JP2007020873A - Medical image processing device and image processing program - Google Patents

Medical image processing device and image processing program Download PDF

Info

Publication number
JP2007020873A
JP2007020873A JP2005207303A JP2005207303A JP2007020873A JP 2007020873 A JP2007020873 A JP 2007020873A JP 2005207303 A JP2005207303 A JP 2005207303A JP 2005207303 A JP2005207303 A JP 2005207303A JP 2007020873 A JP2007020873 A JP 2007020873A
Authority
JP
Japan
Prior art keywords
image
reconstruction
boundary line
image processing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005207303A
Other languages
Japanese (ja)
Other versions
JP4679988B2 (en
Inventor
Yoshihiro Goto
良洋 後藤
Takeshi Ueda
健 植田
Kunihiko Seo
邦彦 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005207303A priority Critical patent/JP4679988B2/en
Publication of JP2007020873A publication Critical patent/JP2007020873A/en
Application granted granted Critical
Publication of JP4679988B2 publication Critical patent/JP4679988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical image processing device capable of forming a shaded three-dimensional image preventing artifacts being generated even when a subject is extended off the reconstruction field. <P>SOLUTION: Image reconstruction is made for a portion of a subject and the reconstruction field is designated for generating a tomographic image. Then X-ray transmission data acquired by photographing via X-ray CT device is read (S1). Based on the X-ray transmission data, image is reconstructed for generating the tomographic image(S2). Next, a surrounding region including the boundary line of the reconstruction field in the tomographic image is set as an objective field to be processed (S3). A smoothing process is executed based on the density value of the pixel of the object field to be processed(S4). The third-dimensional image shaded based on the tomographic image smoothing processed is generated and displayed(S5). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医用画像処理装置及び画像処理プログラムに係り、特にX線CT装置で取得したボリュームデータに基づいて3次元画像を生成する際にアーチファクトを低減させる技術に関する。   The present invention relates to a medical image processing apparatus and an image processing program, and more particularly to a technique for reducing artifacts when generating a three-dimensional image based on volume data acquired by an X-ray CT apparatus.

従来、画像ノイズを除去するために、医用画像の全体に平滑化処理を行ったり、医用画像の局所領域毎に平滑化処理を行う適応型平滑化処理を行なったりする技術がある。   Conventionally, in order to remove image noise, there are techniques for performing a smoothing process on the entire medical image or performing an adaptive smoothing process for performing a smoothing process for each local region of the medical image.

特許文献1は、適応型平滑化処理の例として、医用画像上の着目点における8方向の輝度の変化量を計算し、その変化量が最小となる方向を求めて、その方向について輝度差に応じた1次元の非線形平滑化処理を行なう画像処理方法を開示する。この方法によれば、医用画像の模様が細かい部分とそうではない部分とを認識した平滑化処理を行なうことができる。
特開平9−330399号公報
As an example of adaptive smoothing processing, Patent Document 1 calculates the amount of change in luminance in eight directions at a point of interest on a medical image, obtains the direction in which the amount of change is minimum, and determines the difference in luminance in that direction. An image processing method for performing a corresponding one-dimensional nonlinear smoothing process is disclosed. According to this method, it is possible to perform a smoothing process that recognizes a portion where the pattern of the medical image is fine and a portion where the pattern is not so.
JP-A-9-330399

大きな被検体を撮影した場合、コーンビーム型X線CT装置やファンビーム型X線CT装置の画像再構成領域(以下「再構成領域」という)から被検体がはみ出してしまう場合があり、被検体がはみ出した領域では縞模様からなるアーチファクトが発生することがあった。このアーチファクトの発生原因を図8乃至図10を用いて説明する。   When a large subject is imaged, the subject may protrude from the image reconstruction area (hereinafter referred to as “reconstruction area”) of a cone beam X-ray CT apparatus or a fan beam X-ray CT apparatus. Artifacts with striped patterns may occur in the areas that protrude. The cause of this artifact will be described with reference to FIGS.

図8は、平面センサを使用したX線CT装置の構成を示す説明図である。X線CT装置のX線発生器及び平面センサは被検体の周囲の軌道を回転し、1回転することによって、図8に示すような数百枚の断層像81、82、…84、…、87が再構成される。平面センサは4角形なので、図8に示すように円柱形状の再構成領域80が形成される。   FIG. 8 is an explanatory diagram showing a configuration of an X-ray CT apparatus using a flat sensor. The X-ray generator and the flat sensor of the X-ray CT apparatus rotate the trajectory around the subject and rotate it once to obtain several hundred tomographic images 81, 82,... 84,. 87 is reconfigured. Since the planar sensor is a quadrangular shape, a cylindrical reconstruction area 80 is formed as shown in FIG.

図9は、コーンビーム型X線CT装置の再構成領域を示す。X線発生器及びイメージインテンシファイアは被検体63の周囲の軌道64を回転し、1回転することによって、図9に示すような数百枚の断層像91、92、…、97がコーンビーム再構成されるこの場合のコーンビーム型X線CT装置の再構成領域は、通常図9に示すように球90の内部領域である。   FIG. 9 shows a reconstruction area of a cone beam X-ray CT apparatus. The X-ray generator and the image intensifier rotate the orbit 64 around the subject 63 and make one rotation, whereby hundreds of tomographic images 91, 92,... 97 as shown in FIG. In this case, the reconstruction area of the cone beam X-ray CT apparatus in this case is the internal area of the sphere 90 as shown in FIG.

被検体の大きさが再構成領域80、90よりも大きい場合は、被検体を撮影した陰影がはみ出してしまう。図10は、被検体がはみ出した再構成画像(断層像)と、その断層像に基づいて再構成した陰影づけ3次元画像とを示す。図10(a)の再構成画像100に含まれる被検体陰影101は、円形の再構成領域102のうち境界線上の点103から点104にかけて頭部がはみ出している。再構成領域102の外側には特殊な値の濃度値が記録してあるため、点103から点104を結ぶ境界線では、この境界線を挟んで外側に位置する部分と内側に位置する部分との濃度値が大きく変化する。このように、被検体が再構成領域102からはみ出した断層像を積み重ねて3次元画像を生成した場合、上述の境界線を挟んだ濃度値の大きな変化が縞模様からなるアーチファクトとして現れる。図10(b)は、3次元画像105に生じたアーチファクト106を模式的に示したものである。3次元画像105は、被検体の頭部を3次元的に陰影付けた3次元画像である。図11は、実際に生成した3次元画像に現れたアーチファクトを示す。図11の3次元画像110において側面に現れた縦縞模様111が上述のアーチファクトである。   When the size of the subject is larger than the reconstruction areas 80 and 90, a shadow obtained by photographing the subject protrudes. FIG. 10 shows a reconstructed image (tomographic image) in which the subject protrudes and a shaded three-dimensional image reconstructed based on the tomographic image. The subject shadow 101 included in the reconstructed image 100 in FIG. 10A has a head protruding from a point 103 to a point 104 on the boundary line in the circular reconstruction region 102. Since a density value having a special value is recorded outside the reconstruction area 102, the boundary line connecting the point 103 to the point 104 includes a part positioned outside and a part positioned inside the boundary line. Concentration value of the color changes greatly. In this way, when the tomograms that the subject protrudes from the reconstruction area 102 are stacked to generate a three-dimensional image, a large change in the density value across the boundary line appears as an artifact consisting of a striped pattern. FIG. 10B schematically shows an artifact 106 generated in the three-dimensional image 105. The three-dimensional image 105 is a three-dimensional image in which the head of the subject is shaded three-dimensionally. FIG. 11 shows artifacts appearing in the actually generated three-dimensional image. The vertical stripe pattern 111 that appears on the side surface in the three-dimensional image 110 of FIG. 11 is the above-described artifact.

そこで、本発明は、被検体が再構成領域をはみ出した断層像を積み上げて3次元画像を生成する場合にもよりアーチファクトの発生を防ぐことができる医用画像処理装置及び画像処理プログラムを提供することを目的とする。   Therefore, the present invention provides a medical image processing apparatus and an image processing program capable of preventing the occurrence of artifacts even when a subject generates a three-dimensional image by accumulating tomographic images protruding from a reconstruction area. With the goal.

上記目的を達成するために、本発明は、X線CT装置が再構成領域内に被検体の部位を含んで撮影することにより得られたX線透過データであって、断層像を積み上げた3次元画像を生成可能なX線透過データを読込む手段と、前記X線透過データに基づいて画像再構成処理を行い少なくとも一つの断層像を生成する再構成手段と、前記断層像毎に前記再構成領域の境界線を含む周辺領域を処理対象領域として設定する設定手段と、前記断層像毎に前記処理対象領域を構成する画素の濃度値に基づいて平滑化処理を行なう平滑化手段と、前記平滑化処理をされた前記断層像に基づいて3次元画像を生成する生成手段と、前記3次元画像を表示する表示手段と、を備えることを特徴とする。   In order to achieve the above object, the present invention provides X-ray transmission data obtained by imaging an X-ray CT apparatus including a region of a subject in a reconstruction area, and includes tomographic images 3 Means for reading X-ray transmission data capable of generating a three-dimensional image, reconstruction means for performing image reconstruction processing based on the X-ray transmission data and generating at least one tomogram, A setting unit that sets a peripheral region including a boundary line of a configuration region as a processing target region; a smoothing unit that performs a smoothing process based on a density value of a pixel that configures the processing target region for each tomographic image; The image processing apparatus includes a generating unit that generates a three-dimensional image based on the tomographic image that has been smoothed, and a display unit that displays the three-dimensional image.

また、前記設定手段は、前記再構成領域の境界線から前記被検体の部位がはみ出している部分に相当する部分境界線を検出し、その部分境界線を含む周辺領域を処理対象領域として設定してもよい。   Further, the setting means detects a partial boundary line corresponding to a portion where the part of the subject protrudes from the boundary line of the reconstruction area, and sets a peripheral area including the partial boundary line as a processing target area. May be.

また、前記平滑化手段は、前記再構成領域の中心から前記再構成領域の境界線に近づくにつれて前記境界線の外側の濃度値に近づくように前記境界線の内側の濃度値を変更してもよい。   The smoothing means may change the density value inside the boundary line so as to approach the density value outside the boundary line as it approaches the boundary line of the reconstruction area from the center of the reconstruction area. Good.

また、前記生成手段は、前記平滑化処理をされた前記断層像に基づいて陰影付3次元画像を構成してもよい。   Further, the generation unit may configure a shaded three-dimensional image based on the tomographic image that has been subjected to the smoothing process.

また、本発明に係る画像処理プログラムは、X線CT装置が再構成領域内に被検体の部位を含んで撮影することにより得られたX線透過データであって、断層像を積み上げた3次元画像を生成可能なX線透過データを読込むステップと、前記X線透過データに基づいて画像再構成処理を行い少なくとも一つの断層像を生成するステップと、前記断層像毎に前記再構成領域の境界線を含む周辺領域を処理対象領域として設定するステップと、前記断層像毎に前記処理対象領域を構成する画素の濃度値に基づいて平滑化処理を行なうステップと、前記平滑化処理をされた前記断層像に基づいて3次元画像を生成するステップと、前記3次元画像を表示するステップと、をコンピュータに実行させることを特徴とする。   In addition, the image processing program according to the present invention is X-ray transmission data obtained by an X-ray CT apparatus that includes a region of a subject in a reconstruction area, and is a three-dimensional image obtained by accumulating tomographic images. A step of reading X-ray transmission data capable of generating an image, a step of generating at least one tomographic image by performing image reconstruction processing based on the X-ray transmission data, and a step of generating the reconstruction area for each of the tomographic images. A step of setting a peripheral region including a boundary line as a processing target region, a step of performing a smoothing process based on a density value of a pixel constituting the processing target region for each tomographic image, and the smoothing processing A step of generating a three-dimensional image based on the tomographic image and a step of displaying the three-dimensional image are executed by a computer.

本発明によれば、各断層像の再構成領域の境界線を平滑化処理した後3次元画像を生成するため、被検体が再構成領域をはみ出した場合にもアーチファクトの発生を防ぎつつ3次元画像を生成することができる。   According to the present invention, since the boundary line of the reconstruction area of each tomographic image is smoothed and a three-dimensional image is generated, even when the subject protrudes from the reconstruction area, the generation of the artifact is prevented while preventing the occurrence of the artifact. An image can be generated.

以下、本発明の最良の実施形態を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.

〔システム構成〕
図1は、本実施形態に係る医用画像処理システム1の構成を示すハードウェア構成図である。
〔System configuration〕
FIG. 1 is a hardware configuration diagram showing a configuration of a medical image processing system 1 according to the present embodiment.

図1の医用画像処理システム1は、被検体の断層像を撮影する医用画像撮影装置としてのコーンビームX線CT装置2及びファンビームX線CT装置3と、断層像に基づいて陰影付け3次元画像を生成する医用画像処理装置10とを備え、医用画像撮影装置と医用画像処理装置10とは、LAN5等のネットワークに接続される。   A medical image processing system 1 in FIG. 1 includes a cone beam X-ray CT apparatus 2 and a fan beam X-ray CT apparatus 3 as medical image capturing apparatuses for capturing a tomographic image of a subject, and three-dimensional shading based on the tomographic image. A medical image processing apparatus 10 that generates an image is provided, and the medical image photographing apparatus and the medical image processing apparatus 10 are connected to a network such as a LAN 5.

医用画像処理装置10は、主として各構成要素の動作を制御する中央処理装置(CPU)11、装置の制御プログラムが格納されたり、プログラム実行時の作業領域となったりする主メモリ12と、オペレーティングシステム(OS)、周辺機器のデバイスドライブ、後述する3次元画像の生成を行うためのプログラムを含む各種アプリケーションソフト等が格納される磁気ディスク13と、表示用データを一時記憶する表示メモリ14と、この表示メモリ14からのデータに基づいて画像を表示するCRTモニタや液晶モニタ等のモニタ15と、位置入力装置としてのマウス16、マウス16の状態を検出してモニタ15上のマウスポインタの位置やマウス16の状態等の信号をCPU11に出力するコントローラ16aと、キーボード17と、通信インターフェース(以下「通信I/F」という)18と、上記各構成要素を接続するバス19とから構成される。   The medical image processing apparatus 10 includes a central processing unit (CPU) 11 that mainly controls the operation of each component, a main memory 12 that stores a control program for the apparatus and that serves as a work area when the program is executed, and an operating system. (OS), a device drive of a peripheral device, a magnetic disk 13 storing various application software including a program for generating a three-dimensional image described later, a display memory 14 for temporarily storing display data, A monitor 15 such as a CRT monitor or a liquid crystal monitor that displays an image based on data from the display memory 14, a mouse 16 as a position input device, and the state of the mouse 16 are detected to detect the position of the mouse pointer on the monitor 15 and the mouse. A controller 16a for outputting signals such as 16 states to the CPU 11, and the keyboard 1; When a communication interface (hereinafter referred to as "communication I / F") 18, and a bus 19 which connects the above components.

次に図2に基づいて医用画像処理装置10が実行する画像処理プログラムについて説明する。図2は、画像処理プログラムの構成を示すブロック図である。   Next, an image processing program executed by the medical image processing apparatus 10 will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of the image processing program.

画像処理プログラムは、被検体の部位のうち画像再構成を行い断層像を生成する領域である再構成領域を指定してX線CT装置により撮影して得たX線透過データを読込む読込部11aと、X線透過データに基づいて画像再構成処理を行い断層像を生成する再構成部11bと、その断層像における再構成領域の境界を含む周辺領域を処理対象領域として設定する設定部11cと、処理対象領域を構成する画素の濃度値に基づいて平滑化処理を行なう平滑化処理部11dと、平滑化処理をされた断層像に基づいて3次元画像を生成する3次元画像生成部11eと、3次元画像を表示制御する表示制御部11fにより構成される。   An image processing program reads an X-ray transmission data obtained by imaging with an X-ray CT apparatus by designating a reconstruction area which is an area for generating a tomographic image by reconstructing an image from a portion of a subject 11a, a reconstruction unit 11b that generates a tomographic image by performing image reconstruction processing based on the X-ray transmission data, and a setting unit 11c that sets a peripheral region including the boundary of the reconstruction region in the tomographic image as a processing target region A smoothing processing unit 11d that performs a smoothing process based on the density values of the pixels that constitute the processing target region, and a three-dimensional image generation unit 11e that generates a three-dimensional image based on the tomographic image that has been subjected to the smoothing process. And a display control unit 11f that controls display of a three-dimensional image.

医用画像処理装置10のCPU11は、上記画像処理プログラムを磁気ディスク13から読み出して主メモリ12にロードし、実行する。   The CPU 11 of the medical image processing apparatus 10 reads the image processing program from the magnetic disk 13, loads it into the main memory 12, and executes it.

〔処理の流れ〕
図3に基づいて医用画像処理システム1の処理の流れを説明する。図3は医用画像処理システム1の処理の流れを示すフローチャートである。
[Process flow]
A processing flow of the medical image processing system 1 will be described with reference to FIG. FIG. 3 is a flowchart showing a processing flow of the medical image processing system 1.

(ステップS1)
S1では、読込部11aがコーンビームX線CT装置2又はファンビームX線CT装置3から被検体の身体部位のうち断層像を生成したい部位を有効視野範囲内に位置させた状態でX線を照射し、有効視野範囲を透過したX線を検出して得られたX線透過データを読込む(S1)。X線CT装置によるボリュームスキャン時に設定する有効視野範囲が再構成領域に相当する。X線透過データは、予め磁気ディスク13に格納されたものを読み出しても良いし、LAN5を介してコーンビームX線CT装置2又はファンビームX線CT装置3から取得しても良い。このX線透過データは、被検体の体軸方向に沿って撮影された複数スライスの断層像を生成することができるボリュームデータである。
(Step S1)
In S <b> 1, the reading unit 11 a outputs X-rays in a state where a part of the body part of the subject from which the tomographic image is to be generated is located within the effective visual field range from the cone beam X-ray CT apparatus 2 or the fan beam X-ray CT apparatus 3. X-ray transmission data obtained by detecting X-rays irradiated and transmitted through the effective visual field range is read (S1). The effective visual field range set at the time of volume scanning by the X-ray CT apparatus corresponds to the reconstruction area. The X-ray transmission data may be read from data stored in advance on the magnetic disk 13 or may be acquired from the cone beam X-ray CT apparatus 2 or the fan beam X-ray CT apparatus 3 via the LAN 5. This X-ray transmission data is volume data that can generate tomographic images of a plurality of slices taken along the body axis direction of the subject.

(ステップS2)
S2では、再構成部11bがS1で読込んだX線透過データに基づいて、前処理、逆投影処理、後処理を行い複数の断層像を再構成する(S2)。
(Step S2)
In S2, the reconstruction unit 11b performs preprocessing, backprojection processing, and postprocessing based on the X-ray transmission data read in S1, and reconstructs a plurality of tomographic images (S2).

(ステップS3)
S3では、設定部11cがS2で再構成された各断層像の再構成領域の境界線を含む周辺領域を処理対象領域として設定する(S3)。「周辺領域」とは、再構成領域の境界線を中心として所定のピクセル数の幅をもつ領域である。周辺領域の設定を図4乃至7に基づいて説明する。
(Step S3)
In S3, the setting unit 11c sets a peripheral region including the boundary line of the reconstruction region of each tomographic image reconstructed in S2 as a processing target region (S3). The “peripheral area” is an area having a predetermined number of pixels around the boundary line of the reconstruction area. The setting of the peripheral area will be described with reference to FIGS.

設定部11cは、図4に示すように、断層像40に含まれる再構成領域の境界線41(実線で表示)を検出する。次に、その境界線41から例えば5ピクセル外側に位置する外側線41a(点線で表示)と、境界線41から例えば5ピクセル内側に位置する内側線41b(点線で表示)とを設定し、外側線41aと内側線41bとに囲まれた斜線領域を処理対象領域として設定する。これにより、被検体のはみ出し領域の全てについてもれなく処理対象領域に設定することができる。   As illustrated in FIG. 4, the setting unit 11 c detects a boundary line 41 (represented by a solid line) of the reconstruction area included in the tomographic image 40. Next, an outer line 41a (displayed by a dotted line) located, for example, 5 pixels outside the boundary line 41 and an inner line 41b (displayed by a dotted line) located, for example, 5 pixels inside from the boundary line 41 are set, and the outer side A hatched area surrounded by the line 41a and the inner line 41b is set as a process target area. As a result, all the protruding areas of the subject can be set as processing target areas.

図5は、処理対象領域設定の別態様を示す。設定部11cは、断層像40に含まれる再構成領域の境界線41から被検体がはみ出す領域の両端部42,43を検出する。そして再構成領域の中心を原点Oとし、この原点Oを通る右方向を角度0度の基準線lとし、この基準線lと原点O及び端部42を通る半径との角度Θ1及び基準線lと原点O及び端部43を通る半径との角度Θ2を検出する。そして、角度(Θ2-Θ1)に含まれる部分境界線41’を検出し、部分境界線41’を含む周辺領域を処理対象領域として設定しても良い。これにより、境界線41の全周を基に処理対象領域を設定する場合に比べて計算量を減らすことができ、高速演算が可能になる。なお図5では、被検体の頭部においてはみ出した領域を検出した状態を示しているが被検体の首部のはみ出し領域についても、上記と同様、はみ出し領域の両端を検出して処理対象領域を設定する。   FIG. 5 shows another mode of processing target area setting. The setting unit 11 c detects both end portions 42 and 43 of the region where the subject protrudes from the boundary line 41 of the reconstruction region included in the tomographic image 40. The center of the reconstruction area is defined as an origin O, the right direction passing through the origin O is defined as a reference line 1 having an angle of 0 degrees, the angle Θ1 between the reference line 1 and the radius passing through the origin O and the end 42, and the reference line l. And an angle Θ2 between the origin O and the radius passing through the end 43 are detected. Then, the partial boundary line 41 ′ included in the angle (Θ 2 −Θ 1) may be detected, and the peripheral region including the partial boundary line 41 ′ may be set as the processing target region. Thereby, compared with the case where a process target area | region is set based on the perimeter of the boundary line 41, a calculation amount can be reduced and a high-speed calculation is attained. Note that FIG. 5 shows a state in which the region that protrudes from the head of the subject is detected, but the processing target region is set by detecting both ends of the protruding region of the subject's neck as described above. To do.

図6は、処理対象領域設定の別態様を示す図である。図4,5に示す態様では、設定部11cは、境界線41の外側線41a及び内側線41bを設定して周辺領域を求め、これを処理対象領域として設定したが、外側線41a及び内側線41bを設定する代わりに、境界線41上の画素を中心とするN×Mのマトリクス領域44を設定し、このマトリクス領域44を処理対象領域として設定しても良い。   FIG. 6 is a diagram showing another aspect of setting the processing target area. 4 and 5, the setting unit 11 c sets the outer line 41 a and the inner line 41 b of the boundary line 41 to obtain a peripheral area and sets this as a processing target area, but the outer line 41 a and the inner line are set. Instead of setting 41b, an N × M matrix region 44 centered on the pixel on the boundary line 41 may be set, and this matrix region 44 may be set as a processing target region.

図7は、処理対象領域設定の別態様を示す図である。設定部11cは、再構成領域の境界線41の中心を原点とする動径45を設定する。そして、動径45における再構成領域の境界線41を含む数ピクセルの領域45aを処理対象領域として設定しても良い。   FIG. 7 is a diagram showing another mode of setting the processing target area. The setting unit 11c sets a moving radius 45 with the center of the boundary line 41 of the reconstruction area as the origin. Then, an area 45a of several pixels including the boundary line 41 of the reconstruction area in the moving radius 45 may be set as the processing target area.

(ステップS4)
平滑化処理部11dが処理対象領域の平滑化処理を行なう(S4)。平滑化処理部11dは、S3で設定された処理対象領域の濃度値の平均値を求め、境界線上の濃度値をその平均値に置き換えることにより平滑化処理を行なう。図4の場合には、再構成領域の境界線41と外側線41aとの間にある特殊な濃度値と、境界線と外側線41aとの間にあるX線透過データに基づく濃度値との平均値を求める。そして、その平均値を境界線上の濃度値と置き換える。図5の場合には、被検体が再構成領域からはみ出している境界線についてのみ平滑化処理を行なう。図6の場合は、マトリクス領域44を構成する画素の濃度値の平均値を算出し、この平均値を境界線上の濃度値と置き換える。図7の場合は、領域45aの濃度値(動径方向の濃度値)の平均値を算出し、境界線上の濃度値と置き換える。または図7の場合、動径方向の濃度値に対し、再構成領域の内側から境界線に近づくにしたがって境界線の外側の濃度値に近づくような重み付けを行なって平滑化処理をしてもよい。
(Step S4)
The smoothing processing unit 11d performs a smoothing process on the processing target area (S4). The smoothing processing unit 11d obtains the average value of the density values of the processing target area set in S3, and performs the smoothing process by replacing the density value on the boundary line with the average value. In the case of FIG. 4, a special density value between the boundary line 41 and the outer line 41a of the reconstruction area and a density value based on the X-ray transmission data between the boundary line and the outer line 41a. Find the average value. Then, the average value is replaced with the density value on the boundary line. In the case of FIG. 5, the smoothing process is performed only on the boundary line where the subject protrudes from the reconstruction area. In the case of FIG. 6, the average value of the density values of the pixels constituting the matrix region 44 is calculated, and this average value is replaced with the density value on the boundary line. In the case of FIG. 7, the average value of the density values in the region 45a (density value in the radial direction) is calculated and replaced with the density value on the boundary line. Alternatively, in the case of FIG. 7, the density value in the radial direction may be weighted so as to approach the density value outside the boundary line as it approaches the boundary line from the inside of the reconstruction area, and the smoothing process may be performed. .

(ステップS5)
3次元画像生成部11eは、S4で平滑化処理がされた複数の断層像に基づいて陰影づけ3次元画像を生成する(S5)。
(Step S5)
The three-dimensional image generation unit 11e generates a shaded three-dimensional image based on the plurality of tomographic images that have been smoothed in S4 (S5).

(ステップS6)
表示制御部11fは、陰影付け3次元画像をモニタ15に表示する(S6)。
(Step S6)
The display control unit 11f displays the shaded three-dimensional image on the monitor 15 (S6).

本実施の形態によれば、再構成領域の境界線41の濃度値を、再構成領域の内側と外側とで平滑化処理を行なった断層像に基づいて陰影付け3次元画像を生成するため、再構成領域の境界を挟んだ濃度値の差に起因する陰影付け3次元画像に現れるアーチファクトの発生を防止することができる。   According to the present embodiment, in order to generate a shaded three-dimensional image based on the tomographic image obtained by smoothing the density value of the boundary 41 of the reconstruction area on the inside and outside of the reconstruction area, It is possible to prevent the occurrence of artifacts appearing in the shaded three-dimensional image due to the difference in density value across the boundary of the reconstruction area.

医用画像処理システムのハードウェア構成図。The hardware block diagram of a medical image processing system. 画像処理プログラムの構成を示すブロック図。The block diagram which shows the structure of an image processing program. 医用画像処理システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of a medical image processing system. 処理対象領域の一態様を示す模式図。The schematic diagram which shows the one aspect | mode of a process target area | region. 処理対象領域の一態様を示す模式図。The schematic diagram which shows the one aspect | mode of a process target area | region. 処理対象領域の一態様を示す模式図。The schematic diagram which shows the one aspect | mode of a process target area | region. 処理対象領域の一態様を示す模式図。The schematic diagram which shows the one aspect | mode of a process target area | region. ファンビームX線CT装置における再構成領域を示す模式図。The schematic diagram which shows the reconstruction area | region in a fan beam X-ray CT apparatus. コーンビームX線CT装置における再構成領域を示す模式図。The schematic diagram which shows the reconstruction area | region in a cone beam X-ray CT apparatus. (a)は被検体が再構成領域からはみ出した断層像を示す模式図であり、(b)はこの断層像に基づいて生成した陰影付け3次元画像を示す模式図。(A) is a schematic diagram which shows the tomogram which the subject protruded from the reconstruction area | region, (b) is a schematic diagram which shows the shaded three-dimensional image produced | generated based on this tomogram. 陰影付け3次元画像を示す詳細図。Detailed view showing a shaded three-dimensional image.

符号の説明Explanation of symbols

1…医用画像処理システム、2…コーンビームX線CT装置、3…ファンビームX線CT装置、5…LAN、10…医用画像処理装置、11…CPU、12…主メモリ、13…磁気ディスク、14…表示メモリ、15…モニタ、16…マウス、16a…コントローラ、17…キーボード、18…通信I/F、19…バス DESCRIPTION OF SYMBOLS 1 ... Medical image processing system, 2 ... Cone beam X-ray CT apparatus, 3 ... Fan beam X-ray CT apparatus, 5 ... LAN, 10 ... Medical image processing apparatus, 11 ... CPU, 12 ... Main memory, 13 ... Magnetic disk, 14 ... Display memory, 15 ... Monitor, 16 ... Mouse, 16a ... Controller, 17 ... Keyboard, 18 ... Communication I / F, 19 ... Bus

Claims (5)

X線CT装置が再構成領域内に被検体の部位を含んで撮影することにより得られたX線透過データであって、断層像を積み上げた3次元画像を生成可能なX線透過データを読込む手段と、
前記X線透過データに基づいて画像再構成処理を行い少なくとも一つの断層像を生成する再構成手段と、
前記断層像毎に前記再構成領域の境界線を含む周辺領域を処理対象領域として設定する設定手段と、
前記断層像毎に前記処理対象領域を構成する画素の濃度値に基づいて平滑化処理を行なう平滑化手段と、
前記平滑化処理をされた前記断層像に基づいて3次元画像を生成する生成手段と、
前記3次元画像を表示する表示手段と、
を備えることを特徴とする医用画像処理装置。
X-ray transmission data obtained by an X-ray CT apparatus including a region of the subject in the reconstruction area and reading the X-ray transmission data that can generate a three-dimensional image obtained by stacking tomographic images is read. Means to
Reconstruction means for performing image reconstruction processing based on the X-ray transmission data and generating at least one tomographic image;
Setting means for setting a peripheral region including a boundary line of the reconstruction region for each tomographic image as a processing target region;
Smoothing means for performing a smoothing process based on a density value of pixels constituting the processing target area for each tomographic image;
Generating means for generating a three-dimensional image based on the tomographic image subjected to the smoothing process;
Display means for displaying the three-dimensional image;
A medical image processing apparatus comprising:
前記設定手段は、前記再構成領域の境界線から前記被検体の部位がはみ出している部分に相当する部分境界線を検出し、その部分境界線を含む周辺領域を処理対象領域として設定する、
ことを特徴とする請求項1に記載の医用画像処理装置。
The setting unit detects a partial boundary line corresponding to a portion where the part of the subject protrudes from the boundary line of the reconstruction area, and sets a peripheral area including the partial boundary line as a processing target area;
The medical image processing apparatus according to claim 1.
前記平滑化手段は、前記再構成領域の中心から前記再構成領域の境界線に近づくにつれて前記境界線の外側の濃度値に近づくように前記境界線の内側の濃度値を変更する、
ことを特徴とする請求項1又は2に記載の医用画像処理装置。
The smoothing means changes the density value inside the boundary line so as to approach the density value outside the boundary line as it approaches the boundary line of the reconstruction area from the center of the reconstruction area.
The medical image processing apparatus according to claim 1, wherein the medical image processing apparatus is a medical image processing apparatus.
前記生成手段は、前記平滑化処理をされた前記断層像に基づいて陰影付3次元画像を構成する、
ことを特徴とする請求項1乃至3のいずれか一つに記載の医用画像処理装置。
The generating means configures a shaded three-dimensional image based on the tomographic image subjected to the smoothing process.
The medical image processing apparatus according to claim 1, wherein the medical image processing apparatus is a medical image processing apparatus.
X線CT装置が再構成領域内に被検体の部位を含んで撮影することにより得られたX線透過データであって、断層像を積み上げた3次元画像を生成可能なX線透過データを読込むステップと、
前記X線透過データに基づいて画像再構成処理を行い少なくとも一つの断層像を生成するステップと、
前記断層像毎に前記再構成領域の境界線を含む周辺領域を処理対象領域として設定するステップと、
前記断層像毎に前記処理対象領域を構成する画素の濃度値に基づいて平滑化処理を行なうステップと、
前記平滑化処理をされた前記断層像に基づいて3次元画像を生成するステップと、
前記3次元画像を表示するステップと、
をコンピュータに実行させることを特徴とする画像処理プログラム。
X-ray transmission data obtained by an X-ray CT apparatus including a region of the subject in the reconstruction area and reading the X-ray transmission data that can generate a three-dimensional image obtained by stacking tomographic images is read. Step
Performing image reconstruction processing based on the X-ray transmission data to generate at least one tomographic image;
Setting a peripheral region including a boundary line of the reconstruction region for each tomographic image as a processing target region;
Performing a smoothing process based on a density value of a pixel constituting the processing target area for each tomographic image;
Generating a 3D image based on the smoothed tomographic image;
Displaying the three-dimensional image;
An image processing program for causing a computer to execute.
JP2005207303A 2005-07-15 2005-07-15 Medical image processing apparatus and image processing program Expired - Fee Related JP4679988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207303A JP4679988B2 (en) 2005-07-15 2005-07-15 Medical image processing apparatus and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207303A JP4679988B2 (en) 2005-07-15 2005-07-15 Medical image processing apparatus and image processing program

Publications (2)

Publication Number Publication Date
JP2007020873A true JP2007020873A (en) 2007-02-01
JP4679988B2 JP4679988B2 (en) 2011-05-11

Family

ID=37782414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207303A Expired - Fee Related JP4679988B2 (en) 2005-07-15 2005-07-15 Medical image processing apparatus and image processing program

Country Status (1)

Country Link
JP (1) JP4679988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046102A (en) * 2008-08-19 2010-03-04 Ge Medical Systems Global Technology Co Llc Tomographic image processor, x-ray ct apparatus, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470028A (en) * 1987-09-11 1989-03-15 Hitachi Ltd Shading system of three-dimensional image
JPH10155788A (en) * 1996-11-29 1998-06-16 Shimadzu Corp Computer aided tomograph
JP2002216102A (en) * 2001-01-22 2002-08-02 Univ Waseda Virtual restoration system of buddha statue
JP2002336239A (en) * 2001-05-18 2002-11-26 Morita Mfg Co Ltd X-ray ct radiographic device
JP2003334187A (en) * 2003-06-25 2003-11-25 Toshiba Corp X-ray diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470028A (en) * 1987-09-11 1989-03-15 Hitachi Ltd Shading system of three-dimensional image
JPH10155788A (en) * 1996-11-29 1998-06-16 Shimadzu Corp Computer aided tomograph
JP2002216102A (en) * 2001-01-22 2002-08-02 Univ Waseda Virtual restoration system of buddha statue
JP2002336239A (en) * 2001-05-18 2002-11-26 Morita Mfg Co Ltd X-ray ct radiographic device
JP2003334187A (en) * 2003-06-25 2003-11-25 Toshiba Corp X-ray diagnostic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046102A (en) * 2008-08-19 2010-03-04 Ge Medical Systems Global Technology Co Llc Tomographic image processor, x-ray ct apparatus, and program

Also Published As

Publication number Publication date
JP4679988B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US7466790B2 (en) Systems and methods for improving a resolution of an image
JP5280450B2 (en) X-ray CT image forming method and X-ray CT apparatus using the same
JP4644785B2 (en) Method and apparatus for reducing artifacts in cone beam CT image reconstruction
JP5383014B2 (en) Radiation image processing apparatus and method
US8634615B2 (en) Method of filtering an image dataset
JP5348855B2 (en) Object image reconstruction method and apparatus for performing the method
US8724889B2 (en) Method and apparatus for CT image reconstruction
JP5269283B2 (en) Medical image diagnostic apparatus and image reconstruction method
JP5406063B2 (en) Reconstruction calculation device, reconstruction calculation method, and X-ray CT apparatus
JP2007021021A (en) Image processing device and x-ray ct apparatus
JP3787374B2 (en) Method and apparatus for reducing artifacts in tomographic images
JP2013192940A (en) Medical imag processing apparatus and medical imag processing method
JP4557321B2 (en) Image reconstruction device
JP2004237088A (en) Three-dimensional back projection method and x-ray ct apparatus
US20180211420A1 (en) Tomographic device and tomographic image processing method according to same
JPH07143979A (en) Method and device for reducing artifact in laminagraphic image
US10013778B2 (en) Tomography apparatus and method of reconstructing tomography image by using the tomography apparatus
JP2006000224A (en) X-ray ct apparatus
US20100054567A1 (en) Method and apparatus for interactive ct reconstruction
JP2012040284A (en) X-ray ct apparatus
JP4679988B2 (en) Medical image processing apparatus and image processing program
WO2007004196A2 (en) Exact fbp type algorithm for arbitrary trajectories
JP5458771B2 (en) Radiation tomography system
JP4222930B2 (en) Three-dimensional backprojection method and apparatus and X-ray CT apparatus
JP7120442B2 (en) X-ray equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090717

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4679988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees