JP2007018083A - Method for preparing operation plan of transport vehicle - Google Patents

Method for preparing operation plan of transport vehicle Download PDF

Info

Publication number
JP2007018083A
JP2007018083A JP2005196505A JP2005196505A JP2007018083A JP 2007018083 A JP2007018083 A JP 2007018083A JP 2005196505 A JP2005196505 A JP 2005196505A JP 2005196505 A JP2005196505 A JP 2005196505A JP 2007018083 A JP2007018083 A JP 2007018083A
Authority
JP
Japan
Prior art keywords
transport
time
factory
transport vehicle
destination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005196505A
Other languages
Japanese (ja)
Other versions
JP5005194B2 (en
Inventor
Masanori Shiotani
政典 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005196505A priority Critical patent/JP5005194B2/en
Publication of JP2007018083A publication Critical patent/JP2007018083A/en
Application granted granted Critical
Publication of JP5005194B2 publication Critical patent/JP5005194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing the transport plan of a transport vehicle by making a transport vehicle transport raw materials manufactured by a plurality of factories A to a plurality of factories B, and satisfying the request time, request quantity, request components and request temperature of each reaction container in the factory B when pouring raw materials in a plurality of transport vehicles to a reaction container, and equalizing the amounts of raw materials in each factory B, and quickly calculating the proper transport destination of the transport vehicle for minimizing the component adjusting amounts of each reaction container as much as possible. <P>SOLUTION: Processing for predicting the arrival time of a factory B of each transport vehicle, an optimization calculation processing for averaging raw materials, and for minimizing component adjusting amounts and processing for performing simulation by a detail simulator where a circulation phenomenon is modeled in detail are repeated so that it is possible to gradually decide the transport destination of the transport vehicle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、輸送車による原料最適搬送のための輸送車の運行計画作成方法に係り、原料を製造する複数の工場Aと当該原料を用いる複数の工場Bとが存在し、各工場Aで製造された原料を複数台の輸送車が積載し、各工場Bへ輸送するプロセスにおいて、各輸送車が向かう搬送先工場Bを決定するために用いて好適な技術である。   The present invention relates to a transport vehicle operation plan creation method for optimal transport of raw materials by transport vehicles, and there are a plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials. This is a technique suitable for use in determining a transport destination factory B to which each transport vehicle is directed in a process in which a plurality of transport vehicles are loaded and transported to each factory B.

石油製造・ガス製造・薬品製造・清涼飲料製造等、様々な業種の製造プロセスにおいて、図3に示すように、原料を製造する複数の工場7(以下、工場Aと呼ぶ)と、当該原料を用いる複数の工場8(以下、工場Bと呼ぶ)が存在し、各工場Aで製造された原料を複数台の輸送車4が積載し、各工場Bへ輸送する場合が多く見られる。原料を工場Aから工場Bまで搬送するために、道路上を走るタンクローリーや軌道上を走る貨車が用いられることが多い。輸送車4が工場Bに到着すると、原料混合工程で反応容器5に原料が注がれる。反応容器内の原料はその後、目標成分に合わせるため成分調整等が行われ、製品として出荷される。各工場Aでは異なるの原料を製造する場合でも良く、また、各工場Bが異なる製品を製造する場合でも構わない。   In manufacturing processes of various industries such as oil production, gas production, chemical production, soft drink production, etc., as shown in FIG. 3, a plurality of factories 7 (hereinafter referred to as factory A) that produce raw materials, In many cases, there are a plurality of factories 8 (hereinafter referred to as factories B) to be used, and a plurality of transport vehicles 4 are loaded with the raw materials produced in each factory A and transported to each factory B. In order to transport the raw material from the factory A to the factory B, a tank lorry running on the road and a freight car running on the track are often used. When the transport vehicle 4 arrives at the factory B, the raw material is poured into the reaction vessel 5 in the raw material mixing step. Thereafter, the raw materials in the reaction vessel are subjected to component adjustment in order to match the target components and shipped as products. Each factory A may produce different raw materials, and each factory B may produce different products.

工場Bでは原料が到着しないと製品を製造することができないため、原料不足を生じさせないよう、複数の工場Aから複数の工場Bに適切に原料を供給する必要がある。この際、工場Bが複数あり、各々の距離が離れている場合には、輸送車の搬送先である工場Bを適切に指定しないと、ある工場Bには原料が余り、他の工場Bには原料が不足するという問題が生じ、製品の製造機会を逸することになってしまう。   Since the product cannot be manufactured if the raw material does not arrive at the factory B, it is necessary to appropriately supply the raw material from the plurality of factories A to the plurality of factories B so as not to cause a shortage of the raw material. At this time, if there are a plurality of factories B and the distances between the factories are different, if a factory B that is a transport destination of the transport vehicle is not properly specified, there is a surplus of raw materials in one factory B, Causes a problem of shortage of raw materials, and misses the opportunity to manufacture products.

また、工場Aで製造される原料の成分は、一定しておらず、かなり変動が激しいこともある。この場合、特許文献1に開示されているように、無作為に原料を混合してしまうと、反応容器の成分調整量が多くなってしまうため、輸送車の原料成分と反応容器の目標成分に応じて適切に混合しなければならない。   In addition, the ingredients of the raw material produced at the factory A are not constant and may vary considerably. In this case, as disclosed in Patent Document 1, if the raw materials are mixed randomly, the component adjustment amount of the reaction vessel increases, so the raw material component of the transport vehicle and the target component of the reaction vessel It must be mixed appropriately.

従って、工場Bでの原料不足を生じさせることなく、かつ、反応容器の成分調整量を極力少なくするよう各輸送車の搬送先を適切に決定することが重要である。それに加え、反応容器の成分調整機の能力制約から、反応容器の成分調整前の混合原料に関する成分や温度に制約が存在する場合もあり、それらも満足するよう輸送車の搬送先を決めるのは大変難しい問題であった。   Accordingly, it is important to appropriately determine the transport destination of each transport vehicle so as not to cause a shortage of raw materials in the factory B and to reduce the component adjustment amount of the reaction vessel as much as possible. In addition, due to the capacity restrictions of the reaction vessel component adjuster, there may be restrictions on the components and temperature related to the mixed raw material before adjusting the reaction vessel components. It was a very difficult problem.

この問題に関連して、特許文献1では、混合整数計画問題として取り扱って、各輸送車の各反応容器への注ぎ量の制約や、各反応容器の成分調整量の制約等を線形の等式と不等式で表し、反応容器内原料の成分調整量の総和と輸送車内原料の成分調整量の総和と輸送車運行コストの総和を目的関数とする最適化問題を解き、各輸送車の各反応容器への原料最適注ぎ量、各輸送車内での最適成分調整量を求める手法を提案している。   In relation to this problem, Patent Document 1 treats it as a mixed integer programming problem, and defines a linear equation for the restrictions on the amount poured into each reaction container of each transport vehicle, the restrictions on the component adjustment amount of each reaction container, and the like. And solve the optimization problem with the objective function of the sum of the component adjustment amount of the raw material in the reaction vessel, the sum of the component adjustment amount of the raw material in the transport vehicle, and the sum of the operation cost of the transport vehicle, and each reaction vessel of each transport vehicle We propose a method to find the optimal amount of raw material to be poured into the tank and the optimal component adjustment amount in each transport vehicle.

特開2003−15728号公報JP 2003-15728 A

しかしながら、この手法では工場Aから工場Bまでの搬送プロセス全体の物流現象を線形等不等式で表す必要があり、解くべき変数や制約式の数が大規模になってしまう問題がある。   However, with this method, it is necessary to represent the distribution phenomenon of the entire transport process from the factory A to the factory B by linear inequality, and there is a problem that the number of variables and constraint expressions to be solved becomes large.

しかも、本問題の場合、輸送車の搬送先を決定する必要があり、この変数は整数でなければならない。例えば、輸送車kの搬送先を表す変数をskjとし、第一工場Bに搬送する際にsk1を1、第二工場Bに搬送する際にsk2を1と定義すると、skjは0又は1という整数解が得られなければならず、skjが0.8という実数解であってはならない。このような整数解を求めなければならない最適化問題の計算時間は、整数変数の数の指数乗に比例することが知られている。本問題の場合、搬送プロセス全体の定式化まで行うと、前記skjのような整数変数が多数現れ(例えば、中間工程での輸送車入車順番等が整数変数となる)、実用的な時間で解が得られなくなってしまう。 Moreover, in the case of this problem, it is necessary to determine the transport destination of the transport vehicle, and this variable must be an integer. For example, a variable representing the transport destination of the transporter k and s kj, the s k1 1 in carrying the first factory B, and defines the s k2 1 and in carrying the second plant B, s kj is An integer solution of 0 or 1 must be obtained, and s kj must not be a real solution with 0.8. It is known that the calculation time of an optimization problem for which such an integer solution must be obtained is proportional to the power of the number of integer variables. In the case of this problem, when the entire transport process is formulated, a large number of integer variables such as s kj appear (for example, the order of transport vehicles entering the intermediate process becomes an integer variable), and a practical time I can't get a solution.

そこで、本発明は、輸送車の適切な搬送先を可及的高速・短時間に計算し、輸送車の輸送計画を作成する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for calculating a transport destination of a transport vehicle by calculating an appropriate transport destination of the transport vehicle as quickly and as quickly as possible.

課題を解決するための手段として、本発明の輸送車の運行計画作成方法は、原料を製造する複数の工場Aと、単一又は複数の中間工程を経て複数の工場B内に配設された各反応容器へ、前記原料を複数の輸送車で輸送するプロセスにおける前記複数の輸送車の運行計画作成方法であって、計画開始時刻における、各輸送車の工場A出発時刻と原料積載量の実績値と計画値、並びに、各輸送車の中間工程通過時刻と工場B到着時刻の実績値を入力するステップと、搬送先が確定していない全ての輸送車に対して、積載している原料を輸送可能な全ての工場Bの到着時刻と、搬送先が確定している全ての輸送車に対して、搬送先の工場Bの到着時刻を予測するステップと、前記工場Bの到着時刻、及び各反応容器の要求原料量と要求時刻の計画値を入力とし、各反応容器が各輸送車から注がれる原料量の総和についての第1の制約と、各輸送車が各反応容器へ注ぐ原料量の総和についての第2の制約と、搬送先への各輸送車の到着時刻と当該輸送車から注がれる反応容器の要求時刻についての第3の制約と、各輸送車の搬送先は1個所のみであるという第4の制約と、各搬送先に向かう輸送車の原料積載量を平準化する目的関数とを定めるステップと、前記第1乃至第4の制約を満足し、前記目的関数について最適化計算を行い、各輸送車の搬送先を求めるステップと、前記最適化計算で求めた搬送先にて、予め定めた一部の輸送車の搬送先を確定するステップと、前記工場Aから前記工場Bまでの輸送プロセスの物流現象をモデル化した物流シミュレータにて、計画開始時刻から設定時間後までのシミュレーションを行い、前記設定時間後の各輸送車の中間工程通過時刻と工場B到着時刻を予測するステップとを有し、前記設定時間後の時刻を新たに計画開始時刻として、前記ステップを全ての輸送車の搬送先が確定するまで繰り返すことにより、複数の輸送車の搬送先を決定することを特徴としている。
また、反応容器において原料成分の調整を行う場合には、原料を製造する複数の工場Aと、単一又は複数の中間工程を経て複数の工場B内に配設された各反応容器へ、前記原料を複数の輸送車で輸送後、反応容器において原料成分の調整を行うプロセスにおける前記複数の輸送車の運行計画作成方法であって、計画開始時刻における、各輸送車の工場A出発時刻、原料積載量、及び原料成分の実績値と計画値、並びに、各輸送車の中間工程通過時刻と工場B到着時刻の実績値を入力するステップと、搬送先が確定していない全ての輸送車に対して、積載している原料を輸送可能な全ての工場Bの到着時刻と到着成分、並びに、搬送先が確定している全ての輸送車に対して、搬送先の工場Bの到着時刻と到着成分を予測するステップと、前記工場Bの到着時刻と到着成分、並びに各反応容器の要求原料量、要求時刻、及び成分調整後の目標成分の計画値を入力とし、各反応容器が各輸送車から注がれる原料量の総和についての第1の制約と、各輸送車が各反応容器へ注ぐ原料量の総和についての第2の制約と、搬送先への各輸送車の到着時刻と当該輸送車から注がれる反応容器の要求時刻についての第3の制約と、各輸送車の搬送先は1個所のみであるという第4の制約と、各搬送先に向かう輸送車の原料積載量を平準化すると同時に、各反応容器の成分調整量の最小化する目的関数とを定めるステップと、前記第1乃至第4の制約を満足し、前記目的関数について最適化計算を行い、各輸送車の搬送先を求めるステップと、前記最適化計算で求めた搬送先にて、予め定めた一部の輸送車の搬送先を確定するステップと、前記工場Aから前記工場Bまでの輸送プロセスの物流現象をモデル化した物流シミュレータにて、計画開始時刻から設定時間後までのシミュレーションを行い、前記設定時間後の各輸送車の中間工程通過時刻と工場B到着時刻及び到着成分を予測するステップとを有し、前記設定時間後の時刻を新たに計画開始時刻として、前記ステップを全ての輸送車の搬送先が確定するまで繰り返すことにより、複数の輸送車の搬送先を決定しても良い。
さらに、前記制約に加え、各反応容器の原料成分と要求成分についての第5の制約、各反応容器の原料温度と要求温度についての第6の制約を追加し、輸送車の搬送先を決定しても良い。
As means for solving the problems, the transportation vehicle operation plan creation method of the present invention is arranged in a plurality of factories A that manufacture raw materials and a plurality of factories B through a single or a plurality of intermediate processes. A method for preparing an operation plan for the plurality of transport vehicles in a process of transporting the raw materials to each reaction container by a plurality of transport vehicles, and the results of the factory A departure time and the raw material loading amount of each transport vehicle at the plan start time Value and plan value, and the step of inputting the intermediate process passing time and the actual value of factory B arrival time of each transport vehicle, and the loaded raw materials for all transport vehicles for which the transport destination is not fixed Predicting the arrival time of all the transportable factories B, and the transport time of all the transport vehicles whose transport destinations have been determined, the arrival time of the factory B as the transport destination, Planned value of required amount of raw material and required time for reaction vessel The first constraint on the total amount of raw materials that each reaction container pours from each transport vehicle, the second constraint on the total amount of raw materials that each transport vehicle pours into each reaction vessel, and the destination A third constraint on the arrival time of each transport vehicle and the required time of the reaction container poured from the transport vehicle, a fourth constraint that there is only one transport destination for each transport vehicle, and each transport destination A step of determining an objective function for leveling the material loading amount of the transport vehicle heading toward the vehicle, and satisfying the first to fourth constraints, performing an optimization calculation on the objective function, and obtaining a transport destination of each transport vehicle Modeling the transport process from the factory A to the factory B, the step of determining the transport destinations of some transport vehicles determined in advance at the transport destination determined in the optimization calculation Set from the plan start time in the logistics simulator Performing a simulation until a later time, and predicting an intermediate process passing time and a factory B arrival time of each transport vehicle after the set time, the time after the set time as a new plan start time, It is characterized in that the transport destinations of a plurality of transport vehicles are determined by repeating the steps until the transport destinations of all transport vehicles are determined.
In addition, when adjusting the raw material components in the reaction vessel, the plurality of factories A for producing the raw material, and each reaction vessel arranged in the plurality of factories B through a single or a plurality of intermediate processes, A method for preparing an operation plan of the plurality of transport vehicles in a process of adjusting raw material components in a reaction container after transporting the raw materials by a plurality of transport vehicles, wherein the starting time of each transport vehicle at the factory A, the raw materials For the step of inputting the actual value and plan value of the load capacity and raw material components, and the actual value of the intermediate process passing time and factory B arrival time of each transport vehicle, and for all transport vehicles for which the transport destination is not fixed The arrival times and arrival components of all factories B capable of transporting the loaded raw materials, and the arrival times and arrival components of the destination plant B for all transport vehicles whose transportation destinations are determined. Predicting the process, and Input the arrival time and arrival components of B, the required amount of raw materials for each reaction vessel, the required time, and the planned value of the target component after component adjustment, and the total amount of raw materials that each reaction vessel is poured from each transport vehicle The first restriction of the second, the second restriction on the total amount of raw materials that each transport vehicle pours into each reaction vessel, the arrival time of each transport vehicle at the destination and the requirement of the reaction container poured from the transport vehicle The third constraint on time, the fourth constraint that there is only one transport destination for each transport vehicle, and at the same time leveling the material load of the transport vehicle toward each transport destination, and at the same time, the components of each reaction vessel Determining an objective function for minimizing the adjustment amount; satisfying the first to fourth constraints; performing optimization calculation for the objective function to obtain a transport destination of each transport vehicle; and the optimization A certain amount of transportation In the logistics simulator that models the transportation phenomenon from the factory A to the factory B, the simulation from the planning start time to the set time is performed in the step of determining the vehicle transport destination, and after the set time And predicting the factory B arrival time and the arrival component of each transport vehicle, and setting the time after the set time as a new plan start time, the steps are transport destinations of all transport vehicles. It is also possible to determine the transport destinations of a plurality of transport vehicles by repeating the process until it is determined.
In addition to the above constraints, a fifth constraint on the raw material components and required components of each reaction vessel and a sixth constraint on the raw material temperatures and required temperatures of each reaction vessel are added to determine the transport destination of the transport vehicle. May be.

本発明によれば、工場Aから工場Bまでの物流現象を模擬するシミュレータを用いることにより、解くべき変数や制約式の数を大幅に減らすことができ、計算に要する計算機負荷を下げられる。各搬送先で要求される原料の量や成分・温度の制約を考慮して、各搬送先に向かう原料量の平準化と成分調整量を最適にする輸送車の搬送先を短時間で求めることができるため、原料不足を防止し、かつ、成分調整コストを下げることが可能となる。また、各搬送先にバランス良く輸送車が向かうことになるため、不必要な輸送車を削減することが可能であり、全体の輸送車台数を減らすこともできる。さらに、計算と実績にずれが生じたときにも再計算する時間が短いため、常に適切な輸送車の運行指示を与えることができる。   According to the present invention, by using a simulator that simulates a physical distribution phenomenon from factory A to factory B, the number of variables and constraint equations to be solved can be greatly reduced, and the computer load required for calculation can be reduced. In consideration of the amount of raw materials required at each transport destination and the restrictions on components and temperature, the transport destination of the transport vehicle that optimizes the level of raw material amount and the component adjustment amount toward each transport destination in a short time. Therefore, it is possible to prevent shortage of raw materials and reduce component adjustment costs. In addition, since transport vehicles are directed to each transport destination in a well-balanced manner, unnecessary transport vehicles can be reduced, and the total number of transport vehicles can be reduced. Furthermore, since the time for recalculation is short even when there is a difference between the calculation and the actual result, it is possible to always give an appropriate transport vehicle operation instruction.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。図1は本発明に係わる全ての工程を1台のコンピュータにて実現した場合の実施形態を示す図である。また、図2は運行計画作成方法のための演算処理を示すフローチャートである。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing an embodiment in which all processes according to the present invention are realized by a single computer. FIG. 2 is a flowchart showing a calculation process for the operation plan creation method.

入力装置1はキーボードやマウス、又は、ネットワークで接続された機器等であり、成分調整前の各反応容器の要求量・要求成分・要求温度・要求時刻、及び、成分調整後の目標成分、並びに、各輸送車の工程通過時刻(工場A出発時刻、中間工程到着・入車・出車時刻、工場B到着時刻)・原料量・原料成分・原料温度の実績値(空輸送車においては計画値を用いる)を、コンピュータ本体2に入力する(ステップS201)。ここで、「要求・・」とは、各反応容器に定められ、守らなければならない制約を意味し、「実績値」は過去の測定値を、「計画値」は将来の予測値を意味している。   The input device 1 is a keyboard, a mouse, or a device connected by a network, and the required amount, required component, required temperature, required time of each reaction container before component adjustment, and target component after component adjustment, and , Process transit time of each transport vehicle (factory A departure time, intermediate process arrival / entry / departure time, factory B arrival time), raw material amount, raw material component, raw material temperature actual value (planned value for empty transport vehicles) Is input to the computer main body 2 (step S201). Here, “required” means a restriction that must be adhered to and established for each reaction vessel, “actual value” means past measured value, and “planned value” means future predicted value. ing.

コンピュータ本体2は、中央処理装置や主記憶メモリ、ハードディスク等の記憶装置等から構成され、記憶装置内に格納されているプログラムの指示通りに動作する。先ず、コンピュータ本体2は入力装置1から読み込んだデータと、記憶装置もしくはプログラム内に格納されている各種定数データ(繰り返し計算における輸送車の確定台数やシミュレーション時間範囲等)より、全ての輸送車の搬送先が確定するまで、ステップS202〜S206の処理(図1の11〜14に相当する)を繰り返し行い、求まった輸送車の搬送先を出力装置3へ出力する。   The computer main body 2 includes a central processing unit, a main storage memory, a storage device such as a hard disk, and the like, and operates according to instructions of a program stored in the storage device. First, the computer main body 2 uses the data read from the input device 1 and various constant data (such as the determined number of transport vehicles and the simulation time range in the repeated calculation) stored in the storage device or program. Until the transportation destination is determined, the processing of steps S202 to S206 (corresponding to 11 to 14 in FIG. 1) is repeatedly performed, and the transportation destination of the transport vehicle thus obtained is output to the output device 3.

出力装置3はディスプレイやプリンタ、ネットワークで接続された機器等である。   The output device 3 is a display, a printer, a device connected via a network, or the like.

本発明の輸送計画作成方法の原理について示す。決定したい項目は輸送車の搬送先であるが、中間工程での処理能力に起因する輸送車間の干渉の回避や、工場Bの原料混合工程での入出車制約等、数多くの制約を考慮する必要がある。これら数多くの制約を全て含んだ制約式を用いて、混合整数計画法で解を求めることも原理的に可能であるが、実用的な時間で解を得る事はコンピュータの処理能力上、不可能である。   The principle of the transportation plan creation method of the present invention will be described. The item to be determined is the transport destination of the transport vehicle, but it is necessary to consider many restrictions such as avoiding interference between transport vehicles due to the processing capacity in the intermediate process, and restrictions on entering and leaving the vehicle in the raw material mixing process of Factory B There is. In principle, it is possible to obtain a solution by mixed integer programming using a constraint equation that includes all these constraints, but it is impossible to obtain a solution in a practical time because of the processing power of the computer. It is.

そこで、輸送車の搬送先を決定する処理(図2)において、工場Aから工場Bまでの物流現象、例えば、中間工程での輸送車間の干渉等をステップS206の物流シミュレータで計算することが本発明の特徴である。物流シミュレータを用いてシミュレーションをするためには、輸送車の搬送先は確定しておく必要があるので、シミュレーションをする前に、ステップS202(図1の11に相当する)で各輸送車が移動可能な全ての工場Bの到着時刻を、繰返し計算の必要無い関係式等で可能な限り正確に予測し、予測した到着時刻を基に、ステップS203で輸送車の搬送先決定に関する等式・不等式制約式を作成するとともに、輸送計画の良否を定量的に表す目的関数を定め(図1の15に相当する)、ステップS204にて制約式を満足し、目的関数を最小とする解を混合整数計画法で解き、各輸送車の搬送先を求めている(図1の12に相当する)。   Therefore, in the process of determining the transport destination of the transport vehicle (FIG. 2), the distribution phenomenon from the factory A to the factory B, for example, the interference between the transport vehicles in the intermediate process, etc. is calculated by the distribution simulator in step S206. It is a feature of the invention. In order to perform a simulation using the logistics simulator, it is necessary to determine the transport destination of the transport vehicle. Therefore, before the simulation, each transport vehicle moves in step S202 (corresponding to 11 in FIG. 1). Predict the arrival times of all possible factories B as accurately as possible with relational expressions that do not require repeated calculations, and on the basis of the predicted arrival times, equations and inequalities for determining the transport destination of the transport vehicle in step S203 Create a constraint equation and define an objective function that quantitatively represents the quality of the transportation plan (corresponding to 15 in FIG. 1). In step S204, a solution that satisfies the constraint equation and minimizes the objective function is a mixed integer. Solved by the planning method, the transport destination of each transport vehicle is obtained (corresponding to 12 in FIG. 1).

ただし、工場Aから工場Bまでで輸送車間の干渉がある時には、ステップS202で予測した工場B到着時刻は正確ではない。特に、工場A出発時刻が計画開始時刻に比べて離れている輸送車に対しては、工場B到着時刻は予測誤差が累積し、ずれが大きくなってしまう。   However, when there is interference between transport vehicles from factory A to factory B, the factory B arrival time predicted in step S202 is not accurate. In particular, for transport vehicles whose factory A departure time is far away from the planned start time, the factory B arrival time accumulates prediction errors, and the deviation becomes large.

そこで、求められた輸送車の搬送先にて全ての輸送車の搬送先を確定してしまうのではなく、ステップS205にて、工場A出発時刻が早い順に、一部の輸送車の搬送先を確定し(図1の13に相当する)、ステップS206にて、詳細物流シミュレータで、計画開始時刻から設定時間後までの物流シミュレーションを行い、設定時間後の輸送車の工程通過時刻(中間工程到着・入車・出車時刻、工場B到着時刻)・原料量・原料成分・原料温度を予測する(図1の14に相当する)。   Therefore, instead of determining the transport destinations of all transport vehicles at the determined transport destination of transport vehicles, in step S205, the transport destinations of some transport vehicles are set in order of the factory A departure time. Confirmed (corresponding to 13 in FIG. 1), and in step S206, the detailed logistics simulator performs a logistics simulation from the plan start time to the set time later, and the transit time of the transport vehicle after the set time (intermediate process arrival) (Entrance / departure time, arrival time at factory B) Predict the amount of raw material, raw material component, and raw material temperature (corresponding to 14 in FIG. 1).

そして、設定時間後の時刻を新たに計画開始時刻と見なして、ステップS202〜S206の処理を繰り返すことにより、全輸送車の搬送先を徐々に確定する。ここで、前記一部の輸送車とは、次回の物流シミュレーション時に搬送先が確定している必要がある輸送車であり、例えば、工場Aを出発した輸送車の搬送先を変更できない場合には、計画開始時刻から設定時間後に工場Aを出発する計画となっている輸送車となる。   Then, the time after the set time is newly regarded as the plan start time, and the processing of steps S202 to S206 is repeated to gradually determine the transport destinations of all transport vehicles. Here, the partial transport vehicle is a transport vehicle whose transport destination needs to be determined at the next physical distribution simulation. For example, when the transport destination of the transport vehicle leaving the factory A cannot be changed. The transport vehicle is scheduled to leave the factory A after a set time from the planned start time.

このように、輸送車の搬送先を徐々に確定することにより、工場B到着時刻の予測誤差のずれを少なくすることができ、精度の高い解を短時間で得ることが可能となる。   In this way, by gradually determining the transport destination of the transport vehicle, it is possible to reduce the deviation in the prediction error of the factory B arrival time, and to obtain a highly accurate solution in a short time.

(実施例)
以下、工場Aから工場Bまでの物流工程が図4の場合を実施例として説明する。本実施例では、輸送車が第一工場Bへ向かうときには、第一中間工程を使用し、第二工場Bへ向かうときには、第二中間工程を使用するとする。工程数が異なる場合や、他の条件が付加される場合も、本実施例と同様に導出可能である。表1には、関係式で使用している変数や定数の記号を示す。
(Example)
Hereinafter, the case where the physical distribution process from the factory A to the factory B is FIG. 4 will be described as an example. In the present embodiment, when the transport vehicle goes to the first factory B, the first intermediate process is used, and when the transport vehicle goes to the second factory B, the second intermediate process is used. Even when the number of steps is different or when other conditions are added, it can be derived in the same manner as in this embodiment. Table 1 shows symbols of variables and constants used in the relational expressions.

Figure 2007018083
Figure 2007018083

まず、ステップS201にて、入力装置1より各工場Bの反応容器が必要とする成分調整前の原料に関する要求原料量・要求成分・要求時刻・要求温度、及び、成分調整後の目標成分、及び、各輸送車の工程通過時刻・原料量・原料成分・原料温度の実績値と計画値を入力し、コンピュータ本体2の記憶装置に格納する。   First, in step S201, the required raw material amount / required component / required time / required temperature related to the raw material before component adjustment required by the reaction vessel of each factory B from the input device 1, and the target component after component adjustment, and The actual value and the planned value of the process passing time, raw material amount, raw material component, and raw material temperature of each transport vehicle are input and stored in the storage device of the computer main body 2.

次に、ステップS202にて、各輸送車の工程通過工程より、輸送車毎に、搬送可能な全ての工場B到着時刻を予測する。このとき、搬送先が確定している輸送車に対しては、当該工場B到着時刻のみ予測し、搬送先が確定していない輸送車に対しては、搬送可能な全ての工場B到着時刻を予測する。到着時刻の予測には、例えば、(式1)のような式を用いる。   Next, in step S202, all factory B arrival times that can be transported are predicted for each transport vehicle from the process passing step of each transport vehicle. At this time, only the arrival time of the factory B is predicted for a transport vehicle for which the transport destination is determined, and all the transport times of the factory B that can be transported are determined for a transport vehicle for which the transport destination is not determined. Predict. For example, an expression such as (Expression 1) is used for predicting the arrival time.

Figure 2007018083
Figure 2007018083

(式1)は輸送車同士の干渉を考えない単純な例であるが、輸送車同士の干渉を考えたより複雑な式に変更しても構わない。また、時々刻々の輸送車の現在位置が取得可能なときには、輸送車の現在位置を用いたより高精度な到着時刻予測を行っても構わない。   (Equation 1) is a simple example that does not consider the interference between transport vehicles, but may be changed to a more complicated equation that considers the interference between transport vehicles. In addition, when the current position of the transport vehicle can be obtained from time to time, the arrival time can be predicted with higher accuracy using the current position of the transport vehicle.

次に、ステップS203において、輸送車の搬送先決定に関する以下の等式・不等式制約を作成する。
(1)一つの反応容器iが各輸送車kから注がれる原料量の総和についての第1の制約は、下記の(式2)のように定式化する。
Next, in step S203, the following equality / inequality constraints relating to the determination of the transport destination of the transport vehicle are created.
(1) The first constraint on the total amount of raw materials poured from each transport vehicle k in one reaction vessel i is formulated as shown in (Formula 2) below.

Figure 2007018083
Figure 2007018083

(2)一つの輸送車kが各反応容器iへ注ぐ原料量の総和についての第2の制約は、下記の(式3)のように定式化する。 (2) The second constraint on the total amount of raw materials that one transport vehicle k pours into each reaction vessel i is formulated as shown in (Equation 3) below.

Figure 2007018083
Figure 2007018083

(3)各輸送車kの到着時刻と当該輸送車から注がれる反応容器の要求時刻についての第3の制約は、下記の(式4)のように定式化する。 (3) The third constraint on the arrival time of each transport vehicle k and the required time of the reaction container poured from the transport vehicle is formulated as shown in (Formula 4) below.

Figure 2007018083
Figure 2007018083

(4)各輸送車の搬送先は1個所のみであるという第4の制約は、下記の(式5)、(式6)のように定式化する。 (4) The fourth constraint that there is only one transport destination for each transport vehicle is formulated as in the following (Expression 5) and (Expression 6).

Figure 2007018083
Figure 2007018083

(5)各反応容器の原料成分と要求成分についての第5の制約は、下記の(式7)、(式8)のように定式化する。 (5) The 5th restriction | limiting about the raw material component of each reaction container and a request | requirement component is formulated like the following (Formula 7) and (Formula 8).

Figure 2007018083
Figure 2007018083

(6)各反応容器の原料温度と要求温度についての第6の制約は、下記の(式9)のように定式化する。 (6) The sixth constraint on the raw material temperature and the required temperature of each reaction vessel is formulated as shown in (Equation 9) below.

Figure 2007018083
Figure 2007018083

(7)各搬送先に向かう輸送車の原料量を平準化する目的関数は、下記の(式10)のように定式化する。 (7) The objective function for leveling the raw material amount of the transport vehicle heading to each transport destination is formulated as shown in (Equation 10) below.

Figure 2007018083
Figure 2007018083

(8)各反応容器の成分調整量の総和を最小にする目的関数は、下記の(式11)、(式12)のように定式化する。 (8) The objective function that minimizes the sum of the component adjustment amounts of each reaction vessel is formulated as in the following (Expression 11) and (Expression 12).

Figure 2007018083
Figure 2007018083

(9)最適化計算を行う際の目的関数は、(式10)のJ1と(式12)のJ2とに重み調整係数Wを付けた、下記の(式13)とする。 (9) the objective function for performing the optimization calculation, it is assumed that the weighted adjustment factor W to the J 2 and J 1 (Formula 10) (Formula 12), the following equation (13).

Figure 2007018083
Figure 2007018083

以上説明した制約式と目的関数は全て線形の等式と不等式であるため、ステップS204にて、(式2)〜(式12)で示される等式・不等式制約式を満足し、(式13)で示される目的関数を最小にする最適化計算を混合整数計画法等を用いて行い、各輸送車の搬送先skjを得ることができる。 Since the constraint equations and objective functions described above are all linear equations and inequalities, the equality / inequality constraint equations shown in (Equation 2) to (Equation 12) are satisfied in step S204, and (Equation 13 The optimization calculation that minimizes the objective function indicated by () is performed using a mixed integer programming or the like, and the transport destination s kj of each transport vehicle can be obtained.

次に、ステップS205にて、搬送先が確定していない輸送車の中で、工場A出発時刻が早い順に、一部の輸送車の搬送先を確定し、以降の計算にて、確定された輸送車の搬送先は変更しないものとする。例えば、計画開始時刻から設定時間後までに、工場Aを出発する輸送車の搬送先を確定する。   Next, in step S205, the transport destinations of some transport vehicles are determined in order of the factory A departure time in the transport vehicles whose transport destinations have not been determined, and determined in the subsequent calculations. The transport destination of the transport vehicle shall not be changed. For example, the transport destination of the transport vehicle that leaves the factory A is determined between the planned start time and the set time.

次に、ステップS206にて、工場Aから工場Bまでの輸送工程の物流現象をモデル化した詳細シミュレータにて、設定時間後の輸送車の状況を予測する。本例の場合、詳細シミュレータは図5のようなペトリネットでモデル化することが可能である。   Next, in step S206, the state of the transport vehicle after the set time is predicted by a detailed simulator that models the logistics phenomenon in the transport process from the factory A to the factory B. In this example, the detailed simulator can be modeled by a Petri net as shown in FIG.

図5において、トランジションの出力アークに記載されている記号(F(p1,p^1)(p^の表記はpの上に^が付されていることを意味するものとする)等)は、トランジションが発火後に出側プレースに出力されたトークンが次に発火できるまでの時間であり、輸送車の移動時間や中間工程での処理時間を意味している。出力アークに記号が記載されていないときには、時間0で発火可能であることを意味している。 In FIG. 5, symbols (F (p 1 , p ^ 1 ) (p ^ notation means that ^ is attached on p), etc.) described in the output arc of the transition) Is the time until the token output to the outgoing place after the transition is ignited can be ignited next, and means the travel time of the transport vehicle and the processing time in the intermediate process. When no symbol is written in the output arc, it means that ignition is possible at time zero.

また、トランジションの入力アークに記載されている記号は、当該トランジションの発火条件を意味しており、例えば、[sk1=1]であれば、プレース19のトークン(輸送車を意味する)の中で、搬送先が第一中間工程のトークンが発火可能であることを意味し、[到着順]であれば、中間工程にトークンが到着した順番に発火可能であることを意味している。 The symbol written in the input arc of the transition means the firing condition of the transition. For example, if [s k1 = 1], the token in the place 19 (meaning a transport vehicle) This means that the token of the first intermediate process can be ignited, and if it is [arrival order], it means that the token can be ignited in the order in which the tokens arrived at the intermediate process.

説明を簡単にするために、図5のような単純なペトリネットを例として記載したが、より複雑な輸送工程では、if-thenルール等でトランジションの発火条件を記載しても構わない。   In order to simplify the explanation, a simple Petri net as shown in FIG. 5 has been described as an example. However, in a more complicated transportation process, the firing condition of the transition may be described by an if-then rule or the like.

図5のようなペトリネットモデルを用いた詳細シミュレータに、入力装置1で入力された輸送車の工程通過時刻より、トークンを配置して、設定された時間までのシミュレーションを行い、その時刻における輸送車の工程通過時刻を予測する。   A token is placed in the detailed simulator using the Petri net model as shown in FIG. 5 from the process passing time of the transport vehicle input by the input device 1, and simulation up to the set time is performed, and transport at that time is performed. Predict the vehicle process passage time.

さて、ステップS206でシミュレーション後、まだ搬送先が確定していない輸送車が存在していれば、計画開始時刻をシミュレーション後の時刻(計画開始時刻+設定時間)とし、ステップS202〜S206を繰り返し行うことにより、全ての輸送車の搬送先skjを徐々に確定する。このように、繰り返し計算を行い、徐々に輸送車の搬送先を確定することにすれば、ステップS202で計算した輸送車の工場B到着時刻akjの精度が最適性に大きな影響を及ぼすことは少ない。 If there is a transport vehicle whose destination has not yet been determined after the simulation in step S206, the plan start time is set as the time after the simulation (plan start time + set time), and steps S202 to S206 are repeated. Thus, the transport destination s kj of all transport vehicles is gradually determined. As described above, if the calculation is repeatedly performed and the transport destination of the transport vehicle is gradually determined, the accuracy of the transport vehicle factory B arrival time a kj calculated in step S202 greatly affects the optimality. Few.

以上実施例として本発明に係わる制約式や目的関数等を詳しく説明したが、本発明は本実施例に限定されるものではない。   Although the constraint equations and objective functions according to the present invention have been described in detail as examples, the present invention is not limited to the examples.

また、輸送車台数が非常に多い場合、やはり整数変数が多くなり、ステップS204の最適化計算に時間が掛かってしまうときには、繰り返し計算中の計画開始時刻からかなり将来に工場Aを出発する輸送車に対しては、正確に搬送先を決める必要はないため、搬送先skjを実数変数として取り扱っても構わない。 Also, if the number of transport vehicles is very large, the number of integer variables also increases, and if the optimization calculation in step S204 takes a long time, the transport vehicles leave the factory A quite in the future from the planned start time during the repeated calculation. However, since it is not necessary to accurately determine the transport destination, the transport destination s kj may be handled as a real variable.

本発明に係わる全ての工程を1台のコンピュータにて実施した場合の概略構成の一例を説明するブロック図である。It is a block diagram explaining an example of schematic structure at the time of implementing all the processes concerning this invention with one computer. 原料最適搬送先演算方法のための演算処理を示すフローチャートである。It is a flowchart which shows the calculation process for the raw material optimal conveyance destination calculation method. 原料製造工場である工場Aから搬送先である工場Bまでの物流工程の一例を説明する図である。It is a figure explaining an example of the physical distribution process from the factory A which is a raw material manufacturing factory to the factory B which is a conveyance destination. 実施例で用いる工場Aから工場Bまでの物流工程を説明する図である。It is a figure explaining the physical distribution process from the factory A used in an Example to the factory B. FIG. 図4の物流工程のペトリネットモデルを示す図である。It is a figure which shows the Petri net model of the physical distribution process of FIG.

符号の説明Explanation of symbols

1 … 入力装置
2 … コンピュータ本体
3 … 出力装置
4 … 輸送車
5 … 成分調整前の反応容器
6 … 成分調整後の反応容器
7 … 工場A
8 … 工場B
9 … 原料混合工程
10 … 搬送路
11 … 各輸送車が移動可能な全ての工場Bの到着時刻を予測する処理
12 … 各輸送車の搬送先を計算する最適化計算
13 … 一部の輸送車の搬送先を確定する処理
14 … 輸送車の工場B到着時刻や到着温度・到着成分を詳細に求める詳細シミュレーション
15 … 目的関数
16 … 成分調整中の反応容器
17 … 成分調整工程
18 … 中間工程
19〜21 … 第一〜第三工場Aを意味するプレース
22〜27 … 工場Aから中間工程へ出発するときに発火するトランジション
28、29 … 第一と第二中間工程に到着したことを意味するプレース
30、31 … 第一と第二中間工程に入車するときに発火するトランジション
32、33 … 第一と第二中間工程に入車中を意味するプレース
34、35 … 第一と第二中間工程が空いていることを意味するプレース
36、37 … 中間工程から工場Bへ出発するときに発火するトランジション
38、39 … 第一と第二工場Bに到着したことを意味するプレース
40 … 輸送車を意味するトークン
DESCRIPTION OF SYMBOLS 1 ... Input device 2 ... Computer main body 3 ... Output device 4 ... Transportation vehicle 5 ... Reaction container before component adjustment 6 ... Reaction container after component adjustment 7 ... Factory A
8 ... Factory B
9 ... Raw material mixing step 10 ... Transport path 11 ... Process for predicting arrival times of all factories B to which each transport vehicle can move 12 ... Optimization calculation for calculating the transport destination of each transport vehicle 13 ... Some transport vehicles 14 ... Detailed simulation for obtaining the factory B arrival time and arrival temperature / arrival component in detail 15 ... Objective function 16 ... Reaction vessel during component adjustment 17 ... Component adjustment step 18 ... Intermediate step 19 -21 ... Place meaning first to third factory A 22-27 ... Transition ignited when starting from factory A to intermediate process 28, 29 ... Place meaning arrival at first and second intermediate process 30, 31 ... Transition that ignites when entering the first and second intermediate steps 32, 33 ... Place 34, 35 meaning that the vehicle is entering the first and second intermediate steps ... Place 36, 37, meaning that the first and second intermediate processes are vacant. Transitions 38, 39 that ignite when starting from the intermediate process to factory B. 38. Meaning Place 40… Token meaning transport vehicle

Claims (4)

原料を製造する複数の工場Aと、単一又は複数の中間工程を経て複数の工場B内に配設された各反応容器へ、前記原料を複数の輸送車で輸送するプロセスにおける前記複数の輸送車の運行計画作成方法であって、
計画開始時刻における、各輸送車の工場A出発時刻と原料積載量の実績値と計画値、並びに、各輸送車の中間工程通過時刻と工場B到着時刻の実績値を入力するステップと、
搬送先が確定していない全ての輸送車に対して、積載している原料を輸送可能な全ての工場Bの到着時刻と、搬送先が確定している全ての輸送車に対して、搬送先の工場Bの到着時刻を予測するステップと、
前記工場Bの到着時刻、及び各反応容器の要求原料量と要求時刻の計画値を入力とし、各反応容器が各輸送車から注がれる原料量の総和についての第1の制約と、各輸送車が各反応容器へ注ぐ原料量の総和についての第2の制約と、搬送先への各輸送車の到着時刻と当該輸送車から注がれる反応容器の要求時刻についての第3の制約と、各輸送車の搬送先は1個所のみであるという第4の制約と、各搬送先に向かう輸送車の原料積載量を平準化する目的関数とを定めるステップと、
前記第1乃至第4の制約を満足し、前記目的関数について最適化計算を行い、各輸送車の搬送先を求めるステップと、
前記最適化計算で求めた搬送先にて、予め定めた一部の輸送車の搬送先を確定するステップと、
前記工場Aから前記工場Bまでの輸送プロセスの物流現象をモデル化した物流シミュレータにて、計画開始時刻から設定時間後までのシミュレーションを行い、前記設定時間後の各輸送車の中間工程通過時刻と工場B到着時刻を予測するステップとを有し、
前記設定時間後の時刻を新たに計画開始時刻として、前記ステップを全ての輸送車の搬送先が確定するまで繰り返すことにより、複数の輸送車の搬送先を決定することを特徴とする複数の輸送車の運行計画作成方法。
The plurality of transports in a process of transporting the raw materials by a plurality of transport vehicles to a plurality of factories A that manufacture the raw materials and reaction containers arranged in the plurality of factories B through a single or a plurality of intermediate steps A vehicle operation plan creation method,
A step of inputting factory A departure time and actual value and plan value of raw material loading amount of each transport vehicle, and actual value of intermediate process passing time and factory B arrival time of each transport vehicle at the plan start time;
For all transport vehicles for which the transport destination has not been determined, the arrival time of all factories B capable of transporting the loaded raw materials and for all transport vehicles for which the transport destination has been determined Predicting the arrival time of factory B of
The first restriction on the total amount of raw materials poured into each reaction container from each transport vehicle, with the arrival time of the factory B, the required raw material amount of each reaction container and the planned value of the required time as inputs, and each transport A second constraint on the total amount of raw materials that the vehicle pours into each reaction container; a third constraint on the arrival time of each transport vehicle at the destination and the required time of the reaction container poured from the transport vehicle; Determining a fourth constraint that each transport vehicle has only one transport destination and an objective function for leveling the material load of the transport vehicle toward each transport destination;
Satisfying the first to fourth constraints, performing an optimization calculation on the objective function, and determining a transport destination of each transport vehicle;
A step of determining a predetermined transport destination of a transport vehicle at the transport destination determined by the optimization calculation;
In the logistics simulator that models the logistics phenomenon of the transportation process from the factory A to the factory B, a simulation from the planning start time to the set time is performed, and the intermediate process passing time of each transport vehicle after the set time Predicting the factory B arrival time,
A plurality of transports characterized in that the transport destinations of a plurality of transport vehicles are determined by repeating the above steps until the transport destinations of all transport vehicles are determined, using the time after the set time as a new plan start time. How to create a driving plan for a car.
原料を製造する複数の工場Aと、単一又は複数の中間工程を経て複数の工場B内に配設された各反応容器へ、前記原料を複数の輸送車で輸送後、反応容器において原料成分の調整を行うプロセスにおける前記複数の輸送車の運行計画作成方法であって、
計画開始時刻における、各輸送車の工場A出発時刻、原料積載量、及び原料成分の実績値と計画値、並びに、各輸送車の中間工程通過時刻と工場B到着時刻の実績値を入力するステップと、
搬送先が確定していない全ての輸送車に対して、積載している原料を輸送可能な全ての工場Bの到着時刻と到着成分、並びに、搬送先が確定している全ての輸送車に対して、搬送先の工場Bの到着時刻と到着成分を予測するステップと、
前記工場Bの到着時刻と到着成分、並びに各反応容器の要求原料量、要求時刻、及び成分調整後の目標成分の計画値を入力とし、各反応容器が各輸送車から注がれる原料量の総和についての第1の制約と、各輸送車が各反応容器へ注ぐ原料量の総和についての第2の制約と、搬送先への各輸送車の到着時刻と当該輸送車から注がれる反応容器の要求時刻についての第3の制約と、各輸送車の搬送先は1個所のみであるという第4の制約と、各搬送先に向かう輸送車の原料積載量を平準化すると同時に、各反応容器の成分調整量の最小化する目的関数とを定めるステップと、
前記第1乃至第4の制約を満足し、前記目的関数について最適化計算を行い、各輸送車の搬送先を求めるステップと、
前記最適化計算で求めた搬送先にて、予め定めた一部の輸送車の搬送先を確定するステップと、
前記工場Aから前記工場Bまでの輸送プロセスの物流現象をモデル化した物流シミュレータにて、計画開始時刻から設定時間後までのシミュレーションを行い、前記設定時間後の各輸送車の中間工程通過時刻と工場B到着時刻及び到着成分を予測するステップとを有し、
前記設定時間後の時刻を新たに計画開始時刻として、前記ステップを全ての輸送車の搬送先が確定するまで繰り返すことにより、複数の輸送車の搬送先を決定することを特徴とする複数の輸送車の運行計画作成方法。
After the raw materials are transported by a plurality of transport vehicles to a plurality of factories A that manufacture raw materials and reaction vessels arranged in a plurality of factories B through a single or a plurality of intermediate processes, the raw material components in the reaction vessels An operation plan creation method for the plurality of transport vehicles in the process of adjusting
Step of inputting factory A departure time of each transport vehicle, raw material loading amount, actual value and plan value of raw material components, and intermediate process passing time and actual value of factory B arrival time of each transport vehicle at the planned start time When,
For all transport vehicles for which the transport destination has not been determined, for all transport vehicles for which the arrival time and arrival components of all factories B capable of transporting the loaded material and for which the transport destination has been determined Predicting the arrival time and arrival components of the factory B as the transport destination;
With the arrival time and arrival components of the factory B as well as the required raw material amount of each reaction vessel, the required time, and the planned value of the target component after component adjustment, the amount of raw material that each reaction vessel is poured from each transport vehicle The first constraint on the sum, the second constraint on the total amount of raw materials that each transport vehicle pours into each reaction container, the arrival time of each transport vehicle at the destination and the reaction container poured from the transport vehicle The third constraint on the requested time, the fourth constraint that each transport vehicle has only one transport destination, and the level of the material loading amount of the transport vehicle toward each transport destination, and at the same time, each reaction container Determining an objective function for minimizing the component adjustment amount of
Satisfying the first to fourth constraints, performing an optimization calculation on the objective function, and determining a transport destination of each transport vehicle;
A step of determining a predetermined transport destination of a transport vehicle at the transport destination determined by the optimization calculation;
In the logistics simulator that models the logistics phenomenon of the transportation process from the factory A to the factory B, a simulation from the planning start time to the set time is performed, and the intermediate process passing time of each transport vehicle after the set time Predicting factory B arrival time and arrival components,
A plurality of transports characterized in that the transport destinations of a plurality of transport vehicles are determined by repeating the above steps until the transport destinations of all transport vehicles are determined, using the time after the set time as a new plan start time. How to create a driving plan for a car.
前記第1乃至第4の制約に加えて、各反応容器の原料成分と要求成分についての第5の制約をも満足するように、上記最適化計算を行うことを特徴とする請求項1又は2に記載の複数の輸送車の運行計画作成方法。   The optimization calculation is performed so that the fifth constraint on the raw material component and the required component of each reaction vessel is satisfied in addition to the first to fourth constraints. The operation plan creation method of a plurality of transport vehicles described in 1. 計画開始時刻における、各輸送車の工場A出発時刻、原料積載量、及び原料成分に加え、原料温度の実績値と計画値をも入力とし、前記制約に加え、各反応容器の原料温度と要求温度についての第6の制約をも満足する、上記最適化計算を行うことを特徴とする請求項1〜3のいずれか1項に記載の複数の輸送車の運行計画作成方法。   In addition to the above constraints, the raw material temperature of each reaction vessel and the requirements, in addition to the actual value and the planned value of the raw material temperature, in addition to the factory A departure time, raw material loading capacity, and raw material components at the planned start time The operation plan creation method for a plurality of transport vehicles according to any one of claims 1 to 3, wherein the optimization calculation is performed so as to satisfy a sixth restriction on temperature.
JP2005196505A 2005-07-05 2005-07-05 Transport vehicle operation plan creation method Expired - Fee Related JP5005194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196505A JP5005194B2 (en) 2005-07-05 2005-07-05 Transport vehicle operation plan creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196505A JP5005194B2 (en) 2005-07-05 2005-07-05 Transport vehicle operation plan creation method

Publications (2)

Publication Number Publication Date
JP2007018083A true JP2007018083A (en) 2007-01-25
JP5005194B2 JP5005194B2 (en) 2012-08-22

Family

ID=37755223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196505A Expired - Fee Related JP5005194B2 (en) 2005-07-05 2005-07-05 Transport vehicle operation plan creation method

Country Status (1)

Country Link
JP (1) JP5005194B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160085846A (en) * 2013-11-15 2016-07-18 바이엘 테크놀로지 서비시즈 게엠베하 Method for operating a facility designed for performing at least one chemical reaction
JP2016191974A (en) * 2015-03-30 2016-11-10 Jfeスチール株式会社 Transportation plan creation device and transportation plan creation method
JP2016207089A (en) * 2015-04-27 2016-12-08 新日鐵住金株式会社 Plan preparation device, method and program
CN108983721A (en) * 2018-07-25 2018-12-11 中国能源建设集团广东省电力设计研究院有限公司 The control system and method for vehicle logistics
KR20210157758A (en) * 2020-06-22 2021-12-29 박근범 Material filling recognition method and computing device for executing the method
WO2022004833A1 (en) 2020-06-30 2022-01-06 旭化成株式会社 Device, method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259411A (en) * 1993-03-10 1994-09-16 Kawasaki Steel Corp Inference device for transport plan
JPH11310313A (en) * 1998-02-26 1999-11-09 Kobe Steel Ltd Physical distribution planing device
JP2002332118A (en) * 2001-05-08 2002-11-22 Nippon Steel Corp Conveying plan preparing method and device in conveying process, conveyance controlling method and device, computer program, and storing medium readable by computer
JP2003015728A (en) * 2001-04-03 2003-01-17 Nippon Steel Corp Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259411A (en) * 1993-03-10 1994-09-16 Kawasaki Steel Corp Inference device for transport plan
JPH11310313A (en) * 1998-02-26 1999-11-09 Kobe Steel Ltd Physical distribution planing device
JP2003015728A (en) * 2001-04-03 2003-01-17 Nippon Steel Corp Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium
JP2002332118A (en) * 2001-05-08 2002-11-22 Nippon Steel Corp Conveying plan preparing method and device in conveying process, conveyance controlling method and device, computer program, and storing medium readable by computer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160085846A (en) * 2013-11-15 2016-07-18 바이엘 테크놀로지 서비시즈 게엠베하 Method for operating a facility designed for performing at least one chemical reaction
JP2017503234A (en) * 2013-11-15 2017-01-26 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Technology Services GmbH Method for operating equipment designed to perform at least one chemical reaction
KR101944165B1 (en) * 2013-11-15 2019-01-30 바이엘 악티엔게젤샤프트 Method for operating a facility designed for performing at least one chemical reaction
JP2019145147A (en) * 2013-11-15 2019-08-29 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft Method for operating equipment designed to perform at least one chemical reaction
JP2016191974A (en) * 2015-03-30 2016-11-10 Jfeスチール株式会社 Transportation plan creation device and transportation plan creation method
JP2016207089A (en) * 2015-04-27 2016-12-08 新日鐵住金株式会社 Plan preparation device, method and program
CN108983721A (en) * 2018-07-25 2018-12-11 中国能源建设集团广东省电力设计研究院有限公司 The control system and method for vehicle logistics
KR20210157758A (en) * 2020-06-22 2021-12-29 박근범 Material filling recognition method and computing device for executing the method
KR102430276B1 (en) 2020-06-22 2022-08-08 박근범 Material filling recognition method and computing device for executing the method
WO2022004833A1 (en) 2020-06-30 2022-01-06 旭化成株式会社 Device, method, and program

Also Published As

Publication number Publication date
JP5005194B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Adulyasak et al. Benders decomposition for production routing under demand uncertainty
JP5005194B2 (en) Transport vehicle operation plan creation method
Liu et al. Integrated scheduling of ready-mixed concrete production and delivery
Xu et al. A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system
Sun Green and Reliable Freight Routing Problem in the Road‐Rail Intermodal Transportation Network with Uncertain Parameters: A Fuzzy Goal Programming Approach
Zhao et al. A chance-constrained stochastic approach to intermodal container routing problems
Christiansen et al. Robust inventory ship routing by column generation
JP4616710B2 (en) Emission apportioning program and emission apportioning device
Mousavi et al. Two calibrated meta-heuristics to solve an integrated scheduling problem of production and air transportation with the interval due date
Ganji et al. A new coordinating model for green supply chain and batch delivery scheduling with satisfaction customers
Mrabti et al. A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing
ALBAYRAK et al. Investigation of ready mixed concrete transportation problem using linear programming and genetic algorithm
JP4753590B2 (en) Method and system for selecting inventory replenishment model
JP4377792B2 (en) Vehicle allocation plan creation device, vehicle allocation plan creation method, computer program, and computer-readable recording medium
JP2009169823A (en) Compounding plan creation device, composition plan creation method, program, and computer-readable recording medium
Fan et al. Mathematical modelling and heuristic approaches to job-shop scheduling problem with conveyor-based continuous flow transporters
Miao et al. A hybrid genetic algorithm for the multiple crossdocks problem
Seeanner Multi-stage simultaneous lot-sizing and scheduling: Planning of flow lines with shifting bottlenecks
Lin et al. A Two‐Stage Simulated Annealing Algorithm for the Many‐to‐Many Milk‐Run Routing Problem with Pipeline Inventory Cost
Chang et al. Defining Scheduling Problems for Key Resources in Energy‐Efficient Port Service Systems
CN106650981A (en) Optimized procurement and ship/vehicle-sharing transport method based on genetic algorithm
Zojaji et al. Cyclic solutions to a maritime inventory routing problem
Becerra et al. Mathematical programming models for sustainable inventory management in a supply chain
Im et al. Formulation of a pull production system for optimal inventory control of temporary rebar assembly plants
Li et al. A Heuristic method for the integrated production distribution problem

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5005194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees