedly acts on the non-quenched hardened part, the rolling bending fatigue limit (10 7 times fatigue strength) of the rolling parts is 350 MPa or more. It is desirable to be. Here, it is conventionally known that a relational expression of σ wb = 1.54 × H holds between the rotational bending fatigue limit σ wb (MPa) and the hardness H (HV). According to this relational expression, the hardness in the non-tempered state is required to be 230 HV or more. On the other hand, if the hardness in the non-tempered state is too high, good workability cannot be obtained when performing complicated cutting or drilling thereafter. Specifically, it is desirable that it is 260 HV or less.

そこで、本実施例では、230HV≦H≦260HVの硬度Hを有する鋼が満たすべき条件を調べた。始めに、C、Si、およびMnの各々の含有量を変化させて、試料C1〜C9および試料D1〜D7となる鋼をそれぞれ製造した。また、いずれの鋼においても、CuおよびNiの含有量をそれぞれ0.09質量%以上0.11質量%以下とし、[Cu]/[Ni]≦2を満たすようにした。そしてこれらの鋼を用いて、直径30mm、長さ30mmの円筒形状の試験片の各々を成形した。その後、非調質状態の硬度を模擬するため、試験片の各々に1200℃で1時間の熱処理を施した後空冷し、本発明品である試料C1〜C9および試料D1〜D7の各々を得た。   Therefore, in this example, the conditions to be satisfied by the steel having the hardness H of 230HV ≦ H ≦ 260HV were examined. First, steels to be samples C1 to C9 and samples D1 to D7 were manufactured by changing the contents of C, Si, and Mn, respectively. In any steel, the contents of Cu and Ni were 0.09 mass% or more and 0.11 mass% or less, respectively, so that [Cu] / [Ni] ≦ 2 was satisfied. Each of these cylindrical steel test pieces having a diameter of 30 mm and a length of 30 mm was formed using these steels. Thereafter, in order to simulate the hardness of the non-tempered state, each of the test pieces was heat-treated at 1200 ° C. for 1 hour and then air-cooled to obtain each of Samples C1 to C9 and Samples D1 to D7 which are the products of the present invention. It was.

次に、試料C1〜C9および試料D1〜D7の各々について、試料の中心付近の硬度H(実測硬度)を測定した。その結果を表2に示す。   Next, for each of Samples C1 to C9 and Samples D1 to D7, hardness H (measured hardness) near the center of the sample was measured. The results are shown in Table 2.

Figure 2007024260
Figure 2007024260

表2を参照して、C、Si、およびMnの各々の含有量の違いによって、硬度Hが変化した。試料C1〜C9の各々の硬度Hは230HV以上260HV以下となった一方で、試料D1〜D7の各々の硬度Hはこの範囲外であった。   With reference to Table 2, hardness H changed with the difference in each content of C, Si, and Mn. The hardness H of each of the samples C1 to C9 was 230 HV or more and 260 HV or less, while the hardness H of each of the samples D1 to D7 was out of this range.

続いて、硬度Hを目的変量とし、C、Si、およびMnの含有量を従属変量として重回帰分析を行なった。その結果、上記(2)式が得られた。試料C1〜C9および試料D1〜D7の各々のC、Si、およびMnの含有量を上記(2)式にそれぞれ代入して得られた硬度Hest(予測硬度)を表2に示す。また、硬度H(実測硬度)と硬度Hest(予測硬度)との関係を図5に示す。表2および図5を参照して、硬度H(実測硬度)と硬度Hest(予測硬度)との間には直線の相関関係があり、ほぼ同一の値となっている。このため、上記(2)式を用いて、C、Si、およびMnの含有量に基づいて精度よく鍛造後の硬度が予測できる。したがって、本実施例のC、Si、およびMnの含有量に限らず、上記(2)式により算出された硬度Hest(予測硬度)が230HV以上260HV以下となるようなC、Si、およびMnの含有量の鋼であればよいといえる。 Subsequently, a multiple regression analysis was performed with hardness H as a target variable and contents of C, Si, and Mn as dependent variables. As a result, the above equation (2) was obtained. Table 2 shows the hardness H est (predicted hardness) obtained by substituting the contents of C, Si, and Mn for each of Samples C1 to C9 and Samples D1 to D7 into the above equation (2). Further, FIG. 5 shows the relationship between the hardness H (measured hardness) and the hardness H est (predicted hardness). Referring to Table 2 and FIG. 5, there is a linear correlation between hardness H (measured hardness) and hardness H est (predicted hardness), which are almost the same value. For this reason, the hardness after forging can be accurately predicted based on the contents of C, Si, and Mn using the above formula (2). Therefore, not only the contents of C, Si, and Mn in this example, but also C, Si, and Mn such that the hardness H est (predicted hardness) calculated by the above equation (2) is 230 HV or more and 260 HV or less. It can be said that any steel with a content of

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、炭素鋼によって形成された転動部品およびこれを用いたフランジ付き転がり軸受に好適である。   The present invention is suitable for rolling parts formed of carbon steel and flanged rolling bearings using the rolling parts.

本発明の一実施の形態における車輪軸受装置を示す概略断面図である。It is a schematic sectional drawing which shows the wheel bearing apparatus in one embodiment of this invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 本発明の一実施の形態における車輪軸受装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the wheel bearing apparatus in one embodiment of this invention. 本発明の実施例1における[Cu]/[Ni]とΔHdとの関係を示す図である。It is a diagram showing the relationship between the [Cu] / [Ni] and [Delta] H d in the first embodiment of the present invention. 硬度H(実測硬度)と硬度Hest(予測硬度)との関係を示す図である。It is a figure which shows the relationship between hardness H (measured hardness) and hardness Hest (predicted hardness).

符号の説明Explanation of symbols

1 内方部材、2 ハブ輪、3a,3b 内輪、4 外方部材、4a,4b,7a,7b 転走面、5a,5b 円すいころ、5c,5d 鋼球、8 車輪取付けフランジ、9 車体取付けフランジ、10 車輪軸受装置、15 スプライン孔、17a,17b 保持器、19a,19b シールリング、20 ハブボルト、27 ステム軸、28 ホイール、29 タイヤ。   DESCRIPTION OF SYMBOLS 1 Inner member, 2 Hub wheel, 3a, 3b Inner ring, 4 Outer member, 4a, 4b, 7a, 7b Rolling surface, 5a, 5b Tapered roller, 5c, 5d Steel ball, 8 Wheel mounting flange, 9 Body mounting Flange, 10 wheel bearing device, 15 spline hole, 17a, 17b cage, 19a, 19b seal ring, 20 hub bolt, 27 stem shaft, 28 wheel, 29 tire.

Claims (4)

合金元素としてC:0.5質量%以上0.7質量%以下、Si:0より大きく1.2質量%以下、Mn:0.2質量%以上1.2質量%以下、Cu:0より大きく0.3質量%以下、Ni:0より大きく0.20質量%以下を含有し、かつCuおよびNiの各々の含有量が(1)式を満たし、かつ残部がFeおよび不可避的不純物よりなる鋼によって形成されたことを特徴とする、転動部品。
[Cu]/[Ni]≦2・・・(1)
As alloy elements, C: 0.5% by mass or more and 0.7% by mass or less, Si: larger than 0 and 1.2% by mass or less, Mn: 0.2% by mass or more and 1.2% by mass or less, Cu: larger than 0 Steel containing 0.3% by mass or less, Ni: greater than 0 and 0.20% by mass or less, each of Cu and Ni satisfying the formula (1), and the balance being Fe and inevitable impurities Rolling parts characterized by being formed by
[Cu] / [Ni] ≦ 2 (1)
C、Si、およびMnの各々の含有量から(2)式で求まるHが(3)式を満たす鋼によって形成されたことを特徴とする、請求項1に記載の転動部品。
H=244.8[C]+29.1[Si]+58.7[Mn]+55.7・・・(2)
230≦H≦260・・・(3)
The rolling part according to claim 1, wherein H obtained from the content of each of C, Si, and Mn by formula (2) is formed of steel that satisfies formula (3).
H = 244.8 [C] +29.1 [Si] +58.7 [Mn] +55.7 (2)
230 ≦ H ≦ 260 (3)
内周に転走面を有する外方部材と、
前記転走面の各々に対向する転走面を有する内方部材と、
前記外方部材と前記内方部材との間に介在する複数の転動体とを備え、
前記外方部材、前記内方部材、および前記転動体のうち少なくともいずれか1つの部材が請求項1または2に記載の転動部品によって構成される、転がり軸受。
An outer member having a rolling surface on the inner periphery;
An inner member having a rolling surface facing each of the rolling surfaces;
A plurality of rolling elements interposed between the outer member and the inner member;
A rolling bearing in which at least one of the outer member, the inner member, and the rolling element is constituted by the rolling component according to claim 1.
前記外方部材または前記内方部材のいずれか一方は車輪に取り付けるためのフランジ部を有する、請求項3に記載の転がり軸受。   4. The rolling bearing according to claim 3, wherein either the outer member or the inner member has a flange portion to be attached to a wheel.
JP2005210147A 2005-07-20 2005-07-20 Rolling parts and rolling bearings using the same Expired - Fee Related JP4608379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210147A JP4608379B2 (en) 2005-07-20 2005-07-20 Rolling parts and rolling bearings using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210147A JP4608379B2 (en) 2005-07-20 2005-07-20 Rolling parts and rolling bearings using the same

Publications (2)

Publication Number Publication Date
JP2007024260A true JP2007024260A (en) 2007-02-01
JP4608379B2 JP4608379B2 (en) 2011-01-12

Family

ID=37785274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210147A Expired - Fee Related JP4608379B2 (en) 2005-07-20 2005-07-20 Rolling parts and rolling bearings using the same

Country Status (1)

Country Link
JP (1) JP4608379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047962A (en) * 2014-06-21 2014-09-17 德清恒丰机械有限公司 Novel bearing outer ring forging for automobiles
CN104265773A (en) * 2014-10-21 2015-01-07 德清恒丰机械有限公司 Novel vehicle bearing outer ring forged piece
CN104265774A (en) * 2014-10-24 2015-01-07 德清恒丰机械有限公司 Improved automobile hub bearing outer ring forging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162811A (en) * 1986-12-26 1988-07-06 Kawasaki Steel Corp Manufacture of precipitation-hardening steel
JPH0693331A (en) * 1992-09-14 1994-04-05 Nippon Steel Corp Production of high strength galvannealed steel sheet extremely excellent in strength-flanging property
JPH0987740A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Production of bearing parts excellent in cold workability
JP2001355038A (en) * 2000-06-12 2001-12-25 Sumitomo Metal Ind Ltd Cu AGE HARDENING STEEL AND ITS PRODUCTION METHOD
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor
JP2005187909A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Automobile hub having excellent fatigue property, and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162811A (en) * 1986-12-26 1988-07-06 Kawasaki Steel Corp Manufacture of precipitation-hardening steel
JPH0693331A (en) * 1992-09-14 1994-04-05 Nippon Steel Corp Production of high strength galvannealed steel sheet extremely excellent in strength-flanging property
JPH0987740A (en) * 1995-09-26 1997-03-31 Kobe Steel Ltd Production of bearing parts excellent in cold workability
JP2001355038A (en) * 2000-06-12 2001-12-25 Sumitomo Metal Ind Ltd Cu AGE HARDENING STEEL AND ITS PRODUCTION METHOD
JP2003147485A (en) * 2001-11-14 2003-05-21 Nisshin Steel Co Ltd High toughness high carbon steel sheet having excellent workability, and production method therefor
JP2005187909A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Automobile hub having excellent fatigue property, and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047962A (en) * 2014-06-21 2014-09-17 德清恒丰机械有限公司 Novel bearing outer ring forging for automobiles
CN104047962B (en) * 2014-06-21 2016-04-20 德清恒丰机械有限公司 Novel automobile bearing outer ring forging
CN104265773A (en) * 2014-10-21 2015-01-07 德清恒丰机械有限公司 Novel vehicle bearing outer ring forged piece
CN104265774A (en) * 2014-10-24 2015-01-07 德清恒丰机械有限公司 Improved automobile hub bearing outer ring forging

Also Published As

Publication number Publication date
JP4608379B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US7004637B1 (en) Wheel-support rolling bearing unit
KR20050122222A (en) Steel material with excellent rolling fatigue and method of producing the same
JP2006200700A (en) Rolling bearing device for supporting wheel
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2001200314A (en) Wheel bearing device
JP2001152252A (en) Roll bearing
JP4423858B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2002021858A (en) Wheel axle bearing device
JP4608379B2 (en) Rolling parts and rolling bearings using the same
JP2004156764A (en) Bearing unit with flange and manufacturing method thereof
JPH07188857A (en) Bearing parts
JP2001165174A (en) Rolling bearing
JP2006329287A (en) Wheel supporting rolling bearing unit and its inner ring manufacturing method
US11136639B2 (en) Bearing steel and manufacturing method therefor
JP5668283B2 (en) Manufacturing method of rolling sliding member
JP2009299759A (en) Wheel supporting rolling bearing unit
JP2006046353A (en) Wheel supporting hub bearing unit
JP2004100946A (en) Rolling bearing unit for supporting wheel
JP2004059994A (en) Rolling-sliding contact part and method for producing the same
JP2007107647A (en) Rolling bearing device for supporting wheel
JP5195089B2 (en) Hub unit bearing and manufacturing method thereof
JP4225061B2 (en) Rolling bearing unit for wheel support
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP5105859B2 (en) Wheel bearing device
JP2006153188A (en) Roller bearing system for supporting wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees