JP2007021471A - Heating apparatus and method - Google Patents

Heating apparatus and method Download PDF

Info

Publication number
JP2007021471A
JP2007021471A JP2005234975A JP2005234975A JP2007021471A JP 2007021471 A JP2007021471 A JP 2007021471A JP 2005234975 A JP2005234975 A JP 2005234975A JP 2005234975 A JP2005234975 A JP 2005234975A JP 2007021471 A JP2007021471 A JP 2007021471A
Authority
JP
Japan
Prior art keywords
raw material
heating
flat plate
product
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005234975A
Other languages
Japanese (ja)
Inventor
Shigenori Kuga
重則 空閑
Kyuju Ken
求重 権
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005234975A priority Critical patent/JP2007021471A/en
Publication of JP2007021471A publication Critical patent/JP2007021471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover a vaporization product produced when vaporizing or pyrolyzing a solid organic matter under the under vacuum or inert atmosphere while suppressing the secondary decomposition to the minimum. <P>SOLUTION: A material organic matter, as a powder or a granular solid, is supplied on a movable flat plate in layers to be introduced to a heating part, and the product is deposited to a cooling plate immediately disposed to recover. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は固体もしくは液体の有機物を不活性雰囲気下で加熱して蒸発させ、もしくは熱分解させて揮発性の低分子化合物として気化させ、これらの二次的熱分解を防ぎつつ回収する方法及びそのための装置に関する。The present invention is a method for recovering solid or liquid organic substances by heating them under an inert atmosphere to evaporate them or thermally decomposing them to vaporize them as volatile low molecular weight compounds while preventing these secondary thermal decompositions, and therefore Relating to the device.

有機物、とくに大量に存在する天然有機高分子物質を有用な化学物質に転換する方法として湿式分解(鉱酸による加水分解、及び酵素分解)が広く利用されてきた。これはデンプンからのグルコース及びエタノールの製造という形で実用技術となっている。しかしデンプン以上に大量に存在し安価なバイオマス資源であるセルロースについては、その結晶性に起因する難分解性のゆえに、これをグルコースに転換するプロセスは産業技術として実現していない。  Wet decomposition (hydrolysis with mineral acids and enzymatic decomposition) has been widely used as a method for converting organic substances, particularly natural organic polymer substances present in large quantities into useful chemical substances. This has become a practical technique in the form of the production of glucose and ethanol from starch. However, for cellulose, which is an inexpensive biomass resource that exists in a larger amount than starch, the process of converting it into glucose has not been realized as an industrial technology because of its indegradability due to its crystallinity.

湿式分解に代る方法として乾式熱分解が検討されてきた。デンプン・セルロース等のグルコースポリマーは不活性雰囲気下での乾式熱分解により無水糖と呼ばれる化合物を高収率で与えることが古くから知られている。例えばデンプンを真空下で熱分解すると1,6−アンヒドログルコース(通称レボグルコサン)が主要生成物として得られ、その収率は原料デンプンに対して通例20〜30%である(非特許文献1)。また同じ処理を高純度のセルロースで行うとレボグルコサン収率は50%以上に達する。(非特許文献2、3)。これらの知見は高純度のデンプン及びセルロースの熱分解の一次生成物のほとんどがレボグルコサンであることを示唆している。
R.B.Ward.Methods in Carbohydrate Chem.,2,p.394(1963) M.Cerny and J.Stanek,Jr.,Adv.in Carbohydr.Chem.34(1977)pp.23−177 D.Radlein et al.,J.Anal.Appl.Pyrolysis,19(1991)41−63
Dry pyrolysis has been investigated as an alternative to wet cracking. Glucose polymers such as starch and cellulose have long been known to give a compound called anhydrous sugar in a high yield by dry pyrolysis under an inert atmosphere. For example, when starch is pyrolyzed under vacuum, 1,6-anhydroglucose (commonly known as levoglucosan) is obtained as a main product, and the yield is typically 20 to 30% based on the raw starch (Non-patent Document 1). . When the same treatment is performed with high-purity cellulose, the levoglucosan yield reaches 50% or more. (Non-Patent Documents 2 and 3). These findings suggest that most of the primary product of pyrolysis of high purity starch and cellulose is levoglucosan.
R. B. Ward. Methods in Carbohydrate Chem. , 2, p. 394 (1963) M.M. Cerny and J.M. Stanek, Jr. , Adv. in Carbohydr. Chem. 34 (1977) p. 23-177 D. Radlein et al. , J .; Anal. Appl. Pyrolysis, 19 (1991) 41-63

しかしこの反応を産業プロセスとして利用するには大きな障害がある。それはレボグルコサンがその発生温度(=デンプン及びセルロースの分解温度=300〜360℃)において直ちに二次分解を起こしてフルフラール類、酢酸、メタノール、二酸化炭素等の小分子になってしまうことである。このため純セルロースからのレボグルコサンの収率は小規模の装置で最高60%程度であり、スケールアップすると大幅に低下する。また高収率を報告している例はすべてバッチ式処理であり、工業化には適さない。
工業プロセスとして実用化する提案としては流動層反応装置を用いるもの(非特許文献4)があるが、レボグルコサンの収率は高いものではない。また最近の提案として特許文献1〜3があり、かなりの高収率を実現しているが、これらはセルロース等を有機溶剤中で200〜400℃、200〜750気圧で処理するものであり、溶剤を必要とするほか特殊な耐熱・耐圧容器を必要とする。
M.Miura et al.,J.Wood Sci.(2001)47:502−506 特開平2−101093 特開2001−205070 特開2003−342289
However, there are major obstacles to using this reaction as an industrial process. That is, levoglucosan immediately undergoes secondary decomposition at the generation temperature (= decomposition temperature of starch and cellulose = 300 to 360 ° C.) to become small molecules such as furfurals, acetic acid, methanol, carbon dioxide and the like. For this reason, the yield of levoglucosan from pure cellulose is about 60% at maximum in a small-scale device, and it greatly decreases when scaled up. Also, all examples reporting high yields are batch processes and are not suitable for industrialization.
As a proposal for practical use as an industrial process, there is one that uses a fluidized bed reactor (Non-Patent Document 4), but the yield of levoglucosan is not high. In addition, there are Patent Documents 1 to 3 as recent proposals, and a considerably high yield is realized, but these are for treating cellulose or the like in an organic solvent at 200 to 400 ° C. and 200 to 750 atm. In addition to solvents, special heat and pressure resistant containers are required.
M.M. Miura et al. , J .; Wood Sci. (2001) 47: 502-506. Japanese Patent Laid-Open No. 2-101093 JP2001-205070 JP 2003-342289 A

本件発明者らはこの種の熱分解における生成物の挙動を詳しく検討した結果本発明をなすに至った。従来、工業化を意図した乾熱分解法では、原料を急速に加熱する点を重視するものの、生成物を捕集する方法の工夫が不足していた。先述の流動床プロセス(非特許文献3)では生成物の高温領域滞留時間が0.5秒程度と評価されているが、いったん気化した有機物にあっては0.5秒は二次分解を起こすに十分な時間である。この滞留時間を短縮することにより一次生成物の回収率を格段に高めることが可能であり、それを実現するのが本発明である。本発明は上記のように主としてセルロース及びデンプンからのレボグルコサンの製造を意図してなされたものであるが、対象原料としては各種の天然及び合成有機化合物を用いることができる。これらにおいてはレボグルコサン以外の有用成分、例えばレボグルコサンの類縁物質であるセロビオサン、レボグルコセノン、フラノサン、さらにはテルペン類、アルカロイド、フェノール類、等の抽出成分を得ることも可能である。  As a result of detailed examination of the behavior of the product in this type of thermal decomposition, the present inventors have made the present invention. Conventionally, in the dry pyrolysis method intended for industrialization, although importance is attached to the point of rapidly heating the raw material, the device for collecting the product has been insufficient. In the above fluidized bed process (Non-patent Document 3), the residence time of the product in the high temperature region is evaluated to be about 0.5 seconds. However, in the case of an organic substance once vaporized, secondary decomposition occurs for 0.5 seconds. It is enough time. By shortening the residence time, the recovery rate of the primary product can be remarkably increased, and the present invention realizes this. As described above, the present invention is mainly intended for the production of levoglucosan from cellulose and starch, but various natural and synthetic organic compounds can be used as target raw materials. In these, useful components other than levoglucosan, for example, cellobiosan, levoglucosenone, furanosan, which are analogs of levoglucosan, and extract components such as terpenes, alkaloids, phenols, etc. can be obtained.

熱分解の一次生成物を高温領域の滞留時間を短くする方法として次の方式を採用する:
▲1▼減圧もしくは常圧の不活性ガスで満たした密閉容器中に、ほぼ水平に、互いに対向して、面内で可動な2枚の平板(金属製のベルトもしくは回転円盤)を設置する。
▲2▼下側平板の非加熱部上面に原料を塗布もしくは振り落として供給する機構を設け、該平板の面内運動により原料を加熱部に導入して熱分解を起こさせる。加熱は平板の下方裏面から電気ヒータで行う。
▲3▼下側平板の加熱部に対向する上側平板の部分を上方裏面から冷却し、原料から発生するガスもしくはエアロゾルを冷却部に凝縮させ捕捉する。このとき二枚の平板の対向面の間隔は試料の態様と熱分解の挙動に応じて5mm〜100mmの範囲で調節する。
▲4▼上側平板に付着する生成物は平板の移動によって熱分解領域の外へ運ばれ、平板に密着するブレードで掻き取って回収される。同様に、下側可動板に残留する残渣は、熱分解領域の外部に設置されるブレードで掻き取って除去される。
The following method is adopted as a method for shortening the residence time in the high temperature region of the primary product of pyrolysis:
{Circle around (1)} Two flat plates (metal belts or rotating disks) that are movable in a plane are installed in a sealed container filled with an inert gas under reduced pressure or atmospheric pressure, almost horizontally and facing each other.
(2) A mechanism for supplying the raw material by coating or shaking off the upper surface of the non-heated portion of the lower flat plate is provided, and the raw material is introduced into the heating portion by in-plane movement of the flat plate to cause thermal decomposition. Heating is performed with an electric heater from the lower back of the flat plate.
(3) The portion of the upper flat plate facing the heating portion of the lower flat plate is cooled from the upper back surface, and the gas or aerosol generated from the raw material is condensed and captured in the cooling portion. At this time, the interval between the opposing surfaces of the two flat plates is adjusted in the range of 5 mm to 100 mm in accordance with the aspect of the sample and the behavior of thermal decomposition.
(4) The product adhering to the upper flat plate is carried out of the thermal decomposition region by the movement of the flat plate, and is scraped off and collected by a blade that is in close contact with the flat plate. Similarly, the residue remaining on the lower movable plate is removed by scraping with a blade installed outside the pyrolysis region.

乾熱分解プロセスにおいては原料有機物の供給方法が結果性能に強く影響する。すなわち、通常のバッチ式加熱では原料が下方から加熱されるので、気化した分解生成物が上方に存在する原料層に捕捉されて高温領域に留まり、二次分解が進行する。これを避けるため本発明では原料を粉末あるいは顆粒状として薄い層状、好ましくは5mm以下の層状に供給する。このようにすると薄い原料層は短時間で熱分解が完了するので、原料自体による生成物の捕捉が抑制され、生成物を高収率で回収することができる。  In the dry pyrolysis process, the raw material supply method strongly affects the performance. That is, since the raw material is heated from below in ordinary batch heating, the vaporized decomposition product is captured by the raw material layer present above and remains in the high temperature region, and the secondary decomposition proceeds. In order to avoid this, in the present invention, the raw material is supplied in the form of a thin layer, preferably 5 mm or less, as powder or granules. In this way, since the thin raw material layer is thermally decomposed in a short time, the capture of the product by the raw material itself is suppressed, and the product can be recovered with a high yield.

課題を解決するための手段Means for solving the problem

において記述した装置の中の対向する水平平板を、耐熱・耐腐食性の金属製、好ましくはステンレス鋼製のベルトコンベヤ2基を用いて構成し、容器を真空ポンプで排気して運転することにより本発明を実施することができる。あるいは、ベルトコンベヤの代わりに同様の材質の回転平板2枚で構成することができる。これら平板の併進ないし回転の駆動は、密閉容器外部に設ける制御装置を介して密閉容器内に設置する電気モータにより行われ、その速度は試料の種類及び加熱温度の組合せに応じて、線速度にして毎分5mmから500mmの範囲、好ましくは毎分50mmから150mmに調節される。加熱はフィードバックによる温度制御機構を有する電熱ヒータで行い、加熱部の上面温度を350℃〜550℃とするが、セルロースの場合は400℃から500℃の範囲が好ましく、デンプンの場合は350℃から450℃の範囲が好ましい。冷却部は外部に設置する冷却器から水または凍結防止剤入りの水を循環させることにより、−15℃〜20℃に冷却するか、あるいは放熱板により空冷(減圧下では放射冷却)するのが良い。密閉容器内の雰囲気は、残留圧力10mmHg程度以下の高減圧とするか、意図的に10mmHgから760mmHgの範囲、好ましくは20mmHgから50mmHgの範囲で不活性ガスを導入して熱分解を制御する。後者の場合、ガスとしては不活性ガス、このましくは窒素もしくはアルゴンを用いる。
以下に、本発明を実施例を用いて詳細に説明するが、本発明は本実施例に限定されるものではない。
The opposing horizontal plates in the apparatus described in 1 are constructed using two belt conveyors made of heat and corrosion resistant metal, preferably stainless steel, and the container is evacuated by a vacuum pump and operated. The present invention can be implemented. Or it can comprise with two rotation flat plates of the same material instead of a belt conveyor. The translation or rotation of these flat plates is driven by an electric motor installed in the sealed container via a controller provided outside the sealed container, and the speed is set to a linear speed according to the combination of the sample type and the heating temperature. In the range of 5 mm to 500 mm per minute, preferably 50 mm to 150 mm per minute. Heating is performed with an electric heater having a temperature control mechanism by feedback, and the upper surface temperature of the heating part is set to 350 ° C. to 550 ° C. In the case of cellulose, a range of 400 ° C. to 500 ° C. is preferable, and in the case of starch, from 350 ° C. A range of 450 ° C. is preferred. The cooling unit can be cooled to -15 ° C to 20 ° C by circulating water or water containing an antifreeze agent from an externally installed cooler, or air cooled (radiated cooling under reduced pressure) by a heat sink. good. The atmosphere in the sealed container is set to a high depressurization with a residual pressure of about 10 mmHg or less, or an inert gas is intentionally introduced in the range of 10 mmHg to 760 mmHg, preferably 20 mmHg to 50 mmHg to control thermal decomposition. In the latter case, an inert gas, preferably nitrogen or argon, is used as the gas.
Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the examples.

図1のごとき装置を用い、約2.5mmHgの減圧下において下側ベルトコンベヤBを50mm/minの速度で矢印方向に連続運転する。ベルトは上側、下側とも厚さ0.1mmのステンレス鋼製で、幅は上側ベルトが120mm、下側ベルトが40mmである。Bの中央部は電熱器Cで330〜410℃に加熱される。原料としてトウモロコシデンプン(和光純薬)絶乾5gをホッパAに入れ、その下部に設置した40メッシュの金属網を通して振り落とすことにより、少量ずつベルトコンベヤBに連続供給する。上側の捕集用ベルトコンベヤDは矢印方向に連続運転され、その中央部は冷却器Eで室温以下に冷却される。上側ベルトに付着した分解生成物はベルトに密着して設置された金属製ブレードGで掻き落される。下側ベルト状に残る固形残渣はブレードFで掻き落される。ブレードGで捕集された物質(以下「シロップ」と称する)を秤量し、液体クロマトグラフィー(イオン交換カラム、溶媒=アセトニトリル70%水溶液)により分析した結果を表1に示す。

Figure 2007021471
ホッパ内残渣とは振落としきれなかった原料の量であり、実際の工程にあっては再使用できるものなので、原料消費量からは除去して収率を計算する。熱分解残渣とは下側平板から掻き落された炭化物であり、これは原料消費量に含める。また、レボグルコサンの収率は液体クロマトグラフィーによる検出量であり、精製単離量ではない。この項は以下の実施例においても同じである。Using the apparatus shown in FIG. 1, the lower belt conveyor B is continuously operated in the direction of the arrow at a speed of 50 mm / min under a reduced pressure of about 2.5 mmHg. The upper and lower belts are made of stainless steel with a thickness of 0.1 mm, and the width is 120 mm for the upper belt and 40 mm for the lower belt. The central part of B is heated by an electric heater C to 330-410 ° C. As a raw material, 5 g of corn starch (Wako Pure Chemical Industries) absolutely dried is put into hopper A, and it is continuously fed to belt conveyor B little by little by shaking it through a 40-mesh metal net installed underneath. The upper collecting belt conveyor D is continuously operated in the direction of the arrow, and the central portion thereof is cooled to below room temperature by the cooler E. The decomposition products adhering to the upper belt are scraped off by a metal blade G installed in close contact with the belt. The solid residue remaining in the lower belt shape is scraped off by the blade F. Table 1 shows the results of weighing substances collected by the blade G (hereinafter referred to as “syrup”) and analyzing them by liquid chromatography (ion exchange column, solvent = 70% acetonitrile aqueous solution).
Figure 2007021471
The hopper residue is the amount of raw material that could not be shaken off, and can be reused in the actual process, so the yield is calculated by removing it from the raw material consumption. The pyrolysis residue is a carbide scraped off from the lower flat plate, and this is included in the raw material consumption. The yield of levoglucosan is the amount detected by liquid chromatography, not the amount of purified isolation. The same applies to the following examples.

実施例1において、原料として二種類のセルロース粉末(Whatman CF11、および旭化成製Avicel SF)絶乾5gを用いて、ヒータ温度430℃で処理した場合の結果を表2に示す。

Figure 2007021471
In Example 1, Table 2 shows the results when treated at a heater temperature of 430 ° C. using 5 g of dry cellulose powder (Whatman CF11 and Avicel SF manufactured by Asahi Kasei) as raw materials.
Figure 2007021471

実施例1において、原料としてAvicel SF及びトウモロコシデンプン絶乾5gを用い、密閉容器に2.3mmHgから60mmHgの窒素を導入して処理した場合の結果を表4に示す。

Figure 2007021471
In Example 1, Table 4 shows the results of treatment using Avicel SF and 5 g of corn starch absolutely dried as raw materials and introducing nitrogen from 2.3 mmHg to 60 mmHg into a sealed container.
Figure 2007021471

実施例1、実施例2で使用したベルトコンベヤ式装置の正面見取り図である。装置の全体は減圧もしくは不活性ガスへの置換が可能な密閉容器に設置される。It is a front sketch of the belt conveyor type device used in Example 1 and Example 2. The entire apparatus is installed in a sealed container that can be decompressed or replaced with an inert gas.

記号の説明Explanation of symbols

A.原料供給ホッパ
B.下側ベルトコンベヤ
C.加熱板
D.上側ベルトコンベヤ
E.冷却板
F.未分解原料及び炭化残渣回収部
G.分解生成物回収部
A. Raw material supply hopper Lower belt conveyor C.I. Heating plate Upper belt conveyor Cold plate F. Undecomposed raw material and carbonized residue recovery unit Decomposition product recovery section

Claims (4)

密閉容器中に、互いに対向してほぼ水平に設置され面内で可動な2枚の平板すなわち上側平板と下側平板を備え、下側平板の一部を下方より加熱する機構を備え、下側平板の非加熱部の上面に原料を供給する機構を備え、上側平板の一部を上方より冷却する機構を備え、加熱部と冷却部を対向させて設置する加熱装置。  The sealed container is provided with two flat plates which are installed substantially horizontally opposite to each other and movable in the plane, that is, an upper plate and a lower plate, and a mechanism for heating a part of the lower plate from below, A heating apparatus including a mechanism for supplying a raw material to the upper surface of a non-heating portion of a flat plate, a mechanism for cooling a part of the upper flat plate from above, and a heating portion and a cooling portion that face each other. 請求項1の2枚の可動平板の一方もしくは両方がベルトコンベヤであるような加熱装置。A heating apparatus in which one or both of the two movable flat plates of claim 1 are belt conveyors. 請求項1の2枚の可動平板の一方もしくは両方が回転円盤であるような加熱装置。A heating apparatus in which one or both of the two movable flat plates of claim 1 are rotating disks. 請求項1の装置を用いて、固体もしくは液体の原料を熱分解もしくは蒸発により気化させ、該気化物を上側平板の下面に付着させることによって捕集する方法。  A method for collecting a solid or liquid raw material by pyrolysis or evaporation using the apparatus of claim 1 and attaching the vaporized material to the lower surface of the upper flat plate.
JP2005234975A 2005-07-15 2005-07-15 Heating apparatus and method Pending JP2007021471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234975A JP2007021471A (en) 2005-07-15 2005-07-15 Heating apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234975A JP2007021471A (en) 2005-07-15 2005-07-15 Heating apparatus and method

Publications (1)

Publication Number Publication Date
JP2007021471A true JP2007021471A (en) 2007-02-01

Family

ID=37782914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234975A Pending JP2007021471A (en) 2005-07-15 2005-07-15 Heating apparatus and method

Country Status (1)

Country Link
JP (1) JP2007021471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172482A1 (en) 2020-02-27 2021-09-02 国立大学法人京都大学 Method for producing sugar anhydride and saccharide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172482A1 (en) 2020-02-27 2021-09-02 国立大学法人京都大学 Method for producing sugar anhydride and saccharide

Similar Documents

Publication Publication Date Title
Zeng et al. Volatile compounds formed from the pyrolysis of chitosan
US10391418B2 (en) Apparatus for vacuum purification
CN1256998C (en) Sublimation purifying method and apparatus
Marathe et al. Fast pyrolysis of cellulose in vacuum: The effect of potassium salts on the primary reactions
US20130326935A1 (en) System for treating biomass
JP2022525789A (en) Mesophase pitch for carbon fiber production using supercritical carbon dioxide
TW201504218A (en) Methods for purifying 5-(halomethyl)furfural
WO2016008312A1 (en) New purification method of organic solid material
JP2007021471A (en) Heating apparatus and method
JP2002060213A (en) Method and apparatus for separating metal chloride from gaseous reaction mixture obtained at synthesizing chlorosilane
CN103159208A (en) Preparation method of graphene
KR20160140864A (en) Thermal decomposition of magnesium chloride
CN108602746A (en) The method of industrial production chloroacetic acid
ATE268374T1 (en) METHOD FOR RECOVERING LOW MOLECULAR PHENOLS, FURFURAL, FURFURAL ALCOHOL AND/OR CELLULOSE OR RESIDUE HIGH IN CELLULOS
TWI589342B (en) Continuous distillation apparatus for organic solid materials
CN102650031A (en) Method for removing organic matters attached onto surface of MASK
WO2015133540A1 (en) Method for producing furfural
JP6667646B2 (en) Method for improving treatment of magnesium chloride solution and method for producing carboxylic acid
EP2133346A1 (en) Method of manufacturing a cyclic diester of an alpha-hydroxylated acid
WO2002044245A1 (en) Resin preheating for steam percipitation jet polycarbonate resin isolation
WO2003076335A1 (en) Process for production of fullerenes and method for separation thereof
JP5065597B2 (en) Fullerene base material manufacturing apparatus and manufacturing method
RU2352606C1 (en) Method of pyrolysis processing organo-containing raw materials
RU2310002C2 (en) Zirconium production method by reducing its tetrachloride
Magrath et al. A method for the flash vacuum thermolysis of non-volatile compounds