JP2007020559A - Hair quality rating method with runx1(runt-related transcription factor 1) as indicator - Google Patents

Hair quality rating method with runx1(runt-related transcription factor 1) as indicator Download PDF

Info

Publication number
JP2007020559A
JP2007020559A JP2006054818A JP2006054818A JP2007020559A JP 2007020559 A JP2007020559 A JP 2007020559A JP 2006054818 A JP2006054818 A JP 2006054818A JP 2006054818 A JP2006054818 A JP 2006054818A JP 2007020559 A JP2007020559 A JP 2007020559A
Authority
JP
Japan
Prior art keywords
hair
gene
runx1
expression
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006054818A
Other languages
Japanese (ja)
Inventor
Tsutomu Soma
勤 相馬
Masahito Iino
雅人 飯野
Yumiko Ishimatsu
弓子 石松
Masahiro Tajima
正裕 田島
Jiro Kishimoto
治郎 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2006054818A priority Critical patent/JP2007020559A/en
Publication of JP2007020559A publication Critical patent/JP2007020559A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hair quality rating method at biochemical/molecular biological levels. <P>SOLUTION: The hair quality rating method comprises assaying mRNA derived from RUNX1 gene in the hair by real-time polymerase chain reaction technique, wherein the mRNA uses as indicator for the hair. This method can also used as an immunoassay of the RUNX1 levels in the hair using an antibody specific to RUNX1. These methods can be conducted using assaying kits respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はRUNX1(runt-related transcription factor 1)を指標とした毛質評価方法に関する。   The present invention relates to a hair quality evaluation method using RUNX1 (runt-related transcription factor 1) as an index.

毛髪に関する悩みとしては、薄毛、抜け毛といった毛根、毛包の健康状態に関わるものと、硬い、柔らかい、はり・こしがない、枝毛、くせ毛、パサツクといった毛髪の物性に関わるものとがある。また、毛髪の物性に関わる悩みであっても、外的要素に起因するダメージ、例えばパーマ剤やブリーチ剤処理、紫外光暴露、大気汚染物質暴露、コーミング摩擦など、毛髪に対する直接的なダメージによるものと、毛幹形成における内的要素が関与する場合とが考えられる。後者の場合におけるヘアケアでは、毛髪の質の改善を図るだけでなく、毛根、毛包自体の健康状態を良好にする手当てが必要とされる。従って、一口に毛質の状態が良くないといっても、そのケア方法はその原因により様々である。   Problems related to hair include those related to the health condition of hair roots and hair follicles such as thin hairs and hair loss, and those related to physical properties of hair such as hard, soft, non-abrasive / stubborn, split ends, prickly hairs, and pasasuku. In addition, even if it is a problem related to the physical properties of hair, it is caused by direct damage to hair, such as damage caused by external factors, such as permanent or bleach treatment, exposure to ultraviolet light, exposure to air pollutants, combing friction, etc. And the case where an internal element in hair shaft formation is involved. The hair care in the latter case requires not only improving the quality of the hair but also taking care to improve the health of the hair root and the hair follicle itself. Therefore, even if it is said that the state of the hair is not good, the care method varies depending on the cause.

従来の毛質の評価は、例えば美容師や店頭などでの販促員による触感を頼りとした主観的手法、あるいは各種物性測定器、例えば水分計、硬度計、ヤング率測定器により毛髪の物性を物理的に測定するといった客観的手法を採用する。いずれも適切なアドバイスの提供のために活用され得るが、これらの評価方法では毛質の良し悪しの根本的な原因を解明し、より毛質に合った適切なヘアケアアドバイスを引き出すことはできない。   Conventional hair quality evaluation is based on subjective methods that rely on the tactile sensation of salespersons such as hairdressers and shop fronts, or various physical property measuring instruments such as moisture meters, hardness meters, and Young's modulus measuring devices. Use objective methods such as physical measurement. Any of these methods can be used to provide appropriate advice. However, these evaluation methods cannot elucidate the root cause of the quality of hair and derive appropriate hair care advice that is more suitable for the hair.

毛髪自体はその表面を覆うキューティクル(毛小皮)、その内部にあって毛髪の大部分を占める毛皮質及び中心部の毛髄質から構成される。毛髪の硬さやはり・こし感にはキューティルが大きく寄与していることが明らかにされている(曽我部敦他、J.Soc.Cosmet.Chem.Japan,Vol.36,No.3(2002)pp.207−216「毛髪物性に関する研究1−毛髪の短径・長径測定と曲げ応力評価法」)。キューティクルは酸性ヘアケラチンHa1、Ha2、塩基性ケラチンHb1、Hb2などの繊維タンパク質や修飾酵素、例えばトランスグルタミナーゼ、ペプチジルアルギニンディミナーゼ、さらには顆粒成分トリコヒアリンS100など、様々な成分から構成されることまでは知られている。しかしながら、これら各成分と毛質、例えば毛髪のはりやこしとの関係については十分に解明されていない。毛質を左右するメカニズムが生化学・分子生物学レベルにおいて十分には解明されれば、既存の毛質改善剤に比べ一層顕著な効果を奏するものの提供が可能となり得る。   The hair itself is made up of a cuticle covering the surface, fur inside it and occupying most of the hair, and medulla in the center. It has been clarified that cutil contributes greatly to the firmness and firmness of hair (Akira Sogabe et al., J. Soc. Cosmet. Chem. Japan, Vol. 36, No. 3 (2002)). pp. 207-216 “Study on physical properties of hair 1—Measurement of short and long diameters of hair and evaluation method of bending stress”). Cuticles are composed of various components such as fiber proteins such as acidic hair keratins Ha1 and Ha2, basic keratins Hb1 and Hb2, and modified enzymes such as transglutaminase, peptidylarginine diminase, and granule component tricohiarin S100. Is known. However, the relationship between each of these components and the hair quality, for example, the hair lump and the hair, has not been fully elucidated. If the mechanism that influences the hair quality is fully elucidated at the biochemical / molecular biology level, it may be possible to provide a product that has a more remarkable effect than existing hair quality improving agents.

特開2002-97116号公報にはタウリンを有効成分とする細胞賦活剤が、国際公開WO2002/034253号公報にはN−メチルタウリンを有効成分とする細胞賦活剤および毛髪はり・こし改善剤が記載されている。これらの薬剤の作用効果として、細胞増殖の活性化による、毛髪細胞コントロール、毛髪成長期延長、毛髪細胞増殖の活性化、毛髪はり・こし改善が記載されているが、ここでの毛髪はり・こし改善効果は、依然として、毛髪の物性試験(ねじりトルク)により評価されている。従って、生化学・分子生物学レベルでの活性評価に基づく新規な毛髪はり・こし改善剤が求められている。   JP 2002-97116 discloses cell activators containing taurine as an active ingredient, and International Publication WO 2002/034253 describes cell activators containing N-methyl taurine as an active ingredient and hair scalp / strain improving agents. Has been. The effects of these agents are described as hair cell control, hair growth period extension, hair cell proliferation activation, hair patch / strain improvement by activation of cell proliferation. The improvement effect is still evaluated by a physical property test (torsion torque) of hair. Therefore, there is a need for a novel hair patch / strain improving agent based on activity evaluation at the biochemical / molecular biology level.

特開平8-20523JP-A-8-20523 特開2001-302543JP2001-302543 特開2002-97116JP2002-97116 WO 2002/034253WO 2002/034253 J. Invest. Dermatol, 122:147‐158, 2004J. Invest. Dermatol, 122: 147-158, 2004

本発明は生化学・分子生物学レベルでの毛質の評価方法の提供を課題とする。   An object of the present invention is to provide a hair quality evaluation method at the biochemical / molecular biology level.

本発明者は以前、上記問題を鑑み、毛髪のこし・はりの尺度となる硬さ、詳しくはヤング率と、毛髪関連各種遺伝子の発現との相関関係を調べたところ、ヘアケラチン遺伝子、特にKAP5遺伝子、詳しくはKAP5.1〜5遺伝子の発現が亢進するほど、毛髪のヤング率が高くなる、即ち毛髪にはり、こし感がでることを見出し、毛質の評価方法であって、毛髪中のKAP5.1〜5遺伝子の発現を毛質の指標とする方法に関する特許出願を行っている(特願2004‐348325号)。   In view of the above problems, the present inventor has previously investigated the correlation between hardness, which is a measure of hair strain / beam, specifically Young's modulus, and the expression of various hair-related genes. The hair keratin gene, particularly the KAP5 gene Specifically, it is found that the higher the expression of the KAP5.1-5 gene, the higher the Young's modulus of the hair, that is, that the hair is applied to the hair, and that the hair feels stiff. A patent application has been filed regarding a method of using expression of 1-5 genes as an index of hair quality (Japanese Patent Application No. 2004-348325).

さらに最近になって、KAPファミリーに属するKAP10/KAP12遺伝子のプロモーター領域のバイオインフォマティックス解析により、いくつかのエンハンサーエレメントがその領域に存在していることが示され、そのエンハンサーエレメントの一つに転写因子RUNX1(またの名を「AML1」(急性骨髄性白血病遺伝子))の結合エレメントが含まれていることが見出されている(Michael A. Rogers, et al., J. Invest. Dermatol. 122:147−158, 2004)。本発明者はこの事実を鑑み、RUNX1と、毛髪のこし・はりに影響を及ぼすKAP5遺伝子との関係を調べたところ、RUNX1の発現量に依存して、KAP5遺伝子の発現が亢進されることが確認された。   More recently, bioinformatics analysis of the promoter region of the KAP10 / KAP12 gene belonging to the KAP family has shown that several enhancer elements are present in that region. It has been found that the binding element of the transcription factor RUNX1 (also known as “AML1” (acute myeloid leukemia gene)) is included (Michael A. Rogers, et al., J. Invest. Dermatol. 122: 147-158, 2004). In view of this fact, the present inventor examined the relationship between RUNX1 and the KAP5 gene that affects hair strain and hair, and confirmed that the expression of the KAP5 gene is enhanced depending on the expression level of RUNX1. It was done.

その結果、本発明は第一の観点において、毛質の評価方法であって、毛髪中のRUNX1遺伝子の発現を毛質の指標とする方法を提供する。   As a result, in the first aspect, the present invention provides a method for evaluating hair, which uses the expression of the RUNX1 gene in hair as an index of hair.

好適な態様において、前記測定は、毛髪中のRUNX1遺伝子に由来するmRNAを測定することにより実施される。より好ましくは、かかる遺伝子の測定はリアルタイムポリメラーゼ連鎖方法により実施される。   In a preferred embodiment, the measurement is performed by measuring mRNA derived from the RUNX1 gene in hair. More preferably, the measurement of such genes is performed by the real time polymerase chain method.

別の態様においては、前記評価は、毛髪中のRUNX1の量の測定によりに実施される。さらに好適な態様において、上記測定はRUNX1に特異的な抗体を利用する免疫学的測定方法、例えばELISA法又はRIA法による。   In another embodiment, the assessment is performed by measuring the amount of RUNX1 in the hair. In a more preferred embodiment, the measurement is performed by an immunological measurement method using an antibody specific for RUNX1, such as ELISA or RIA.

別の観点において、本発明は毛質の評価を実施するためのキット又は装置を提供する。かかるキット又は装置は、毛髪中のRUNX1遺伝子の発現を毛質の指標として測定することにより評価を行うことを特徴とする。   In another aspect, the present invention provides a kit or apparatus for performing hair quality assessment. Such a kit or device is characterized in that the evaluation is performed by measuring the expression of the RUNX1 gene in the hair as an index of hair.

さらに、KAP5遺伝子の発現量が多いほど毛髪のヤング率が有意に高まることから、KAP5遺伝子の発現を亢進させることのできるRUNX1の発現を亢進させる薬剤は毛髪の硬さを向上し、毛髪のはり・こしを改善することが当然に期待される。従って、RUNX1又はそれをコードする遺伝子は、毛髪の硬さを向上させ、毛髪のはり・こしを改善する薬剤のスクリーニング方法の指標として利用できるものと考えられる。   Furthermore, since the Young's modulus of the hair increases significantly as the expression level of the KAP5 gene increases, a drug that enhances the expression of RUNX1, which can enhance the expression of the KAP5 gene, improves the hardness of the hair.・ It is naturally expected to improve this. Therefore, it is considered that RUNX1 or a gene encoding the same can be used as an index for a screening method for a drug that improves hair hardness and improves hair sticking / straining.

本発明により、遺伝子レベルでの毛質の評価方法の提供が可能となる。   According to the present invention, it is possible to provide a hair quality evaluation method at the gene level.

毛質の評価方法
本発明は、毛髪の硬さ、一般には「はり」や「こし」感と称される物性を評価することを目的とする。上述のとおり、本発明者は毛髪の硬さと毛髪から抽出される各種遺伝子との相関性を調べるため、毛髪のヤング率を測定し、その測定結果と各種遺伝子のRT−PCRにより測定した発現量との関係をSpearmanの順位相関係数を用い、統計学的に分析した(Zar, J.H.J.Amer.Stat.Assoc.67:578〜580, 1970「Significance testing of the Spearman rank correlation coefficient」)結果、毛髪のヤング率がKAP5遺伝子の発現量が多いと統計学的に有意に高まることがわかり(特願2004‐348325号)、さらに今回、かかるKAP5遺伝子の発現がRUNX1により亢進されることが明らかとなった。
Hair quality evaluation method The present invention aims to evaluate the hardness of hair, generally a physical property called “beam” or “koshi” feeling. As described above, the present inventor measured the Young's modulus of hair in order to examine the correlation between the hardness of the hair and various genes extracted from the hair, and the measurement results and the expression levels measured by RT-PCR of the various genes Was analyzed statistically using Spearman's rank correlation coefficient (Zar, JHJAmer.Stat.Assoc.67: 578-580, 1970 "Significance testing of the Spearman rank correlation coefficient") It was found that the Young's modulus is statistically significantly increased when the expression level of the KAP5 gene is large (Japanese Patent Application No. 2004-348325), and this time, it was revealed that the expression of the KAP5 gene is enhanced by RUNX1. .

RUNXファミリーは近年急速に発生・分化・癌化の分野で注目を浴びるようになった転写因子である。RUNXタンパク質はN末端側にRUNTドメインと称されるDNA結合ドメイン及び調節領域を有し、C末端側に転写制御領域及び各マトリックス結合部位を有する。RUNTドメインによるDNA結合活性はDNA非結合性の転写調節因子CBFβがRUNTドメインに結合することで増大する。RUNX1はヒト白血病において最も高頻度に染色体転座の標的であり、また造血細胞特異的な遺伝子発現に関与し、造血細胞の分化/増殖を制御することで知られる。RUNX1におけるRUNTドメインのアミノ酸配列は他のRUNXファミリータンパク質、RUNX2や3と90%以上の相同性を有し、ほぼ同じ立体構造を有するものと考えられている。   The RUNX family is a transcription factor that has recently attracted attention in the fields of development, differentiation and canceration. The RUNX protein has a DNA binding domain called a RUNT domain and a regulatory region on the N-terminal side, and has a transcription control region and each matrix binding site on the C-terminal side. The DNA binding activity by the RUNT domain is increased by binding of the DNA non-binding transcriptional regulatory factor CBFβ to the RUNT domain. RUNX1 is the most frequent target of chromosomal translocation in human leukemia, and is known to be involved in hematopoietic cell-specific gene expression and to control the differentiation / proliferation of hematopoietic cells. The amino acid sequence of the RUNT domain in RUNX1 is considered to have 90% or more homology with other RUNX family proteins, RUNX2 and 3, and almost the same three-dimensional structure.

ヒトケラチン関連タンパク質(KAP)5ファミリーに属するKAP5遺伝子(Homo sapiens genomic DNA, chromosome 11 clone:RP11-684B2, complete sequences. ACCESSION:AP000867)は塩基配列のみ既知のヒトESTであり、機能に関する報告はされていない。KAP5遺伝子の発現の亢進と毛髪の硬さとの関係は不明であった。特に何らかの理論に拘束されるわけではないが、例えばKAP5.2遺伝子によりコードされる推定タンパク質はシステインリッチであり(約35.5%)、また低分子アミノ酸であるグリシンとセリンを豊富に含む(それぞれ18.8%及び24.2%)アミノ酸186個からなるため、α−ヘリックスなどの二次構造を形成せず、ケラチン繊維の間に容易に入り込むことができ、また多数セリン残基のOH基による多数の水素結合の形成も考えられるため、毛髪の機械的強度に大きく寄与している可能性がある。他のKAP5遺伝子も同様にシステイン、グリシン、セリンを豊富に含み、発現生成物はKAP5.2と同様の構造を有し、毛髪の機械的強度に大きく寄与すると考えられる。   The KAP5 gene (Homo sapiens genomic DNA, chromosome 11 clone: RP11-684B2, complete sequences. ACCESSION: AP000867) belonging to the human keratin-related protein (KAP) 5 family is a human EST whose base sequence is already known. Not. The relationship between the enhanced expression of the KAP5 gene and hair hardness was unknown. Although not particularly bound by any theory, for example, the putative protein encoded by the KAP5.2 gene is cysteine-rich (about 35.5%) and is rich in the low molecular amino acids glycine and serine (18.8 each). % And 24.2%) because it consists of 186 amino acids, it does not form secondary structures such as α-helix, can easily penetrate between keratin fibers, and has many hydrogen bonds by OH groups of many serine residues. May also contribute greatly to the mechanical strength of the hair. Similarly, other KAP5 genes are rich in cysteine, glycine, and serine, and the expression product has a structure similar to that of KAP5.2 and is considered to contribute greatly to the mechanical strength of hair.

本発明でいう毛質とは、主に毛髪の硬さ、即ち、「はり」や「こし」感をいう。毛髪の硬さは例えば曲げ応力測定装置、例えばトルク感知式曲げ応力測定装置KES-SH(カトーテック)を用いてその「曲げかたさ」又は「曲げ応力」を測定することで数値化することができ、好ましくは毛髪径や形状による因子を最小限にするため、毛髪の毛径も測定し、ヤング率で表すことが好ましい。毛髪のヤング率は例えば以降の実施例に記載のとおりにして求めることができる。   The hair according to the present invention mainly refers to the hardness of the hair, that is, a “beam” or “strain” feeling. The hardness of hair can be quantified by measuring its “bending hardness” or “bending stress” using, for example, a bending stress measuring device such as a torque sensing type bending stress measuring device KES-SH (Kato Tech). Preferably, in order to minimize the factors depending on the hair diameter and shape, the hair diameter is also measured and expressed in Young's modulus. The Young's modulus of hair can be determined, for example, as described in the following examples.

毛髪中のRUNX1遺伝子の発現は、毛髪中の当該タンパク質の量を測定することにより決定してよい。好ましくは、この測定はRUNX1に特異的な抗体を利用し、当業界において周知の方法、例えば蛍光物質、色素、酵素等を利用する免疫染色法、ウェスタンブロット法、免疫測定方法、例えばELISA法、RIA法等、様々な方法により実施できる。また、例えば、毛髪中のtotal RNAを抽出し、RUNX1をコードするmRNAの量を測定することにより決定することもできる。mRNAの抽出、その量の測定も当業界において周知であり、例えばRNAの定量は定量ポリメラーゼ連鎖反応(PCR)法、例えばリアルタイムポリメラーゼ連鎖反応(RT−PCR)により行われる。RT−PCRに適切なプライマーの選定は、当業者周知に方法により実施することができる。   Expression of the RUNX1 gene in hair may be determined by measuring the amount of the protein in the hair. Preferably, this measurement uses an antibody specific for RUNX1, and is a well-known method in the art, for example, an immunostaining method using a fluorescent substance, a dye, an enzyme, etc., a Western blot method, an immunoassay method such as an ELISA method, Various methods such as RIA can be used. For example, it can also be determined by extracting total RNA in hair and measuring the amount of mRNA encoding RUNX1. Extraction of mRNA and measurement of the amount thereof are also well known in the art. For example, RNA is quantified by quantitative polymerase chain reaction (PCR), for example, real-time polymerase chain reaction (RT-PCR). Selection of suitable primers for RT-PCR can be performed by methods well known to those skilled in the art.

本発明に係る毛質評価方法に従えば、例えば、上記のようにして測定したRUNX1遺伝子の発現量が所定の基準値に対し高いか低いかにより、遺伝子レベルで毛髪が硬い又は柔らかい、換言すれば「はり」や「こし」感があるかないかが判定できる。基準値としては、例えば統計学的に有意義な人数、例えば5人以上、好ましくは10人以上、より好ましくは20人以上の個体由来の毛髪の各遺伝子の発現レベルの平均値であってよい。その基準値は、評価の対象となる個体の性別、年齢、人種、その他の要因に応じて異なることができる。例えば、20歳の日本人女性の毛質を調べる場合、その基準値は同世代(例えば15歳から30歳)の日本人女性のグループの所望の遺伝子発現レベルの平均値であることが好ましい。各遺伝子の発現レベルが標準値に比べて高いか低いかは、例えば標準値と比べて少なくとも10%、又は20%、又は30%、又は50%、又は100%高ければ有意に高いとし、例えば標準値と比べて少なくとも10%、又は20%、又は30%、又は50%、又は90%低ければ有意に低いとすることができる。   According to the hair quality evaluation method according to the present invention, for example, depending on whether the expression level of the RUNX1 gene measured as described above is higher or lower than a predetermined reference value, the hair is hard or soft at the gene level. It is possible to determine whether there is a feeling of “beam” or “strain”. The reference value may be, for example, an average value of the expression level of each gene of hair derived from a statistically significant number of people, for example, 5 or more, preferably 10 or more, more preferably 20 or more. The reference value can vary depending on the sex, age, race, and other factors of the individual being evaluated. For example, when examining the hair quality of a 20-year-old Japanese woman, the reference value is preferably an average value of a desired gene expression level of a group of Japanese women of the same generation (for example, 15 to 30 years old). Whether the expression level of each gene is higher or lower than the standard value is, for example, significantly higher if it is at least 10%, or 20%, or 30%, or 50%, or 100% higher than the standard value. It can be significantly lower if it is at least 10%, or 20%, or 30%, 50%, or 90% lower than the standard value.

本発明でいう上記RUNX1には、その遺伝子(RUNX1 isoform B;NM_001001890;配列番号1)やその転写変異体(RUNX1 isoform A;NM_001754;配列番号2)の他にそれらの変異体、例えばRUNX遺伝子1において1又は数個のヌクレオチドが置換、付加又は欠失しており、しかもその発現の亢進が毛髪のヤング率と相関する変異遺伝子、又はRUNX遺伝子と60%以上、好ましくは70%以上、より好ましくは90%以上、さらにより好ましくは95%以上、最も好ましくは99%以上の相同を示す、しかもその発現の亢進が毛髪のヤング率と相関する変異遺伝子、又は上記各遺伝子と高ストリンジェント条件下でハイブリダイゼーション可能であり、しかもその発現の亢進が毛髪のヤング率と相関する変異遺伝子も含まれる。なお、ここでいうハイブリダイゼーションは周知の方法又はそれに準じる方法、例えばJ.SambrookらMolecular Cloning 2nd, Cold Spring Harbor Lab. Press, 1989に記載の方法に従って行うことができ、そして高ストリンジェントなハイブリダイゼーション条件とは、例えばナトリウム濃度が約10〜40mM、好ましくは約20mM、温度が約50〜70℃、好ましくは約60〜65℃であることを含む条件をいう。   In addition to the gene (RUNX1 isoform B; NM_001001890; SEQ ID NO: 1) and its transcriptional variant (RUNX1 isoform A; NM_001754; SEQ ID NO: 2), the RUNX1 referred to in the present invention includes, for example, RUNX gene 1 In which one or several nucleotides are substituted, added, or deleted, and the enhanced expression thereof is correlated with the Young's modulus of hair, or RUNX gene, 60% or more, preferably 70% or more, more preferably 90% or more, still more preferably 95% or more, most preferably 99% or more of homologous genes whose increased expression correlates with the Young's modulus of hair, or the above genes under high stringency conditions And mutant genes whose enhanced expression correlates with Young's modulus of hair. The hybridization here can be performed according to a well-known method or a method according thereto, for example, the method described in J. Sambrook et al., Molecular Cloning 2nd, Cold Spring Harbor Lab. Press, 1989, and highly stringent hybridization. The conditions refer to conditions including, for example, a sodium concentration of about 10 to 40 mM, preferably about 20 mM, and a temperature of about 50 to 70 ° C., preferably about 60 to 65 ° C.

以下、具体例を挙げて、本発明を更に具体的に説明する。なお、本発明はこれにより限定されるものではない。   Hereinafter, the present invention will be described more specifically with specific examples. In addition, this invention is not limited by this.

KAP5.2遺伝子発現量の測定方法
抜去毛髪検体からのcDNA調製法
頭髪を抜きその毛根部約1cmを液体窒素中で凍結し、そのまま液体窒素中に放置した。凍結した毛根部5本を集め、RNA抽出液ISOGEN(ニッポンジーン)1mlの入った1.5mlチューブに入れ、ボルテックスミキサーにて十分に攪拌した。クロロフォルム200μlを加えて再度ボルテックスミキサーにて十分に攪拌した後に、小型微量遠心分離機により遠心分離(15000rm、15分間)し、RNAを含む水相約500μlを回収した。回収した溶液に50μlの3M酢酸ナトリウムと1μlのエタ沈メイト(ニッポンジーン)を添加して十分に攪拌した。さらに1mlのイソプロパノールを加えて攪拌し、小型微量遠心分離機により遠心分離(15000rm、20分間)して、全RNAを沈殿させた。上清を捨てた後に75%エタノールを加え、再び小型微量遠心分離機により遠心分離(15000rm、10分間)した。上清を捨てて沈殿を風乾させ、50μlのnuclease free waterに溶解させた。DNaseI処理により混在するゲノムDNAを除去し、再度エタノール沈殿により全RNAを回収して、20μlのnuclease free waterに溶解させた。このうち、1.0μlを用いてNanoDrop(Technologies, Inc.)によりRNAの濃度を測定した。得られた全RNA 100ngからcDNAを合成し、PCRによる各遺伝子発現量の定量に用いた。
Method for measuring KAP5.2 gene expression level Method for preparing cDNA from extracted hair specimen About 1 cm of the hair root was extracted in liquid nitrogen and left in liquid nitrogen as it was. Five frozen hair roots were collected, put into a 1.5 ml tube containing 1 ml of RNA extract ISOGEN (Nippon Gene), and sufficiently stirred with a vortex mixer. After adding 200 μl of chloroform and sufficiently stirring again with a vortex mixer, centrifugation (15000 rm, 15 minutes) was performed with a small microcentrifuge, and about 500 μl of an aqueous phase containing RNA was recovered. 50 μl of 3M sodium acetate and 1 μl of etaprecipitate (Nippon Gene) were added to the collected solution and stirred thoroughly. Further, 1 ml of isopropanol was added and stirred, followed by centrifugation (15000 rm, 20 minutes) with a small microcentrifuge to precipitate total RNA. After discarding the supernatant, 75% ethanol was added, and the mixture was again centrifuged (15000 rm, 10 minutes) with a small microcentrifuge. The supernatant was discarded and the precipitate was air-dried and dissolved in 50 μl of nuclease free water. The contaminating genomic DNA was removed by DNase I treatment, and total RNA was recovered again by ethanol precipitation and dissolved in 20 μl of nuclease free water. Of these, 1.0 μl was used to measure the RNA concentration by NanoDrop (Technologies, Inc.). CDNA was synthesized from 100 ng of the obtained total RNA and used for quantification of the expression level of each gene by PCR.

リアルタイムPCR法による遺伝子発現の定量化
合成したcDNA、検出・定量化する遺伝子に特異的なプライマー、リアルタイムPCR 試薬(Roche)を混合し、ライトサイクラークイックシステムにて350SにてリアルタイムPCRを行い、検出・定量化する遺伝子の断片を増幅した。この際、濃度既知の同じ遺伝子断片(PCR産物102〜1011コピー相当)を同様にリアルタイムPCRにより増幅して検量線を作成し、サンプル中に含まれる検出・定量化する遺伝子の発現量を、単位(1μg)RNA当たりのコピー数として算出した。
Quantification of gene expression by real-time PCR method Synthetic cDNA, primers specific to the gene to be detected and quantified, and real-time PCR reagent (Roche) are mixed, and real-time PCR is performed at 350S using the LightCycler Quick System. -Amplified the fragment of the gene to be quantified. At this time, the same gene fragment of known concentration (corresponding to 10 2 to 10 11 copies of PCR product) is similarly amplified by real-time PCR to create a calibration curve, and the expression level of the gene to be detected and quantified contained in the sample is determined. Calculated as copy number per unit (1 μg) RNA.

KAP5.2遺伝子に特異的かつgenomic DNAを増幅しないプライマーとして、以下の組合せのプライマーを用いた。
センス ACTGTAGCTGTGTCCTGA (配列番号5)
アンチセンス GATGAAGATGAAGGGTGGA (配列番号6)
The following combinations of primers were used as primers specific to the KAP5.2 gene and not amplifying genomic DNA.
Sense ACTGTAGCTGTGTCCTGA (SEQ ID NO: 5)
Antisense GATGAAGATGAAGGGTGGA (SEQ ID NO: 6)

毛髪の硬さ(ヤング率)の測定
測定用サンプルの調製法
毛髪1本ずつについて、両端(間隔3cm)に耐水紙のタグをつけて番号を記入する。シャンプーにて軽く洗浄してから水洗し、イオン交換水に浸した後に恒温・恒湿室(25℃、湿度50%)で風乾させた。
Measurement of hair hardness (Young's modulus) Method of preparing sample for measurement For each hair, attach water-resistant paper tags to both ends (interval 3 cm) and enter the number. After lightly washing with a shampoo, rinsing with water and immersing in ion exchange water, it was air-dried in a constant temperature and humidity chamber (25 ° C., humidity 50%).

毛径の測定
恒温・恒湿室(25℃、湿度50%)にて、レーザー光を利用した毛径測定装置SK-2000(カトーテック/資生堂)により、毛髪サンプルの長径および短径を2mm間隔にて20mmの長さに亘って測定し、これらの平均値をその毛髪サンプルの長径および短径とした。
Measurement of hair diameter In a constant temperature / humidity chamber (25 ° C, humidity 50%), the hair diameter measuring device SK-2000 (Kato Tech / Shiseido) using laser light is used to separate the major and minor diameters of hair samples at intervals of 2 mm. Was measured over a length of 20 mm, and these average values were taken as the major and minor diameters of the hair sample.

曲げ応力測定
毛髪サンプルの曲げ応力は、トルク感知式曲げ応力測定装置KES-SH(カトーテック)により、恒温・恒湿室(25℃、湿度50%)にて測定した。曲げ速さは、0.5cm-1/sec.に設定し、曲率(ρ)±1.0〜2.0cm-1における各毛髪サンプルの曲げ応力(M)を測定した。
Bending stress measurement The bending stress of the hair sample was measured in a constant temperature / humidity chamber (25 ° C., humidity 50%) using a torque sensing type bending stress measuring device KES-SH (Kato Tech). The bending speed was set to 0.5 cm −1 / sec., And the bending stress (M) of each hair sample at the curvature (ρ) ± 1.0 to 2.0 cm −1 was measured.

ヤング率の算出
各毛髪サンプル1本1本について毛径と曲げ応力を測定し、断面二次モーメント(I)を用いた以下の算出式により各毛髪サンプル1本1本のヤング率(E)を算出した。
E=M・ρ/I
このとき、毛髪断面を楕円に近似し、さらに毛髪が曲がるときには短径側で曲がると仮定した場合、断面二次モーメント(I)は次の式で表される。
I=π/4・a3・b(aは毛髪の短半径、bは毛髪の長半径)
Calculation of Young's Modulus Measure the hair diameter and bending stress for each hair sample, and calculate the Young's modulus (E) for each hair sample using the following formula using the moment of inertia (I). Calculated.
E = M ・ ρ / I
At this time, assuming that the hair cross section approximates an ellipse and further bends on the short diameter side when the hair bends, the cross-sectional secondary moment (I) is expressed by the following equation.
I = π / 4 · a 3 · b (a is the short radius of the hair, b is the long radius of the hair)

遺伝子発現との比較には、まとめてRNA抽出した毛髪サンプル5本それぞれについてヤング率を算出し、それらの平均値を用いた。   For comparison with gene expression, Young's modulus was calculated for each of the five hair samples from which RNA was extracted together, and the average value was used.

KAP5.2遺伝子の発現量と、毛髪のヤング率との関係を図1に示す。KAP5.2遺伝子発現量と毛髪のヤング率のSpearman順位相関係数rsは0.487であった(両側確立*P<0.05となる最小のrs=0.447(Spearmanの検定表)。 The relationship between the expression level of the KAP5.2 gene and the Young's modulus of the hair is shown in FIG. Spearman rank correlation coefficient r s between KAP5.2 gene expression level and hair Young's modulus was 0.487 (minimum r s = 0.447 (Spearman's test table with P <0.05) ).

以上の実験から、パネル20名によるヒト試験において、毛髪の硬さ(ヤング率)とヒトKAP5.2遺伝子の発現に有意な相関が認められた。   From the above experiments, in a human test by 20 panelists, a significant correlation was observed between hair hardness (Young's modulus) and human KAP5.2 gene expression.

毛髪のヤング率とKAP5.1及び5.4遺伝子の発現との関係の検討
パネル11名の頭髪の硬さ(ヤング率)を上記のとおりに測定し、ヤング率11.4以上を「高ヤング率頭髪」、換言すれば「はり・こし感」のある髪、10.2以下を低ヤング率毛髪、換言すれば「はり・こし感」のない髪にグループ分けし、それぞれのグループについてKAP5.1及びKAP5.4遺伝子の発現量を、上記と同様にしてリアルタイムPCR法により調べた。
使用したプライマーは以下のとおりである:
ヒトKAP5.1
センス tctcttccca agtcaactgc (配列番号3)
アンチセンス agagtgttgg acaggcaaag (配列番号4)
ヒトKAP5.4
センス ttctccagct catcatccat (配列番号9)
アンチセンス ggtcagacct tgcatctcag (配列番号10)
Examination of the relationship between Young's modulus of hair and expression of KAP5.1 and 5.4 genes
The hardness (Young's modulus) of the hair of the 11 panelists was measured as described above, and Young's modulus of 11.4 or higher was “high Young's modulus hair”, in other words, “hairy / stiff” hair, 10.2. The following are grouped into hair with low Young's modulus, in other words, hair without “brush / feel”, and the expression levels of KAP5.1 and KAP5.4 genes for each group were determined by real-time PCR as described above. Examined.
The primers used are as follows:
Human KAP5.1
Sense tctcttccca agtcaactgc (SEQ ID NO: 3)
Antisense agagtgttgg acaggcaaag (SEQ ID NO: 4)
Human KAP5.4
Sense ttctccagct catcatccat (SEQ ID NO: 9)
Antisense ggtcagacct tgcatctcag (SEQ ID NO: 10)

その結果を図2に示す。図2(a)は「高ヤング率頭髪」(High)と「低ヤング率頭髪」(Low)の平均値及び標準偏差(p<0.05)を示す。この図は、上記グループ分けにより、「高ヤング率頭髪」グループと「低ヤング率頭髪」グループのヤング率において有意な差があることを示している。図2(b)はKAP5.1遺伝子について、「高ヤング率頭髪」(High)と「低ヤング率頭髪」(Low)における発現量の差を示している。低ヤング率頭髪に比べ、高ヤング率頭髪においてKAP5.1遺伝子の発現が亢進していることが明らかである。図2(c)はKAP5.4遺伝子について、「高ヤング率頭髪」(High)と「低ヤング率頭髪」(Low)における発現量の差を示している。低ヤング率頭髪に比べ、高ヤング率頭髪においてKAP5.4遺伝子の発現が亢進していることが明らかであり、また図2(b)との対比から、高い及び低ヤング率の頭髪におけるKAP5.4遺伝子の発現量の差はKAP5.1遺伝子のそれに比べて顕著でもあった。以上の結果から、ヤング率が高い頭髪、即ちはり・こし感のある頭髪においては、KAP5.1及びKAP5.4遺伝子、特にKAP5.4遺伝子の発現も有意に高まることが明らかとなった。従って、毛質の評価の指標として、KAP5.1及びKAP5.4遺伝子の発現の測定も有意義であることがわかった。   The result is shown in FIG. FIG. 2A shows the average value and standard deviation (p <0.05) of “high Young's modulus hair” (High) and “low Young's modulus hair” (Low). This figure shows that there is a significant difference in Young's modulus between the “high Young's modulus hair” group and the “low Young's modulus hair” group by the above grouping. FIG. 2 (b) shows the difference in expression level between the “high Young's modulus hair” (High) and the “low Young's modulus hair” (Low) for the KAP5.1 gene. It is clear that the expression of KAP5.1 gene is increased in high Young's modulus hair compared to low Young's modulus hair. FIG. 2 (c) shows the difference in the expression level between “high Young's modulus hair” (High) and “low Young's modulus hair” (Low) for the KAP5.4 gene. It is clear that the expression of the KAP5.4 gene is increased in the hair with a high Young's modulus compared to the hair with a low Young's modulus, and from the comparison with FIG. 2 (b), the KAP5. The difference in the expression levels of the 4 genes was also significant compared to that of the KAP5.1 gene. From the above results, it has been clarified that the expression of KAP5.1 and KAP5.4 genes, particularly KAP5.4 gene, is significantly increased in hair with a high Young's modulus, that is, hair with abundant feel. Therefore, it was found that the measurement of the expression of KAP5.1 and KAP5.4 genes is also significant as an index of hair quality evaluation.

先に記載のとおり、KAP5.1〜5.5遺伝子はヒトケラチン関連タンパク質KAP5ファミリーに属する、互いに相同性の比較的高い遺伝子群である。各遺伝子によりコードされる推定タンパク質のアミノ酸配列同士の相同性の高さは、図3及び4、並びに以下の表から明らかである。   As described above, the KAP5.1 to 5.5 genes are a group of genes that belong to the human keratin-related protein KAP5 family and have relatively high homology to each other. The high degree of homology between the amino acid sequences of the putative proteins encoded by each gene is apparent from FIGS. 3 and 4 and the following table.

また、先にも述べたが、KAP5.1〜5遺伝子によりコードされる各推定タンパク質は全てシステインリッチであり、また低分子アミノ酸であるグリシンとセリンを豊富に含むため、α−ヘリックスなどの二次構造を形成せず、ケラチン繊維の間に容易に入り込むことができ、また多数セリン残基のOH基による多数の水素結合の形成も考えられるため、毛髪の機械的強度に大きく寄与していると考えられる。以下の表にKAP5.1〜5遺伝子推定コードタンパク質の一部アミノ酸組成を示す。   In addition, as described above, each putative protein encoded by the KAP5.1-5 gene is all cysteine-rich and rich in low-molecular amino acids glycine and serine. Since it does not form the next structure, it can easily penetrate between keratin fibers, and many hydrogen bonds can be formed by the OH groups of many serine residues, which greatly contributes to the mechanical strength of hair. it is conceivable that. The following table shows a partial amino acid composition of the KAP5.1-5 gene estimation coding protein.

従って、KAP5遺伝子ファミリーにおける遺伝子間の相同性の高さ及びコードタンパク質間の構造類似性に基づき、KAP5.1、5.2及び5.4に関して得られた上記結果から、KAP5.3及び5.5の発現を調べることによっても毛質の評価が可能であるものと類推できる。 Therefore, based on the high degree of homology between genes in the KAP5 gene family and the structural similarity between the coding proteins, the above results obtained for KAP5.1, 5.2 and 5.4 suggest that KAP5.3 and 5. It can be inferred that the hair quality can also be evaluated by examining the expression of 5.

in situ ハイブリダイゼーション法(ISH法)によるヒトKAP5遺伝子発現部位の同定
KAP5.1〜5リボプローブの作製
抜去毛髪より調製したcDNAと、KAP5.1, KAP5.2, KAP5.3, KAP5.4, KAP5.5のそれぞれについて、以下の表に示すプライマーを用いて、T7ポリメラーゼのプロモーター配列をアンチセンス側に付加した形で、各KAP5の遺伝子断片を増幅した。
Identification of human KAP5 gene expression site by in situ hybridization method (ISH method) Preparation of KAP5.1-5 Riboprobes cDNA prepared from extracted hair, KAP5.1, KAP5.2, KAP5.3, KAP5.4, For each of KAP5.5, each KAP5 gene fragment was amplified using the primers shown in the following table, with the T7 polymerase promoter sequence added to the antisense side.

増幅した各遺伝子断片を市販のキット(Wizard SV Gel and PCR clean-up System: Promega)で精製した後に、T7ポリメラーゼとDIG RNAラベリングキット(Roche)により、各KAP5遺伝子特異的なリボプローブを作製した。 Each amplified gene fragment was purified with a commercially available kit (Wizard SV Gel and PCR clean-up System: Promega), and then each KAP5 gene-specific riboprobe was prepared with T7 polymerase and DIG RNA labeling kit (Roche). .

各KAP遺伝子の発現部位の同定
頭皮組織の中性ホルマリン固定・パラフィン包埋サンプルをミクロトームにより5μmに薄切して頭髪毛包を含む組織切片(スライドガラス)を作製し、ベンタナ社の自動染色装置(ベンタナHXシステムディスカバリー)およびin situ hybridization 用の試薬リボマップキット(ベンタナ)を用いて、各KAP5遺伝子特異的なリボプローブ(スライド1枚当たり200ng)と反応させた。さらに、プローブと反応させた組織切片を自動染色装置上でアルカリフォスファターゼ標識抗DIG抗体(Roche)と反応させた。自動染色装置より組織切片の載ったスライドガラスを取り出し、トリス-塩酸バッファー(pH9.0)で洗浄した後にBM-purple (Roche)と約5時間程度反応させ、各KAP5遺伝子の発現部位を青紫色の染色部位として可視化した。その結果、KAP5.1, KAP5.2, KAP5.3, KAP5.4, KAP5.5遺伝子全てが、キューティクル部位に特異的に存在することが認められた。
Identification of the expression site of each KAP gene Neutral formalin-fixed and paraffin-embedded sample of scalp tissue is sliced into 5 μm with a microtome to produce tissue sections (slide glass) containing hair follicles, and Ventana's automatic staining device (Ventana HX system discovery) and reagent ribomap kit for in situ hybridization (Ventana) were reacted with each KAP5 gene-specific riboprobe (200 ng per slide). Furthermore, the tissue section reacted with the probe was reacted with an alkaline phosphatase-labeled anti-DIG antibody (Roche) on an automatic staining apparatus. Remove the slide glass with the tissue section from the automatic staining device, wash with Tris-HCl buffer (pH 9.0), and react with BM-purple (Roche) for about 5 hours. The expression site of each KAP5 gene is blue-purple. It was visualized as a stained site. As a result, it was confirmed that all of the KAP5.1, KAP5.2, KAP5.3, KAP5.4, and KAP5.5 genes were specifically present in the cuticle site.

免疫染色法によるヒト成長期毛包におけるRUNX1の発現部位同定
頭皮組織を中性ホルマリンにより1週間固定した後に、エタノール系列で脱水し、パラフィン包埋後、厚さ6μmの切断を作製した。上記切片をキシレン・エタノール系列により脱パラフィンおよび親水処理し、10mMクエン酸-水酸化ナトリウム(pH6.0)溶液中で電子レンジを用いて加熱・煮沸処理を行って、RUNX1抗原の賦活化を行った。一次抗体として抗RUNX1抗体(Abcam社)を用い、ストレプトアビジン−ビオチン−パーオキシダーゼ複合体法により免疫組織化学的に染色し、発色基質として赤色の沈着を呈する3−アミノ−9−エチルカルバゾール(AEC)を用いた。結果、RUNX1免疫染色性は、ヒト成長期毛包の毛幹部分の角化帯や外毛根鞘の細胞の核に認められた。またキューティクル層においては、はり・こしとの関連性があるKAP5ファミリー、KAP5.1〜5.5の遺伝子発現が認められる部位より毛球部側にRUNX1の免疫染色性が確認され、これらKAP5遺伝子の転写を調節する可能性が示唆された。
Identification of RUNX1 expression site in human growth hair follicle by immunostaining method After fixing scalp tissue with neutral formalin for 1 week, it was dehydrated with ethanol series, embedded in paraffin, and cut 6 μm thick. The above sections were deparaffinized and hydrophilically treated with xylene / ethanol series, and heated and boiled using a microwave oven in a 10 mM citrate-sodium hydroxide (pH 6.0) solution to activate the RUNX1 antigen. It was. Anti-RUNX1 antibody (Abcam) as a primary antibody, 3-amino-9-ethylcarbazole (AEC) that stains immunohistochemically by the streptavidin-biotin-peroxidase complex method and exhibits red deposition as a chromogenic substrate ) Was used. As a result, RUNX1 immunostaining was observed in the keratinized band of the hair shaft portion of the human growth hair follicle and the nucleus of the cell of the outer root sheath. In the cuticle layer, the immunostaining property of RUNX1 was confirmed on the hair bulb side from the site where the gene expression of KAP5 family, KAP5.1-5.5, which is related to the beam / koshi, was observed. These KAP5 genes This suggests the possibility of regulating the transcription of.

KAP5.1レポーターアッセイによるRUNX1転写調節活性の測定
不死化外毛根鞘細胞(IORS)(特開2000-89号公報)を24ウェルのマルチウェルプレートに1ウェル当たり10〜16万細胞となるように播き、37℃・5%CO2 の条件下で一晩培養した。培地はケラチノサイト−SFM培地(Gibco)を用いた。
1日目:プラスミドDNA導入(一過性)。培養したIORS細胞を、FuGENE6 Transfection Reagent(ROCHE)のマニュアルに従って、レポータープラスミドpGL3−KAP5.1(firefly luciferase)(特願2003−416987)と、市販の内部標準プラスミドpRL−TK(renilla luciferase)、さらに市販のマウスRUNX1遺伝子(GenBank#:BC069929)(配列番号12)の発現プラスミドまたは陰性コントロールのβ-ガラクトシダーゼ遺伝子の発現プラスミド(pCMVSport β-gal、Invitrogen社)を加えて形質転換した。
2日目:アッセイ。デュアル−ルシフェラーゼ・レポーター・アッセイ系(Dual−Luciferase Reporter Assay System)(Promega)を用い、該製造者のマニュアルに従って各ウェルのルシフェラーゼ活性を測定した。ルミノメーターはAutoLumat LB953(BERTHOLD)を用いた。
その結果を図5に示す。陰性コントロールのβ-ガラクトシダーゼ遺伝子の発現プラスミドを共導入した場合には、その導入量に依らずKAP5.1転写活性の変化は認められなかった。一方、マウスRUNX1遺伝子の発現プラスミドを共導入した場合には、その導入量に依存してKAP5.1転写活性の上昇が認められ、0.1μgで約2.5倍に上昇した。
Measurement of RUNX1 transcriptional regulatory activity using KAP5.1 reporter assay Immortalized outer root sheath cells (IORS) (Japanese Patent Laid-Open No. 2000-89) are placed in a 24-well multi-well plate so that the number of cells becomes 100,000 to 160,000 per well. Seeded and cultured overnight at 37 ° C. and 5% CO 2 . The medium used was keratinocyte-SFM medium (Gibco).
Day 1: Plasmid DNA introduction (transient). According to the manual of FuGENE6 Transfection Reagent (ROCHE), the cultured IORS cells were mixed with a reporter plasmid pGL3-KAP5.1 (firefly luciferase) (Japanese Patent Application No. 2003-416987) and a commercially available internal standard plasmid pRL-TK (renilla luciferase). A commercially available mouse RUNX1 gene (GenBank #: BC069929) (SEQ ID NO: 12) expression plasmid or negative control β-galactosidase gene expression plasmid (pCMVSport β-gal, Invitrogen) was added for transformation.
Day 2: Assay. The luciferase activity in each well was measured using a Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer's manual. The luminometer used was AutoLumat LB953 (BERTHOLD).
The result is shown in FIG. When a negative control β-galactosidase gene expression plasmid was co-introduced, no change in KAP5.1 transcriptional activity was observed regardless of the amount introduced. On the other hand, when the mouse RUNX1 gene expression plasmid was co-introduced, an increase in KAP5.1 transcriptional activity was observed depending on the amount introduced, and the increase was about 2.5 times at 0.1 μg.

不死化外毛根鞘細胞(IORS)の内在性KAP5.1遺伝子発現へのRUNX1の影響
不死化外毛根鞘細胞(IORS)(特開2000−89号公報)を6ウェルのマルチウェルプレートに1ウェル当たり50〜80万細胞となるように播き、37℃・5%CO2の条件下で一晩培養した。培地はKeratinocyte−SFM培地(Gibco)を用いた。
Effect of RUNX1 on endogenous KAP5.1 gene expression of immortalized outer root sheath cells (IORS) Immortalized outer root sheath cells (IORS) (Japanese Patent Laid-Open No. 2000-89) in 1 well in a 6-well multiwell plate The cells were seeded at 500,000 to 800,000 cells, and cultured overnight at 37 ° C. and 5% CO 2 . As the medium, Keratinocyte-SFM medium (Gibco) was used.

1日目:プラスミドDNA導入(一過性)
培養したIORS細胞を、FuGENE6 Transfection Reagent(ROCHE)のマニュアルに従って、市販のマウスRUNX1遺伝子(GenBank#:BC069929)(配列番号12)の発現プラスミドまたは陰性コントロールのβ-ガラクトシダーゼ遺伝子の発現プラスミド(pCMVSport β-gal、Invitrogen社)を加えて形質転換した。
Day 1: Plasmid DNA introduction (transient)
According to the manual of FuGENE6 Transfection Reagent (ROCHE), the cultured IORS cells were transformed into a commercially available mouse RUNX1 gene (GenBank #: BC069929) (SEQ ID NO: 12) expression plasmid or negative control β-galactosidase gene expression plasmid (pCMVSport β- gal, Invitrogen) was added for transformation.

2日目:リアルタイムPCRによる定量
RNA抽出液ISOGEN(ニッポンジーン)1mlを培養したIORS細胞に加えて溶解させて、1.5mlマイクロチューブに回収した。ボルテックスミキサーにて十分に攪拌し、クロロフォルム200μlを加えて再度ボルテックスミキサーにて十分に攪拌した後に、小型微量遠心分離機により遠心分離(15000rm、15分間)を行いRNAを含む水相約500μlを回収した。回収した溶液に50μlの3M酢酸ナトリウムと1μlのエタ沈メイト(ニッポンジーン)を添加して十分に攪拌した。さらに1mlのイソプロパノールを加えて攪拌し、小型微量遠心分離機により遠心分離(15000rm、20分間)して、全RNAを沈殿させた。上清を捨てた後に75%エタノールを加え、再び小型微量遠心分離機により遠心分離(15000rm、10分間)した。上清を捨てて全RNAの沈殿を風乾させ、50μlのnuclease free waterに溶解させた。DNaseI処理により混在するゲノムDNAを除去し、再度エタノール沈殿により全RNAを回収して、20μlのnuclease free waterに溶解させた。このうち、1.0μlを用いてNanoDrop(Technologies, Inc.)によりRNAの濃度を測定した。得られた全RNA 3μgからcDNAを合成し、リアルタイムPCRによる各遺伝子発現量の定量に用いた。
Day 2: Quantification by real-time PCR 1 ml of RNA extract ISOGEN (Nippon Gene) was added to the cultured IORS cells, dissolved, and collected in a 1.5 ml microtube. Stir well with a vortex mixer, add 200 μl of chloroform, stir again thoroughly with a vortex mixer, and then centrifuge (15000 rm, 15 minutes) with a small microcentrifuge to recover approximately 500 μl of RNA containing water phase . 50 μl of 3M sodium acetate and 1 μl of etaprecipitate (Nippon Gene) were added to the collected solution and stirred thoroughly. Further, 1 ml of isopropanol was added and stirred, followed by centrifugation (15000 rm, 20 minutes) with a small microcentrifuge to precipitate total RNA. After discarding the supernatant, 75% ethanol was added, and the mixture was again centrifuged (15000 rm, 10 minutes) with a small microcentrifuge. The supernatant was discarded and the total RNA precipitate was air-dried and dissolved in 50 μl of nuclease free water. The contaminating genomic DNA was removed by DNase I treatment, and total RNA was recovered again by ethanol precipitation and dissolved in 20 μl of nuclease free water. Of these, 1.0 μl was used to measure the RNA concentration by NanoDrop (Technologies, Inc.). CDNA was synthesized from 3 μg of the obtained total RNA and used for quantification of the expression level of each gene by real-time PCR.

合成したcDNA、検出・定量化する遺伝子に特異的なプライマー、リアルタイムPCR 試薬(Roche)を混合し、ライトサイクラークイックシステムにて350SにてリアルタイムPCRを行い、検出・定量化する遺伝子の断片を増幅した。この際、転写調節活性を有さないβガラクトシダーゼ発現プラスミドを導入した場合の遺伝子発現量を基準(100)として、RUNX1発現プラスミドを導入した場合のKAP5.1およびGAPDHの発現量の変化を評価した。   The synthesized cDNA, primers specific to the gene to be detected and quantified, and real-time PCR reagent (Roche) are mixed, and real-time PCR is performed at 350S with the LightCycler Quick System to amplify the gene fragment to be detected and quantified. did. At this time, the change in the expression level of KAP5.1 and GAPDH when the RUNX1 expression plasmid was introduced was evaluated with reference to the gene expression level when the β-galactosidase expression plasmid having no transcriptional regulatory activity was introduced (100). .

使用したプライマーは以下のとおりである:
ヒトKAP5.1
センス tctcttccca agtcaactgc (配列番号3)
アンチセンス agagtgttgg acaggcaaag (配列番号4)
ヒトKAP5.4
センス gagtcaacgg atttggtcgt (配列番号14)
アンチセンス tgggatttcc attgatgaca (配列番号15)
The primers used are as follows:
Human KAP5.1
Sense tctcttccca agtcaactgc (SEQ ID NO: 3)
Antisense agagtgttgg acaggcaaag (SEQ ID NO: 4)
Human KAP5.4
Sense gagtcaacgg atttggtcgt (SEQ ID NO: 14)
Antisense tgggatttcc attgatgaca (SEQ ID NO: 15)

その結果を図7に示す。図7(a)はIORS細胞におけるKAP5.1遺伝子発現の確認を示す。逆転写反応を行った場合にKAP5.1遺伝子のDNA断片が増幅されたのに対し(RT+)、逆転写反応を行なわない場合には増幅は認められなかった(RT−)。
図7(b)はRUNX1発現プラスミドを導入した場合、その導入量に依存してIORS細胞の(内在性)KAP5.1遺伝子発現の増加が認められ、1μgで約2.5倍に上昇した。一方、内部標準として定量したGADPH遺伝子発現量は、RUNX1とβ−ガラクトシダーゼいずれの発現プラスミド導入でも変化がなかった。
The result is shown in FIG. FIG. 7 (a) shows confirmation of KAP5.1 gene expression in IORS cells. When the reverse transcription reaction was performed, the DNA fragment of the KAP5.1 gene was amplified (RT +), whereas when the reverse transcription reaction was not performed, amplification was not observed (RT−).
FIG. 7 (b) shows that when the RUNX1 expression plasmid was introduced, an increase in (endogenous) KAP5.1 gene expression in IORS cells was observed depending on the amount introduced, and the increase was about 2.5 times at 1 μg. On the other hand, the expression amount of GADPH gene quantified as an internal standard did not change even when either RUNX1 or β-galactosidase was introduced.

KAP5.2遺伝子の発現量と毛髪のヤング率との関係。Relationship between expression level of KAP5.2 gene and Young's modulus of hair. KAP5.1及びKAP5.4遺伝子の発現量と毛髪のヤング率との関係。Relationship between expression level of KAP5.1 and KAP5.4 genes and Young's modulus of hair. ヒトKAP5.1〜5.5遺伝子の推定コードタンパク質のアミノ酸配列比較。Comparison of amino acid sequences of putative coding proteins of human KAP5.1-5.5 genes. ヒトKAP5.1〜5.5遺伝子の推定コードタンパク質のアミノ酸配列の相同性。Amino acid sequence homology of the putative coding protein of the human KAP 5.1-5.5 gene. KAP5遺伝子群の発現調節。Regulation of expression of KAP5 genes. KAP5.1レポーターアッセイ系にRUNX1発現プラスミドを共導入し、RUNX1を過剰発現させてKAP5.1遺伝子の転写活性を評価することによる、RUNX1のKAP5.1転写調節への関与を示す。The involvement of RUNX1 in KAP5.1 transcription regulation by co-introducing a RUNX1 expression plasmid into a KAP5.1 reporter assay system and overexpressing RUNX1 to evaluate the transcriptional activity of the KAP5.1 gene is shown. 不死化外毛根鞘細胞にRUNX1は発現プラスミドを導入してRUNX1を過剰発現させ、KAP5.1遺伝子とGADPH(内部標準コントロール)の発現をリアルタイムPCR法で評価することによる、RUNX1のKAP5.1転写調節への関与を示す。RUNX1 transcription is introduced into an immortalized outer root sheath cell by introducing an expression plasmid to overexpress RUNX1, and the expression of KAP5.1 gene and GADPH (internal standard control) is evaluated by a real-time PCR method. Involvement in regulation.

Claims (5)

毛質の評価方法であって、毛髪中のRUNX1の発現を毛質の指標とする評価方法。   A method for evaluating hair, wherein the expression of RUNX1 in hair is used as an index of hair. 前記測定が、毛髪中のRUNX1遺伝子に由来するmRNAをリアルタイムポリメラーゼ連鎖方法により測定することにより実施される、請求項1記載の方法。   The method according to claim 1, wherein the measurement is performed by measuring mRNA derived from the RUNX1 gene in hair by a real-time polymerase chain method. 前記評価が、毛髪中のRUNX1の量の測定によりに実施される、請求項1記載の方法。   The method of claim 1, wherein the evaluation is performed by measuring the amount of RUNX1 in the hair. 前記評価が、RUNX1に特異的な抗体を使用する免疫学的測定方法による、請求項1記載の方法。   The method according to claim 1, wherein the evaluation is performed by an immunoassay method using an antibody specific for RUNX1. 毛質の評価のためのキットであって、毛髪中のRUNX1の発現を毛質の指標として測定することにより評価を行うことを特徴とするキット。   A kit for evaluating hair quality, wherein the evaluation is performed by measuring the expression of RUNX1 in hair as an index of hair quality.
JP2006054818A 2005-06-14 2006-03-01 Hair quality rating method with runx1(runt-related transcription factor 1) as indicator Withdrawn JP2007020559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054818A JP2007020559A (en) 2005-06-14 2006-03-01 Hair quality rating method with runx1(runt-related transcription factor 1) as indicator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005174019 2005-06-14
JP2006054818A JP2007020559A (en) 2005-06-14 2006-03-01 Hair quality rating method with runx1(runt-related transcription factor 1) as indicator

Publications (1)

Publication Number Publication Date
JP2007020559A true JP2007020559A (en) 2007-02-01

Family

ID=37782145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054818A Withdrawn JP2007020559A (en) 2005-06-14 2006-03-01 Hair quality rating method with runx1(runt-related transcription factor 1) as indicator

Country Status (1)

Country Link
JP (1) JP2007020559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249700A (en) * 2007-03-07 2008-10-16 Nippon Menaade Keshohin Kk Method of evaluating hair condition and its application
WO2009014036A1 (en) * 2007-07-25 2009-01-29 Sony Corporation Method for obtaining information on biological rhythm by using hair
JP2012225652A (en) * 2011-04-14 2012-11-15 Tohoku Univ Method for evaluating flexibility of hair

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249700A (en) * 2007-03-07 2008-10-16 Nippon Menaade Keshohin Kk Method of evaluating hair condition and its application
WO2009014036A1 (en) * 2007-07-25 2009-01-29 Sony Corporation Method for obtaining information on biological rhythm by using hair
JP2009027952A (en) * 2007-07-25 2009-02-12 Sony Corp Method for obtaining information on biological rhythm by using hair
JP2012225652A (en) * 2011-04-14 2012-11-15 Tohoku Univ Method for evaluating flexibility of hair

Similar Documents

Publication Publication Date Title
JP4183614B2 (en) ES cell specific expression gene
Dalla Valle et al. Isolation of a mRNA encoding a glycine‐proline–rich β‐keratin expressed in the regenerating epidermis of lizard
van Koningsbruggen et al. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing
KR20190057529A (en) The biomarker miRNA-31-5p for diagnosis of pre-eclampsia and use thereof
CN106460054A (en) Fusion genes in cancer
KR20140123437A (en) Composition for screening skin irritant and method for screening skin irritant using the same
JP5858788B2 (en) Screening method for dry skin improving agent for atopic dermatitis using bleomaosin hydrolase activity as an index
Doolittle et al. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton
JP2007020559A (en) Hair quality rating method with runx1(runt-related transcription factor 1) as indicator
KR101320098B1 (en) Methods of stratifying adolescent idiopathic scoliosis, isolated nucleic acid molecules for use in same and kits using same
HITOMI et al. Novel S100 proteins in human esophageal epithelial cells: CAAF1 expression is associated with cell growth arrest
KR102460127B1 (en) Biomarker for Diagnosing Periodontal Disease and Use Thereof
Lee et al. Molecular cloning and expression of human keratinocyte proline-rich protein (hKPRP), an epidermal marker isolated from calcium-induced differentiating keratinocytes
JP2006014721A (en) Method for rating hair quality with hair keratin gene as indicator
JP5275613B2 (en) Skin test method for predicting skin spot formation
JP2019007759A (en) Method for evaluating aging degree and kit for evaluating aging degree
CN107779503A (en) The related difference expression gene of Alzheimer and its application
JPH08500731A (en) Diagnostic method
Kaneko et al. Use of formalin-fixed paraffin-embedded tissue and single-strand conformation polymorphism analysis for polymerase chain reaction of antigen receptor rearrangements in dogs
KR102601496B1 (en) Olfactory Receptor Genes for diagnosing Skin Aging and Use Thereof
KR102246021B1 (en) A composition for diagnosing of fibrosis and using thereof
CA2515948A1 (en) Monkey alpha-7 nicotinic acetylcholine receptor and methods of use thereof
KR101727750B1 (en) Composition for diagnosing ischemia compriging sweet-taste receptor genes
KR101093508B1 (en) Composition for diagnosing colorectal cancer and use thereof
KR101936502B1 (en) Biomarkers for diagnosis and prognosis of Hepatoma and uses thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512