JP2007023246A - New silicon-containing compound and method for producing the same - Google Patents

New silicon-containing compound and method for producing the same Download PDF

Info

Publication number
JP2007023246A
JP2007023246A JP2005231311A JP2005231311A JP2007023246A JP 2007023246 A JP2007023246 A JP 2007023246A JP 2005231311 A JP2005231311 A JP 2005231311A JP 2005231311 A JP2005231311 A JP 2005231311A JP 2007023246 A JP2007023246 A JP 2007023246A
Authority
JP
Japan
Prior art keywords
group
silicon
compound
containing compound
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231311A
Other languages
Japanese (ja)
Inventor
Toshiaki Murai
利昭 村井
Yasuyuki Kato
安幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E BRAIN KK
Gifu University NUC
Original Assignee
E BRAIN KK
Gifu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E BRAIN KK, Gifu University NUC filed Critical E BRAIN KK
Priority to JP2005231311A priority Critical patent/JP2007023246A/en
Publication of JP2007023246A publication Critical patent/JP2007023246A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new compound that is a silicon-containing compound containing an amino group or an amide group in the same molecule, has a long carbon chain length to bond nitrogen to silicon and contains an aromatic group or a heteroaromatic group as a third functional group at the side chain and to provide a method for producing the same. <P>SOLUTION: The silicon-containing compound is represented by general formula (1) [A and X are each independently hydrogen, a 1-18C acyclic hydrocarbon group which may be substituted or a polymerizable group selected from a (meth)acryloyl group, an aryl group, a propargyl group, a (meth)acrylic acid hydroxyalkyl group, a (meth)acrylic acid alkyl group and the like; Ar is a group selected from an aryl group, an alkoxycarbonyl group, a silyl group and a vinyl group; n is an integer of 3-10; X<SB>1</SB>, X<SB>2</SB>and X<SB>3</SB>are each independently a methyl group, a trimethylsiloxy group or an organosiloxy group containing ≤18 silicon atoms]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規シリコン含有化合物に関する。さらに詳しくは、同一分子内にアミノ基またはアミド基を有しさらに好適には芳香族基、ヘテロ芳香族基を有するシリコン含有化合物およびその製造方法に関する。  The present invention relates to a novel silicon-containing compound. More specifically, the present invention relates to a silicon-containing compound having an amino group or an amide group in the same molecule, more preferably an aromatic group or a heteroaromatic group, and a method for producing the same.

シロキサン結合(Si−O)は結合間距離が長く、電子密度が低いこともあって、結合の回転が容易である。つまり、C−C鎖に比べ屈曲性に富み、柔軟であるといえる。典型的なジメチルポリシロキサン鎖の場合、ケイ素原子に2個のメチル基が結合して嵩高く、また比較的大きな振幅で振動することもあって、隣接分子が接近しにくい。つまり分子間の距離が大きく、分子間力の低さから、表面張力が小さく、また接触する面の性質によっては配向性を示す。これらの性質は消泡剤、離型剤、撥水剤、柔軟剤、各種のコーティング材料などとして広い応用をもっている。また分子の立体構造からガス、水蒸気の透過性が良く、医用、衣料材料などに利用されている(参考文献:シリコーンハンドブック、伊藤邦雄編、日刊工業新聞社、1990年)。  A siloxane bond (Si-O) has a long bond distance and a low electron density, so that the bond can be easily rotated. That is, it can be said that it is more flexible than the CC chain and is flexible. In the case of a typical dimethylpolysiloxane chain, two methyl groups are bonded to a silicon atom, which is bulky and vibrates with a relatively large amplitude, so that adjacent molecules are difficult to approach. That is, the intermolecular distance is large, the intermolecular force is low, the surface tension is small, and the orientation is exhibited depending on the nature of the contacting surface. These properties have wide application as antifoaming agents, mold release agents, water repellents, softeners, various coating materials and the like. In addition, it has good gas and water vapor permeability due to its three-dimensional structure, and is used for medical and clothing materials (Reference: Silicone Handbook, edited by Kunio Ito, Nikkan Kogyo Shimbun, 1990).

一方、アミノ基やアミド基の窒素原子は共有結合に関与しない不対電子の存在により極性を有し、極性の溶媒である水との親和性が高く、また、他の官能基たとえばシアノ基やカルボキシル基、水酸基などとの反応性が高い。そこで当該基を有する高分子は、接着剤や、金属・プラスチック・ガラスなどの表面親水化、親水性皮膜形成や防曇処理剤、繊維製品の吸湿性向上、毛髪用化粧料、マニキュアなどの皮膜形成物質として、あるいは、イオン選択電極に使用してバイオセンサーなどとして利用されている。  On the other hand, the nitrogen atom of an amino group or an amide group has polarity due to the presence of an unpaired electron that does not participate in a covalent bond, and has high affinity with water, which is a polar solvent, and other functional groups such as a cyano group and High reactivity with carboxyl group, hydroxyl group and the like. Therefore, polymers having such groups are adhesives, surface hydrophilization of metals, plastics, glass, etc., hydrophilic film formation and anti-fogging treatment agents, improved hygroscopicity of textile products, hair cosmetics, films for manicure, etc. It is used as a forming substance or as a biosensor by using it as an ion selective electrode.

近年、前記両方の物性を併せ持つ物質として、アミノ基またはアミド基を有するシリコン含有化合物が開発され、特に医療材料としてコンタクトレンズ、眼内レンズなどの眼用レンズ材料に用いられている(米国特許4,711,943号、特開平3−15019号、特開平11−326848号、特表2003−522227号など)。これらは、たとえばコンタクトレンズとして使用したときに必要な角膜への酸素供給を促進し、適度な水濡れ性、光学材料としての透明性および、生体適合性、耐脂質汚れ性などを目的として、シリコン含有化合物の有する酸素透過性、透明性、生体適合性と、アミド基の有する親水性、耐脂質汚れ性を発現するために、両者を一つの化合物中に有する単量体として使用したものである。  In recent years, a silicon-containing compound having an amino group or an amide group has been developed as a substance having both of the above physical properties, and particularly used as ophthalmic lens materials such as contact lenses and intraocular lenses as medical materials (US Pat. 711, 943, JP-A-3-15019, JP-A-11-326848, JP 2003-522227, etc.). These promote the supply of oxygen to the cornea when used as a contact lens, for example, for the purpose of moderate water wettability, transparency as an optical material, biocompatibility, lipid stain resistance, etc. In order to express the oxygen permeability, transparency, biocompatibility of the contained compound, the hydrophilicity of the amide group, and the lipid stain resistance, both are used as monomers in one compound. .

ところで、前記両方の物性を併せ持つ化合物の使用に際しては、一つの化合物中に両方の基を有する単量体を用いなくても、それぞれの基を有する単量体を適当な比率で配合して用いればよいとの考え方もある。しかし、シリコン含有単量体は上述したように撥水性が高く、極性を有するアミド基またはアミノ基含有単量体との相容性に問題があり、自ずと配合割合が制限される。また、両者を相容させるためには、他の単量体乃至有機溶媒を使用しなければ均一な混合系が得られないために、本来所望した特性が低下したり、透明な材料が得難くなってしまうという問題があった。  By the way, when using a compound having both of the above physical properties, it is possible to use a monomer having each group in an appropriate ratio without using a monomer having both groups in one compound. There is also an idea that it should be. However, as described above, the silicon-containing monomer has high water repellency and has a problem in compatibility with the polar amide group or amino group-containing monomer, and the blending ratio is naturally limited. Moreover, in order to make both compatible, since a uniform mixed system cannot be obtained unless other monomers or organic solvents are used, originally desired characteristics are deteriorated, and it is difficult to obtain a transparent material. There was a problem of becoming.

そこで、前記各公報に開示されるようなシリコン含有化合物の提案がなされているのである。これらの公報に提示された化合物においては、各官能基の特性をより明確に発現させるためには、ある程度両官能基の間に距離を持たせた方が、互いの官能基の電気的、構造的影響を受け難いという意味から望ましい。  Accordingly, silicon-containing compounds as disclosed in the above publications have been proposed. In the compounds presented in these publications, in order to express the characteristics of each functional group more clearly, it is better to have a certain distance between the two functional groups. It is desirable in the sense that it is not easily affected.

しかし、前記各公報には、炭素数1〜10のアルキレンを介して、アミド基(中の窒素)とシロキサン基(中のケイ素)とが結合した化合物が提示されてはいるが、その詳細な説明中で具体的に開示されている構造は、いずれも窒素とケイ素との間の炭素数が3(プロピレン)に限定された化合物の例示しかなく、実際にそれ以外の炭素数を有する化合物が具体的に開示されている文献は見あたらない。その理由は明確ではないが、商業的規模でその他の炭素数を介した化合物が合成できない事が、一番の理由と考えられる。  However, each of the above publications discloses a compound in which an amide group (nitrogen in it) and a siloxane group (silicon in it) are bonded via an alkylene having 1 to 10 carbon atoms. The structures specifically disclosed in the description are only examples of compounds in which the number of carbon atoms between nitrogen and silicon is limited to 3 (propylene). There is no document specifically disclosed. The reason for this is not clear, but the most likely reason is that it is not possible to synthesize compounds via other carbon numbers on a commercial scale.

さらにまた、前記以外の他の官能基、特に芳香族基、ヘテロ芳香族基を分子構造中に含有させることができれば、より応用範囲の広い化合物が得られる可能性が高くなることが期待される。  Furthermore, if other functional groups other than the above, particularly aromatic groups and heteroaromatic groups can be contained in the molecular structure, it is expected that the possibility of obtaining a compound with a wider application range is increased. .

米国特許4,711,943号  US Pat. No. 4,711,943 特開平3−15019号公報  Japanese Patent Laid-Open No. 3-15019 特開平11−326848号公報  Japanese Patent Laid-Open No. 11-326848 特表2003−522227号公報  Special table 2003-522227 gazette

本発明の目的は、前記従来技術に鑑みてなされたものであり、同一分子内にアミノ基またはアミド基を有するシリコン含有化合物であって、窒素とケイ素とを連結する炭素鎖長が長く、さらには第三の官能基として芳香族基、ヘテロ芳香族基を側鎖に有する新規な化合物およびその製造方法を提供することである。  The object of the present invention has been made in view of the above prior art, and is a silicon-containing compound having an amino group or an amide group in the same molecule, wherein the carbon chain length connecting nitrogen and silicon is long, and Is to provide a novel compound having an aromatic group or heteroaromatic group in the side chain as a third functional group, and a method for producing the same.

そして、本発明にあっては上記課題を解決するために鋭意検討を行った結果、チオアミドジアニオンに3−クロロプロピルトリシロキシシランなどを反応させることにより、目的とするアミノ基を有するシリコン含有化合物の合成が可能であることを見いだした。また、当該アミノ基を例えばカルボキシル基含有化合物と反応させることにより、アミド結合を介して種々の置換基を結合させうることを見いだし、本発明を完成するに至った。  And in this invention, as a result of earnestly examining in order to solve the said subject, by making 3-chloropropyl trisiloxysilane etc. react with a thioamide dianion, the silicon-containing compound which has the target amino group is obtained. We found that synthesis is possible. Further, the present inventors have found that various substituents can be bonded via an amide bond by reacting the amino group with, for example, a carboxyl group-containing compound, thereby completing the present invention.

すなわち本発明は、一般式(1):  That is, the present invention relates to the general formula (1):

Figure 2007023246
(式中、A及びXは、それぞれ独立に、水素、炭素数1〜18の置換されていてもよい非環式炭化水素基、
(メタ)アクリロイル基、アリル基、プロパルギル基、(メタ)アクリル酸ヒドロキシアルキル基、(メタ)アクリル酸アルキル基などから選択される重合性基、
Arはアリール基、アルコキシカルボニル基、シリル基、ビニル基、から選択される基、
nは3〜10の整数であり、
、X、Xはそれぞれ独立にメチル基、トリメチルシロキシ基、Si原子が18個以下のオルガノシロキシ基を示す)で表されるシリコン含有化合物およびその製造方法に関する。
Figure 2007023246
(In the formula, A and X each independently represent hydrogen, an optionally substituted acyclic hydrocarbon group having 1 to 18 carbon atoms,
A polymerizable group selected from a (meth) acryloyl group, an allyl group, a propargyl group, a hydroxyalkyl group (meth) acrylate, an alkyl (meth) acrylate group, and the like;
Ar is a group selected from an aryl group, an alkoxycarbonyl group, a silyl group, and a vinyl group,
n is an integer of 3 to 10,
X 1 , X 2 , and X 3 each relate to a silicon-containing compound represented by a methyl group, a trimethylsiloxy group, and an organosiloxy group having 18 or less Si atoms) and a method for producing the same.

本発明のシリコン含有化合物は、分子構造中に一級または二級のアミノ基を有することにより、酸クロライドとの縮合、アシル化、アルキル化など種々の反応によって構造修飾が可能となり、不飽和結合の導入による重合性モノマーとしての利用が可能である。例えば前記重合性モノマーを医療用具(例えば、コンタクトレンズや眼内レンズなどの眼科用レンズ)の素材として利用した場合に、分子構造中のシロキサンによる優れた酸素透過性と、アミノ基由来の結合基による親水性、生体適合性を向上させることが期待できる。また、当該化合物の構造中に含有される第三の官能基である、芳香族基、ヘテロ芳香族基の存在により、当該基への様々な置換基導入によって、より広範囲の分子設計を可能とした。さらに、本発明の化合物中のアミノ基と、他のイソシアネート化合物との反応によって得られる縮合体は、ガラス、樹脂、金属などの接着剤、シーラント、プライマー等の用途に好適な硬化性樹脂組成物として用いることができる。  Since the silicon-containing compound of the present invention has a primary or secondary amino group in the molecular structure, the structure can be modified by various reactions such as condensation with an acid chloride, acylation, alkylation, and the like. It can be used as a polymerizable monomer by introduction. For example, when the polymerizable monomer is used as a material for a medical device (for example, an ophthalmic lens such as a contact lens or an intraocular lens), it has excellent oxygen permeability due to siloxane in the molecular structure and a bonding group derived from an amino group. It can be expected to improve hydrophilicity and biocompatibility. In addition, the presence of an aromatic group or heteroaromatic group, which is the third functional group contained in the structure of the compound, enables a wider range of molecular designs by introducing various substituents into the group. did. Furthermore, the condensate obtained by the reaction of the amino group in the compound of the present invention with another isocyanate compound is a curable resin composition suitable for applications such as adhesives such as glass, resin and metal, sealants and primers. Can be used as

以下、本発明の化合物およびその製造方法についてさらに詳細に説明する。
本発明の化合物は、一般式(1):
Hereinafter, the compound of the present invention and the production method thereof will be described in more detail.
The compound of the present invention has the general formula (1):

Figure 2007023246
(式中、A及びXは、それぞれ独立に、水素、炭素数1〜18の置換されていてもよい非環式炭化水素基、
(メタ)アクリロイル基、アリル基、プロパルギル基、(メタ)アクリル酸ヒドロキシアルキル基、(メタ)アクリル酸アルキル基などから選択される重合性基、
Arはアリール基、アルコキシカルボニル基、シリル基、ビニル基、から選択される基、
nは3〜10の整数であり、
、X、Xはそれぞれ独立にメチル基、トリメチルシロキシ基、Si原子が18個以下のオルガノシロキシ基を示す)で表されるシリコン含有化合物である。
Figure 2007023246
(In the formula, A and X each independently represent hydrogen, an optionally substituted acyclic hydrocarbon group having 1 to 18 carbon atoms,
A polymerizable group selected from a (meth) acryloyl group, an allyl group, a propargyl group, a hydroxyalkyl group (meth) acrylate, an alkyl (meth) acrylate group, and the like;
Ar is a group selected from an aryl group, an alkoxycarbonyl group, a silyl group, and a vinyl group,
n is an integer of 3 to 10,
X 1 , X 2 and X 3 are each a silicon-containing compound represented by a methyl group, a trimethylsiloxy group, or an organosiloxy group having 18 or less Si atoms.

前記、炭素数1〜18の置換されていてもよい非環式炭化水素基の具体例としては、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−デシルなどの直鎖アルキル基、イソプロピル、イソブチル、t−ブチルなどの分岐アルキル基、アセチル、プロピオニル、ブチリル、ピバリル、ラウロイル、ミリストイルなどのアシル基、シクロプロピルメチル基、シクロヘキシルメチル基、ヒドロキシメチル、2−ヒドロキシエチルなどのヒドロキシ置換アルキル基、トリフルオロメチル、トリフルオロエチル、ヘキサフルオロイソプロピルなどのハロゲン置換アルキル基などの他、メチレンオキシ、エチレンオキシ、プロピレンオキシなどのアルコキシ基、ベンジルメチル、トルイルメチル、キシリルメチルなどのアリールメチル基、ピリジルメチル、フリルメチル、チオフリルメチル等のヘテロ環式炭化水素基があげられる。なお、前記「非環式」とは、直接に芳香環、ヘテロ芳香環、シクロ炭化水素環構造などが結合するものではないことを意味し、アルキレン基を介して芳香環、ヘテロ芳香環、シクロ炭化水素環構造が結合するものは含むことを意味する。これらのうち合成が容易である点で、分岐アルキル基、アリールメチル基が好ましい。  Specific examples of the optionally substituted acyclic hydrocarbon group having 1 to 18 carbon atoms include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, Linear alkyl groups such as n-octyl and n-decyl, branched alkyl groups such as isopropyl, isobutyl, t-butyl, acyl groups such as acetyl, propionyl, butyryl, pivalyl, lauroyl, myristoyl, cyclopropylmethyl group, cyclohexylmethyl Groups, hydroxy-substituted alkyl groups such as hydroxymethyl and 2-hydroxyethyl, halogen-substituted alkyl groups such as trifluoromethyl, trifluoroethyl and hexafluoroisopropyl, as well as alkoxy groups such as methyleneoxy, ethyleneoxy and propyleneoxy, Benzylmethyl, toluylmethi An arylmethyl group such as a Kishirirumechiru, pyridylmethyl, furylmethyl, heterocyclic hydrocarbon group such as thio-furylmethyl and the like. The term “acyclic” means that an aromatic ring, a heteroaromatic ring, a cyclohydrocarbon ring structure, or the like is not directly bonded, and an aromatic ring, a heteroaromatic ring, a cyclohexane via an alkylene group. The thing to which a hydrocarbon ring structure couple | bonds is meant to include. Of these, a branched alkyl group and an arylmethyl group are preferred because they are easily synthesized.

前記式(1)のX、X、Xは、それぞれ独立にメチル、トリメチルシロキシ、ペンタメチルジシロキシ、メチルビス(トリメチルシロキシ)シロキシ、トリス(ペンタメチルシロキシ)シロキシ、などのSi原子が18個以下のオルガノシロキシ基が挙げられる。これらのうち、入手が容易な点で、トリメチルシロキシ基が好ましい。X 1 , X 2 , and X 3 in the formula (1) each independently have 18 Si atoms such as methyl, trimethylsiloxy, pentamethyldisiloxy, methylbis (trimethylsiloxy) siloxy, and tris (pentamethylsiloxy) siloxy. Or less organosiloxy groups. Of these, a trimethylsiloxy group is preferable because it is easily available.

前記式(1)のArはアリール基、例えばフェニル、トルイル、キシリル、ビフェニル、ナフチル、アントラセニルなどの1〜3員環の芳香族炭化水素が好ましく、他に、親水性を増進するためにアルコキシカルボニル基、酸素透過性を向上させるためにシリル基、重合性を向上するためにビニル基などの置換基を有することもできる。  Ar in the formula (1) is preferably an aryl group, for example, a 1 to 3 membered aromatic hydrocarbon such as phenyl, toluyl, xylyl, biphenyl, naphthyl, anthracenyl, etc. In addition, alkoxycarbonyl is used to enhance hydrophilicity. It may have a substituent such as a silyl group for improving oxygen permeability and a vinyl group for improving polymerizability.

ここで、本発明の化合物の特徴の一つである、芳香族環構造をA、X、Arのうちいずれか一つの置換基に含めることが望ましい。芳香環構造には、種々の置換基を導入することが容易であり、本発明の化合物を用いた材料を形成後に後処理として様々な置換基を導入すれば、より機能性にすぐれた材料を設計することもできるからである。  Here, it is desirable to include an aromatic ring structure, which is one of the characteristics of the compound of the present invention, in any one of A, X, and Ar. It is easy to introduce various substituents into the aromatic ring structure. If various substituents are introduced as a post-treatment after forming a material using the compound of the present invention, a material with higher functionality can be obtained. This is because it can also be designed.

本発明の化合物は一例として、以下の各反応により出発物質(チオアミド)を経て合成することができる。  As an example, the compound of the present invention can be synthesized via a starting material (thioamide) by the following reactions.

Figure 2007023246
Figure 2007023246

前記反応式(a)は、本発明の原料として有用な化合物であり、Rは炭素数1〜18の置換されていてもよい分岐アルキル基または環状アルキル基、アリール基、ヘテロ芳香族基から選択される基である。このような分岐アルキル基としては、イソプロピル、イソブチル、t−ブチルなどが、また環状アルキル基としてはシクロプロピル、シクロヘキシルなどが、アリール基としてはベンジル、トルイル、キシリルなどが、ヘテロ芳香族基としてピリジル、フリル、チオフリルなどが挙げられる。これらは、次の反応であるチオアミドジアニオンを発生する上で高収率であることによる。  The reaction formula (a) is a compound useful as a raw material of the present invention, and R is selected from a branched or cyclic alkyl group having 1 to 18 carbon atoms, a cyclic alkyl group, an aryl group, and a heteroaromatic group. Group. Examples of such branched alkyl groups include isopropyl, isobutyl, t-butyl, etc., cyclic alkyl groups such as cyclopropyl and cyclohexyl, aryl groups such as benzyl, toluyl and xylyl, and heteroaromatic groups such as pyridyl. , Furyl, thioflyl and the like. These are due to the high yield in generating the next reaction, thioamide dianion.

なお、反応式(a)中のArは前記と同様である。  Ar in the reaction formula (a) is the same as described above.

この反応は、有機溶媒としてジメチルホルムアミド、ジメチルスルホキシド、Nメチルピロリドン、トルエンなどを用いることができる。これらのうち、反応後水洗する過程で生成物を分離することが容易である観点から、ジメチルホルムアミドが好ましい。  In this reaction, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, toluene or the like can be used as an organic solvent. Of these, dimethylformamide is preferred from the viewpoint of easy separation of the product in the process of washing with water after the reaction.

また、この反応は、60〜110℃、好ましくは80〜90℃で行われる。前記温度よりも低い場合には、反応速度が低下し高収率で目的物が得られなくなり、また高い場合には、副反応が起こり易く、精製に手間を要することとなる。  Moreover, this reaction is performed at 60-110 degreeC, Preferably it is 80-90 degreeC. When the temperature is lower than the above temperature, the reaction rate decreases and the target product cannot be obtained in a high yield. When the temperature is higher, side reactions are likely to occur, and purification takes time.

上記反応はアルデヒド基含有化合物:硫黄:アミノ基含有化合物=1:1:1〜1:1.2:1.2のモル比の範囲で行うことができる。この比率のうち最も好ましいのは、1:1.1:1.1であり、アルデヒド基含有化合物を完全に消費させ、後の生成物の精製などを効率よく進めるためである。なお、この反応はWillgercdt−Kindler反応と呼ばれ、文献(Brown,E.V.Synthesis 1975,358)に詳説されている。  The above reaction can be carried out in a molar ratio range of aldehyde group-containing compound: sulfur: amino group-containing compound = 1: 1: 1 to 1: 1.2: 1.2. Among these ratios, the most preferable ratio is 1: 1.1: 1.1, because the aldehyde group-containing compound is completely consumed, and the purification of the subsequent product can proceed efficiently. This reaction is called a Willgercddt-Kindler reaction and is described in detail in the literature (Brown, EV Synthesis 1975, 358).

上記のようにして出発物質(チオアミド)を得、さらに以下の反応により、本発明のシリコン含有化合物を得ることができる。  The starting material (thioamide) is obtained as described above, and the silicon-containing compound of the present invention can be obtained by the following reaction.

Figure 2007023246
なお、この反応の最終生成物の窒素に結合するRCHをAとし、同窒素に結合する水素については、そのまま用いるか、あるいは種々の置換反応により置換させてXとしたものが、本願発明のシリコン含有化合物である。前記置換反応の例としては、(メタ)アクリル酸クロリドを反応させてシリコン含有化合物をモノマー化する、あるいは(メタ)アクリロイル基を有するエポキシドやオキセタンを同窒素に結合した水素により開環させることによってもモノマー化することができる。
Figure 2007023246
In this connection, RCH 2 bonded to nitrogen of the final product of this reaction is A, and hydrogen bonded to the nitrogen is used as it is or is replaced by X by various substitution reactions. It is a silicon-containing compound. Examples of the substitution reaction include reacting (meth) acrylic acid chloride to monomerize a silicon-containing compound, or by opening a ring of epoxide or oxetane having a (meth) acryloyl group with hydrogen bonded to the same nitrogen. Can also be monomerized.

前記反応のうち上段の反応はジアニオンを生成させるのであるが、具体的には、文献(Murai,T.et al.,J.Org.Chem.2003,68,8514)に開示されている反応である。この反応の開始における留意すべき事項は、脱水条件下、窒素またはアルゴン雰囲気下で行う必要があることである。そうでなければ、チオアミドジアニオンが安定に存在しえず、水または酸素の存在により容易に分解するおそれがあるからである。なお、他の有機リチウム反応剤を用いることももちろん可能であるが、nBuLiが最も安価であり、またブタンガスとして反応系から分離が容易であることから最も好ましい。  Among the above reactions, the upper reaction generates a dianion, specifically, a reaction disclosed in the literature (Murai, T. et al., J. Org. Chem. 2003, 68, 8514). is there. A point to note at the start of the reaction is that it must be carried out under nitrogen or argon atmosphere under dehydrating conditions. Otherwise, the thioamide dianion cannot exist stably and may be easily decomposed by the presence of water or oxygen. Of course, other organolithium reactants can be used, but nBuLi is most preferable because it is the cheapest and can be easily separated from the reaction system as butane gas.

前記例示の反応溶媒はテトラヒドロフラン(THF)を用いている。他の溶媒としてはトルエン、ジエチルエーテルなども用いることが可能であるが、前者はわずかに副反応が進行するおそれがあり、後者は反応中間体が溶解せずに沈殿し反応収率が低下する場合があり、最も好ましいのはTHFである。また反応温度は−78℃〜室温の範囲で実施することが可能であるが、副反応を抑えかつ効率を考慮して0℃前後が適当である。  Tetrahydrofuran (THF) is used as the exemplified reaction solvent. As other solvents, toluene, diethyl ether and the like can be used, but the former may cause a slight side reaction, and the latter precipitates without dissolving the reaction intermediate and lowers the reaction yield. In some cases, the most preferred is THF. The reaction temperature can be carried out in the range of −78 ° C. to room temperature, but about 0 ° C. is appropriate considering the side reaction and efficiency.

反応させる各化合物の混合比率は、用いる化合物により一概には決せられないが、一般的にはチオアミドに対して約2当量のnBuLiを加え、ついで約1.1当量のシリコン含有ハロゲン化物を添加する。nBuLiの当量が少ないと、ジアニオンの発生効率が低下し、シリコン含有ハロゲン化物が多いと副反応生成物が多くなり、精製に手間がかかるようになる。  The mixing ratio of each compound to be reacted is not generally determined depending on the compound to be used, but generally, about 2 equivalents of nBuLi is added to thioamide, and then about 1.1 equivalents of silicon-containing halide is added. To do. When the equivalent amount of nBuLi is small, the generation efficiency of dianion is lowered, and when the silicon-containing halide is large, side reaction products are increased, and purification is troublesome.

次いで下段の反応により、チオアミド結合を還元し二級アミンの結合とする。この反応に用いる溶媒はアルコール系の溶媒であれば使用することができ、室温前後の温度下で反応は進行する。なお、この温度が高いと反対側の窒素−炭素結合の開裂する反応が進行する可能性があるため、注意を要する。また、一級アミンとするためには後述する反応によりPd触媒を用いて水素化する反応を用いることができる。  Next, by the lower reaction, the thioamide bond is reduced to a secondary amine bond. The solvent used for this reaction can be used as long as it is an alcohol solvent, and the reaction proceeds at a temperature around room temperature. Note that if this temperature is high, the reaction of cleaving the nitrogen-carbon bond on the opposite side may proceed, so care must be taken. In order to obtain a primary amine, a hydrogenation reaction using a Pd catalyst by a reaction described later can be used.

こうして得られた化合物は、上記の3種類(アミノ基、アリール基、シロキサン基)の官能基を有する点に特徴がある。この中で、シロキサン部分は上述の通り、透明性、酸素透過性に優れる反面撥水性が高く、一方、アミノ基またはアミノ基と反応させる他の基によって親水性を付与し、さらに第三の基であるアリール基へ適宜親水性基やアルキル基を付加することにより、多機能を有する化合物へと構造修飾が可能となる。このような特徴を生かして、本化合物を例えば、消泡剤、洗浄剤、分散剤、離型剤、接着剤、防曇剤、塗料用添加剤、樹脂の改質剤のほか医療用具などにも使用できる。  The compound thus obtained is characterized by having the above-mentioned three types (amino group, aryl group, siloxane group) functional group. Among these, as described above, the siloxane portion is excellent in transparency and oxygen permeability, while having high water repellency, while imparting hydrophilicity by the amino group or other group that reacts with the amino group. By appropriately adding a hydrophilic group or an alkyl group to the aryl group, the structure can be modified into a compound having multiple functions. Taking advantage of these characteristics, this compound can be used, for example, as an antifoaming agent, a cleaning agent, a dispersing agent, a release agent, an adhesive, an antifogging agent, a coating additive, a resin modifier, and a medical device. Can also be used.

また、本発明の化合物は、芳香族炭化水素を側鎖に有するので屈折率が高く、また紫外線吸収効果を有するので、ガラス、樹脂、金属などの表面被覆剤や、繊維処理剤、シリコーン変性ゴム材料などに使用することができる。  In addition, since the compound of the present invention has an aromatic hydrocarbon in the side chain, it has a high refractive index and has an ultraviolet absorption effect. Therefore, it is a surface coating agent such as glass, resin, metal, fiber treatment agent, silicone modified rubber. It can be used for materials.

さらに本発明の化合物は、反応式(a)でハロゲン置換アリール基を有するアミンを用いることにより、化合物の構造修飾を行うことができ、モノマーとして重合反応に用いた場合の得られる樹脂の硬さを種々調整することができる。また本発明のシリコン含有化合物を合成した後、アルキルアミノ基を前記アリール基に導入すれば、疎水性のアリール基の親水性を向上させることもできる。さらにまた酸素吸入官能基として、パーフルオロアルキル基の導入で、同一分子内に酸素親和性、酸素吸入性さらに親水性、疎水性官能基を共存させることも可能である。  Furthermore, the compound of the present invention can be structurally modified by using an amine having a halogen-substituted aryl group in the reaction formula (a), and the hardness of the resulting resin when used as a monomer in a polymerization reaction Can be adjusted in various ways. In addition, by synthesizing the silicon-containing compound of the present invention and then introducing an alkylamino group into the aryl group, the hydrophilicity of the hydrophobic aryl group can be improved. Furthermore, by introducing a perfluoroalkyl group as an oxygen inhalation functional group, it is possible to coexist oxygen affinity, oxygen inhalation property, hydrophilic property, and hydrophobic function group in the same molecule.

以下本発明をより具体的に明らかにするために、本発明に係る幾つかの実施例を例示する。  In order to clarify the present invention more specifically, several examples according to the present invention are illustrated below.

以下に示す反応式により本発明のシリコン含有化合物4(N−フェニルメチルN−1−(3−(トリス(トリメチルシロキシ)シリルプロピル)フェニルメチルアミン)およびシリコン含有化合物5(N−フェニルメチルN−1−(3−(トリス(トリメチルシロキシ)シリルプロピル)フェニルメチルプロペンアミド)を得ることができる。  According to the reaction formula shown below, silicon-containing compound 4 (N-phenylmethyl N-1- (3- (tris (trimethylsiloxy) silylpropyl) phenylmethylamine) and silicon-containing compound 5 (N-phenylmethyl N- 1- (3- (Tris (trimethylsiloxy) silylpropyl) phenylmethylpropenamide) can be obtained.

Figure 2007023246
−化合物2(N−フェニルメチルベンゼンカルボチオアミド)の合成−
ベンジルアミン(12.0mL,0.11mol)のジメチルホルムアミド(DMF)(50mL)溶液にベンズアルデヒド(10.1mL,0.1mol)を室温で加えた。ついで硫黄(3.52g,0.11mol)を加え80〜90℃で6時間撹拌しながら加熱した。反応混合液をエチルエーテル(50ML)に注ぎ、有機層を飽和炭酸水素ナトリウム水溶液(200mL)、塩酸(35%,10mL)で洗浄を行った。有機層を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮を行った。残渣をヘキサン/塩化メチレン(1:1,30mL)で再結晶し、化合物2を黄色固体として21.3g(収率:94%)を得た。
Figure 2007023246
-Synthesis of Compound 2 (N-phenylmethylbenzenecarbothioamide)-
Benzaldehyde (10.1 mL, 0.1 mol) was added to a solution of benzylamine (12.0 mL, 0.11 mol) in dimethylformamide (DMF) (50 mL) at room temperature. Subsequently, sulfur (3.52 g, 0.11 mol) was added and heated at 80 to 90 ° C. with stirring for 6 hours. The reaction mixture was poured into ethyl ether (50 ML), and the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution (200 mL) and hydrochloric acid (35%, 10 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was recrystallized from hexane / methylene chloride (1: 1, 30 mL) to obtain 21.3 g (yield: 94%) of Compound 2 as a yellow solid.

−シロキサニル基の導入による化合物3の合成−
化合物2(1.82g,8.0mmol)をTHF(16mL)に溶かした。この溶液へn−ブチルリチウム−ヘキサン溶液(13mL,16mmol)を0℃で徐々に加えた。30分撹拌を行ったのち、1−クロロ−3−トリストリメチルシロシキシリルプロパン(3.56mL,8.8mmol)を同じ温度で加え、さらに30分撹拌を続けた。反応混合液に水(およそ10mL)を加え、有機層をジエチルエーテル(約20mL)で抽出した。集めた有機層を水(約10mL)で二回洗浄し、さらに水層をジエチルエーテル(約10mL)で再抽出した。集めた有機層を硫酸マグネシウムで乾燥させた。反応混合液をろ過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製(酢酸エチル:ヘキサン=1:8)を行い、化合物3を黄色固体として3.8g(収率:84%)得た。
-Synthesis of compound 3 by introduction of siloxanyl group-
Compound 2 (1.82 g, 8.0 mmol) was dissolved in THF (16 mL). N-Butyllithium-hexane solution (13 mL, 16 mmol) was gradually added to this solution at 0 ° C. After stirring for 30 minutes, 1-chloro-3-tristrimethylsiloxaneoxypropane (3.56 mL, 8.8 mmol) was added at the same temperature and stirring was continued for another 30 minutes. Water (approximately 10 mL) was added to the reaction mixture, and the organic layer was extracted with diethyl ether (approximately 20 mL). The collected organic layer was washed twice with water (about 10 mL), and the aqueous layer was re-extracted with diethyl ether (about 10 mL). The collected organic layer was dried over magnesium sulfate. The reaction mixture was filtered and concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 8) to give 3.8 g of Compound 3 as a yellow solid (yield: 84%). Obtained.

化合物3のH−核磁気共鳴スペクトルおよび13C−核磁気共鳴スペクトルは、日本電子製JNMα−400型式を用い、重水素化クロロホルム中、25℃、H−核磁気共鳴スペクトルは積算回数8回、13C−核磁気共鳴スペクトルは積算回数128回で測定した。
その結果は次に示すとおりである。
H NMR(CDCl)δ−0.015(s,27H,CH),0.48(m,2H,CH),1.38(m,2H,CH),1.96(m,1H,CH),2.10(m,1H,CH),5.69(q,1H,J=8Hz,CH),7.2−7.4(m,8H,C),7.64(m,2H,C).
13C NMR(CDCl)δ1.8,14.2,20.2,38.9,59.7,126.7,127.0,127.8,128.5,128.9,131.0,140.6,142.4,198.3.
1 H- nuclear magnetic resonance spectrum and 13 C- nuclear magnetic resonance spectrum of Compound 3 using a JEOL JNMα-400 model, in deuterated chloroform, 25 ° C., 1 H- nuclear magnetic resonance spectrum 8 cumulative The 13 C-nuclear magnetic resonance spectrum was measured with 128 integrations.
The results are as follows.
1 H NMR (CDCl 3 ) δ-0.015 (s, 27 H, CH 3 ), 0.48 (m, 2 H, CH 2 ), 1.38 (m, 2 H, CH 2 ), 1.96 (m , 1H, CH 2 ), 2.10 (m, 1H, CH 2 ), 5.69 (q, 1H, J = 8 Hz, CH), 7.2-7.4 (m, 8H, C 6 H 5 ), 7.64 (m, 2H, C 6 H 5 ).
13 C NMR (CDCl 3 ) δ1.8, 14.2, 20.2, 38.9, 59.7, 126.7, 127.0, 127.8, 128.5, 128.9, 131.0 140.6, 142.4, 198.3.

−化合物3の還元反応によるシリコン含有化合物4の合成−
化合物3(4.51g,8.0mmol)をTHF(16mL)に溶かした。そこへ水素化アルミニウムリチウム(1.22g,32.35mmol)を0℃でゆっくり加えた。泡がほとんどでなくなるまで待ち、ついでTHFを2時間還流させた。反応混合液を再び0℃にし、水(1.22mL),15%水酸化ナトリウム水溶液(1.22mL)、さらに水(3.66mL)をゆっくり加えた。反応混合液をろ過することで対応する化合物4を黄色オイルとして3.61g(収率:85%)を得た。
-Synthesis of silicon-containing compound 4 by reduction reaction of compound 3-
Compound 3 (4.51 g, 8.0 mmol) was dissolved in THF (16 mL). Thereto, lithium aluminum hydride (1.22 g, 32.35 mmol) was slowly added at 0 ° C. Wait until the foam was almost gone, then THF was refluxed for 2 hours. The reaction mixture was brought to 0 ° C. again, and water (1.22 mL), 15% aqueous sodium hydroxide solution (1.22 mL), and water (3.66 mL) were slowly added. The reaction mixture was filtered to obtain 3.61 g (yield: 85%) of the corresponding compound 4 as a yellow oil.

化合物4のH−核磁気共鳴スペクトルおよび13C−核磁気共鳴スペクトルは次に示す通りである。
H NMR(CDCl)δ0.0(s,27H,CH),0.35(m,2H,CH),1.1−1.3(m,2H,CH),1.6−1.8(m,2H,CH),3.49(d,1H,J=13.2Hz,CH),3.56(t,1H,J=6.8Hz,CH),3.61(d,1H,J=13.2Hz,CH),7.15−7.3(m,10H,C).
13C NMR(CDCl)δ1.8,14.4,20.3,41.9,51.6,62.5,126.8,126.9,127.4,128.2,128.33,128.35,140.9,144.4.
The 1 H-nuclear magnetic resonance spectrum and 13 C-nuclear magnetic resonance spectrum of Compound 4 are as follows.
1 H NMR (CDCl 3 ) δ 0.0 (s, 27 H, CH 3 ), 0.35 (m, 2 H, CH 2 ), 1.1-1.3 (m, 2 H, CH 2 ), 1.6 −1.8 (m, 2H, CH 2 ), 3.49 (d, 1H, J = 13.2 Hz, CH 2 ), 3.56 (t, 1H, J = 6.8 Hz, CH), 3. 61 (d, 1H, J = 13.2Hz, CH 2), 7.15-7.3 (m, 10H, C 6 H 5).
13 C NMR (CDCl 3 ) δ 1.8, 14.4, 20.3, 41.9, 51.6, 62.5, 126.8, 126.9, 127.4, 128.2, 128.33 128.35, 140.9, 144.4.

−化合物4のアクリロイル化によるシリコン含有化合物5の合成−
化合物4(3.34g,7.0mmol)を塩化メチレン(20mL)に溶かし、0℃で4−ジメチルアミノピリジン(0.065g,0.53mmol)、トリエチルアミン(1.47mL,7.0mmol)を加え、さらに塩化アクリロイル(0.74mL,7.0mmol)をゆっくり加えた。0℃で10分間撹拌を行った後、室温で15時間撹拌した。反応混合液に希塩酸(1N,約3mL)を加えた。反応混合液を水層と有機層に分け、水層から塩化メチレン(約10mL)で抽出を行った。あわせた有機層を希塩酸(約5mL)、飽和塩化ナトリウム水溶液(約10mL)で2回洗浄を行った。さらに水層からの抽出の操作を2回繰り返した。あわせた有機層を硫酸マグネシムで乾燥させた。反応混合液をろ過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製(酢酸エチル:ヘキサン=5:1)を行い、化合物5を黄白色オイルとして3.7g(収率:89%)を得た。
-Synthesis of silicon-containing compound 5 by acryloylation of compound 4-
Compound 4 (3.34 g, 7.0 mmol) was dissolved in methylene chloride (20 mL), and 4-dimethylaminopyridine (0.065 g, 0.53 mmol) and triethylamine (1.47 mL, 7.0 mmol) were added at 0 ° C. More acryloyl chloride (0.74 mL, 7.0 mmol) was added slowly. After stirring at 0 ° C. for 10 minutes, the mixture was stirred at room temperature for 15 hours. Dilute hydrochloric acid (1N, about 3 mL) was added to the reaction mixture. The reaction mixture was divided into an aqueous layer and an organic layer, and the aqueous layer was extracted with methylene chloride (about 10 mL). The combined organic layers were washed twice with dilute hydrochloric acid (about 5 mL) and saturated aqueous sodium chloride solution (about 10 mL). Furthermore, the operation of extraction from the aqueous layer was repeated twice. The combined organic layers were dried with magnesium sulfate. The reaction mixture was filtered and concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane = 5: 1) to give 3.7 g of Compound 5 as a yellowish white oil (yield: 89%). )

化合物5のH−核磁気共鳴スペクトルおよび13C−核磁気共鳴スペクトルは次に示す通りである。
H NMR(CDCl)δ0(s,27H,CH),0.38(m,2H,CH),1,25(m,2H,CH),1.80(m,1H,CH),1.90(m,1H,CH),4.45(m,2H,CH),5.55(m,1H,=CH),5.96(m,1H,=CH),6.38(m,2H,=CH.CH),6.94(m,2H,C),7.16−7.4(m,8H,C
13C NMR(CDCl)δ1.7,14.2,20.6,34.1,47.1,56.7,126.1,126.7,127.6,127.7,128.2,128.4,128.7,138.3,139.6,167.1
なお核磁気共鳴スペクトルでは、配座異性体に基づくシグナルも観測された。異性体間の比=74:26
The 1 H-nuclear magnetic resonance spectrum and 13 C-nuclear magnetic resonance spectrum of Compound 5 are as follows.
1 H NMR (CDCl 3 ) δ 0 (s, 27 H, CH 3 ), 0.38 (m, 2 H, CH 2 ), 1,25 (m, 2 H, CH 2 ), 1.80 (m, 1 H, CH 2 ), 1.90 (m, 1H, CH 2 ), 4.45 (m, 2H, CH 2 ), 5.55 (m, 1H, ═CH 2 ), 5.96 (m, 1H, ═CH 2), 6.38 (m, 2H , = CH.CH), 6.94 (m, 2H, C 6 H 5), 7.16-7.4 (m, 8H, C 6 H 5)
13 C NMR (CDCl 3 ) δ 1.7, 14.2, 20.6, 34.1, 47.1, 56.7, 126.1, 126.7, 127.6, 127.7, 128.2 , 128.4, 128.7, 138.3, 139.6, 167.1
In the nuclear magnetic resonance spectrum, a signal based on a conformer was also observed. Ratio between isomers = 74: 26

化合物4の水素化による化合物6((1−フェニル)−4−(トリス(トリメチルシロキシ)シリルブチルアミン)の合成(式5)  Synthesis of Compound 6 ((1-Phenyl) -4- (Tris (trimethylsiloxy) silylbutylamine) by Hydrogenation of Compound 4 (Formula 5)

Figure 2007023246
化合物4(1.07g,2.0mmol)をメタノール(12mL)に溶かし、ついで水酸化パラジウム(0.328g,2.0mmol)を加えた。フラスコ内を水素置換し、室温で四日間撹拌を行った。反応混合液をセライトでろ過し、濃縮することで化合物6(0.74g,83%)を高純度で得た。
Figure 2007023246
Compound 4 (1.07 g, 2.0 mmol) was dissolved in methanol (12 mL), and then palladium hydroxide (0.328 g, 2.0 mmol) was added. The flask was replaced with hydrogen and stirred at room temperature for 4 days. The reaction mixture was filtered through celite and concentrated to give compound 6 (0.74 g, 83%) with high purity.

化合物6のH−核磁気共鳴スペクトルおよび13C−核磁気共鳴スペクトルは次に示す通りである。
H NMR(CDCl)δ0(s,27H,CH),0.38(m,2H,CH),1.17(m,1H,CH),1.25(m,1H,CH),1.63(m,2H,CH),2.10(brs,2H,NH),3.83(t,J=7.2Hz,1H),7.1−7.3(m,5H,C
13C NMR(CDCl)δ1.7,14.3,20.4,42.9,56,1,126.4,127.0,128.5,146.1
The 1 H-nuclear magnetic resonance spectrum and 13 C-nuclear magnetic resonance spectrum of Compound 6 are as follows.
1 H NMR (CDCl 3 ) δ 0 (s, 27 H, CH 3 ), 0.38 (m, 2 H, CH 2 ), 1.17 (m, 1 H, CH 2 ), 1.25 (m, 1 H, CH 2 ), 1.63 (m, 2H, CH 2 ), 2.10 (brs, 2H, NH 2 ), 3.83 (t, J = 7.2 Hz, 1H), 7.1-7.3 ( m, 5H, C 6 H 5 )
13 C NMR (CDCl 3 ) δ1.7, 14.3, 20.4, 42.9, 56, 1,126.4, 127.0, 128.5, 146.1

N−1−フェニルメチル1−メチルプロパンチオアミド2bの合成(式6)  Synthesis of N-1-phenylmethyl 1-methylpropanethioamide 2b (Formula 6)

Figure 2007023246
ベンジルアミン(0.87mL,7.9mmol)のジメチルホルムアミド(DMF)(8mL)溶液にイソブチルアルデヒド(0.72mL,7.9mmol)を室温で加えた。ついで硫黄(0.259g,8mmol)を加え80−90℃で3時間撹拌しながら加熱した。反応混合液をエーテル(10mL)に注ぎ、有機層を飽和炭酸水素ナトリウム水溶液(20mL)、塩酸(35%,3mL)で洗浄を行った。有機層を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮を行った。残渣をヘキサン/エーテル(およそ10:1,10mL)で再結晶し、N−1−フェニルメチル1−メチルプロパンチオアミド2bを白色固体として1.13g(収率:74%)得た。
H NMR(CDCl)δ1.06(d,J=6.90Hz,6H,CH),2.69(m,J=6.90,1H,CH),4.60(d,J=4.9Hz,2H,CH),7.2−7.4(m,5H,C).
13C NMR(CDCl)δ22.6,44.4,49.9,128.1,128.2,129.0,136.2,211.6.
Figure 2007023246
To a solution of benzylamine (0.87 mL, 7.9 mmol) in dimethylformamide (DMF) (8 mL) was added isobutyraldehyde (0.72 mL, 7.9 mmol) at room temperature. Subsequently, sulfur (0.259 g, 8 mmol) was added and heated at 80-90 ° C. with stirring for 3 hours. The reaction mixture was poured into ether (10 mL), and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (20 mL) and hydrochloric acid (35%, 3 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was recrystallized from hexane / ether (approximately 10: 1, 10 mL) to obtain 1.13 g (yield: 74%) of N-1-phenylmethyl 1-methylpropanethioamide 2b as a white solid.
1 H NMR (CDCl 3 ) δ 1.06 (d, J = 6.90 Hz, 6H, CH 3 ), 2.69 (m, J = 6.90, 1H, CH), 4.60 (d, J = 4.9Hz, 2H, CH 2), 7.2-7.4 (m, 5H, C 6 H 5).
13 C NMR (CDCl 3 ) δ 22.6, 44.4, 49.9, 128.1, 128.2, 129.0, 136.2, 211.6.

N−1−フェニル−4−(トリス(トリメチルシロキシ)シリルブチル1−メチルプロバンチオアミド3bの合成(式7)
チオアミド2b(0,97g,5.0mmol)をTHF(5mL)に溶かした。ここにn−ブチルリチウム−ヘキサン溶液(7.5mL,12mmol)を0℃で徐々に加えた。30分撹拌を行ったのち、1−クロロ−3−トリス(トリメチルシロキシ)シリルプロパン(2.2 mL,5.5mmol)を同じ温度で加え、さらに30分撹拌を続けた。反応混合液に水(およそ10mL)を加え、有機層をエーテル(およそ20mL)で抽出した。集めた有機層を水(およそ10mL)で二回洗浄し、さらに水層をエーテル(およそ10mL)で再抽出した。集めた有機層を硫酸マグネシウムで乾燥させた。反応混合液をろ過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製(酢酸エチル:ヘキサン=1:20)を行い、化合物3bを白色固体として0.351g(収率:13%)を得た。
H NMR(CDCl)δ0.05(s,27H,CH),0.55(m,2H,CH),1.20(d,J=7.0Hz,6H,CH),1.75(m,2H,CH),2.55(t,J=7.0Hz,2H,CH),2.68(m,1H,CH),6.10(m,1H,CH),7.2−7.4(m,5H,C).
13C NMR(CDCl)δ1.8,14.4,17.9,18.2,40.8,43.4,62.5,126.8,127.6,128.8,140.7,210.3.
Synthesis of N-1-phenyl-4- (tris (trimethylsiloxy) silylbutyl 1-methylpropanthioamide 3b (Formula 7)
Thioamide 2b (0,97 g, 5.0 mmol) was dissolved in THF (5 mL). An n-butyllithium-hexane solution (7.5 mL, 12 mmol) was gradually added thereto at 0 ° C. After stirring for 30 minutes, 1-chloro-3-tris (trimethylsiloxy) silylpropane (2.2 mL, 5.5 mmol) was added at the same temperature and stirring was continued for another 30 minutes. Water (approximately 10 mL) was added to the reaction mixture and the organic layer was extracted with ether (approximately 20 mL). The collected organic layers were washed twice with water (approximately 10 mL) and the aqueous layer was re-extracted with ether (approximately 10 mL). The collected organic layer was dried over magnesium sulfate. The reaction mixture was filtered and concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20) to obtain 0.351 g (yield: 13%) of compound 3b as a white solid. Got.
1 H NMR (CDCl 3 ) δ 0.05 (s, 27 H, CH 3 ), 0.55 (m, 2 H, CH 2 ), 1.20 (d, J = 7.0 Hz, 6 H, CH 3 ), 1 .75 (m, 2H, CH 2 ), 2.55 (t, J = 7.0 Hz, 2H, CH 2 ), 2.68 (m, 1H, CH), 6.10 (m, 1H, CH) , 7.2-7.4 (m, 5H, C 6 H 5).
13 C NMR (CDCl 3 ) δ 1.8, 14.4, 17.9, 18.2, 40.8, 43.4, 62.5, 126.8, 127.6, 128.8, 140.7 , 210.3.

N−1−フェニル−4−(トリス(トリメチルシロキシ)シリル)ブチルN−1−メチルプロピルアミン4bの合成(式8)
化合物3b(0.35g,0.66mmol)をTHF(1.4mL)に溶かした。そこへ水素化アルミニウムリチウム(0.1g,2.64mmol)を0℃でゆっくり加えた。泡がほとんどでなくなるまで待ち、ついでTHFを2時間還流させた。反応混合液を再び0℃にし、水(0.102mL),15%水酸化ナトリウム水溶液(0.102ml)、さらに水(0.306mL)をゆっくり加えた。反応混合液をろ過することで対応するアミン4bを黄色オイルとして0.286g(収率:87%)を得た。
H NMR(CDCl)δ0.21(s,27H,CH),0.58(m,2H,CH),1.02(d,J=7.0Hz,6H,CH),1.3−1.5(m,2H,CH),1.7−1.9(m,3H,CH,CH),2.3−2.5(m,2H,CH),3.70(t,1H,J=6.8Hz,CH),7.28−7.5(m,5H,C).
13C NMR(CDCl)δ1.8,14.4,20.3,20.7,20.8.28.5,42.0,55.8,63.4,126.7,127.2,128.2,144.9.
Synthesis of N-1-phenyl-4- (tris (trimethylsiloxy) silyl) butyl N-1-methylpropylamine 4b (Formula 8)
Compound 3b (0.35 g, 0.66 mmol) was dissolved in THF (1.4 mL). Thereto was slowly added lithium aluminum hydride (0.1 g, 2.64 mmol) at 0 ° C. Wait until the foam was almost gone, then THF was refluxed for 2 hours. The reaction mixture was again brought to 0 ° C., and water (0.102 mL), 15% aqueous sodium hydroxide solution (0.102 ml), and water (0.306 mL) were slowly added. The reaction mixture was filtered to obtain 0.286 g (yield: 87%) of the corresponding amine 4b as a yellow oil.
1 H NMR (CDCl 3 ) δ 0.21 (s, 27H, CH 3 ), 0.58 (m, 2H, CH 2 ), 1.02 (d, J = 7.0 Hz, 6H, CH 3 ), 1 .3-1.5 (m, 2H, CH 2 ), 1.7-1.9 (m, 3H, CH, CH 2), 2.3-2.5 (m, 2H, CH 2), 3 .70 (t, 1H, J = 6.8Hz, CH), 7.28-7.5 (m, 5H, C 6 H 5).
13 C NMR (CDCl 3 ) δ 1.8, 14.4, 20.3, 20.7, 20.82.8.5, 42.0, 55.8, 63.4, 126.7, 127.2 , 128.2, 144.9.

アミン4bのアクリロイル化によるアミド5bの合成(式9)
アミン4b(1.135 g,2.27mmol)を塩化メチレン(9mL)に溶かし、0℃で4−ジメチルアミノピリジン(0.021g,0.00017mmol)、トリエチルアミン(0.475mL,3.4mmol)を加え、さらに塩化アクリロイル(0.24mL,2.95mmol)をゆっくり加えた。0℃で10分間撹拌を行った後、室温で12時間撹拌した。反応混合液に希塩酸(1N,およそ2mL)を加えた。反応混合液を水層と有機層に分け、水層から塩化メチレン(およそ10mL)で抽出を行った。あわせた有機層を希塩酸(およそ5mL)、飽和塩化ナトリウム水溶液(およそ10mL)で2回洗浄を行った。さらに水層からの抽出の操作を2回繰り返した。あわせた有機層を硫酸マグネシムで乾燥させた。反応混合液をろ過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製(酢酸エチル:ヘキサン=1:30)を行い、化合物5bを黄白色オイルとして0.736g(収率:59%)を得た。
H NMR(CDCl)δ0.05(s,27H,CH),0.45(t,J=6.8Hz,2H,CH),0.60(d,J=6.8Hz,3H,CH),0.75(brs,3H,CH),1.35−1.45(m,2H,CH),1.5(m,1H,CH),1.90−2.10(m,2H,CH),2.9−3.0(m,2H,CH),5.62(m,1H,=CH),5.7(m,1H,CH),6.3(m,1H,=CH),6.5(m,1H,=CH),7.1−7.3(m,5H,C).
なお核磁気共鳴スペクトルでは、配座異性体に基づくシグナルも観測された。異性体間の比=61:39.
Synthesis of Amide 5b by Acryloylation of Amine 4b (Formula 9)
Amine 4b (1.135 g, 2.27 mmol) was dissolved in methylene chloride (9 mL), and 4-dimethylaminopyridine (0.021 g, 0.00017 mmol) and triethylamine (0.475 mL, 3.4 mmol) were added at 0 ° C. In addition, more acryloyl chloride (0.24 mL, 2.95 mmol) was added slowly. After stirring at 0 ° C. for 10 minutes, the mixture was stirred at room temperature for 12 hours. Dilute hydrochloric acid (1N, approximately 2 mL) was added to the reaction mixture. The reaction mixture was divided into an aqueous layer and an organic layer, and the aqueous layer was extracted with methylene chloride (approximately 10 mL). The combined organic layers were washed twice with dilute hydrochloric acid (approximately 5 mL) and saturated aqueous sodium chloride solution (approximately 10 mL). Furthermore, the operation of extraction from the aqueous layer was repeated twice. The combined organic layers were dried with magnesium sulfate. The reaction mixture was filtered and concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 30), and 0.736 g (yield: 59%) of Compound 5b as a pale yellow oil. )
1 H NMR (CDCl 3 ) δ 0.05 (s, 27H, CH 3 ), 0.45 (t, J = 6.8 Hz, 2H, CH 2 ), 0.60 (d, J = 6.8 Hz, 3H) , CH 3), 0.75 (brs , 3H, CH 3), 1.35-1.45 (m, 2H, CH 2), 1.5 (m, 1H, CH), 1.90-2. 10 (m, 2H, CH 2 ), 2.9-3.0 (m, 2H, CH 2), 5.62 (m, 1H, = CH 2), 5.7 (m, 1H, CH), 6.3 (m, 1H, = CH 2), 6.5 (m, 1H, = CH), 7.1-7.3 (m, 5H, C 6 H 5).
In the nuclear magnetic resonance spectrum, signals based on conformers were also observed. Ratio between isomers = 61: 39.

N−1−フェニルメチル,N−3−メタクリロキシ−2−ヒドロキシプロピル1−フェニル−4−(トリス(トリメチルシロキシ))シリルブチルアミン7およびN−1−フェニルメチル,N−1−ヒドロキシメチル−2−メタクリロキシエチル1−フェニル−4−(トリス(トリメチルシロキシ))シリルブチルアミン7’の合成(式10)
アミン4(1.068g,2mmol)をアセトニトリル(6mL)に加え、ついでメタクリル酸グリシジル(0.546mL,4mmol)、カルシウムトリフラート(Ca(OTf),0.338g,1mmol)を加え、60〜65℃で7時間撹拌を行った。反応混合液を濃縮し、塩化メチレン(およそ10mL)を加えて2回洗浄を行った。有機層を硫酸マグネシウムで乾燥させた。反応混合液をろ過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製(酢酸エチル:ヘキサン:トリエチルアミン=17:82:1)を行い、化合物7と7’を黄白色オイルとしてあわせて0.592g(収率:43%)を得た。
N-1-phenylmethyl, N-3-methacryloxy-2-hydroxypropyl 1-phenyl-4- (tris (trimethylsiloxy)) silylbutylamine 7 and N-1-phenylmethyl, N-1-hydroxymethyl-2- Synthesis of methacryloxyethyl 1-phenyl-4- (tris (trimethylsiloxy)) silylbutylamine 7 ′ (formula 10)
Add amine 4 (1.068 g, 2 mmol) to acetonitrile (6 mL), then add glycidyl methacrylate (0.546 mL, 4 mmol), calcium triflate (Ca (OTf) 2 , 0.338 g, 1 mmol), 60-65 Stirring was carried out at 7 ° C for 7 hours. The reaction mixture was concentrated and washed twice with methylene chloride (approximately 10 mL). The organic layer was dried with magnesium sulfate. The reaction mixture was filtered and concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate: hexane: triethylamine = 17: 82: 1), and compounds 7 and 7 ′ were combined as a pale yellow oil. 0.592 g (yield: 43%) was obtained.

Figure 2007023246
Figure 2007023246

−化合物7を用いたコンタクトレンズ用材料の重合−
化合物7の100(重量)部に対して重合開始剤として2,2’−アゾビスイソブチロニトリル0.5部を添加して溶解したのち、2枚のガラス板(75mm×25mm×2mm)の間にナイロンシートおよびφ15にくりぬいた厚さ0.2mmのシリコーン製スペーサーをサンドした冶具に該溶液を注入した。
次にかかる冶具を液もれしないようにクリップにて止め、プログラム昇温式オーブン中にて室温から60℃まで1時間で昇温し、同温度で2時間保ち、次いで90℃まで1時間で昇温し、同温度で2時間保持した。さらに110℃まで1時間で昇温し、同温度で2時間加熱したのち室温まで徐々に冷却して厚さ0.2mmのフィルム状の重合体を得た。得られたフィルムは透明で硬質であった。
-Polymerization of contact lens material using Compound 7-
After adding and dissolving 0.5 part of 2,2′-azobisisobutyronitrile as a polymerization initiator to 100 parts by weight of Compound 7, two glass plates (75 mm × 25 mm × 2 mm) The solution was poured into a jig sandwiched between a nylon sheet and a silicone spacer with a thickness of 0.2 mm hollowed to φ15.
Next, the jig is stopped with a clip so as not to leak, and the temperature is raised from room temperature to 60 ° C. in 1 hour in a programmed temperature rising oven, kept at the same temperature for 2 hours, and then to 90 ° C. in 1 hour. The temperature was raised and held at that temperature for 2 hours. Further, the temperature was raised to 110 ° C. over 1 hour, heated at the same temperature for 2 hours, and then gradually cooled to room temperature to obtain a film-like polymer having a thickness of 0.2 mm. The resulting film was transparent and hard.

−化合物7を用いた含水性コンタクトレンズ用材料の重合−
化合物7の30部とN,N−ジメチルアクリルアミド70部およびエチレングリコールジメタクリレート0.3部の混合物に重合開始剤として2,2’−アゾビスイソブチロニトリル0.3部を添加して溶解したのち、前記で使用した冶具に溶液を注入し前記と同一条件にて重合操作を行い厚さ0.2mmのフィルム状の重合体を得た。
得られたフィルムを精製水中に約2時間浸したところ透明で柔軟なフィルムであった。
-Polymerization of hydrous contact lens material using Compound 7-
To a mixture of 30 parts of Compound 7, 70 parts of N, N-dimethylacrylamide and 0.3 part of ethylene glycol dimethacrylate, 0.3 part of 2,2′-azobisisobutyronitrile as a polymerization initiator is added and dissolved. After that, the solution was poured into the jig used above and the polymerization operation was performed under the same conditions as described above to obtain a film-like polymer having a thickness of 0.2 mm.
When the obtained film was immersed in purified water for about 2 hours, it was a transparent and flexible film.

Claims (4)

一般式(1)で表されるシリコン含有化合物。
Figure 2007023246
(式中、A及びXは、それぞれ独立に、水素、炭素数1〜18の置換されていてもよい非環式炭化水素基、
(メタ)アクリロイル基、アリル基、プロパルギル基、(メタ)アクリル酸ヒドロキシアルキル基、(メタ)アクリル酸アルキル基などから選択される重合性基、
Arはアリール基、アルコキシカルボニル基、シリル基、ビニル基、から選択される基、
nは3〜10の整数であり、
、X、Xはそれぞれ独立にメチル基、トリメチルシロキシ基、Si原子が18個以下のオルガノシロキシ基を示す)
A silicon-containing compound represented by the general formula (1).
Figure 2007023246
(In the formula, A and X each independently represent hydrogen, an optionally substituted acyclic hydrocarbon group having 1 to 18 carbon atoms,
A polymerizable group selected from a (meth) acryloyl group, an allyl group, a propargyl group, a hydroxyalkyl group (meth) acrylate, an alkyl (meth) acrylate group, and the like;
Ar is a group selected from an aryl group, an alkoxycarbonyl group, a silyl group, and a vinyl group,
n is an integer of 3 to 10,
X 1 , X 2 and X 3 each independently represent a methyl group, a trimethylsiloxy group, or an organosiloxy group having 18 or less Si atoms)
前記一般式(1)で表される化合物であって、Aが(メタ)アクリル酸ヒドロキシアルキル基であり、Xが水素またはアリールメチル基であり、n=3であることを特徴とする請求項1記載のシリコン含有化合物。  The compound represented by the general formula (1), wherein A is a hydroxyalkyl group (meth) acrylate, X is hydrogen or an arylmethyl group, and n = 3. 2. The silicon-containing compound according to 1. 前記一般式(1)で表される化合物であって、AおよびXが水素であり、n=3であることを特徴とする請求項1記載のシリコン含有化合物。  2. The silicon-containing compound according to claim 1, wherein the compound is represented by the general formula (1), wherein A and X are hydrogen and n = 3. 一般式(2)で表されるチオアミドをnブチルリチウムによりジアニオン化したのち、末端ハロゲンオルガノシロキサンを反応させることにより請求項1記載のシリコン含有化合物を合成する方法。
Figure 2007023246
(式中、Rは炭素数1〜18の置換されていてもよい分岐アルキル基または環状アルキル基、アリール基、ヘテロ芳香族基から選択される基、
Arはアリール基、アルコキシカルボニル基、シリル基、ビニル基、から選択される基)
The method of synthesizing the silicon-containing compound according to claim 1, wherein the thioamide represented by the general formula (2) is dianionized with n-butyllithium and then reacted with a terminal halogen organosiloxane.
Figure 2007023246
Wherein R is a group selected from a branched or cyclic alkyl group having 1 to 18 carbon atoms, a cyclic alkyl group, an aryl group, and a heteroaromatic group;
Ar is a group selected from an aryl group, an alkoxycarbonyl group, a silyl group, and a vinyl group)
JP2005231311A 2005-07-12 2005-07-12 New silicon-containing compound and method for producing the same Pending JP2007023246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231311A JP2007023246A (en) 2005-07-12 2005-07-12 New silicon-containing compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231311A JP2007023246A (en) 2005-07-12 2005-07-12 New silicon-containing compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007023246A true JP2007023246A (en) 2007-02-01

Family

ID=37784441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231311A Pending JP2007023246A (en) 2005-07-12 2005-07-12 New silicon-containing compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007023246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104447843A (en) * 2013-09-25 2015-03-25 信越化学工业株式会社 Silicone compound having a radical-polymerizable group and a method for the preparation thereof
CN111910439A (en) * 2020-07-02 2020-11-10 科凯精细化工(上海)有限公司 Inorganic nano SiO2Hybrid organosilicon fluorine-free waterproof agent and preparation method thereof
WO2021029210A1 (en) * 2019-08-09 2021-02-18 信越化学工業株式会社 Primary aminosiloxane compound and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104447843A (en) * 2013-09-25 2015-03-25 信越化学工业株式会社 Silicone compound having a radical-polymerizable group and a method for the preparation thereof
KR20150034095A (en) * 2013-09-25 2015-04-02 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone compound containing radical-polymerizable group and method for producing the same
JP2015063484A (en) * 2013-09-25 2015-04-09 信越化学工業株式会社 Radical-polymerizable group-containing silicone compound and method of producing the same
KR102183034B1 (en) * 2013-09-25 2020-11-25 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone compound containing radical-polymerizable group and method for producing the same
WO2021029210A1 (en) * 2019-08-09 2021-02-18 信越化学工業株式会社 Primary aminosiloxane compound and method for producing same
JPWO2021029210A1 (en) * 2019-08-09 2021-02-18
CN114206887A (en) * 2019-08-09 2022-03-18 信越化学工业株式会社 Primary amino siloxane compound and process for producing the same
JP7310894B2 (en) 2019-08-09 2023-07-19 信越化学工業株式会社 Method for producing primary aminosiloxane compound
CN111910439A (en) * 2020-07-02 2020-11-10 科凯精细化工(上海)有限公司 Inorganic nano SiO2Hybrid organosilicon fluorine-free waterproof agent and preparation method thereof
CN111910439B (en) * 2020-07-02 2022-10-18 科凯精细化工(上海)有限公司 Inorganic nano SiO 2 Hybrid organosilicon fluorine-free waterproof agent and preparation method thereof

Similar Documents

Publication Publication Date Title
US8168735B2 (en) Silicone compound, a process for the preparation thereof and a process for the preparation of an ophthalmic device therefrom
JP5280856B2 (en) Cationic hydrophilic siloxanyl monomer
JP6258078B2 (en) Dinaphthothiophene compound, polymer containing dinaphthothiophene skeleton and method for producing the same
JP2018177918A (en) Polysiloxane monomer and method for producing the same
CA2793393A1 (en) Silicone (meth)acrylamide monomer, polymer, ophthalmic lens, and contact lens
WO2010104000A1 (en) Silicone monomer
JP2017105753A (en) Straight chain organopolysiloxane having different functional group at both terminal, and method of producing the same
JP6502246B2 (en) Hydrophilic silicone monomer, process for preparing the same and thin film containing the same
JP5990909B2 (en) One-end functional group-containing organopolysiloxane and method for producing the same
JP5164452B2 (en) Fumaric acid derivative and ophthalmic lens using the same
CN105524102B (en) Siloxane compound containing radical polymerizable group and method for producing same
JP2007023246A (en) New silicon-containing compound and method for producing the same
KR101599913B1 (en) Noble silicone compound, method for preparing the same and silicone hydrogel contact lens using therewith
JP2015514071A (en) Polymerizable amide-containing organosilicon compound, silicon-containing polymer and biomedical device using the same
JP4273885B2 (en) Method for producing silicone monomer composition
JP5505313B2 (en) Silicone monomer
JP2018517737A (en) Method for producing polyhedral oligomeric silsesquioxane
JP5526845B2 (en) Silicone monomer
JP5265109B2 (en) Method for producing hydroxyl group-containing silicone monomer
TW201925144A (en) Siloxane compound and method for producing same, (co)polymer, ophthalmic device
JPS5940158B2 (en) Organosyrannoseizohouhou
KR20130000350A (en) Glycerol (meth)acrylate-ended modified silicone and process for preparing the same
JPH0631267B2 (en) Method for producing silicon-containing polymerizable monomer
JP2013185147A (en) Organopolysiloxane containing functional groups at both terminals and method for producing the same
JP5111837B2 (en) Method for producing silicone monomer, method for producing intermediate thereof, and molded article thereof