JP2007022873A - Water-dispersible protein/carbon nanotube composite and its production method and use - Google Patents
Water-dispersible protein/carbon nanotube composite and its production method and use Download PDFInfo
- Publication number
- JP2007022873A JP2007022873A JP2005209360A JP2005209360A JP2007022873A JP 2007022873 A JP2007022873 A JP 2007022873A JP 2005209360 A JP2005209360 A JP 2005209360A JP 2005209360 A JP2005209360 A JP 2005209360A JP 2007022873 A JP2007022873 A JP 2007022873A
- Authority
- JP
- Japan
- Prior art keywords
- protein
- carbon nanotube
- water
- dispersible
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本発明は、カーボンナノチューブを用いたデバイス、薬剤作製の基礎となる技術であり、カーボンナノチューブの化学修飾、および、蛋白質によって被覆された炭素繊維の機能発現に関するものである。 The present invention relates to a device that uses carbon nanotubes and a technology that forms the basis of drug production, and relates to chemical modification of carbon nanotubes and functional expression of carbon fibers coated with proteins.
カーボンナノチューブは炭素原子のみで構成されており、生体との親和性が高いために、生体分子と融合してバイオミメティックな機能を発現させるデバイス、および、DNA、RNA、酵素等のターゲット分子に選択的に結合する薬剤への応用に期待されている。特に、カーボンナノチューブが有する導体、半導体といった電子物性は、生体内における分子間電子移動などの機能を発現させるためには欠かせない性質である。上記のデバイスや薬剤の機能を発現させるためには、カーボンナノチューブのグラフェンシートを破壊しない化学修飾、および、水溶液に分散させる技術が必要である。
界面活性剤による溶解は、カーボンナノチューブを単分散させることが可能であるが、界面活性剤のミセル内に取り込まれるために水溶液状態での化学修飾が困難であるため、機能材料を作製する際の設計指針が限られてしまう(非特許文献1参照)。また、カーボンナノチューブを分散させるように設計された両親媒性ペプチドによる水への溶解が報告されている(非特許文献2参照)。しかし、上記のようなカーボンナノチューブに相互作用するように設計されたペプチドの場合、他の機能を付与するには至っていない。したがって、天然の蛋白質を結合させ、その機能を利用したカーボンナノチューブを含む複合材料の作製が試みられている。
Since carbon nanotubes are composed of only carbon atoms and have high affinity with living organisms, they are selected as devices that fuse with biomolecules to express biomimetic functions and target molecules such as DNA, RNA, and enzymes. It is expected to be applied to drugs that bind chemically. In particular, electronic properties such as conductors and semiconductors possessed by carbon nanotubes are indispensable properties for developing functions such as intermolecular electron transfer in vivo. In order to develop the functions of the above devices and drugs, chemical modification that does not destroy the graphene sheet of carbon nanotubes and a technique for dispersing in a water solution are required.
Dissolution with a surfactant can monodisperse carbon nanotubes, but it is difficult to chemically modify it in an aqueous solution because it is incorporated into the micelle of the surfactant. Design guidelines are limited (see Non-Patent Document 1). In addition, dissolution in water by an amphiphilic peptide designed to disperse carbon nanotubes has been reported (see Non-Patent Document 2). However, in the case of the peptide designed to interact with the carbon nanotube as described above, other functions have not been provided. Therefore, an attempt has been made to produce a composite material containing carbon nanotubes by binding natural proteins and utilizing their functions.
天然の蛋白質の場合、化学結合による蛋白質のクロスリンク(非特許文献3参照)、大豆ペルオキシターゼ、および、キモトリプシンの吸着(非特許文献4参照)、グルコース酸化酵素を結合させたカーボンナノチューブが報告されている。(非特許文献5参照)また、蛍光標識したウシ血清アルブミン、ストレプトアビジン、および、シトクロムcを、酸を用いることによって切断されたカーボンナノチューブに吸着させ、ヒト細胞にこれらの蛋白質を送り込むことを可能にしている。(非特許文献6参照)上記の研究では、蛋白質がカーボンナノチューブ表面の一部に吸着されていることのみ原子間力顕微鏡により観測されている。しかし、水溶性の蛋白質で被覆され、かつ、水溶液中に分散したカーボンナノチューブは作製されておらず、ドラッグデリバリーをはじめとする産業分野に応用することができなかった。 In the case of natural proteins, protein cross-linking by chemical bonds (see Non-Patent Document 3), adsorption of soybean peroxidase and chymotrypsin (see Non-Patent Document 4), and carbon nanotubes bound with glucose oxidase have been reported. Yes. (See Non-Patent Document 5) In addition, it is possible to adsorb fluorescently labeled bovine serum albumin, streptavidin, and cytochrome c to carbon nanotubes that have been cleaved by using an acid, and to feed these proteins into human cells. I have to. (See Non-Patent Document 6) In the above research, only the fact that the protein is adsorbed on a part of the carbon nanotube surface is observed by an atomic force microscope. However, carbon nanotubes coated with a water-soluble protein and dispersed in an aqueous solution have not been prepared, and could not be applied to industrial fields such as drug delivery.
そこで本発明は上記問題点を解決すべく、水溶液中で蛋白質とカーボンナノチューブ間において、静電的あるいは疎水的相互作用を利用して自己組織的にカーボンナノチューブに蛋白質が被覆した構造を有する複合体を提供することをその目的とするものである。天然状態、あるいは変性状態にある蛋白質に溶解させた際、カルボキシル基、アミノ基、および、チオール基が溶媒と接するために、カーボンナノチューブの物性に関わるグラフェンシートを破壊せずに蛋白質の残基に化学修飾できる。また、グラフェンシートが化学修飾されずに保存されているために、これらの複合体では、可視および近赤外領域におけるカーボンナノチューブの光学特性を利用することができる。
Therefore, in order to solve the above problems, the present invention is a composite having a structure in which a carbon nanotube is coated with a protein in a self-organizing manner using an electrostatic or hydrophobic interaction between the protein and the carbon nanotube in an aqueous solution. The purpose is to provide. When dissolved in a native or denatured protein, the carboxyl group, amino group, and thiol group come into contact with the solvent. Can be chemically modified. Further, since the graphene sheet is stored without being chemically modified, these composites can utilize the optical characteristics of carbon nanotubes in the visible and near-infrared regions.
本発明者らは、前期課題を解決すべく鋭意検討した結果、カーボンナノチューブを超音波処理することにより、天然状態、あるいは、変性状態にある蛋白質に溶解させ単分散できることを見出し本発明に到達した。
すなわち本発明は、カーボンナノチューブの表面を、ポリペプチド鎖内に疎水性残基を有するアミノ酸残基が含まれた蛋白質で被覆した水分散性蛋白質-カーボンナノチューブ複合体である。
また、本発明は、蛋白質を、卵白リゾチーム、トリプシン類、アルブミンから選ばれた少なくとも1種とすることができる。
さらに、本発明は、蛋白質分子表面に疎水性相互作用可能な部位を有する蛋白質を用いることができる。
また、本発明は、蛋白質によるカーボンナノチューブの被覆率が90%以上とすることができる。
さらに、本発明では、水分散性蛋白質-カーボンナノチューブ複合体の表面に存在する蛋白質を化学修飾した水分散性蛋白質-カーボンナノチューブ複合体とすることができる。
また、ポリペプチド鎖内に疎水性残基を有するアミノ酸残基が含まれた蛋白質の蛋白質濃度が0.1〜10重量%である水溶液に、カーボンナノチューブを添加し、超音波により分散させ、カーボンナノチューブの表面をポリペプチド鎖内に疎水性残基を有するアミノ酸残基が含まれた蛋白質で被覆させることを特徴とする水分散性蛋白質-カーボンナノチューブ複合体の製造方法である。
さらに、本発明は、本発明の水分散性蛋白質-カーボンナノチューブ複合体を用いたドラッグデリバリーシステムである。
また、本発明は、水分散性蛋白質-カーボンナノチューブ複合体からなる蛋白質による分子結合を認識する光学センサーである。
またさらに、本発明は、水分散性蛋白質-カーボンナノチューブ複合体からなるフィルターである。
As a result of intensive studies to solve the previous problems, the present inventors have found that carbon nanotubes can be dissolved in a protein in a natural state or a denatured state and monodispersed by sonication, and the present invention has been achieved. .
That is, the present invention is a water-dispersible protein-carbon nanotube complex in which the surface of a carbon nanotube is coated with a protein containing an amino acid residue having a hydrophobic residue in the polypeptide chain.
In the present invention, the protein can be at least one selected from egg white lysozyme, trypsin, and albumin.
Furthermore, the present invention can use a protein having a site capable of hydrophobic interaction on the surface of the protein molecule.
In the present invention, the coverage of carbon nanotubes with protein can be 90% or more.
Furthermore, in the present invention, a water-dispersible protein-carbon nanotube complex can be obtained by chemically modifying a protein present on the surface of the water-dispersible protein-carbon nanotube complex.
In addition, carbon nanotubes are added to an aqueous solution in which the protein concentration of a protein containing an amino acid residue having a hydrophobic residue in the polypeptide chain is 0.1 to 10% by weight, and dispersed by ultrasonic waves. A method for producing a water-dispersible protein-carbon nanotube complex characterized in that the surface of a nanotube is coated with a protein containing an amino acid residue having a hydrophobic residue in a polypeptide chain.
Furthermore, the present invention is a drug delivery system using the water-dispersible protein-carbon nanotube complex of the present invention.
The present invention also provides an optical sensor that recognizes molecular bonds caused by a protein comprising a water-dispersible protein-carbon nanotube complex.
Furthermore, the present invention is a filter comprising a water-dispersible protein-carbon nanotube complex.
本発明の水分散性蛋白質-カーボンナノチューブ複合体は、カーボンナノチューブが有する電子物性を失わずに、化学修飾可能という特長を有しており、環境調和型のカーボンナノチューブの電子物性を利用したデバイス、および、細胞内に導入した際のプローブを有する薬剤作製の基礎技術となる。さらに、吸着する分子の選択性を有するフィルターおよび分子センサーが構築可能となる。このような薬剤の吸着性質を利用した環境浄化系への応用も期待できる。
The water-dispersible protein-carbon nanotube composite of the present invention has a feature that it can be chemically modified without losing the electronic physical properties of the carbon nanotubes, and a device that utilizes the electronic physical properties of environmentally friendly carbon nanotubes, And it becomes a basic technique for producing a drug having a probe when introduced into a cell. Furthermore, a filter and a molecular sensor having selectivity of molecules to be adsorbed can be constructed. Application to an environmental purification system utilizing such a drug adsorption property can also be expected.
本発明の蛋白質を用いた水溶性カーボンナノチューブ複合炭素繊維の作製方法を具体的に述べる。
本発明において、カーボンナノチューブを蛋白質に溶解させる際、約1時間超音波処理することによって、両者を水溶液中に分散させた。得られた水溶液を16000×gで遠心分離し、不溶物を取り除いた。最後に、カーボンナノチューブと相互作用していないペプチドあるいは蛋白質と複合体とを分離することにより、水溶性複合炭素繊維の割合を増加させた。カーボンナノチューブと相互作用していないペプチドあるいは蛋白質を複合体から分離する方法としては、クロマトグラフィー法、透析法あるいは塩を加えて複合体を凝集させる方法が挙げられる。
A method for producing a water-soluble carbon nanotube composite carbon fiber using the protein of the present invention will be specifically described.
In the present invention, when carbon nanotubes were dissolved in protein, both were dispersed in an aqueous solution by ultrasonic treatment for about 1 hour. The obtained aqueous solution was centrifuged at 16000 × g to remove insoluble matters. Finally, the ratio of water-soluble composite carbon fibers was increased by separating the complex from the peptide or protein that did not interact with the carbon nanotubes. Examples of the method for separating a peptide or protein that does not interact with the carbon nanotube from the complex include a chromatography method, a dialysis method, and a method of adding a salt to aggregate the complex.
上記の手法で得られたカーボンナノチューブと蛋白質の複合体は、蛋白質残基のアミン、カルボキシル、あるいは、チオール基に、蛍光標識に代表されるような種々の化合物を結合することにより、ドラッグデリバリーシステム等に応用が可能な機能性分子とすることができる。また、各蛋白質によって結合する物質が異なることを利用して、この特異的結合性を利用した分子センサーおよび吸着フィルターへの応用も可能である。
本発明において使用する蛋白質としては、その表面に疎水性コアを有しカーボンナノチューブとの間に疎水的相互を構築できる蛋白質であればどのようなものでも良い。代表的な具体例としては、リゾチーム、ウシ血清およびヒトアルブミンなどのアルブミン等を挙げることができるが、これらに限定されるものではない。
本発明において、水分散性カーボンナノチューブ表面の蛋白質を化学修飾することが出来るが、化学修飾するのに用いられる薬品類は、ピレン骨格を有する蛍光標識物質等である。
典型的な、化学修飾の例は、ピレンブチル酸(4-(1-pyrene)butyric acid)のカルボン酸およびアルブミン表面に存在するリジンのアミノ基とのアミド結合によるピレン骨格分子の蛍光標識化である。
以下、本発明を実施例に基づき、さらに具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
The complex of carbon nanotubes and protein obtained by the above method is a drug delivery system by binding various compounds represented by fluorescent labels to amine, carboxyl or thiol groups of protein residues. It can be a functional molecule that can be applied to, for example. In addition, it is possible to apply to a molecular sensor and an adsorption filter using this specific binding property by utilizing the fact that the substance that binds to each protein is different.
The protein used in the present invention may be any protein as long as it has a hydrophobic core on its surface and can build a hydrophobic mutual relationship with carbon nanotubes. Representative examples include albumin such as lysozyme, bovine serum and human albumin, but are not limited thereto.
In the present invention, the protein on the surface of the water-dispersible carbon nanotube can be chemically modified. The chemicals used for the chemical modification are fluorescent labeling substances having a pyrene skeleton.
An example of a typical chemical modification is the fluorescent labeling of pyrene skeleton molecules by amide bonds with the carboxylic acid of pyrene butyric acid (4- (1-pyrene) butyric acid) and the amino group of lysine present on the albumin surface. .
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
重水20g(和光純薬製、試薬特級、以下同じ)に重量パーセント1%になるようにのリゾチーム0.1g(和光純薬製)を溶解させ、この溶液にカーボンナノチューブ1mgを加えた。超音波ホモジナイザ(ビブラセル社製 Microprocessor Controlled 750 Watt Model)を用いて水への溶解を行った後、この溶液を遠心分離機(日立工機製、himac CT13)で13000rpmの条件で遠心分離を1時間行い、不溶物を取り除くことにより上澄みを分取した。得られた上澄み液の写真および電子吸収スペクトルを図1および図2に示す。得られたスペクトルから、この溶液にリゾチームで被覆されたカーボンナノチューブによって構成された繊維が存在することが示唆された。また、AFM像(図3)からは、直径1nmのカーボンナノチューブが直径約3〜5nmの球状蛋白質に皮膜されていることが示された。 In 20 g of heavy water (manufactured by Wako Pure Chemical Co., Ltd., reagent grade, hereinafter the same), 0.1 g of lysozyme (manufactured by Wako Pure Chemical Industries) so as to have a weight percentage of 1% was dissolved, and 1 mg of carbon nanotubes was added to this solution. After dissolving in water using an ultrasonic homogenizer (Microprocessor Controlled 750 Watt Model manufactured by Vibracell), this solution was centrifuged at 13000 rpm for 1 hour in a centrifuge (Hitachi Koki, Himac CT13). The supernatant was separated by removing insoluble matter. The photograph and electronic absorption spectrum of the obtained supernatant are shown in FIG. 1 and FIG. From the obtained spectrum, it was suggested that this solution contains fibers composed of carbon nanotubes coated with lysozyme. In addition, the AFM image (FIG. 3) showed that carbon nanotubes having a diameter of 1 nm were coated with spherical proteins having a diameter of about 3 to 5 nm.
ヒト血清アルブミン0.5g(和光純薬製)を用いる以外は、実施例1と同様の組成の下、超音波ホモジナイザによるカーボンナノチューブの分散を30分間行った後に、超音波洗浄機(ブランソン社製、1210J)で3時間程処理することにより、カーボンナノチューブのバンドル成分を減少させた。この溶液を超遠心分離機(日立工機製、himac CP100MX、以下同じ)で36000rpm1時間の条件で遠心分離を行い、不溶物およびバンドル成分を沈降させることにより、可溶化部分を分取した。その結果、蛋白質で被覆された単分散状態のカーボンナノチューブによって構成された繊維が得られた。 Except for using 0.5 g of human serum albumin (manufactured by Wako Pure Chemical Industries, Ltd.), the carbon nanotubes were dispersed with an ultrasonic homogenizer for 30 minutes under the same composition as in Example 1, and then an ultrasonic cleaner (Branson) , 1210J) for about 3 hours, the bundle component of carbon nanotubes was reduced. This solution was centrifuged with an ultracentrifuge (manufactured by Hitachi Koki, himac CP100MX, the same shall apply hereinafter) under conditions of 36000 rpm for 1 hour, and insoluble matters and bundle components were allowed to settle, whereby a solubilized portion was fractionated. As a result, a fiber composed of monodispersed carbon nanotubes coated with protein was obtained.
実施例1と同様に調製した蛋白質カーボンナノチューブ複合炭素繊維水溶液に塩化ナトリウム(和光純薬製)を加えて上記炭素繊維を凝集させ、遠心沈降させることにより、複合繊維と蛋白質とを分離した。さらに、得られた複合繊維を透析チューブ(スペクトラポア社製)に入れて、緩衝液内で約4時間透析を行うことにより過剰な塩分を除去した。
サイズ排除クロマトグラフィー(アマシャムバイオサイエンス社製、G-100)、あるいは、イオン交換クロマトグラフィー(アマシャムバイオサイエンス社製、HiTrap-SP)によっても、蛋白質と上記繊維とを分離できることを確認した。
Sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the protein carbon nanotube composite carbon fiber aqueous solution prepared in the same manner as in Example 1 to aggregate the carbon fibers, and centrifugal sedimentation was performed to separate the composite fibers and the proteins. Furthermore, the obtained composite fiber was put into a dialysis tube (Spectrapore) and dialyzed for about 4 hours in a buffer solution to remove excess salt.
It was confirmed that the protein and the fiber could be separated by size exclusion chromatography (Amersham Biosciences, G-100) or ion exchange chromatography (Amersham Biosciences, HiTrap-SP).
ピレン骨格を有する蛍光物質を標識したウシ血清アルブミンによって、水溶液中への分散を行った。実施例1あるいは2と同様の方法で作製することによって蛍光物質で標識された複合炭素繊維を得ることができた。また、この蛍光標識複合炭素繊維を昆虫細胞内へ導入できることも確認した。 Dispersion in an aqueous solution was performed with bovine serum albumin labeled with a fluorescent substance having a pyrene skeleton. A composite carbon fiber labeled with a fluorescent substance could be obtained by producing in the same manner as in Example 1 or 2. It was also confirmed that this fluorescently labeled composite carbon fiber can be introduced into insect cells.
蛋白質カーボンナノチューブ複合炭素繊維におけるフィルターとしての性質を検証するために、アルブミン―カーボンナノチューブ複合炭素繊維による色素ブロモフェノール(BPB)(和光純薬製)の吸着を試みた。シート状のカーボンナノチューブにアルブミンを吸着させることによって、フィルターを作製した。この後BPB水溶液を、アルブミンを吸着させたフィルターを通して濾過したところ、フィルター表面にBPBの色が確認されたことから、アルブミンによるBPBの吸着が確認された。 In order to verify the properties of the protein carbon nanotube composite carbon fiber as a filter, adsorption of the dye bromophenol (BPB) (manufactured by Wako Pure Chemical Industries, Ltd.) with an albumin-carbon nanotube composite carbon fiber was attempted. A filter was prepared by adsorbing albumin to a sheet-like carbon nanotube. After that, when the BPB aqueous solution was filtered through a filter on which albumin was adsorbed, the color of BPB was confirmed on the surface of the filter, so that adsorption of BPB by albumin was confirmed.
カーボンナノチューブは可視および近赤外光を吸収するために、この吸収を利用した分子認識センサーが構築できる。吸収と発光のピーク値および強度が蛋白質に結合した薬剤によって変化することを利用した光学センサーを構築するための基礎技術となる。そこで、分子選択的応答を示すセンサーに関する知見を得るために、複合炭素繊維による有機分子吸着実験を実施した。有機分子としては、ブロモフェノール、および、8-アニリノ-1-ナフタレンスルホン酸(和光純薬製)を薬剤モデル分子として用い、これらの有無による近赤外領域における吸収ピークのシフトを検討した。複合炭素繊維における蛋白質は、アルブミンおよびリゾチームを使用した。アルブミンはこれらの有機分子を吸着するが、リゾチームは吸着しない。吸収スペクトルを測定したところ、アルブミン複合炭素繊維ではカーボンナノチューブ由来の吸収ピークが5nmレッドシフトすることが観測されたが、一方、リゾチーム複合炭素繊維では上記のシフトは観測されなかった。これらの結果より、このレッドシフトは蛋白質の吸着に由来することが示された。 Since carbon nanotubes absorb visible and near infrared light, a molecular recognition sensor using this absorption can be constructed. This is a basic technique for constructing an optical sensor utilizing the fact that the peak value and intensity of absorption and emission change depending on the drug bound to the protein. Therefore, in order to obtain the knowledge about the sensor showing the molecule selective response, the organic molecule adsorption experiment by the composite carbon fiber was conducted. As organic molecules, bromophenol and 8-anilino-1-naphthalenesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were used as drug model molecules, and the shift of the absorption peak in the near infrared region due to the presence or absence of these was examined. Albumin and lysozyme were used as proteins in the composite carbon fiber. Albumin adsorbs these organic molecules, but not lysozyme. When the absorption spectrum was measured, it was observed that the absorption peak derived from the carbon nanotube was 5 nm red shifted in the albumin composite carbon fiber, whereas the above shift was not observed in the lysozyme composite carbon fiber. From these results, it was shown that this red shift was derived from protein adsorption.
本発明の水分散性蛋白質-カーボンナノチューブ複合体は、カーボンナノチューブが有する電子物性を失わずに化学修飾可能という特長を有しており、環境調和型のカーボンナノチューブの電子物性を利用したデバイス、および、細胞内に導入した際のプローブを有する薬剤作製の基礎技術となる。さらに、吸着する分子の選択性を有するフィルターおよび分子センサーが構築可能となる。より具体的には、ドラッグデリバリーシステム、薬剤吸着システム、蛋白質による分子結合を認識する光学センサー、環境浄化システムなどが考えられ、産業上の利用可能性は高いものである。 The water-dispersible protein-carbon nanotube composite of the present invention has a feature that it can be chemically modified without losing the electronic properties of the carbon nanotubes, and a device that utilizes the electronic properties of environmentally friendly carbon nanotubes, and This is a basic technique for producing a drug having a probe when introduced into a cell. Furthermore, a filter and a molecular sensor having selectivity of molecules to be adsorbed can be constructed. More specifically, drug delivery systems, drug adsorption systems, optical sensors for recognizing molecular bonds by proteins, environmental purification systems, and the like are considered, and industrial applicability is high.
Claims (9)
A water-dispersible protein-carbon nanotube composite obtained by chemically modifying a protein on the surface of a water-dispersible carbon nanotube according to any one of claims 1 to 4.
A filter comprising the water-dispersible protein-carbon nanotube complex according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005209360A JP2007022873A (en) | 2005-07-20 | 2005-07-20 | Water-dispersible protein/carbon nanotube composite and its production method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005209360A JP2007022873A (en) | 2005-07-20 | 2005-07-20 | Water-dispersible protein/carbon nanotube composite and its production method and use |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007022873A true JP2007022873A (en) | 2007-02-01 |
Family
ID=37784129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005209360A Pending JP2007022873A (en) | 2005-07-20 | 2005-07-20 | Water-dispersible protein/carbon nanotube composite and its production method and use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007022873A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007161570A (en) * | 2005-11-16 | 2007-06-28 | Kwangju Inst Of Science & Technol | Single-wall carbon nanotube-egg white protein composite and preparation thereof |
JP2008280450A (en) * | 2007-05-11 | 2008-11-20 | Dainichiseika Color & Chem Mfg Co Ltd | Coating liquid |
JP2010042956A (en) * | 2008-08-12 | 2010-02-25 | Univ Of Tsukuba | Method for dispersing carbon nanotube into aqueous medium |
WO2010027090A1 (en) * | 2008-09-08 | 2010-03-11 | 味の素株式会社 | Therapeutic agent for uremia |
JP2010235379A (en) * | 2009-03-31 | 2010-10-21 | National Institute Of Advanced Industrial Science & Technology | Photocurable resin composite in which carbon nanotubes are dispersed, and laminated body composed of the photocurable resin composite and ion liquid |
JP2011063802A (en) * | 2010-10-12 | 2011-03-31 | National Institute Of Advanced Industrial Science & Technology | Photocurable resin composite in which carbon nanotube is dispersed and laminate comprising the photocurable resin composite and ionic liquid |
JP2011230969A (en) * | 2010-04-28 | 2011-11-17 | Toyo Univ | Carbon nanotube given with polyamino acid, and method of producing the same |
JP2012029683A (en) * | 2010-06-28 | 2012-02-16 | National Institute Of Advanced Industrial Science & Technology | Method for dispersing nanocarbon material in cell culture liquid |
JP2012214320A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Dispersant for nanocarbon and nanocarbon dispersion |
JP2012214321A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Dispersant for nanocarbon, and nanocarbon dispersion liquid |
JP2012214322A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Nanocarbon material excellent in dispersibility |
CN102967570A (en) * | 2012-12-03 | 2013-03-13 | 南京大学 | Method for detecting photochemical activity of carbon nano tube by utilizing transient absorption spectrum technology |
WO2016084691A1 (en) * | 2014-11-26 | 2016-06-02 | 東レ株式会社 | Carbon nanotube composite, semiconductor element and production method therefor, and sensor using same |
CN111821465A (en) * | 2020-07-28 | 2020-10-27 | 太原理工大学 | Whey protein isolate nanofiber/carbon nanotube composite material and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003505332A (en) * | 1999-07-21 | 2003-02-12 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Method for oxidizing multi-walled carbon nanotubes |
JP2003073928A (en) * | 2001-08-29 | 2003-03-12 | Gsi Creos Corp | Carbon fiber produced by vapor growth method |
WO2004013915A1 (en) * | 2002-08-01 | 2004-02-12 | Sanyo Electric Co.,Ltd. | Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity |
WO2004020453A2 (en) * | 2002-08-29 | 2004-03-11 | E.I. Du Pont De Nemours And Company | Functionalized nanoparticles |
WO2004041719A1 (en) * | 2002-11-07 | 2004-05-21 | Sanyo Electric Co., Ltd. | Carbon nanotube construct and process for producing the same |
WO2004048255A2 (en) * | 2002-11-21 | 2004-06-10 | E.I. Du Pont De Nemours And Company | Dispersion of carbon nanotubes by nucleic acids |
-
2005
- 2005-07-20 JP JP2005209360A patent/JP2007022873A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003505332A (en) * | 1999-07-21 | 2003-02-12 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Method for oxidizing multi-walled carbon nanotubes |
JP2003073928A (en) * | 2001-08-29 | 2003-03-12 | Gsi Creos Corp | Carbon fiber produced by vapor growth method |
WO2004013915A1 (en) * | 2002-08-01 | 2004-02-12 | Sanyo Electric Co.,Ltd. | Optical sensor, method for manufacturing and driving optical sensor, and method for measuring light intensity |
WO2004020453A2 (en) * | 2002-08-29 | 2004-03-11 | E.I. Du Pont De Nemours And Company | Functionalized nanoparticles |
WO2004041719A1 (en) * | 2002-11-07 | 2004-05-21 | Sanyo Electric Co., Ltd. | Carbon nanotube construct and process for producing the same |
WO2004048255A2 (en) * | 2002-11-21 | 2004-06-10 | E.I. Du Pont De Nemours And Company | Dispersion of carbon nanotubes by nucleic acids |
Non-Patent Citations (1)
Title |
---|
LU,Q. ET AL: "Diffusion of carbon nanotubes with single-molecule fluorescence microscopy", J APPL PHYS, vol. 96, no. 11, JPN6010048977, 1 December 2004 (2004-12-01), pages 6772 - 6775, XP012068373, ISSN: 0001707962, DOI: 10.1063/1.1815053 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4563985B2 (en) * | 2005-11-16 | 2010-10-20 | 光州科学技術院 | Single-walled carbon nanotube-egg white protein complex and method for producing the same |
JP2007161570A (en) * | 2005-11-16 | 2007-06-28 | Kwangju Inst Of Science & Technol | Single-wall carbon nanotube-egg white protein composite and preparation thereof |
JP2008280450A (en) * | 2007-05-11 | 2008-11-20 | Dainichiseika Color & Chem Mfg Co Ltd | Coating liquid |
JP2010042956A (en) * | 2008-08-12 | 2010-02-25 | Univ Of Tsukuba | Method for dispersing carbon nanotube into aqueous medium |
WO2010027090A1 (en) * | 2008-09-08 | 2010-03-11 | 味の素株式会社 | Therapeutic agent for uremia |
JP2010235379A (en) * | 2009-03-31 | 2010-10-21 | National Institute Of Advanced Industrial Science & Technology | Photocurable resin composite in which carbon nanotubes are dispersed, and laminated body composed of the photocurable resin composite and ion liquid |
JP2011230969A (en) * | 2010-04-28 | 2011-11-17 | Toyo Univ | Carbon nanotube given with polyamino acid, and method of producing the same |
JP2012029683A (en) * | 2010-06-28 | 2012-02-16 | National Institute Of Advanced Industrial Science & Technology | Method for dispersing nanocarbon material in cell culture liquid |
JP2011063802A (en) * | 2010-10-12 | 2011-03-31 | National Institute Of Advanced Industrial Science & Technology | Photocurable resin composite in which carbon nanotube is dispersed and laminate comprising the photocurable resin composite and ionic liquid |
JP2012214320A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Dispersant for nanocarbon and nanocarbon dispersion |
JP2012214321A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Dispersant for nanocarbon, and nanocarbon dispersion liquid |
JP2012214322A (en) * | 2011-03-31 | 2012-11-08 | Cci Corp | Nanocarbon material excellent in dispersibility |
CN102967570A (en) * | 2012-12-03 | 2013-03-13 | 南京大学 | Method for detecting photochemical activity of carbon nano tube by utilizing transient absorption spectrum technology |
WO2016084691A1 (en) * | 2014-11-26 | 2016-06-02 | 東レ株式会社 | Carbon nanotube composite, semiconductor element and production method therefor, and sensor using same |
JPWO2016084691A1 (en) * | 2014-11-26 | 2017-09-14 | 東レ株式会社 | Carbon nanotube composite, semiconductor device, manufacturing method thereof, and sensor using the same |
CN111821465A (en) * | 2020-07-28 | 2020-10-27 | 太原理工大学 | Whey protein isolate nanofiber/carbon nanotube composite material and preparation method thereof |
CN111821465B (en) * | 2020-07-28 | 2022-11-11 | 太原理工大学 | Whey protein isolate nanofiber/carbon nanotube composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007022873A (en) | Water-dispersible protein/carbon nanotube composite and its production method and use | |
Lynch et al. | Protein–nanoparticle interactions | |
Matsuura et al. | Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions | |
Smith et al. | A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications | |
Lévy | Peptide‐Capped Gold Nanoparticles: Towards Artificial Proteins | |
CN106475068B (en) | The graphene oxide composite nano materials of phenyl boric acid functionalization and its preparation and application | |
Liu et al. | Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin | |
Lin et al. | Protein-affinity of single-walled carbon nanotubes in water | |
Elkin et al. | Immuno-carbon nanotubes and recognition of pathogens | |
Han et al. | Facile modification of protein-imprinted polydopamine coatings over nanoparticles with enhanced binding selectivity | |
Chen et al. | Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes | |
Muzard et al. | M13 Bacteriophage‐Activated Superparamagnetic Beads for Affinity Separation | |
Lee et al. | Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles | |
TW200411005A (en) | Polymer chain grafted carbon nanocapsule | |
Szarpak‐Jankowska et al. | Cyclodextrin‐Modified Zeolites: Host–Guest Surface Chemistry for the Construction of Multifunctional Nanocontainers | |
Zhou et al. | Carbon nanotubes | |
JP4107873B2 (en) | Luminescent fine particles | |
Ahn et al. | Gelation of graphene oxides induced by different types of amino acids | |
Fang et al. | Coacervation of resilin fusion proteins containing terminal functionalities | |
González-García et al. | Nanomaterials in protein sample preparation | |
Kim et al. | Stabilization of α-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition | |
Zhang et al. | Deep eutectic solvents-based polymer monolith incorporated with titanium dioxide nanotubes for specific recognition of proteins | |
Dunakey et al. | Selective labeling and decoration of the ends and sidewalls of single-walled carbon nanotubes using mono-and bispecific solid-binding fluorescent proteins | |
Wu et al. | Probing the protein conformation and adsorption behaviors in nanographene oxide-protein complexes | |
Sankarakumar et al. | Protein adsorption behavior in batch and competitive conditions with nanoparticle surface imprinting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110426 |