JP2007024010A - Combustion assisting turbo supercharging device - Google Patents

Combustion assisting turbo supercharging device Download PDF

Info

Publication number
JP2007024010A
JP2007024010A JP2005211685A JP2005211685A JP2007024010A JP 2007024010 A JP2007024010 A JP 2007024010A JP 2005211685 A JP2005211685 A JP 2005211685A JP 2005211685 A JP2005211685 A JP 2005211685A JP 2007024010 A JP2007024010 A JP 2007024010A
Authority
JP
Japan
Prior art keywords
air
flow rate
engine
combustor
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211685A
Other languages
Japanese (ja)
Other versions
JP4530934B2 (en
Inventor
Yukio Mori
幸雄 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Power Systems Co Ltd
Original Assignee
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Power Systems Co Ltd filed Critical Niigata Power Systems Co Ltd
Priority to JP2005211685A priority Critical patent/JP4530934B2/en
Publication of JP2007024010A publication Critical patent/JP2007024010A/en
Application granted granted Critical
Publication of JP4530934B2 publication Critical patent/JP4530934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower the temperature of combustion gas without adding air from the exterior in a combustion assisting turbo supercharging device having a burner. <P>SOLUTION: The assistant combustion turbo supercharging device, in which a supercharger 2 is operated at high speed by joining high temperature gas from a burner 4 to an exhaust gas of engine 1 includes, as a means for adjusting a discharge of incoming air passing an air cooler 3, a by-pass passage a4, a control valve Vb of the by-pass passage and a control valve Vc directly linked with the cooler, and gas temperature in the burner is lowered by suppressing heat dissipation by the air cooler 3 with the control valves. The device can be operated economically and stably. The operating condition of the burner can be kept more appropriately by adjusting the by-pass rate of air depending on load condition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は助燃式ターボ過給装置の改良に関する。   The present invention relates to an improvement of an auxiliary combustion type turbocharger.

従来のターボ過給機関は、ターボ過給機(以下単に過給機という)によって往復式内燃機関(以下単に機関という)の排気エネルギーを利用して空気を圧縮し、さらに給気冷却器によって機関が吸込む空気密度を大きくしている。このようにして空気量を増加させた機関はより多くの燃料を燃焼させることができるため、より大きな出力を発生させることができる。   A conventional turbocharged engine compresses air by using exhaust energy of a reciprocating internal combustion engine (hereinafter simply referred to as “engine”) by a turbocharger (hereinafter simply referred to as “supercharger”), and further, an engine by a charge air cooler. Increases the air density sucked in. Since the engine whose air amount is increased in this way can burn more fuel, it can generate a larger output.

しかしながら、機関の起動時や、機関出力が小さい場合などは過給機の速度が低く、機関に十分な空気を供給できないので、燃焼不良によって有害な排気物質を生成したり、負荷の急速な増加に追随できるだけの動力を発生できないといった不具合がある。これは、過給機に供給される機関排気のエネルギーが不足していることが基本原因である。   However, when the engine is started or when the engine output is small, the turbocharger speed is low and sufficient air cannot be supplied to the engine, generating harmful exhaust materials due to poor combustion or a rapid increase in load. There is a problem that it is not possible to generate enough power to follow. This is basically due to a lack of engine exhaust energy supplied to the turbocharger.

そこで下記特許文献には、燃焼器を用いて燃料を燃焼し、発生した高温ガスを機関排気に合流させて不足するエネルギーを補うことによって改善する技術が開示されている。   Therefore, the following patent document discloses a technique for improving fuel by combusting fuel using a combustor, and joining the generated high-temperature gas with engine exhaust to make up for insufficient energy.

図3は、その助燃式過給機構を具備した従来のターボ過給装置のシステム構成の一例を示している。   FIG. 3 shows an example of a system configuration of a conventional turbocharger equipped with the auxiliary combustion type supercharging mechanism.

このシステムは、機関1、過給機2、給気冷却器3、バックアップ用の燃焼器4及び図示しない自動制御装置によって構成される。機関1が複数の気筒からなるものは、機関1の給気入口と各気筒の空気入口とを接続する給気分岐管1aと、各気筒の排気出口と機関1の排気出口とを接続する排気分岐管1eとを具備する。   This system includes an engine 1, a supercharger 2, a charge air cooler 3, a backup combustor 4, and an automatic control device (not shown). When the engine 1 is composed of a plurality of cylinders, an air supply branch pipe 1 a that connects the intake air inlet of the engine 1 and the air inlet of each cylinder, and an exhaust gas that connects the exhaust outlet of each cylinder and the exhaust outlet of the engine 1. And a branch pipe 1e.

過給機2は、軸2sの両端に結合された圧縮機2cとタービン2tとからなり、圧縮機2cの空気出口は給気冷却器3の空気入口と空気通路a1によって接続され、給気冷却器3の空気出口は機関1の給気入口と給気通路a2によって接続されている。燃焼器4の空気入口は、給気通路a1から分岐する給気通路a3に接続され、この給気通路a3には制御弁Vaが備えられている。   The supercharger 2 includes a compressor 2c and a turbine 2t coupled to both ends of the shaft 2s. The air outlet of the compressor 2c is connected to the air inlet of the air supply cooler 3 and the air passage a1, and the air supply cooling is performed. The air outlet of the vessel 3 is connected to the air supply inlet of the engine 1 by the air supply passage a2. The air inlet of the combustor 4 is connected to an air supply passage a3 branched from the air supply passage a1, and the air supply passage a3 is provided with a control valve Va.

機関1からの排気通路e1は燃焼器4に接続され、燃焼器4のガス出口は排気通路e2によって過給機2のタービン2tのガス入口に接続されている。   The exhaust passage e1 from the engine 1 is connected to the combustor 4, and the gas outlet of the combustor 4 is connected to the gas inlet of the turbine 2t of the supercharger 2 by the exhaust passage e2.

図示しない燃料源からの燃料供給配管の一方f1は機関1へ接続され、他方f2は燃焼器4に接続されている。   One side f1 of a fuel supply pipe from a fuel source (not shown) is connected to the engine 1, and the other side f2 is connected to the combustor 4.

次に以上装置の各部の働きを説明する。図3において、過給機2に吸入された大気は圧縮機2cによって圧縮され、給気通路a1によって空気冷却器3へ導かれる。給気冷却器3によって冷却された空気は、給気通路a2によって機関1へ導かれ、燃料と混合されて燃焼し、機関1を駆動する。   Next, the operation of each part of the apparatus will be described. In FIG. 3, the air sucked into the supercharger 2 is compressed by the compressor 2c and guided to the air cooler 3 through the air supply passage a1. The air cooled by the supply air cooler 3 is guided to the engine 1 through the supply air passage a <b> 2, mixed with fuel and burned, and drives the engine 1.

燃焼によって生成した排気は、排気通路e1を通って燃焼器4に導かれる。また、圧縮機2cによって圧縮された空気の一部は給気通路a1から分岐した給気通路a3によって燃焼器4に導かれ、この空気は燃焼器4に供給された燃料の燃焼によって高温ガスとなり、排気通路e1からの機関1の排気と合流する。   Exhaust gas generated by the combustion is guided to the combustor 4 through the exhaust passage e1. Further, a part of the air compressed by the compressor 2c is led to the combustor 4 by the air supply passage a3 branched from the air supply passage a1, and this air becomes a high-temperature gas by the combustion of the fuel supplied to the combustor 4. , And merged with the exhaust of the engine 1 from the exhaust passage e1.

燃焼器4側に導かれる空気流量は制御弁Vaの開度によって調整されるもので、低負荷時には弁開度大であり、高負荷になると弁開度小に自動制御される。
合流した排気は、排気通路e2によってタービン2tへ導かれ、ここで圧縮機2cを駆動する動力を発生した後大気へ放出される。
The flow rate of air guided to the combustor 4 side is adjusted by the opening degree of the control valve Va. The valve opening degree is large when the load is low, and the valve opening degree is automatically controlled when the load is high.
The merged exhaust gas is guided to the turbine 2t by the exhaust passage e2, where the power for driving the compressor 2c is generated and then released to the atmosphere.

過給機2のロータの回転速度は、タービン2tが発生する動力と圧縮機2cの負荷との釣合で決り、機関1からの排気エネルギーが大きいほど速度が速くなるが、ある速度(自立速度)以下では圧縮機2cの負荷がタービン2tの発生する動力を上回るので、その速度を維持できず失速する。   The rotational speed of the rotor of the supercharger 2 is determined by the balance between the power generated by the turbine 2t and the load of the compressor 2c, and the speed increases as the exhaust energy from the engine 1 increases. ) Since the load of the compressor 2c exceeds the power generated by the turbine 2t below, the speed cannot be maintained and the vehicle stalls.

したがって以上のシステムにおいては、従来の燃焼器4を備えないターボ過給機関が十分な過給機速度を得られない起動時、低負荷時及び負荷上昇時においても燃焼器から高温ガスの供給を受けて過給機速度を増加し、機関へより高温・高圧の空気を供給することができるので、前述の不具合を抑制できる利点がある。
特開2004−11551号公報
Therefore, in the above system, the turbocharged engine not equipped with the conventional combustor 4 cannot supply a sufficient supercharger speed, and the high temperature gas is supplied from the combustor even at the time of start-up, low load, and load increase. Accordingly, the turbocharger speed can be increased, and higher temperature and high pressure air can be supplied to the engine.
JP 2004-11551 A

しかしながら、以上の技術によれば、機関1の駆動速度が高くなると機関1を通過する空気流量が増加するために、燃焼器4へ供給される空気流量が少なくなり、燃焼器のガス温度が上昇する。   However, according to the above technique, the flow rate of air passing through the engine 1 increases as the driving speed of the engine 1 increases, so the flow rate of air supplied to the combustor 4 decreases and the gas temperature of the combustor increases. To do.

特に無負荷状態近傍では、機関速度が本来の上限速度に到達する以前に燃焼器4のガス温度が許容値を超えたり、燃焼不良をきたして運転を継続できなくなる場合が多い。
燃焼器4への燃料流量を減らせば過給機2は失速しやすくなり、増せばガス温度がさらに上昇するので、燃焼器4への燃料流量の調節ではガス温度を効果的に下げることはできない。
Particularly in the vicinity of the no-load state, the gas temperature of the combustor 4 often exceeds the allowable value before the engine speed reaches the original upper limit speed, or the combustion cannot be continued due to defective combustion.
If the fuel flow rate to the combustor 4 is decreased, the turbocharger 2 is likely to stall, and if it is increased, the gas temperature further increases. Therefore, the gas temperature cannot be effectively reduced by adjusting the fuel flow rate to the combustor 4. .

外部から圧縮空気を付加すればガス温度を低下できるが、そのための設備が高価であり、運転費用も増加する。   If compressed air is added from the outside, the gas temperature can be lowered, but the equipment for that purpose is expensive, and the operating cost also increases.

こうした背景から、簡便かつ安価に燃焼器のガス温度を低下できる手段が望まれた。そこで、本発明は、外部からの空気を付加することなく燃焼のガス温度を低下させた助燃式ターボ過給装置を提供することを目的としている。   From such a background, a means that can easily and inexpensively lower the gas temperature of the combustor has been desired. Therefore, an object of the present invention is to provide an auxiliary combustion turbocharger in which the temperature of combustion gas is reduced without adding external air.

以上の目的を達成するため、請求項1に記載された助燃式ターボ過給装置は、
排気により駆動される過給機と、前記過給機が供給する空気を冷却する給気冷却器と、燃料と前記過給機からの空気が燃焼した排気を機関からの排気とともに前記過給機に供給する燃焼器を有し、前記燃焼器からの高温ガスによって前記過給機を高速で運転する助燃式ターボ過給機において、
前記給気冷却器を通過する給気の流量を調整する流量調整手段を具備し、前記流量調整手段によって前記給気冷却器による放熱を抑制して前記燃焼器のガス温度を低下させることを特徴としている。
In order to achieve the above object, the auxiliary combustion turbocharger described in claim 1 is:
A turbocharger driven by exhaust gas; a charge air cooler that cools air supplied by the supercharger; and a turbocharger that combines exhaust gas from the engine and fuel and air that is burned from the turbocharger. In the auxiliary combustion turbocharger that has a combustor to be supplied to the turbocharger and operates the supercharger at high speed with the high-temperature gas from the combustor,
A flow rate adjusting means for adjusting the flow rate of the supply air passing through the supply air cooler is provided, and the heat adjustment by the flow rate adjustment means is suppressed to reduce the gas temperature of the combustor. It is said.

請求項2に記載された助燃式ターボ過給装置は、請求項1記載の助燃式ターボ過給装置において、
前記流量調整手段は、前記給気冷却器の入口側給気通路に設けた第1の流量調整手段と、前記第1の流量調整手段の前段にあって、前記給気冷却器をバイパスして前記機関の給気入口側に連通するバイパス通路と、前記バイパス通路内に配置された第2の流量調整手段とを具備し、
前記第1、第2の流量調整手段の調整により、無負荷状態ではバイパス通路内のみ空気を流通させるとともに、前記機関に加わる負荷が大きくなるにつれて、前記冷却器をバイパスする給気量を減少させて記冷却器を通過する給気量を増大させることを特徴としている。
The auxiliary combustion turbocharger described in claim 2 is the auxiliary combustion turbocharger according to claim 1,
The flow rate adjusting means is a first flow rate adjusting means provided in an inlet-side air supply passage of the supply air cooler, and is disposed upstream of the first flow rate adjustment means, and bypasses the supply air cooler. A bypass passage communicating with the air supply inlet side of the engine, and a second flow rate adjusting means disposed in the bypass passage,
By adjusting the first and second flow rate adjusting means, air is circulated only in the bypass passage in the no-load state, and the amount of air supply bypassing the cooler is reduced as the load applied to the engine increases. The air supply amount passing through the cooler is increased.

請求項3に記載された助燃式ターボ過給装置は、請求項2記載の助燃式ターボ過給装置において、
前記燃焼器には前記過給機の圧縮機から供給される圧縮空気の一部を取入れるための給気通路が形成されているとともに、前記給気通路中には第3の流量調整手段を備え、前記第3の流量調整手段は、無負荷状態を最大流量とし、負荷の増加に応じて流量を減ずる側に制御されることを特徴としている。
The auxiliary combustion turbocharger described in claim 3 is the auxiliary combustion turbocharger according to claim 2,
The combustor is formed with an air supply passage for taking in a part of the compressed air supplied from the compressor of the supercharger, and a third flow rate adjusting means is provided in the air supply passage. The third flow rate adjusting means is characterized in that the no-load state is controlled to the maximum flow rate and the flow rate is reduced as the load increases.

請求項4に記載された助燃式ターボ過給装置は、請求項3記載の助燃式ターボ過給装置において、
前記機関の無負荷運転状態において、前記第3の流量調整手段と前記第2の流量調整手段の開度を調整して、前記機関側と前記燃焼器側への空気流量配分を調節することを特徴としている。
The auxiliary combustion turbocharger described in claim 4 is the auxiliary combustion turbocharger according to claim 3,
Adjusting the air flow distribution to the engine side and the combustor side by adjusting the opening degree of the third flow rate adjusting means and the second flow rate adjusting means in the no-load operation state of the engine. It is a feature.

請求項5に記載された助燃式ターボ過給装置は、請求項4記載の助燃式ターボ過給装置において、
前記燃焼器に供給される燃料の流量は、前記過給機の速度またはガス温度が所定の範囲内に維持されるように制御されることを特徴としている。
The auxiliary combustion type turbocharger described in claim 5 is the auxiliary combustion type turbocharger according to claim 4,
The flow rate of the fuel supplied to the combustor is controlled so that the speed or gas temperature of the supercharger is maintained within a predetermined range.

したがって本発明によれば、機関の負荷が小さい場合に、給気冷却器をバイパスしない場合よりも少ない燃料と低いガス温度で燃焼器を運転できるため、装置を経済的かつ安定して運転できる。同時に、負荷状態に応じて空気のバイパス量を調整して燃焼器の運転状態をより適切に維持することも可能となり、広範な運転状態の変化に対して安全に過給機の高速運転を維持できる。   Therefore, according to the present invention, when the load on the engine is small, the combustor can be operated with less fuel and lower gas temperature than when the supply air cooler is not bypassed, so that the apparatus can be operated economically and stably. At the same time, it is possible to maintain the combustor operating state more appropriately by adjusting the amount of air bypass according to the load state, and to maintain the high speed operation of the turbocharger safely against a wide range of operating state changes. it can.

請求項2の発明によれば、従来の基本構造に加えて、バイパス流路と第1、第2の流量調整手段を付加するだけであるため簡単な機構で実現できる。   According to the second aspect of the present invention, in addition to the conventional basic structure, only the bypass flow path and the first and second flow rate adjusting means are added, so that it can be realized with a simple mechanism.

請求項3の発明によれば、無負荷状態では燃焼器のガス温度は低く保たれ、負荷に応じてバイパス量が調整されるため、燃焼器の運転状態をより適切に維持することが可能となる。   According to the invention of claim 3, in the no-load state, the gas temperature of the combustor is kept low, and the bypass amount is adjusted according to the load, so that the operation state of the combustor can be more appropriately maintained. Become.

請求項4の発明によれば、無負荷時における機関及び燃焼器に対する空気量配分が定まり、それぞれの最適運転を行うことができる。   According to the invention of claim 4, the air quantity distribution to the engine and the combustor at the time of no load is determined, and each optimum operation can be performed.

請求項5の発明によれば、空気量の増減に応じた最適空燃比で燃焼器を駆動することができる。   According to the invention of claim 5, the combustor can be driven at an optimum air-fuel ratio corresponding to the increase or decrease of the air amount.

以下、本発明の最良の実施の形態をディーゼル機関の過給装置に具体化した添付図を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best mode for carrying out the invention will be described with reference to the accompanying drawings in which a turbocharger for a diesel engine is embodied.

図1は本実施形態の機関と過給装置からなるシステムの全体構成を示すものである。なお、前記図3に示す従来と同一箇所には同一符号を付し、新たに付加された箇所にのみ新たな符号を用いて説明する。   FIG. 1 shows the overall configuration of a system comprising an engine and a supercharging device according to this embodiment. In addition, the same code | symbol is attached | subjected to the same location as the prior art shown in the said FIG. 3, and it demonstrates using a new code | symbol only for the newly added location.

図1において本発明のシステムは、給気冷却器3がその空気入口の給気通路a1内に第1の流量調整手段としての制御弁Vcを具備し、さらに第1の制御弁Vcの前段において給気冷却器3をバイパスして給気通路a2に接続するバイパス通路a4及び第2の流量調整手段としての制御弁Vbを具備している点が図3に示す従来のシステムと異なるのみで、その他の機構的な構成は同一である。
なお、燃焼器4に連通する給気通路a3に接続された制御弁Vaは、前述したように従来と同様の構成であるが、本実施形態の前記制御弁Vc,Vbは請求項の記載では第1及び第2の流量調整手段であり、この制御弁Vaは第3の流量調整手段となる。
In the system of the present invention shown in FIG. 1, a supply air cooler 3 includes a control valve Vc as a first flow rate adjusting means in an air supply passage a1 at its air inlet, and further in a stage preceding the first control valve Vc. The only difference from the conventional system shown in FIG. 3 is that a bypass passage a4 that bypasses the supply air cooler 3 and connects to the supply air passage a2 and a control valve Vb as the second flow rate adjusting means are provided. Other mechanical configurations are the same.
The control valve Va connected to the air supply passage a3 communicating with the combustor 4 has the same configuration as the conventional one as described above, but the control valves Vc and Vb of the present embodiment are not described in the claims. These are the first and second flow rate adjusting means, and this control valve Va is the third flow rate adjusting means.

次に以上のシステムにおける各部の働きを説明する。図1において、過給機2に吸入された大気は、圧縮機2cによって圧縮され、給気通路a1によって給気冷却器3に導かれる。   Next, the function of each part in the above system will be described. In FIG. 1, the air sucked into the supercharger 2 is compressed by the compressor 2c and guided to the supply air cooler 3 by the supply air passage a1.

給気冷却器入口の第1の制御弁Vcとバイパス通路a4の第2の制御弁Vbの制御によって給気冷却器3を通過する空気流量の割合が調整され、機関1へ供給される空気の温度が調節される。   By controlling the first control valve Vc at the inlet of the charge air cooler and the second control valve Vb at the bypass passage a4, the ratio of the air flow rate passing through the charge air cooler 3 is adjusted, and the amount of air supplied to the engine 1 is adjusted. The temperature is adjusted.

この温度を調節された空気は空気通路a2を通って機関1へ導かれ、燃料と混合して燃焼し、機関1を駆動する。これにより生成した排気は、排気通路e1を通って燃焼器4へ導かれる。   The air whose temperature has been adjusted is guided to the engine 1 through the air passage a2, mixed with fuel and burned, and the engine 1 is driven. The generated exhaust gas is guided to the combustor 4 through the exhaust passage e1.

また、過給機2の圧縮機2cによって圧縮された空気の一部は、給気通路a1から分岐した給気通路a3によって燃焼器4へ導かれる。この空気は、燃焼器4に供給された燃料の燃焼によって高圧ガスとなり、排気通路e1からの機関1からの排気と合流する。   Further, a part of the air compressed by the compressor 2c of the supercharger 2 is guided to the combustor 4 through an air supply passage a3 branched from the air supply passage a1. This air becomes high-pressure gas by the combustion of the fuel supplied to the combustor 4 and merges with the exhaust from the engine 1 from the exhaust passage e1.

合流した排気は排気通路e2によって過給機のタービン2tへ導かれ、ここで圧縮機2cを駆動した後、大気へ放出される。   The merged exhaust gas is guided to the turbocharger turbine 2t through the exhaust passage e2, and is driven into the atmosphere after being driven by the compressor 2c.

第1、第2の制御弁Vb、Vc及び制御弁Vaの開度は、図示しない制御装置によって機関1への負荷の大きさに応じて調節される。   The opening degree of the first and second control valves Vb and Vc and the control valve Va is adjusted according to the magnitude of the load on the engine 1 by a control device (not shown).

すなわち、無負荷状態では制御弁vcが全閉し、制御弁Vbが全開し、この状態では、過給機2の圧縮機2cからの空気は給気冷却器によって冷却されることなく高温のまま機関1へ供給される。高温の空気は密度が小さいので機関1に供給される空気流量は少なくなる。   That is, in the no-load state, the control valve vc is fully closed and the control valve Vb is fully opened. In this state, the air from the compressor 2c of the supercharger 2 remains at a high temperature without being cooled by the charge air cooler. Supplied to the engine 1. Since hot air has a low density, the flow rate of air supplied to the engine 1 is reduced.

負荷が増加するにつれて第1の制御弁Vbを閉じ、第2の制御弁Vcを開く。また制御弁Vaは無負荷状態では全開しており、負荷が増加するにつれ閉じる。   As the load increases, the first control valve Vb is closed and the second control valve Vc is opened. Further, the control valve Va is fully opened in the no-load state, and closes as the load increases.

なお無負荷状態において、第2の制御弁Vbと制御弁Vaの開度を適宜に調節して機関1と燃焼器4への空気流量の配分を調節することもでき、これによってそれぞれの最適運転となる最大開度が設定される。   In the no-load state, the air flow distribution to the engine 1 and the combustor 4 can be adjusted by appropriately adjusting the opening degree of the second control valve Vb and the control valve Va. The maximum opening is set.

燃焼器4への燃料流量は図示しない制御装置によって過給機速度またはガス温度が所定の範囲内に維持されるように制御される。   The fuel flow rate to the combustor 4 is controlled by a control device (not shown) so that the supercharger speed or gas temperature is maintained within a predetermined range.

必要に応じて給気冷却器3と同様の空気のバイパスによって燃焼器内の空燃比を調節しても良い。   If necessary, the air-fuel ratio in the combustor may be adjusted by air bypass similar to that of the charge air cooler 3.

機関1の運転中に燃焼器4の運転を停止する場合には、燃焼器4への燃料を遮断し、制御弁Va及び第2の制御弁Vbを全閉、第1の制御弁Vcを全開にする。この状態では、系統は燃焼器を備えない場合のターボ過給装置と実質的に同じである。   When the operation of the combustor 4 is stopped during the operation of the engine 1, the fuel to the combustor 4 is shut off, the control valve Va and the second control valve Vb are fully closed, and the first control valve Vc is fully opened. To. In this state, the system is substantially the same as a turbocharger without a combustor.

図2(a)は、図3の従来のシステムで機関を無負荷運転している場合、図2(b)は図1の本発明のシステムで機関を無負荷運転している場合のエネルギーの流れを示す模式図を示し、どちらも過給機速度は同じである。   2 (a) shows the energy of the conventional system of FIG. 3 when the engine is operated without load, and FIG. 2 (b) shows the energy of the engine when the engine of FIG. 1 is operated with no load. The schematic diagram which shows a flow is shown and supercharger speed is the same in both.

これらの図における丸で囲ったAは機関へ供給される燃料のエネルギー、同Bは燃焼器へ供給される燃料のエネルギー、同Cは系を循環するエネルギーの割合を示す。   In these figures, circled A indicates the energy of the fuel supplied to the engine, B indicates the energy of the fuel supplied to the combustor, and C indicates the ratio of the energy circulating in the system.

まず、図2(a)に示す従来のシステムでは、タービン2tで吸収され、圧縮機2cで空気に伝えられたエネルギーは、空気冷却器3からそのほとんど全てが外界に放出される。   First, in the conventional system shown in FIG. 2A, almost all of the energy absorbed by the turbine 2t and transferred to the air by the compressor 2c is released from the air cooler 3 to the outside.

これに対し、図2(b)に示す本発明においては、圧縮機2cで空気に伝えられたエネルギーが給気冷却器3で失われることがなく、系内を循環するエネルギーが増大する。   On the other hand, in the present invention shown in FIG. 2 (b), the energy transmitted to the air by the compressor 2c is not lost by the charge air cooler 3, and the energy circulating in the system increases.

このため、同じ過給機速度を維持するために、燃焼器4で消費する燃料の流量は図3の場合より少なくなる。同時に機関への給気は高温であるために密度が低く、機関を通過する空気流量が減るので燃焼器4へ空気流量が増加する。   For this reason, in order to maintain the same supercharger speed, the flow rate of the fuel consumed in the combustor 4 becomes smaller than that in the case of FIG. At the same time, since the supply air to the engine is high temperature, the density is low, and the flow rate of air passing through the engine decreases, so the flow rate of air to the combustor 4 increases.

この結果、従来に比べて燃焼器4のガス温度が低下し、燃焼器4のガス温度が最も高温になりやすい機関の無負荷高速運転状態でも、空気弁開度の調節だけで効果的にガス温度を低下させることができるので、助燃式ターボ過給機関を経済的かつ安全に運転させることができるのである。   As a result, the gas temperature of the combustor 4 is lower than the conventional one, and the gas temperature of the combustor 4 can be effectively increased only by adjusting the air valve opening degree even in the no-load high-speed operation state of the engine where the gas temperature is likely to be the highest. Since the temperature can be lowered, the auxiliary combustion turbocharged engine can be operated economically and safely.

また実施の形態に示すように、本発明をディーゼル機関に適用した場合には、過給機の高速運転によって過給機の速度追従遅れや燃料の不完全燃焼を同時に抑制することができるので、機関の起動性能及び負荷応答性能が改善できるとともに、排気中の黒煙と悪臭の発生を減少させることができる。低負荷においても過給機出口温度が高くなるので、排気出口に脱硝装置や排熱回収装置を設ける場合には、それらをより有効に働かせることができる。   Further, as shown in the embodiment, when the present invention is applied to a diesel engine, it is possible to simultaneously suppress the speed follow-up delay of the turbocharger and incomplete combustion of the fuel by the high-speed operation of the turbocharger. Engine start-up performance and load response performance can be improved, and generation of black smoke and bad odor in exhaust gas can be reduced. Since the supercharger outlet temperature becomes high even at a low load, when a denitration device or a waste heat recovery device is provided at the exhaust outlet, they can be operated more effectively.

なお以上の実施形態では、流量調整手段として制御弁Va,Vb,Vcを用いたが、同様の機能を備えるものであれば、ダンパなどの他の形式の可変絞り機構に代替できる。   In the above embodiment, the control valves Va, Vb, and Vc are used as the flow rate adjusting means. However, any other type of variable throttle mechanism such as a damper may be used as long as it has the same function.

また、給気冷却器3の出口温度調節手段としては、前記バイパス流路a4及び制御弁Vbの組合せに替えて。冷却用媒体の流量調整手段に代替することもできる。例えば空冷式冷却器の場合には、冷却ファンの回転速度を下げるか停止することによっても実現することができる。   Further, as the outlet temperature adjusting means of the supply air cooler 3, instead of the combination of the bypass flow path a4 and the control valve Vb. It can replace with the flow volume adjustment means of a cooling medium. For example, in the case of an air-cooled cooler, this can also be realized by reducing or stopping the rotation speed of the cooling fan.

本発明による助燃式ターボ過給装置を備えたディーゼル機関の一例を示す構成略図である。1 is a schematic diagram showing an example of a diesel engine equipped with an auxiliary combustion turbocharger according to the present invention. (a)は従来のシステムにより運転する場合、(b)は本発明のシステムにより運転する場合のエネルギーの流れを示す模式図である。(A) is a schematic diagram which shows the flow of energy in the case of driving | operating by the conventional system, (b) is the case of driving | operating by the system of this invention. 従来の 助燃式ターボ過給装置を備えた機関の一例を示す構成略図である。It is the structure schematic which shows an example of the engine provided with the conventional auxiliary combustion type turbocharger.

符号の説明Explanation of symbols

1 機関
2 過給機(2t タービン、2c 空気圧縮機)
3 給気冷却器
4 燃焼器
a1,a2,a3 給気通路
a4 バイパス流路
f1,f2 燃料供給配管
e1,e2 排気通路
Va 第3の流量調整手段(流量制御弁)
Vc 第1の流量調整手段(流量制御弁)
Vb 第2の流量調整手段(流量調整弁)
1 engine 2 turbocharger (2t turbine, 2c air compressor)
3 Supply air cooler 4 Combustor a1, a2, a3 Supply air passage a4 Bypass passage f1, f2 Fuel supply piping e1, e2 Exhaust passage Va Third flow rate adjusting means (flow control valve)
Vc first flow rate adjusting means (flow rate control valve)
Vb Second flow rate adjusting means (flow rate adjusting valve)

Claims (5)

排気により駆動される過給機と、前記過給機が供給する空気を冷却する給気冷却器と、燃料と前記過給機からの空気が燃焼した排気を機関からの排気とともに前記過給機に供給する燃焼器を有し、前記燃焼器からの高温ガスによって前記過給機を高速で運転する助燃式ターボ過給機において、
前記給気冷却器を通過する給気の流量を調整する流量調整手段を具備し、前記流量調整手段によって前記給気冷却器による放熱を抑制して前記燃焼器のガス温度を低下させることを特徴とする助燃式ターボ過給装置。
A turbocharger driven by exhaust gas; a charge air cooler that cools air supplied by the supercharger; and a turbocharger that combines exhaust gas from the engine and fuel and air that is burned from the turbocharger. In the auxiliary combustion turbocharger that has a combustor to be supplied to the turbocharger and operates the supercharger at high speed with the high-temperature gas from the combustor,
A flow rate adjusting means for adjusting the flow rate of the supply air passing through the supply air cooler is provided, and the heat adjustment by the flow rate adjustment means is suppressed to reduce the gas temperature of the combustor. An auxiliary combustion turbocharger.
前記流量調整手段は、前記給気冷却器の入口側給気通路に設けた第1の流量調整手段と、前記第1の流量調整手段の前段にあって、前記給気冷却器をバイパスして前記機関の給気入口側に連通するバイパス通路と、前記バイパス通路内に配置された第2の流量調整手段とを具備し、
前記第1、第2の流量調整手段の調整により、無負荷状態ではバイパス通路内のみ空気を流通させるとともに、前記機関に加わる負荷が大きくなるにつれて、前記冷却器をバイパスする給気量を減少させて記冷却器を通過する給気量を増大させることを特徴とする請求項1記載の助燃式ターボ過給装置。
The flow rate adjusting means is a first flow rate adjusting means provided in an inlet-side air supply passage of the supply air cooler, and is disposed upstream of the first flow rate adjustment means, and bypasses the supply air cooler. A bypass passage communicating with the air supply inlet side of the engine, and a second flow rate adjusting means disposed in the bypass passage,
By adjusting the first and second flow rate adjusting means, air is circulated only in the bypass passage in the no-load state, and the amount of air supply bypassing the cooler is reduced as the load applied to the engine increases. The auxiliary combustion turbocharger according to claim 1, wherein the amount of air supplied through the cooler is increased.
前記燃焼器には前記過給機の圧縮機から供給される圧縮空気の一部を取入れるための給気通路が形成されているとともに、前記給気通路中には第3の流量調整手段を備え、前記第3の流量調整手段は、無負荷状態を最大流量とし、負荷の増加に応じて流量を減ずる側に制御されることを特徴とする請求項2記載の助燃式ターボ過給装置。 The combustor is formed with an air supply passage for taking in a part of the compressed air supplied from the compressor of the supercharger, and a third flow rate adjusting means is provided in the air supply passage. 3. The auxiliary combustion turbocharger according to claim 2, wherein the third flow rate adjusting means is controlled so that the no-load state is a maximum flow rate and the flow rate is reduced according to an increase in load. 前記機関の無負荷運転状態において、前記第3の流量調整手段と前記第2の流量調整手段の開度を調整して、前記機関側と前記燃焼器側への空気流量配分を調節することを特徴とする請求項3記載の助燃式ターボ過給装置。 Adjusting the air flow distribution to the engine side and the combustor side by adjusting the opening degree of the third flow rate adjusting means and the second flow rate adjusting means in the no-load operation state of the engine. The auxiliary combustion type turbocharger according to claim 3, wherein 前記燃焼器に供給される燃料の流量は、前記過給機の速度またはガス温度が所定の範囲内に維持されるように制御されることを特徴とする請求項4記載の助燃式ターボ過給装置。 5. The auxiliary turbocharger according to claim 4, wherein the flow rate of the fuel supplied to the combustor is controlled so that a speed or a gas temperature of the supercharger is maintained within a predetermined range. apparatus.
JP2005211685A 2005-07-21 2005-07-21 Auxiliary turbocharger Active JP4530934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211685A JP4530934B2 (en) 2005-07-21 2005-07-21 Auxiliary turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211685A JP4530934B2 (en) 2005-07-21 2005-07-21 Auxiliary turbocharger

Publications (2)

Publication Number Publication Date
JP2007024010A true JP2007024010A (en) 2007-02-01
JP4530934B2 JP4530934B2 (en) 2010-08-25

Family

ID=37785075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211685A Active JP4530934B2 (en) 2005-07-21 2005-07-21 Auxiliary turbocharger

Country Status (1)

Country Link
JP (1) JP4530934B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111097A2 (en) * 2008-03-04 2009-09-11 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
JP2010519457A (en) * 2007-02-22 2010-06-03 ボーマン パワー グループ リミテッド Auxiliary power generator
FR2945484A1 (en) * 2009-05-18 2010-11-19 Peugeot Citroen Automobiles Sa Vehicle, has turbo compressor supplying compressed air to thermal engine, where air is cooled by supercharged air cooler, and heater heating supercharged air cooler when thermal engine is extinct
CN103689644A (en) * 2013-11-26 2014-04-02 宁波大学 Cool fermented sausage and preparation method thereof
CN109184859A (en) * 2018-07-12 2019-01-11 哈尔滨工程大学 Marine high-pressure double fuel/natural gas engine nitrogen oxides treatment method and device
CN114458440A (en) * 2021-12-28 2022-05-10 中国北方发动机研究所(天津) Cross afterburning exhaust gas turbocharging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529065A (en) * 1978-08-24 1980-03-01 Komatsu Ltd Combustor controller for diesel engine with by-pass burner
JPS6456924A (en) * 1987-08-27 1989-03-03 Yanmar Diesel Engine Co Internal combustion engine equipped with exhaust turbosupercharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529065A (en) * 1978-08-24 1980-03-01 Komatsu Ltd Combustor controller for diesel engine with by-pass burner
JPS6456924A (en) * 1987-08-27 1989-03-03 Yanmar Diesel Engine Co Internal combustion engine equipped with exhaust turbosupercharger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519457A (en) * 2007-02-22 2010-06-03 ボーマン パワー グループ リミテッド Auxiliary power generator
WO2009111097A2 (en) * 2008-03-04 2009-09-11 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
WO2009111097A3 (en) * 2008-03-04 2009-10-29 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
US7980061B2 (en) 2008-03-04 2011-07-19 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
US8776504B2 (en) 2008-03-04 2014-07-15 Tenneco Automotive Operating Company Inc. Bypass fluid system for exhaust aftertreatment
FR2945484A1 (en) * 2009-05-18 2010-11-19 Peugeot Citroen Automobiles Sa Vehicle, has turbo compressor supplying compressed air to thermal engine, where air is cooled by supercharged air cooler, and heater heating supercharged air cooler when thermal engine is extinct
CN103689644A (en) * 2013-11-26 2014-04-02 宁波大学 Cool fermented sausage and preparation method thereof
CN103689644B (en) * 2013-11-26 2015-04-29 宁波大学 Cool fermented sausage and preparation method thereof
CN109184859A (en) * 2018-07-12 2019-01-11 哈尔滨工程大学 Marine high-pressure double fuel/natural gas engine nitrogen oxides treatment method and device
CN114458440A (en) * 2021-12-28 2022-05-10 中国北方发动机研究所(天津) Cross afterburning exhaust gas turbocharging system

Also Published As

Publication number Publication date
JP4530934B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US10526955B2 (en) Supercharging device for an internal combustion engine, and operating method for the supercharging device
JP4741678B2 (en) Diesel engine with supercharger
US6354084B1 (en) Exhaust gas recirculation system for a turbocharged internal combustion engine
US7958873B2 (en) Open loop Brayton cycle for EGR cooling
US10513972B2 (en) Supercharger device for an internal combustion engine, and a method for operating said supercharger device
US20080282699A1 (en) Use of Compressor to Turbine Bypass for Electric Boosting System
JP6309190B2 (en) Internal combustion engine, ship and method of operating internal combustion engine
US20130098031A1 (en) Supercharged Internal Combustion Engine Having Exhaust-Gas Recirculation Arrangement and Method for Operating an Internal Combustion Engine of Said Type
JP2006500515A (en) Internal combustion engine having a compressor in the intake pipe
WO2011049183A1 (en) Turbo compound system and method for operating same
JP4530934B2 (en) Auxiliary turbocharger
JP5530239B2 (en) Two-stage supercharging system having an exhaust gas purification device for an internal combustion engine and method for controlling the same
GB2414691A (en) An emission control apparatus for an engine
CA2987412A1 (en) Method for operating an internal combustion engine
JP2009115089A (en) Engine with supercharger and its operating method
JP3674254B2 (en) EGR device for supercharged engine
KR101692173B1 (en) Exhaust heat recovery system and exhaust heat recovery method
EP2749757B1 (en) Method and apparatus for controlling a twin scroll turbocharger with variable geometry depending on the exhaust gas recirculation
JP2009191668A (en) Supercharging device and supercharging engine system
JPS58187521A (en) Exhaust gas turbo overcharger
JP2009191667A (en) Supercharging device and supercharging engine system
JP2005220862A (en) Internal combustion engine with supercharger
JP6370716B2 (en) Supercharging system and operating method of supercharging system
JPH11229885A (en) Diesel engine
JP2001342839A (en) Turbo supercharging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Ref document number: 4530934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250