JP2007023440A - Method for producing conductive nonwoven fabric - Google Patents

Method for producing conductive nonwoven fabric Download PDF

Info

Publication number
JP2007023440A
JP2007023440A JP2005209341A JP2005209341A JP2007023440A JP 2007023440 A JP2007023440 A JP 2007023440A JP 2005209341 A JP2005209341 A JP 2005209341A JP 2005209341 A JP2005209341 A JP 2005209341A JP 2007023440 A JP2007023440 A JP 2007023440A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
wrap
pan
conductive nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005209341A
Other languages
Japanese (ja)
Other versions
JP4353926B2 (en
Inventor
Toshikuni Senoo
俊晋 妹尾
Yoshihisa Ota
善久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUHOU KK
Original Assignee
YUUHOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUHOU KK filed Critical YUUHOU KK
Priority to JP2005209341A priority Critical patent/JP4353926B2/en
Publication of JP2007023440A publication Critical patent/JP2007023440A/en
Application granted granted Critical
Publication of JP4353926B2 publication Critical patent/JP4353926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a conductive nonwoven fabric which is a nonwoven fabric consisting essentially of synthetic fibers, having ≤10% mixing ratio of carbon fibers and usable for detecting water leakage sites of waterstop sheets in industrial waste disposal sites in a usual production process of nonwoven fabrics. <P>SOLUTION: The method for producing the conductive nonwoven fabric is carried out as follows. Chopped fibers of the carbon fibers are mixed with general-purpose synthetic fiber staples in (1/99) to (10/90) mass ratio and opened and a plurality of the resultant card webs are laminated and pre-punched by a needle punching method. A plurality of pre-punched laps obtained by the previous punching are further laminated and then subjected to finish punching by the needle punching method. In the method, electrical resistance between two points separated by a prescribed distance is measured on the pre-punched laps prepared by the previous punching and the pre-punched laps having the measured value within a prescribed range are fed to the next step and subjected to the finish punching in the method for producing the conductive nonwoven fabric. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、合成繊維に少量の炭素繊維を混入した導電性不織布の製法に関し、得られた導電性不織布は、例えば廃棄物処分場に敷設される遮水シートに挟設して用い、遮水シートの破損による漏水箇所の検知に利用される。 The present invention relates to a method for producing a conductive nonwoven fabric in which a small amount of carbon fiber is mixed into a synthetic fiber. The obtained conductive nonwoven fabric is used by being sandwiched between, for example, a waterproof sheet laid in a waste disposal site. Used to detect water leakage due to sheet damage.

廃棄物処分場の漏水検知システムとして、下記の特許文献1には、上下2枚の遮水シート間に多数の漏水検知電極を所定の間隔で網目配置したものにおいて、上記の漏水検知電極を内接させて挟持もしくは内包した半導電材を挟設することが開示され、この半導電材として、導電性を有する不織布やクッション材、金属メッキを施した繊維で製造された導電布を用いることが例示されている。
特開2000−202392号公報
As a water leakage detection system for a waste disposal site, the following Patent Document 1 discloses that a plurality of water leakage detection electrodes are arranged at a predetermined interval between two upper and lower water shielding sheets. It is disclosed that a semiconductive material sandwiched or encased in contact is sandwiched, and as this semiconductive material, a conductive non-woven fabric or cushion material, or a conductive cloth made of a metal-plated fiber is used. Illustrated.
JP 2000-202392 A

一方、導電性不織布として、ポリエステル繊維やポリプロピレン繊維等の汎用繊維に導電性の炭素繊維または銅メッキ繊維を混入することが知られている。例えば、下記の特許文献2には、ポリアクリロニトリル系炭素繊維75〜97質量%、セルロース25〜3質量%からなる導電性不織布が開示されている。しかしながら、産業廃棄物処分場の遮水シート間に挟設させる不織布は、産業廃棄物処分場という使用条件が厳しい場所での長期使用に耐えるため、目付量1kg/m2、厚さ10mm程度の丈夫なものが要求され、使用面積も一敷設当たり1万平方メートル以上の大規模なものが多いため、高価な炭素繊維を10%以上も混入することは経済的に許されなかった。
特開2004−353124号公報
On the other hand, as a conductive nonwoven fabric, it is known to mix conductive carbon fibers or copper-plated fibers into general-purpose fibers such as polyester fibers and polypropylene fibers. For example, Patent Document 2 below discloses a conductive nonwoven fabric composed of 75 to 97% by mass of polyacrylonitrile-based carbon fibers and 25 to 3% by mass of cellulose. However, the nonwoven fabric sandwiched between the water-impervious sheets at the industrial waste disposal site can withstand long-term use in an industrial waste disposal site where the conditions of use are severe, so that the basis weight is 1 kg / m 2 and the thickness is about 10 mm. It is not economically allowed to mix more than 10% of expensive carbon fiber because it is required to be durable and has a large use area of 10,000 square meters or more per laying.
JP 2004-353124 A

そして、炭素繊維を不織布中に均一に分散させ、不織布の導電性を各部で均一に揃えることが必要になるが、市販の炭素繊維は、数千本〜数万本の合成繊維フィラメントをストランド形態で炭化したのち収束剤で固められているため、不織布用として長さ50mm程度に切断してチョップドファイバーとした場合も開繊が困難であって、そのため、混入量を10%以下に少なく設定した際は均一分散が一層困難になっていた。なお、下記の特許文献3には、炭素繊維を均一に分散させるため、炭素繊維およびポリプロピレン繊維を個別に開繊したのち両者を混合し、しかるのち2度目の開繊を行なうことが開示されているが、この方法は、炭素繊維のチョップドファイバーを単独で開繊する際に炭素繊維が折損して短くなり、導電性が低下するので、漏水箇所検知用の導電性不織布には採用できない。
特開2004−43985号公報
And it is necessary to uniformly disperse the carbon fiber in the nonwoven fabric, and to uniformly arrange the conductivity of the nonwoven fabric in each part, but the commercially available carbon fibers are in the form of strands of thousands to tens of thousands of synthetic fiber filaments Since it is carbonized and then hardened with a sizing agent, it is difficult to open the fiber even if it is cut into a length of about 50 mm for a non-woven fabric to make a chopped fiber. Therefore, the mixing amount is set to 10% or less. In some cases, uniform dispersion became more difficult. In addition, in Patent Document 3 below, in order to uniformly disperse the carbon fiber, it is disclosed that the carbon fiber and the polypropylene fiber are separately opened, then both are mixed, and then the second opening is performed. However, this method cannot be used for a conductive nonwoven fabric for detecting a water leakage location because the carbon fiber breaks and shortens when the chopped fiber of the carbon fiber is opened alone, resulting in a decrease in conductivity.
JP 2004-43985 A

この発明は、合成繊維を主体とし、炭素繊維の混率が10%以下の不織布であって、しかも炭素繊維が均一に分散して電気伝導度が各部で均一であり、例えば産業廃棄物処分場における遮水シートの漏水箇所検知に使用することが可能な導電性不織布を通常の不織布製造工程で製造することを可能にするものである。 The present invention is a non-woven fabric mainly composed of synthetic fibers and having a carbon fiber mixing ratio of 10% or less, and the carbon fibers are uniformly dispersed and the electric conductivity is uniform in each part. For example, in an industrial waste disposal site It is possible to manufacture a conductive nonwoven fabric that can be used for detecting a water leakage location of a water shielding sheet in a normal nonwoven fabric manufacturing process.

この発明に係る導電性不織布の製法は、炭素繊維のチョップドファイバーとポリエステル繊維やポリプロピレン繊維など汎用合成繊維のステープルとを1/99〜10/90の質量比で混合し、開繊して得られた複数枚のカードウエッブを積層し、ニードルパンチ法で予備パンチを施し、この予備パンチで得られたプレパンラップの1枚または複数枚の積層体にニードルパンチ法で仕上げパンチを施す導電性不織布の製法において、上記の予備パンチで得られたプレパンラップ上で所定距離だけ離れた2点間の電気抵抗を測定し、その測定値が所定範囲にあるプレパンラップを次工程に送って仕上げパンチを施すことを特徴とする。 The process for producing a conductive nonwoven fabric according to the present invention is obtained by mixing chopped fibers of carbon fibers and staples of general-purpose synthetic fibers such as polyester fibers and polypropylene fibers at a mass ratio of 1/99 to 10/90 and opening the fibers. A conductive nonwoven fabric in which a plurality of card webs are laminated, subjected to preliminary punching by a needle punch method, and finish punching is performed by needle punching on one or a plurality of laminates of pre-pan wrap obtained by this preliminary punching In this manufacturing method, the electrical resistance between two points separated by a predetermined distance on the pre-bread wrap obtained by the preliminary punch is measured, and the pre-bread wrap whose measured value is within the predetermined range is sent to the next process and finished. It is characterized by punching.

この発明で用いる炭素繊維は、繊維径5〜10μm、長さ30〜80mmのものであり、その数千本〜数万本が収束剤で固められた市販のチョップドファイバーの形態で用いられる。このチョップドファイバーは、メーカーや用途による収束剤の質や使用量によって開繊の容易さ、すなわちばらけて繊維1本ずつに分離し綿状に広がる性質に差があるが、プレパンラップに加工した段階で、該プラパンラップの電気抵抗を測定することにより、仕上げパンチして得られる製品不織布の導電性を予測することができ、同時に開繊が十分か否かを知ることができる。すなわち、チョップドファイバーがばらけ易く、その開繊が容易な場合は、不織布中に炭素繊維が均一に分散して不織布の導電性が良好になり、反対にチョップドファイバーがばらけ難く、開繊が困難な場合は、チョップドファイバーが十分に開繊されずに残ることにより、炭素繊維の偏りが生じて製品不織布の導電性が低下する。 The carbon fiber used in the present invention has a fiber diameter of 5 to 10 μm and a length of 30 to 80 mm, and is used in the form of a commercially available chopped fiber in which thousands to tens of thousands of fibers are hardened with a sizing agent. This chopped fiber is easy to open depending on the quality and amount of sizing agent used by the manufacturer and application. At this stage, by measuring the electric resistance of the plastic pan wrap, the conductivity of the product nonwoven fabric obtained by finish punching can be predicted, and at the same time, it can be known whether or not the fiber opening is sufficient. In other words, when the chopped fiber is easy to disperse and its opening is easy, the carbon fiber is uniformly dispersed in the non-woven fabric to improve the conductivity of the non-woven fabric. When it is difficult, the chopped fiber is left unopened sufficiently, and the carbon fiber is biased to reduce the conductivity of the product nonwoven fabric.

したがって、チョップドファイバーと汎用の合成繊維ステープルとをラチスコンベヤー上に所定の混率で供給し、開繊してカードウエッブを製造し、得られたカードウエッブの複数枚を積層し、予備パンチを施してプレパンラップとし、このプレパンラップの電気抵抗を測定し、その測定値が所定範囲にあるプレパンラップを用い、これに仕上げパンチを施すことにより、所望の導電性を備えた不織布が得られる。そして、上記プレパンラップにおけるニードルパンチの針密度は、予備パンチの分だけで、仕上げパンチを施したものに比して著しく低いので、上記の電気抵抗が所定範囲から外れたプレパンラップは、前工程に戻して再開繊を行い、再びカードウエッブに加工し、これを積層してプレパンラップとすることができる。他方、仕上げパンチを施した後は、予備パンチに仕上げパンチが加わり、かつ仕上げパンチが表裏両面から行なわれて針密度が大幅に上昇し、繊維同士が強固に交絡しているため、製品不織布の導電性が不足したからといって、これを前工程に戻して再開繊を行っても、炭素繊維の損傷が多くなって導電性が更に低下し、そのため再開繊による再利用は不可能である。 Therefore, chopped fibers and general-purpose synthetic fiber staples are supplied onto a lattice conveyor at a predetermined mixing ratio, opened to produce a card web, and a plurality of the obtained card webs are laminated and pre-punched. A non-woven fabric having a desired conductivity can be obtained by measuring the electrical resistance of the pre-pan wrap and using the pre-pan wrap having a measured value in a predetermined range and applying a finishing punch to the pre-pan wrap. . And the needle density of the needle punch in the pre-pan wrap is remarkably low compared to the one subjected to the finish punch only for the preliminary punch, so the pre-pan wrap whose electric resistance is out of the predetermined range is It is possible to return to the previous process, perform re-fibering, process it into a card web again, and laminate it to make a pre-pan wrap. On the other hand, after the finishing punch is applied, the finishing punch is added to the preliminary punch, and the finishing punch is performed from both the front and back surfaces, the needle density is greatly increased, and the fibers are strongly entangled. Even if the conductivity is insufficient, even if it is returned to the previous process and resumed, the carbon fiber is damaged more and the conductivity is further reduced. Therefore, reuse by the resumed fiber is impossible. .

この発明では、炭素繊維と汎用繊維の混合比が質量比で1/99〜10/90、好ましくは1/99〜5/95に設定される。この質量比が1/99未満では導電性が不足し、また10/90を超えると、導電性が過度になり易く、かつ廃棄物処分場の漏水箇所検知用としては経済的でなくなる。そして、上記の炭素繊維および汎用繊維は、上記の比率でラチスコンベヤー上に供給することにより混合し、しかるのち通常の開繊装置、好ましくはフェアノートを用いた通常の開繊装置で開繊し、ホッパーフィーダー経由でカードに送ってカードウエッブとし、このカードウエッブの20〜40枚を積層し、ニードルパンチ法で予備パンチを施してプレパンラップを得る。このプレパンラップの目付量は150〜400g/m2 が好ましく、また予備パンチの針密度は、10〜30本/cm2が好ましい。 In the present invention, the mixing ratio of the carbon fiber and the general-purpose fiber is set to 1/99 to 10/90, preferably 1/99 to 5/95 by mass ratio. If this mass ratio is less than 1/99, the conductivity is insufficient, and if it exceeds 10/90, the conductivity tends to be excessive, and it is not economical for detecting a leaking point in a waste disposal site. Then, the carbon fiber and the general-purpose fiber are mixed by feeding on the lattice conveyor at the above ratio, and then opened by a normal opening device, preferably a normal opening device using a fair note. Then, it is sent to a card via a hopper feeder to form a card web, and 20 to 40 card webs are stacked, and a preliminary punch is applied by a needle punch method to obtain a pre-pan wrap. The basis weight of the pre-pan wrap is preferably 150 to 400 g / m 2 , and the needle density of the preliminary punch is preferably 10 to 30 / cm 2 .

この発明では、前記のとおり、プレパンラップの電気抵抗を測定し、その測定値で選択されたプレパンラップを次工程に送り、その1枚を用い、または所定枚数を積層し、しかるのちニードルパンチ法による仕上げパンチを施して製品化する。この場合、製品となる不織布の目付量は用途に応じて適宜に設定されるが、前記遮水シートの漏水箇所検知を目的とする場合の目付量は、0.3〜2kg/m2が好ましく、その厚さは3〜20mmが好ましい。また、仕上げパンチは、表と裏の両側からそれぞれ針密度10〜30本/cm2で行なうのが好ましく、この針密度が不足した場合は不織布が強力不足となり、反対に過剰の場合は炭素繊維の損傷原因となる。そして、前記のとおりプレパンラップとして電気抵抗が100〜1500Ωのものを選択し、これを1枚用い、または複数枚を積層し、仕上げパンチを施して製品化した場合、得られた導電性不織布の電気抵抗は、プレパンラップと同様の方法で測定したとき、測定値が所望の抵抗値50〜900Ωに収まり、市場の要求を満たすことが確認された。 In the present invention, as described above, the electrical resistance of the pre-pan wrap is measured, and the pre-pan wrap selected by the measured value is sent to the next process, and one of them is used or a predetermined number of layers are laminated, and then the needle Finished by punching and commercialized. In this case, the basis weight of the nonwoven fabric to be the product is set as appropriate according to the use, but the basis weight for the purpose of detecting the water leakage location of the water shielding sheet is preferably 0.3 to 2 kg / m 2. The thickness is preferably 3 to 20 mm. The finishing punch is preferably performed at a needle density of 10 to 30 needles / cm 2 from both the front and back sides. When the needle density is insufficient, the nonwoven fabric is insufficient in strength. Cause damage. And as mentioned above, when a pre-pan wrap having an electric resistance of 100 to 1500 Ω is selected and one sheet is used, or a plurality of sheets are laminated and finished punched to produce a product, the resulting conductive nonwoven fabric is obtained. It was confirmed that when the electrical resistance was measured by a method similar to that of pre-pan wrap, the measured value was within a desired resistance value of 50 to 900 Ω and satisfied the market demand.

なお、前記市販のチョップドファイバーは、開繊の容易なものを選択して用いることができ、その場合は、開繊不十分で導電性が不足するプレパンラップの発生割合が大幅に減少し、プレパンラップの生産性が向上する。ただし、この選択基準に合格するチョップドファイバーのみを用いる必要はなく、この選択基準から外れるチョップドファイバーであっても、前記プレパンラップの電気抵抗が所定範囲に入る限度内で混用が可能である。 In addition, the commercially available chopped fiber can be used by selecting a fiber that is easy to open, in which case the occurrence rate of pre-pan wrap that is insufficient in opening and insufficient in conductivity is greatly reduced, Prepan wrap productivity is improved. However, it is not necessary to use only chopped fibers that pass this selection criterion, and even chopped fibers that deviate from this selection criterion can be mixed within the limits where the electrical resistance of the pre-pan wrap falls within a predetermined range.

上記の開繊容易なチョップドファイバーの選択方法は任意であり、チョップドファイバー、すなわち数千本〜数万本の炭素繊維ステープルが平行に揃えられ収束剤で固められた棒状の炭素繊維束を指でつまんで転がすことによりばらけさせ、その広がり幅で判定する方法、平板上に置いたチョップドファイバーに丸棒を交差状に重ね、所定圧を加えながら転がしてばらけさせ、広がり幅で判定する方法、または所定容積の容器に上記炭素繊維のチョップドファイバーを所定量投入し、所定圧力の圧縮空気を所定寸法のパイプから所定時間吹付けることにより開繊させ、綿状化して見かけ体積を増大させ、この見かけ体積から判定する方法等が例示されるが、本件発明者の実験によれば、圧縮空気を吹付ける方法が個人差による誤差が少なく、再現性に優れる点で好ましい。 The method for selecting the chopped fiber that is easy to open is arbitrary, and a chopped fiber, that is, a rod-like carbon fiber bundle in which several thousand to several tens of thousands of carbon fiber staples are aligned in parallel and hardened with a sizing agent, is fingered. A method of judging by the spread width by pinching and rolling, a method of overlapping round bars on chopped fibers placed on a flat plate, rolling them while applying a predetermined pressure, and judging by the spread width Or, a predetermined amount of the chopped fiber of carbon fiber is put into a container of a predetermined volume, the compressed air of a predetermined pressure is blown from a pipe of a predetermined size for a predetermined time, and the fiber is made into a cotton to increase the apparent volume, The method of judging from this apparent volume is exemplified, but according to the experiment of the present inventors, the method of blowing compressed air has few errors due to individual differences, Preferable from the viewpoint of excellent current property.

上記の圧縮空気を吹付ける方法としては、容量1Lのフラスコに2gの炭素繊維チョップドファイバーを投入し、このフラスコに内径4mm、長さ30cmのパイプを差し込み、このパイプから圧力0.1MPaの圧縮空気を上記のチョップドファイバーに1秒間吹き付けて上記のチョップドファイバーをばらけさせ、開繊して見掛け体積を増大させ、この見掛け体積で判定する方法(以下、「判定法A」という)が好ましい。そして、この見掛け体積の選択基準は、50cc以上、好ましくは80cc以上、最も好ましくは100cc以上に設定される。見掛け体積が50ccに満たない場合は、通常の開繊工程では十分な開繊ができず、そのためプレパンラップに加工した際、炭素繊維の混率10%以下では所望の導電性が得られない。 As a method of blowing the compressed air, 2 g of carbon fiber chopped fiber is put into a 1 L flask, and a pipe having an inner diameter of 4 mm and a length of 30 cm is inserted into the flask. Is preferably sprayed onto the chopped fiber for 1 second to disperse the chopped fiber, and the fiber is opened to increase the apparent volume, and the determination based on the apparent volume (hereinafter referred to as “determination method A”) is preferable. The apparent volume selection criterion is set to 50 cc or more, preferably 80 cc or more, and most preferably 100 cc or more. When the apparent volume is less than 50 cc, sufficient opening cannot be performed in a normal opening process. Therefore, when processed into a pre-pan wrap, desired conductivity cannot be obtained at a carbon fiber mixing ratio of 10% or less.

また、この発明では、前記の予備パンチで得られたプレパンラップ上で所定距離だけ離れた2点間の電気抵抗を測定し、その測定値が所定範囲にあるプレパンラップを選択して使用する。具体的には、上記のプレパンラップを絶縁板上に重ね、このプレパンラップ上に2枚の板状電極を所定間隔で置き、この2枚の電極間の電気抵抗を測定するが、電極の面積が小さい場合は、炭素繊維の長さのバラツキをカバーできず、測定誤差が大きくなり、反対に大きい場合は、電極板が重くなり、取扱いが不便になる。また、軽い場合は不織布との面接触が不十分となり、測定値が安定せず、重い場合は取扱いが不便となる。そして、電極板の間隔が狭いと測定値のバラツキが大きくなり、反対に広いとサンプルが大きくなり無駄になる。 In the present invention, the electrical resistance between two points separated by a predetermined distance is measured on the pre-pan wrap obtained by the preliminary punch, and the pre-pan wrap whose measured value is within the predetermined range is selected and used. To do. Specifically, the above pre-pan wrap is overlaid on an insulating plate, two plate-like electrodes are placed on the pre-pan wrap at a predetermined interval, and the electrical resistance between the two electrodes is measured. If the area is small, the variation in the length of the carbon fibers cannot be covered, and the measurement error becomes large. On the other hand, if the area is large, the electrode plate becomes heavy and handling becomes inconvenient. In addition, when the surface is light, the surface contact with the nonwoven fabric is insufficient, the measured value is not stable, and when it is heavy, handling is inconvenient. If the distance between the electrode plates is narrow, the variation in the measured value becomes large. On the other hand, if the distance is wide, the sample becomes large and wasted.

特に産業廃棄物処分場に敷設される遮水シートの漏水箇所検知を目的とする場合は、上記の電極としてステンレス鋼板からなる直径100mm、質量600gの電極を用い、この2枚の電極の間隔を1mに設定する方法(以下、「判定法B」という)が好ましく、この場合は測定値のバラツキが少なく、判定が容易である。また、ステンレス鋼板は、表面が錆び難く、測定のバラツキが小さい点で好ましい。そして、上記の目的に用いるプレパンラップの電気抵抗による判定基準は、100〜1500Ω、好ましくは200〜900Ωに設定される。上記の電気抵抗が100Ω未満または1500Ω超の場合は、市場要求を満たす製品不織布を得ることが困難になる。 In particular, for the purpose of detecting the leak location of a water shielding sheet laid in an industrial waste disposal site, an electrode having a diameter of 100 mm and a mass of 600 g made of a stainless steel plate is used as the above electrode, and the distance between the two electrodes is set to be the same. A method of setting to 1 m (hereinafter referred to as “determination method B”) is preferable. In this case, there is little variation in measured values, and determination is easy. Further, the stainless steel plate is preferable in that the surface hardly rusts and the measurement variation is small. And the criterion based on the electrical resistance of the pre-pan wrap used for the above purpose is set to 100 to 1500Ω, preferably 200 to 900Ω. When the electrical resistance is less than 100Ω or more than 1500Ω, it is difficult to obtain a product nonwoven fabric that satisfies market requirements.

この発明に係る導電性不織布の製法は、炭素繊維として市販のチョップドファイバーを用いながら、その混率を1〜10%と低くし、しかも産業廃棄物処分場における遮水シートの漏水箇所検知用として好適な導電性不織布を製造することができる。また、プレパンラップの電気抵抗測定で除外されたプレパンラップは前工程に戻し、再開繊して利用することが可能であるため、炭素繊維を含む繊維原料の無駄が生じない。特に請求項2に係る発明は、開繊の不十分により導電性が不足するプレパンラップの発生割合が大幅に減少し、プレパンラップの生産性が向上する。また、請求項3に係る発明は、上記チョップドファイバーの開繊性を能率的に、かつ正確に判定しながら導電性不織布を製造することができる。また、請求項4に係る発明は、産業廃棄物処分場における遮水シートの漏水箇所を検知するのに必要な導電性を効率的に判定しながら導電性不織布を製造することができる。 The method for producing a conductive nonwoven fabric according to the present invention is suitable for detecting a leak location of a water shielding sheet in an industrial waste disposal site while using a commercially available chopped fiber as a carbon fiber and reducing the mixing ratio to 1 to 10%. A conductive non-woven fabric can be produced. In addition, since the pre-pan wrap excluded in the measurement of the electrical resistance of the pre-pan wrap can be returned to the previous step and resumed and used, there is no waste of fiber raw materials including carbon fibers. In particular, in the invention according to claim 2, the generation ratio of the pre-pan wrap whose conductivity is insufficient due to insufficient opening is greatly reduced, and the productivity of the pre-pan wrap is improved. Moreover, the invention which concerns on Claim 3 can manufacture an electroconductive nonwoven fabric, determining the opening property of the said chopped fiber efficiently and correctly. Moreover, the invention which concerns on Claim 4 can manufacture an electroconductive nonwoven fabric, determining the electroconductivity required in order to detect the water leak location of the water shielding sheet in an industrial waste disposal site efficiently.

炭素繊維(繊維径5〜10μm、長さ30〜80mm)の数千本〜数万本からなる市販のチョップドファイバーから開繊性の良好なチョップドファイバーを前記の判定法Aによって選択する。そして、この判定法Aで合格したチョップドストランドとポリエステル繊維またはポリプロピレン繊維のステープル(繊度1〜10d、繊維長30〜100mm)とを1/99〜10/90、好ましくは1/99〜5/95の質量比でラチスコンベヤーに供給し、フェアノートを用いた通常の開繊工程を通し、ホッパーフィーダー経由でカードに供給し、得られたカードウエッブ20〜40枚を積層し、ニードルパンチ法で針密度10〜30本/cm2の予備パンチを施し、目付量150〜400g/m2のプレパンラップを作る。次いで、上記プレパンラップの電気抵抗を前記の判定法Bで測定し、この判定法Bで合格したプレパンラップの1枚を直に、または2〜6枚を重ねてニードルパンチ機に供給し、表と裏からそれぞれ針密度10〜30本/cm2の仕上げパンチを施し、目付量0.3〜2.0kg/m2、厚さ3〜20mmの導電性不織布を製造する。 A chopped fiber having a good opening property is selected from the commercially available chopped fibers composed of thousands to tens of thousands of carbon fibers (fiber diameter: 5 to 10 μm, length: 30 to 80 mm) by the determination method A. Then, the chopped strand and the polyester fiber or polypropylene fiber staple (fineness of 1 to 10 d, fiber length of 30 to 100 mm) that have passed this judgment method A are 1/99 to 10/90, preferably 1/99 to 5/95. Is supplied to a lattice conveyor at a mass ratio of 1, through a normal opening process using a fair note, supplied to a card via a hopper feeder, 20 to 40 obtained card webs are stacked, and needles are formed by a needle punch method. A preliminary punch with a density of 10 to 30 pieces / cm 2 is applied to prepare a pre-pan wrap with a basis weight of 150 to 400 g / m 2 . Next, the electrical resistance of the pre-pan wrap is measured by the above-described determination method B, and one of the pre-pan wraps that has passed the determination method B is supplied directly to the needle punch machine, or 2 to 6 sheets are stacked. A finish punch having a needle density of 10 to 30 / cm 2 is applied from the front and back, respectively, to produce a conductive nonwoven fabric having a basis weight of 0.3 to 2.0 kg / m 2 and a thickness of 3 to 20 mm.

実施例1
アクリル系炭素繊維(繊維径:7μm、繊維長:50mm)の12000本からなる市販のチョップドファイバーから、1ロットに付き2gの割合いで試料を採取し、この試料の開繊性を前記の判定法Aで試験し、見掛け体積110ccのロットを選択した。得られた炭素繊維のチョップドファイバーとポリエステル繊維ステープル(繊度:3d、繊維長:51mm)とを2/98の質量比でラチスコンベヤー上に供給し、フェアノートを含む通常の開繊工程に通し、ホッパーフィーダー経由でカード機にかけ、得られたカードウエッブを28枚積層し、ニードルパンチ機にかけて針密度28本/cm2の予備パンチを施し、目付け量340g/m2のプレパンラップを作った。このプレパンラップの電気抵抗を前記の判定法Bで測定したところ、抵抗値は480Ωであった。
Example 1
A sample is collected from a commercially available chopped fiber consisting of 12,000 acrylic carbon fibers (fiber diameter: 7 μm, fiber length: 50 mm) at a rate of 2 g per lot, and the openability of this sample is determined according to the above-described determination method. Tested with A, a lot with an apparent volume of 110 cc was selected. The obtained chopped fiber of carbon fiber and polyester fiber staple (fineness: 3d, fiber length: 51 mm) are supplied onto a lattice conveyor at a mass ratio of 2/98, and passed through a normal opening process including a fair note. The resulting card web was put on a card machine via a hopper feeder, 28 sheets were laminated, and pre-punched with a needle density of 28 needles / cm 2 by a needle punch machine to make a pre-pan wrap with a basis weight of 340 g / m 2 . When the electrical resistance of this pre-pan wrap was measured by the above-mentioned determination method B, the resistance value was 480Ω.

次いで、上記のプレパンラップを4枚重ね、ニードルパンチ法で表裏それぞれから針密度22本/cm2の仕上げパンチを施し、目付け量1.2kg/m2、厚さ12mmの不織布を得た。この不織布の電気抵抗を上記の判定法Bで測定したところ、その抵抗値は85Ωであり、産業廃棄物処分場での漏水箇所検知システム用としての製品規格50〜900Ωに収まっていた。 Next, four pre-pan wraps were overlaid, and a finish punch having a needle density of 22 / cm 2 was applied from the front and back surfaces by the needle punch method, to obtain a nonwoven fabric having a basis weight of 1.2 kg / m 2 and a thickness of 12 mm. When the electrical resistance of this nonwoven fabric was measured by the above-mentioned determination method B, the resistance value was 85Ω, which was within the product standard of 50 to 900Ω for a water leakage point detection system in an industrial waste disposal site.

実施例2
上記の実施例1において、炭素繊維のチョップドファイバーとして、判定法Aによる1秒後の見掛け体積が55ccのものを用いる以外は、実施例1と同様にして実施例2の不織布を製造した。この実施例2は、判定法Bによるプレパンラップの電気抵抗が620Ωであり、また製品不織布の抵抗値が140Ωであり、製品規格に合格していた。
Example 2
In Example 1 described above, the nonwoven fabric of Example 2 was manufactured in the same manner as Example 1 except that a chopped fiber of carbon fiber having an apparent volume of 55 cc after 1 second according to Determination Method A was used. In Example 2, the electrical resistance of the pre-pan wrap according to the determination method B was 620Ω, and the resistance value of the product nonwoven fabric was 140Ω, which passed the product standard.

比較例1
上記の実施例1において、炭素繊維のチョップドファイバーとして、判定法Aによる1秒後の見掛け体積が20ccのものを用いる以外は、実施例1と同様にして比較例1の不織布を製造した。この比較例1は、判定法Bによるプレパンラップの電気抵抗が3680Ωと著しく大きく、また製品不織布の抵抗値が1030Ωとなり、製品規格を超えていた。
Comparative Example 1
In the above Example 1, a nonwoven fabric of Comparative Example 1 was produced in the same manner as in Example 1 except that a carbon fiber chopped fiber having an apparent volume of 20 cc after 1 second according to the determination method A was used. In Comparative Example 1, the electrical resistance of the pre-pan wrap according to the determination method B was remarkably large as 3680Ω, and the resistance value of the product nonwoven fabric was 1030Ω, which exceeded the product standard.

比較例2
前記の実施例1において、良好な開繊を得るため開繊工程にガーネットタイプを用い、繊維に強い力を加えながら開繊してカードウエッブを製造する以外は、実施例1と同じ繊維と同じ方法で比較例2の不織布を製造した。この場合は、開繊時に炭素繊維の折損が生じ、そのため判定法Bによる電気抵抗は4450Ωとなり、所定範囲を大幅に超え、また不織布の電気抵抗は1140Ωとなり、これも製品規格を超えていた。


Comparative Example 2
In Example 1 above, the same fiber as in Example 1 except that a garnet type is used for the opening process in order to obtain good opening, and the card web is manufactured by opening the fiber while applying a strong force to the fiber. The nonwoven fabric of Comparative Example 2 was produced by the method. In this case, breakage of the carbon fiber occurred at the time of opening, so that the electric resistance according to the determination method B was 4450Ω, significantly exceeding the predetermined range, and the electric resistance of the nonwoven fabric was 1140Ω, which also exceeded the product standard.


Claims (4)

炭素繊維のチョップドファイバーとポリエステル繊維やポリプロピレン繊維など汎用合成繊維のステープルとを1/99〜10/90の質量比で混合し、開繊して得られた複数枚のカードウエッブを積層し、ニードルパンチ法で予備パンチを施し、この予備パンチで得られたプレパンラップの1枚または複数枚の積層体にニードルパンチ法で仕上げパンチを施す導電性不織布の製法において、上記の予備パンチで得られたプレパンラップ上で所定距離だけ離れた2点間の電気抵抗を測定し、その測定値が所定範囲にあるプレパンラップを次工程に送って仕上げパンチを施すことを特徴とする導電性不織布の製法。 A chopped fiber of carbon fiber and staples of general-purpose synthetic fibers such as polyester fiber and polypropylene fiber are mixed at a mass ratio of 1/99 to 10/90, and a plurality of card webs obtained by opening are laminated and needles In the manufacturing method of a conductive nonwoven fabric, a preliminary punch is applied by a punch method, and a finish punch is applied by a needle punch method to one or a plurality of laminates of the pre-pan wrap obtained by the preliminary punch. A conductive nonwoven fabric characterized by measuring electrical resistance between two points separated by a predetermined distance on a pre-prepared wrap and sending a pre-pun wrap having the measured value within a predetermined range to the next process to perform a finishing punch The manufacturing method. 炭素繊維のチョップドファイバーと汎用合成繊維のステープルとを混合するに先立ち、上記炭素繊維のチョップドファイバーとして開繊が容易なものを選択し、この選択で得られた炭素繊維のチョップドファイバーを上記汎用合成繊維のステープルと混合する請求項1記載の導電性不織布の製法。 Prior to mixing the chopped fiber of carbon fiber and the staple of general-purpose synthetic fiber, the above-mentioned carbon fiber chopped fiber that is easy to open is selected, and the carbon fiber chopped fiber obtained by this selection is combined with the above-mentioned general-purpose synthesis The process for producing a conductive nonwoven fabric according to claim 1, wherein the conductive nonwoven fabric is mixed with fiber staples. 炭素繊維のチョップドファイバーとして開繊が容易なものを選択する手段が、所定容積の容器に上記炭素繊維のチョップドファイバーを所定量投入し、所定圧力の圧縮空気を所定寸法のパイプから所定時間吹付けて見かけ体積を増大させ、この見かけ体積を測定することからなる請求項2記載の導電性不織布の製法。 A means for selecting a carbon fiber chopped fiber that can be easily opened is charged into a container of a predetermined volume with a predetermined amount of the above-mentioned carbon fiber chopped fiber, and compressed air of a predetermined pressure is sprayed from a pipe of a predetermined size for a predetermined time. The method for producing a conductive nonwoven fabric according to claim 2, comprising increasing the apparent volume and measuring the apparent volume. プレパンラップの電気抵抗が、絶縁板上に重ねたプレパンラップの上にステンレス鋼板からなる直径100mm、質量600gの電極2枚を1mの間隔で置いて測定され、この測定値が100〜1500Ωのプレパンラップが次工程に送られる請求項1ないし3のいずれかに記載の導電性不織布の製法。


The electrical resistance of the pre-pan wrap was measured by placing two electrodes of 100 mm in diameter and 600 g in mass on the pre-pan wrap stacked on the insulating plate at an interval of 1 m, and this measured value was 100-1500Ω. The method for producing a conductive nonwoven fabric according to any one of claims 1 to 3, wherein the pre-pan wrap is sent to the next step.


JP2005209341A 2005-07-20 2005-07-20 Manufacturing method of conductive nonwoven fabric Expired - Fee Related JP4353926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209341A JP4353926B2 (en) 2005-07-20 2005-07-20 Manufacturing method of conductive nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209341A JP4353926B2 (en) 2005-07-20 2005-07-20 Manufacturing method of conductive nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2007023440A true JP2007023440A (en) 2007-02-01
JP4353926B2 JP4353926B2 (en) 2009-10-28

Family

ID=37784584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209341A Expired - Fee Related JP4353926B2 (en) 2005-07-20 2005-07-20 Manufacturing method of conductive nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4353926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538997A (en) * 2010-09-08 2013-10-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Leakage detection device and coating of fluid transportation or storage member including leakage detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012014612A (en) * 2010-11-03 2013-02-07 Sgl Carbon Se Reinforced nonwoven fabric.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538997A (en) * 2010-09-08 2013-10-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Leakage detection device and coating of fluid transportation or storage member including leakage detection device
US9304056B2 (en) 2010-09-08 2016-04-05 Commisariat A L'energie Atomique Et Aux Energies Alternatives Leak detection device, and coating intended for a fluid transport or storage member and comprising said detection device
JP2016148456A (en) * 2010-09-08 2016-08-18 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Leakage detection device, duct and method using leakage detection device

Also Published As

Publication number Publication date
JP4353926B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
EP1328947B1 (en) Conductive nonwoven
JP6364771B2 (en) Carbon fiber nonwoven fabric and gas diffusion electrode of polymer electrolyte fuel cell using the same, polymer electrolyte fuel cell, method for producing carbon fiber nonwoven fabric and composite sheet
CN105401334A (en) Preparation method of needle punched non-woven fabric
KR20170124553A (en) Laminated nonwoven fabric
CN106003934B (en) A kind of anti-electrostatic nano fibrous nonwoven material and preparation method
JP2011144473A (en) Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material
CN107004810A (en) Battery separator with controlled pore structure
WO2020169116A1 (en) Method for dry preparation of vacuum insulation panel core
JP3152748U (en) Carbon nonwoven fabric
JP4353926B2 (en) Manufacturing method of conductive nonwoven fabric
KR102231590B1 (en) Method of manufacturing aerogel blanket and aerogel and produced aerogel blanket
US20080124993A1 (en) Heat and flame resistant fiber product and process for making same
CN101492895A (en) Carbon fibre cloth for gaseous diffusion layer of fuel cell electrode
EP3086384B1 (en) Tubular bags of the cartridge belt type for lead-acid batteries made from a textile sheet fabric
JPWO2013179891A1 (en) Carbon fiber composite material
JP2008144290A (en) Polyketone paper and separator
KR20220130052A (en) Machine and method for preparing fibrous web, fibrillar fiber aggregate or nonwoven fabric, and fibrous web, fibrillar fiber aggregate or nonwoven fabric prepared thereby
CN114481439A (en) Production process of basalt long-crystal fiber needled felt
KR102135198B1 (en) Manufacturing system and method of the Oxi-PAN felt for graphite electrode
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP7293823B2 (en) Fiber-reinforced composite material and manufacturing method thereof
CN106739196A (en) Composite earthwork cloth and preparation method thereof and manufacturing equipment
CN102995294A (en) Manufacturing method of antistatic needle fabric
CN103182801A (en) Method for manufacturing honeycomb core filled with fibrofelt by using textile wastes
CN107385620A (en) A kind of antistatic Woven filter cloth and its manufacture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Effective date: 20090525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120807

A521 Written amendment

Effective date: 20090701

Free format text: JAPANESE INTERMEDIATE CODE: A523

LAPS Cancellation because of no payment of annual fees