JP2003015728A - Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium - Google Patents

Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium

Info

Publication number
JP2003015728A
JP2003015728A JP2002050315A JP2002050315A JP2003015728A JP 2003015728 A JP2003015728 A JP 2003015728A JP 2002050315 A JP2002050315 A JP 2002050315A JP 2002050315 A JP2002050315 A JP 2002050315A JP 2003015728 A JP2003015728 A JP 2003015728A
Authority
JP
Japan
Prior art keywords
reaction container
raw material
transport vehicle
raw materials
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002050315A
Other languages
Japanese (ja)
Inventor
Masanori Shiotani
政典 塩谷
Yasuto Yachi
靖人 屋地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002050315A priority Critical patent/JP2003015728A/en
Publication of JP2003015728A publication Critical patent/JP2003015728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/40Minimising material used in manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To transport raw materials manufactured by a plurality of factories A to a plurality of factories B by transporters, and to charge the raw materials in the transporter to reaction vessels by calculating the charge quantity of the raw materials in each transporter to each reaction vessel, and component adjusting quantity in each transporter so as to satisfy the requested time, requested quantity, requested components, and requested temperature of each reaction container in the raw material mixing process. SOLUTION: The factory B arrival predicted time, raw material quantity, raw material components, raw material temperature of each transporter and the requested time, requested quantity, requested components, and requested temperature of each reaction vessel are inputted, and the constraint of the raw material charge quantity to each reaction vessel of each transporter or the constraint of the component adjusting quantity of each reaction vessel are expresed as linear equality and inequality, and a mixed interger plan question is solved by using the total sum of the component adjusting quantity of the raw materials in the reaction containers, the total sum of the component adjusting quantity of the raw materials in the transporters, and the total sum of the transporter operation costs as target functions so that the raw material optimal charge quantity to each reaction vessel of each transporter the optimal component adjusting quantity in each transporter can be calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、輸送車による原料
最適混合のための演算を行う原料の最適混合演算方法、
装置、コンピュータプログラム、及びコンピュータ読み
取り可能な記憶媒体に係り、液体又はガス又は粉体原料
を製造する複数の工場Aと、当該原料を用いる複数の工
場Bとが存在し、各工場Aで製造された原料を複数台の
輸送車に積載し、各工場Bへ輸送するプロセスにおい
て、各輸送車が工場Bの各反応容器に注ぐ量、及び、各
輸送車の成分調整量を決定するのに用いて好適なものに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating optimum mixing of raw materials for performing calculation for optimum mixing of raw materials by a transportation vehicle,
Related to the apparatus, the computer program, and the computer-readable storage medium, there are a plurality of factories A that manufacture liquid or gas or powder raw materials, and a plurality of factories B that use the raw materials. Used to determine the amount that each transport vehicle pours into each reaction vessel of factory B and the component adjustment amount of each transport vehicle in the process of loading the above raw materials on multiple transport vehicles and transporting them to each factory B. And suitable ones.

【0002】[0002]

【従来の技術】石油製造・ガス製造・薬品製造・清涼飲
料製造等の様々な業種の製造プロセスにおいて、図5に
示すように、液体又はガス又は粉体原料を製造する複数
の工場(以下、工場Aと呼ぶ)と、当該原料を用いる複
数の工場(以下、工場Bと呼ぶ)とが存在し、各工場A
で製造された原料を複数台の輸送車に積載し、各工場B
へ輸送する場合が多く見られる。原料を工場Aから工場
Bまで搬送するために、道路上を走るタンクローリーや
軌道上を走る貨車が用いられることが多い。
2. Description of the Related Art In a manufacturing process of various industries such as oil manufacturing, gas manufacturing, chemical manufacturing, and soft drink manufacturing, as shown in FIG. Factory A) and a plurality of factories using the raw material (hereinafter referred to as factory B) exist, and each factory A
The raw materials manufactured in
It is often seen that they are shipped to. In order to transport the raw materials from the factory A to the factory B, a tank truck running on a road or a freight car running on an orbit is often used.

【0003】輸送車が工場Bに到着すると、原料混合工
程で反応容器に原料が注がれる。反応容器内の原料は、
その後、成分調整が行われ、製品として出荷される。こ
のとき、場合によっては輸送車内で成分調整を行うこと
が可能な場合もあり、工場Bにおいては少量の成分調整
しか行わないプロセスや、工場Bでは輸送車内の原料を
混ぜ合わせるだけの場合も見られる。
When the transport vehicle arrives at the factory B, raw materials are poured into the reaction vessel in the raw material mixing process. The raw materials in the reaction vessel are
After that, the components are adjusted and shipped as a product. At this time, depending on the case, it may be possible to adjust the components in the transportation vehicle, and there is a process in which only a small amount of the components is adjusted in the factory B, or in the factory B, only the raw materials in the transportation vehicle are mixed. To be

【0004】工場Aで製造される原料の成分は一定して
おらず、かなり変動が激しいこともある。一方、工場B
で出荷される製品の成分には目標値が決められており、
工場Bの成分調整装置で目標値に達するよう、成分調整
を行わなければならない。
The ingredients of the raw materials produced in the factory A are not constant and may fluctuate considerably. On the other hand, Factory B
Target values have been set for the components of products shipped in
Ingredient adjustment must be performed by the ingredient adjusting device of Factory B so as to reach the target value.

【0005】しかし、工場Bの成分調整装置の能力には
限界があり、最大成分調整量はあらかじめ定められてお
り、最大成分調整量を超える成分を持つ反応容器は工場
Bで処理できない。つまり、工場Aで製造された原料を
無作為に工場Bに届ける訳には行かず、工場Bが要求す
る成分に合わせた原料を供給しなければならない。
However, the capacity of the component adjusting device of the factory B is limited, and the maximum component adjusting amount is predetermined, so that the reaction container having the component exceeding the maximum component adjusting amount cannot be processed in the factory B. In other words, the raw materials manufactured in the factory A cannot be delivered to the factory B at random, and the raw materials matched to the components required by the factory B must be supplied.

【0006】このため、輸送車内で成分調整をある程度
行ってから、工場Bに供給したり、輸送車内での成分調
整を可能な限り行わず、幾つかの輸送車内の原料を適当
な量ずつ混合し、要求成分を満足する反応容器内原料を
作り出したりする作業が行われる。
For this reason, after the components have been adjusted in the transport vehicle to some extent, they are not supplied to the factory B or the components in the transport vehicle are not adjusted as much as possible, and some raw materials in the transport vehicles are mixed in appropriate amounts. Then, the work of producing a raw material in the reaction vessel that satisfies the required components is performed.

【0007】このように、反応容器の要求成分を満足す
るよう、輸送車内原料を混合することが重要であるが、
それに加え、反応容器の原料温度や、反応容器へ注ぎ終
わる時刻にも、それぞれ下限温度、最遅時刻が定められ
る場合もあり、それらを満足させることも必要である。
As described above, it is important to mix the raw materials in the transportation vehicle so as to satisfy the required components of the reaction container.
In addition, the lower limit temperature and the latest time may be set for the raw material temperature of the reaction container and the time when the material is poured into the reaction container, and it is necessary to satisfy them.

【0008】また、輸送車のタイプによっては、注ぎ口
が左右のどちらかにしかない場合もある。また、原料混
合工程の設備構成上、輸送車の左右一方の注ぎ口からし
か反応容器に原料を注ぐことができない場合もある。こ
のように輸送車の注ぎ口が左右どちらかにしかない場合
には、ある工場Bを搬送先に選ぶことはできないという
制約が課される場合もある。
In addition, depending on the type of transport vehicle, there are cases where the spout is only on either the left or right side. In addition, due to the equipment configuration of the raw material mixing process, there are cases where the raw materials can be poured into the reaction container only from the right and left spouts of the transportation vehicle. In this way, when the pouring port of the transportation vehicle is only on the left or right side, there may be a constraint that a certain factory B cannot be selected as the transportation destination.

【0009】以上のように、輸送車の原料を、どの工場
Bの何時の反応容器に、どれだけの量注ぐかという問題
は多くの制約を考える必要がある。この問題を輸送車の
原料混合問題と呼ぶことにする。従来、この原料混合問
題は、工場Bの原料混合工程の作業員が経験と勘に頼っ
て、手作業で行うことが多かった。
As described above, it is necessary to consider many restrictions on the problem of pouring the raw material of the transportation vehicle into the reaction container of which factory B and at what time. This problem will be referred to as the raw material mixing problem for transport vehicles. Conventionally, this raw material mixing problem has often been manually performed by workers in the raw material mixing process of the factory B, relying on their experience and intuition.

【0010】[0010]

【発明が解決しようとする課題】課題を説明するにあた
り、簡単のため、輸送車内では成分調整を行わず、工場
Bが1つの場合について、図6を参照して説明する。図
6において、輸送車4の下には、各輸送車の原料量(単
位kg)と、カルシウム(Ca)と塩素(Cl)の成分(単位10-2
%)が記載されている。成分調整前の反応容器5の下に
は、要求原料量(単位kg)とカルシウム(Ca)と塩素(Cl)
の要求成分(単位10-2%)が記載されている。成分調整
後の反応容器6の下には、カルシウム(Ca)と塩素(Cl)の
目標成分(単位10-2%)が記載されている。反応容器の
要求成分・目標成分は各々成分の上限値を意味してお
り、混合成分が要求成分以下であれば、目標成分を下回
る製品を製造することが可能となる。
In describing the problems, for the sake of simplicity, the case where the components are not adjusted in the transportation vehicle and there is one factory B will be described with reference to FIG. In FIG. 6, below the transport vehicle 4, the amount of raw materials (unit: kg) of each transport vehicle and the components of calcium (Ca) and chlorine (Cl) (unit: 10 -2).
%) Is described. Below the reaction vessel 5 before component adjustment, the required amount of raw material (unit: kg), calcium (Ca) and chlorine (Cl)
The required components (unit: 10 -2 %) of are listed. Target components of calcium (Ca) and chlorine (Cl) (unit: 10 -2 %) are described below the reaction vessel 6 after component adjustment. The required components and target components of the reaction container mean the upper limits of the components, respectively, and if the mixed components are equal to or less than the required components, it is possible to manufacture a product that is below the target components.

【0011】単純に、1号輸送車(1号車)と2号輸送
車(2号車)を混合し1号反応容器を作り、3号輸送車
と4号輸送車を混合し2号反応容器を作ったとする(ケ
ース1)。この場合、成分調整前のカルシウムと塩素の
成分より、目標成分を満足する製品を製造するための各
成分調整量(ΔCa,ΔCl)は、下記の表1に示すように
なる。
Simply, No. 1 transportation vehicle (No. 1 vehicle) and No. 2 transportation vehicle (No. 2 vehicle) are mixed to make No. 1 reaction container, and No. 3 transportation vehicle and No. 4 transportation vehicle are mixed to make No. 2 reaction vessel. Suppose you made it (Case 1). In this case, the respective component adjustment amounts (ΔCa, ΔCl) for producing a product satisfying the target components from the calcium and chlorine components before the component adjustment are as shown in Table 1 below.

【0012】[0012]

【表1】 [Table 1]

【0013】一方、1号輸送車と3号輸送車を混合し1
号反応容器を作り、2号輸送車と4号輸送車を混合し2
号反応容器を作ったとき(ケース2)には、成分調整前
のカルシウムと塩素の成分より、目標成分を満足する製
品を製造するための各成分調整量(ΔCa,ΔCl)は、下
記の表2に示すようになる。
On the other hand, the No. 1 transport vehicle and the No. 3 transport vehicle are mixed and
Create a No. 2 reaction vessel and mix No. 2 and No. 4 transport vehicles to
When the No. reaction vessel was made (Case 2), the amount of each component adjustment (ΔCa, ΔCl) for producing a product satisfying the target component from the calcium and chlorine components before the component adjustment is shown in the table below. As shown in 2.

【0014】[0014]

【表2】 [Table 2]

【0015】いずれのケースにおいても、成分調整前の
要求成分は満足しているので、目標成分を満足させる製
品を作ることが可能であるが、成分調整量を比較する
と、ケース1よりケース2の方が少ない。
In any of the cases, the required components before the component adjustment are satisfied, so it is possible to make a product that satisfies the target components. However, comparing the component adjustment amounts, case 1 and case 2 are compared. There are few.

【0016】上記の簡単な例で分かるように、輸送車の
原料混合方法により、反応容器内原料の成分調整量が変
化する。成分調整量が少ない方が、成分調整剤の投入量
が少なくて済み、かつ、調整時間も短縮されるので、時
間当たりの処理量も増加する。
As can be seen from the above simple example, the component adjustment amount of the raw material in the reaction vessel changes depending on the raw material mixing method of the transportation vehicle. The smaller the component adjustment amount, the smaller the amount of the component adjustment agent to be charged and the shorter the adjustment time, so that the treatment amount per hour also increases.

【0017】そこで、本発明は、各工場Bにおける成分
調整前の各反応容器の要求原料量・要求時刻・要求成分
・要求温度の計画、及び、成分調整後の目標成分の計
画、及び、現在の各輸送車の混合工程到着予測時刻・原
料量・原料成分・原料温度の実績値或いは予測値が与え
られたとき、反応容器の成分調整量を最小とする、各輸
送車の各反応容器への注ぎ量を決定することを目的とす
る。
Therefore, according to the present invention, the plan of the required raw material amount, the required time, the required component, the required temperature of each reaction vessel before the component adjustment in each factory B, and the target component plan after the component adjustment, and the present When the actual or predicted values of the arrival time, raw material amount, raw material component, and raw material temperature of the mixing process of each transport vehicle are given, the amount of component adjustment of the reaction vessel is minimized to each reaction vessel of each transport vehicle. The purpose is to determine the pouring amount of.

【0018】また、輸送車内で成分調整可能なときに
は、輸送車内でのカルシウムや塩素等の成分調整量を最
小とする、各輸送車の各反応容器への注ぎ量を決定する
ことを目的とする。
Further, when the components can be adjusted in the transportation vehicle, it is another object to determine the amount of the components such as calcium and chlorine to be adjusted in the transportation vehicle to the minimum amount to be poured into each reaction container. .

【0019】さらに、各工場Aから各工場Bへの距離が
各々異なる場合には、なるべく輸送車の移動距離が少な
くなるように搬送した方が、輸送車の運行効率が良くな
りコスト削減になることがあるので、輸送車の搬送元工
場Aと搬送先工場Bとで決まる関数(例えば、距離)と
して輸送車運行コスト(値が大きいほど悪い紐付けとな
る)を定義し、先の輸送車と反応容器の成分調整量に加
え、この輸送車運行コストも最小にする、輸送車の成分
調整量と反応容器への注ぎ量を決定することを目的とす
る。
Further, when the distances from the factories A to the factories B are different from each other, it is better to carry the transportation vehicles so that the traveling distance of the transportation vehicles is as short as possible, and the transportation efficiency of the transportation vehicles is improved and the cost is reduced. Therefore, the transport vehicle operating cost (the larger the value, the worse the linking) is defined as a function (for example, the distance) determined by the transport source factory A and the transport destination factory B of the transport vehicle. In addition to the component adjustment amount of the reaction container, the objective is to determine the component adjustment amount of the transportation vehicle and the amount poured into the reaction container, which also minimizes the operation cost of the transportation vehicle.

【0020】[0020]

【課題を解決するための手段】課題を解決するための手
段として、本発明の原料の最適混合演算方法について説
明すれば、本発明の原料の最適混合演算方法は、原料を
製造する複数の工場Aと、当該原料を用いる複数の工場
Bとが存在し、各工場Aで製造された原料を複数の輸送
車に積載し、各工場Bへ搬送後、輸送車内の原料を複数
の反応容器に注ぎ、反応容器において原料成分の調整を
行うプロセスにおける原料の最適混合演算方法であっ
て、各工場Bにおける成分調整前の各反応容器の要求原
料量・要求時刻・要求成分・要求温度の計画、及び、反
応容器毎の成分調整後の目標成分の計画、及び、各輸送
車の原料混合工程到着予測時刻・原料量・原料成分・原
料温度の実績値或いは予測値を入力とする処理と、一つ
の反応容器が各輸送車から注がれる原料量の総和につい
ての第1の上下限制約と、一つの輸送車が各反応容器へ
注ぐ原料量の総和についての第2の上下限制約と、各輸
送車が各反応容器へ注ぐ原料量についての第3の上下限
制約と、各輸送車が各反応容器へ注ぎ終わる時刻が、当
該反応容器の要求時刻以下であるという第4の制約と、
各反応容器の各混合成分が当該反応容器の各要求成分以
下となる第5の制約と、各反応容器の混合原料温度が、
当該反応容器の要求温度以上となる第6の制約と、各輸
送車の搬送先は1個所のみであるという第7の制約とを
満足し、各反応容器の成分調整量の総和を最小にする最
適化計算を行い、各輸送車が各反応容器に注ぐ量を決定
する処理とを有する点に特徴を有する。
As a means for solving the problems, an optimum mixing calculation method of raw materials of the present invention will be explained. The optimum mixing calculation method of raw materials of the present invention is a plurality of factories for manufacturing raw materials. A and a plurality of factories B using the raw material exist, the raw materials manufactured in the respective factories A are loaded on a plurality of transport vehicles, and after being transported to each factory B, the raw materials in the transport vehicles are loaded into a plurality of reaction vessels. A method of optimal mixing of raw materials in a process of pouring and adjusting raw material components in a reaction container, which is a plan of required raw material amount, required time, required component, required temperature of each reaction container before component adjustment in each factory B, And a target component plan after the component adjustment for each reaction container, and a process of inputting the predicted value of arrival time of the raw material mixing process of each transport vehicle, raw material amount, raw material component, raw material temperature, or predicted value. One reaction vessel for each transport The first upper and lower limit constraint on the total amount of raw material poured from the container, the second upper and lower limit constraint on the total amount of raw material poured by one transport vehicle into each reaction container, and each transport vehicle to each reaction container A third upper and lower limit constraint on the amount of raw material to be poured, and a fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container,
The fifth constraint that each mixed component of each reaction container is equal to or less than each required component of the reaction container and the mixed raw material temperature of each reaction container are
The sixth constraint that the temperature is higher than the required temperature of the reaction container and the seventh constraint that each transportation vehicle has only one destination are satisfied, and the sum of the component adjustment amounts of each reaction container is minimized. It is characterized in that it has an optimizing calculation and a process of determining the amount to be poured into each reaction container by each transport vehicle.

【0021】また、本発明の他の原料の最適混合演算方
法は、原料を製造する複数の工場Aと、当該原料を用い
る複数の工場Bとが存在し、各工場Aで製造された原料
を複数の輸送車に積載し、輸送車内で成分調整を行った
後、各工場Bへ搬送し、輸送車内の原料を複数の反応容
器に注ぐプロセスにおける原料の最適混合演算方法であ
って、各工場Bにおける各反応容器の要求原料量・要求
時刻・要求成分・要求温度の計画、及び、各輸送車の混
合工程到着予測時刻・原料量・原料成分・原料温度の実
績値或いは予測値を入力する処理と、一つの反応容器が
各輸送車から注がれる原料量の総和についての第1の上
下限制約と、一つの輸送車が各反応容器へ注ぐ原料量の
総和についての第2の上下限制約2と、各輸送車が各反
応容器へ注ぐ原料量についての第3の上下限制約と、各
輸送車が各反応容器へ注ぎ終わる時刻が、当該反応容器
の要求時刻以下であるという第4の制約と、各反応容器
の各混合成分が、当該反応容器の各要求成分以下となる
第5の制約と、各反応容器の混合原料温度が、当該反応
容器の要求温度以上となる第6の制約と、各輸送車の搬
送先は1個所のみであるという第7の制約7とを満足
し、各輸送車の成分調整量の総和を最小にする最適化計
算を行い、各輸送車が各反応容器に注ぐ量、及び、各輸
送車の成分調整量を決定する処理を有する点に特徴を有
する。
Further, another optimum raw material mixing calculation method of the present invention is that there are a plurality of factories A for producing the raw materials and a plurality of factories B using the raw materials, and the raw materials produced by the respective factories A are This is an optimum mixing calculation method of raw materials in the process of loading on multiple transport vehicles, adjusting the components inside the transport vehicles, and then transporting to each factory B, and pouring the raw materials in the transport vehicles into multiple reaction vessels. Input the required raw material amount, required time, required component, required temperature plan for each reaction container in B, and the estimated time of arrival of the mixing process of each transport vehicle, raw material amount, raw material component, raw material temperature actual value or predicted value. The first upper and lower limit constraint on the processing and the total amount of raw materials that one reaction container pours from each transportation vehicle, and the second upper and lower limit control on the total amount of raw material that one transportation vehicle pours into each reaction vehicle. About 2 and the raw materials that each transport vehicle pours into each reaction container And the fourth constraint that the time at which each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, and each mixed component of each reaction container Fifth constraint that each component is less than the required component, Sixth constraint that the mixed raw material temperature of each reaction container is greater than or equal to the required temperature of the reaction container, and there is only one destination for each transport vehicle. The seventh constraint 7 is satisfied, and optimization calculation is performed to minimize the sum of the component adjustment amounts of each transport vehicle, and the amount that each transport vehicle pours into each reaction container and the component adjustment amount of each transport vehicle. Is characterized in that it has a process for determining.

【0022】また、本発明の他の原料の最適混合演算方
法は、原料を製造する複数の工場Aと、当該原料を用い
る複数の工場Bが存在し、各工場Aで製造された原料を
複数の輸送車に積載し、輸送車内で成分調整を行った
後、各工場Bへ搬送し、輸送車内の原料を複数の反応容
器に注ぎ、反応容器毎に原料成分の再調整を行うプロセ
スにおける原料の最適混合演算方法であって、各工場B
における各反応容器の要求原料量・要求時刻・要求成分
・要求温度の計画、及び、反応容器毎の成分調整後の目
標成分の計画、及び、各輸送車の混合工程到着予測時刻
・原料量・原料成分・原料温度の実績値或いは予測値を
入力する処理と、一つの反応容器が各輸送車から注がれ
る原料量の総和についての第1の上下限制約と、一つの
輸送車が各反応容器へ注ぐ原料量の総和についての第2
の上下限制約と、各輸送車が各反応容器へ注ぐ原料量に
ついての第3の上下限制約と、各輸送車が各反応容器へ
注ぎ終わる時刻が、当該反応容器の要求時刻以下である
という第4の制約と、各反応容器の各混合成分が、当該
反応容器の各要求成分以下となる第5の制約と、各反応
容器の混合原料温度が、当該反応容器の要求温度以上と
なる第6の制約と、各輸送車の搬送先は1個所のみであ
るという第7の制約とを満足し、各輸送車の成分調整量
の総和と、各反応容器の成分調整量の総和との重み付き
和を最小にする最適化計算を行い、各輸送車が各反応容
器に注ぐ量、及び、各輸送車の成分調整量を決定する処
理を有する点に特徴を有する。
Further, another optimum raw material mixing calculation method of the present invention is that there are a plurality of factories A for manufacturing raw materials and a plurality of factories B for using the raw materials, and a plurality of raw materials manufactured at each factory A are used. Raw material in the process of loading the raw materials in the transport vehicle, adjusting the components in the transport vehicle, transporting them to each factory B, pouring the raw materials in the transport vehicle into a plurality of reaction vessels, and re-adjusting the raw material components in each reaction vessel. The optimum mixed calculation method of
Plan of required raw material amount, required time, required component, required temperature of each reaction container, and target component plan after component adjustment for each reaction container, and estimated time of arrival of mixing process and raw material amount of each transport vehicle The process of inputting the actual value or the predicted value of the raw material component / raw material temperature, the first upper and lower limit constraint on the total amount of raw material poured from each transport vehicle into one reaction container, and one transport vehicle to each reaction Second about the total amount of raw materials poured into containers
The upper and lower limit constraints, the third upper and lower limit constraints on the amount of raw material that each transport vehicle pours into each reaction container, and the time when each transport vehicle finishes pouring into each reaction container are less than or equal to the requested time of the reaction container. A fourth constraint, a fifth constraint that each mixed component of each reaction container is less than or equal to each required component of the reaction container, and a mixed raw material temperature of each reaction container is greater than or equal to the required temperature of the reaction container. Satisfying the constraint of No. 6 and the seventh constraint that each transport vehicle has only one destination, the weight of the sum of the component adjustment amounts of each transport vehicle and the sum of the component adjustment amounts of each reaction container It is characterized in that it has a process of performing an optimization calculation that minimizes the addition sum and determining the amount of each transport vehicle to be poured into each reaction container and the component adjustment amount of each transport vehicle.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して、本発明の
輸送車の原料最適混合のための演算方法、装置、コンピ
ュータプログラム、及びコンピュータ読み取り可能な記
憶媒体実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a calculation method, an apparatus, a computer program, and a computer-readable storage medium for optimal mixing of raw materials for a transportation vehicle according to the present invention will be described below with reference to the drawings.

【0024】図1は、原料最適混合のための演算を1台
のコンピュータにて実現した場合の実施の形態を示す図
である。また、図2は原料最適混合のための演算処理を
示すフローチャートである。
FIG. 1 is a diagram showing an embodiment in which the calculation for optimum mixing of raw materials is realized by one computer. Further, FIG. 2 is a flowchart showing a calculation process for optimal mixing of raw materials.

【0025】入力装置1は、キーボードやマウス、又
は、ネットワークで接続された機器等であり、成分調整
前の各反応容器の要求量・要求成分・要求温度・要求時
刻、及び、成分調整後の目標成分、及び、各輸送車の混
合工程到着予測時刻・原料量・原料成分・原料温度(空
輸送車においては予測値を用いる)を、コンピュータ本
体2に入力する(ステップS201)。
The input device 1 is a keyboard, a mouse, a device connected by a network, or the like, and the required amount, required component, required temperature, required time of each reaction container before component adjustment, and after component adjustment. The target component, and the estimated arrival time of the mixing process of each transport vehicle, the amount of raw material, the raw material component, and the raw material temperature (the predicted value is used in the empty transport vehicle) are input to the computer main body 2 (step S201).

【0026】コンピュータ本体2は、本発明でいう入力
手段や演算手段として機能する中央処理装置やメモリ・
ハードディスク等の記憶装置等から構成され、記憶装置
内に格納されているプログラムに従って動作する。コン
ピュータ本体2は、入力装置1から読み込んだデータ
と、記憶装置若しくはプログラム内に格納されている各
種定数データ(反応容器の最大成分調整量や輸送距離
等)より、輸送車の混合に関する等式制約と不等式制約
を作成する(ステップS202)。
The computer main body 2 includes a central processing unit and a memory, which function as input means and arithmetic means in the present invention.
It is composed of a storage device such as a hard disk, and operates according to a program stored in the storage device. The computer main body 2 uses the data read from the input device 1 and various constant data stored in the storage device or the program (maximum component adjustment amount of the reaction container, transportation distance, etc.), as an equational constraint on the mixture of transport vehicles. And an inequality constraint are created (step S202).

【0027】次に、コンピュータ本体2は、目的関数を
定め(ステップS203)、等式制約と不等式制約を満
足し、目的関数を最小にする混合整数計画問題を解き、
各輸送車の成分調整量と各反応容器に注ぐ量を求め(ス
テップS204)、出力装置3へ出力する。出力装置3
は、ディスプレイやプリンタ、ネットワークで接続され
た機器等である。
Next, the computer main body 2 determines an objective function (step S203), solves the mixed integer programming problem that satisfies the equality constraint and the inequality constraint and minimizes the objective function,
The component adjustment amount of each transport vehicle and the amount poured into each reaction container are obtained (step S204) and output to the output device 3. Output device 3
Is a display, a printer, a device connected by a network, or the like.

【0028】以下、制約が最も多いケースで目的関数を
一つ選んで具体例として示す。制約を取り除くケースや
目的関数を変更する場合も、本例から容易に導出可能で
ある。
In the following, one objective function will be selected and shown as a concrete example in the case where there are the most restrictions. Even if the constraint is removed or the objective function is changed, it can be easily derived from this example.

【0029】本例では、 ・工場A数は3 ・工場B数は2 ・右側にしか注ぎ口がない輸送車は、第一工場Bへは搬
送不可、左側にしか注ぎ口がない輸送車は、第二工場B
へは搬送不可 ・第一工場Aを搬送元とする輸送車の搬送先は第一工場
Bを優先し、第三工場Aを搬送元とする輸送車の搬送先
は第二工場Bを優先する。 ・輸送車内での成分調整量は一定とする。といった条件
がある場合を例にして説明する。他の条件が本例以外の
場合も、本例から容易に導出可能である。
In this example, the number of factories A is three, the number of factories B is two, and a transport vehicle having a spout only on the right side cannot be transported to the first plant B, and a transport vehicle having a spout only on the left side. , Second factory B
Is not allowed ・ The destination of the transportation vehicle whose first factory A is the transportation source is the first factory B, and the destination of the transportation vehicle whose third factory A is the transportation source is the second factory B. .・ The amount of component adjustment in the transport vehicle shall be constant. The case where there is such a condition will be described as an example. Even if the other conditions are other than this example, they can be easily derived from this example.

【0030】図3、4には、関係式で使用する変数や定
数の記号を示す。これらの記号を用いると、輸送車の混
合問題は次のように定式化できる。
3 and 4 show symbols of variables and constants used in the relational expressions. Using these symbols, the transport vehicle mixing problem can be formulated as follows.

【0031】(1)一つの反応容器iが各輸送車kから注
がれる原料量の総和の上下限制約1は、下記の数1に示
す(式1)のように定式化できる。
(1) The upper and lower limit constraint 1 of the total amount of raw materials poured from each transport vehicle k into one reaction vessel i can be formulated as shown in (Equation 1) below.

【0032】[0032]

【数1】 [Equation 1]

【0033】(2)一つの輸送車kが各反応容器iへ注ぐ
原料量の総和の上下限制約2は、下記の数2に示す(式
2)のように定式化できる。
(2) The upper and lower limit constraint 2 of the total amount of raw materials poured by one transport vehicle k into each reaction container i can be formulated as shown in (Equation 2) below.

【0034】[0034]

【数2】 [Equation 2]

【0035】(3)各輸送車kが各反応容器iへ注ぐ原料
量の上下限制約3は、下記の数3に示す(式3)のよう
に定式化できる。
(3) The upper and lower limit constraint 3 for the amount of raw material poured by each transport vehicle k into each reaction container i can be formulated as shown in (Equation 3) below.

【0036】[0036]

【数3】 [Equation 3]

【0037】上記(式3)のように定式化することによ
り、輸送車kの注ぎ量は0若しくは下限注ぎ量以上、上
限注ぎ量以下になる。また、輸送車kが反応容器iへ注ぐ
ときには、δik=1がないときには、δik=0になる。
By formulating as in the above (formula 3), the pouring amount of the transport vehicle k becomes 0 or more than the lower limit pouring amount and less than the upper limit pouring amount. Further, when the transport vehicle k is pouring into the reaction container i, when there is no δ ik = 1, δ ik = 0.

【0038】(4)各輸送車kが各反応容器iへ注ぎ終わ
る時刻が、当該反応容器の要求時刻以下であるという制
約4は、下記の数4に示す(式4)のように定式化でき
る。
(4) Constraint 4 that the time at which each transport vehicle k finishes pouring into each reaction container i is less than or equal to the required time of the reaction container is formulated as shown in (Equation 4) below. it can.

【0039】[0039]

【数4】 [Equation 4]

【0040】輸送車kの注ぎ時刻が反応容器iの要求時刻
より大きい時には、δik=0になり、上記(式3)の制
約から、輸送車kの反応容器iへの注ぎ量wikは0にな
る。
When the pouring time of the transport vehicle k is larger than the required time of the reaction container i, δ ik = 0, and the pouring amount w ik of the transport vehicle k into the reaction container i is limited by the above (equation 3). It becomes 0.

【0041】(5)各反応容器iの各混合成分jが、当該
反応容器の各要求成分以下となる制約5において、各反
応容器iの混合成分jは、下記の数5に示す(式5)のよ
うに計算される。
(5) Under the constraint 5 that each mixed component j of each reaction container i is equal to or less than each required component of the reaction container, the mixed component j of each reaction container i is represented by the following equation 5 (Equation 5 ) Is calculated.

【0042】[0042]

【数5】 [Equation 5]

【0043】また、制約5は、下記の数6に示す(式
6)のように表される。
Constraint 5 is expressed by the following equation (6) (equation 6).

【0044】[0044]

【数6】 [Equation 6]

【0045】したがって、(式5)と(式6)を合わせ
て、制約5は、下記の数7に示す(式7)のように定式
化できる。
Therefore, by combining (Equation 5) and (Equation 6), Constraint 5 can be formulated as (Equation 7) shown in the following Equation 7.

【0046】[0046]

【数7】 [Equation 7]

【0047】この(式7)は、非線形である。しかし、
下記の数8に示す(式8)〜(式12)のように変換す
ると、線形化することができる。
This equation (7) is non-linear. But,
Linearization can be performed by converting as in (Equation 8) to (Equation 12) shown in Equation 8 below.

【0048】[0048]

【数8】 [Equation 8]

【0049】(6)各反応容器iの混合原料温度が、当
該反応容器の要求温度以上になる制約6において、輸送
車kが反応容器iへ注ぐ時の原料温度は、下記の数9に示
す(式13)で計算される。
(6) Under the constraint 6 that the mixed raw material temperature of each reaction container i is equal to or higher than the required temperature of the reaction container, the raw material temperature when the transport vehicle k pours into the reaction container i is shown in the following formula 9. It is calculated by (Equation 13).

【0050】[0050]

【数9】 [Equation 9]

【0051】また、反応容器iの原料温度は、下記の数
10に示す(式14)のように計算される。
Further, the raw material temperature of the reaction vessel i is calculated as shown in the following expression (Equation 14).

【0052】[0052]

【数10】 [Equation 10]

【0053】また、制約6は、下記の数11に示す(式
15)のように表される。
Further, the constraint 6 is expressed by the following equation (Equation 15).

【0054】[0054]

【数11】 [Equation 11]

【0055】上記(式13)〜(式15)を合わせて、
制約6は、下記の数12に示す(式16)のように定式
化される。
Combining the above (formula 13) to (formula 15),
Constraint 6 is formulated as shown in (Expression 16) shown in Expression 12 below.

【0056】[0056]

【数12】 [Equation 12]

【0057】(7)各輸送車の搬送先は1個所のみであ
るという制約7は、下記の数13に示す(式17)、
(式18)のように定式化できる。
(7) Constraint 7 that each transport vehicle has only one destination is shown in the following Equation 13 (Equation 17),
It can be formulated as (Equation 18).

【0058】[0058]

【数13】 [Equation 13]

【0059】(8)1つの反応容器へ注ぐ輸送車数の上
限制約8は、下記の数14に示す(式19)のように定
式化できる。
(8) The upper limit constraint 8 on the number of vehicles to be poured into one reaction container can be formulated as shown in (Equation 19) below.

【0060】[0060]

【数14】 [Equation 14]

【0061】(9)1つの輸送車が注ぐ反応容器数の上
限制約9は、下記の数15に示す(式20)のように定
式化できる。
(9) The upper limit constraint 9 on the number of reaction vessels poured by one transport vehicle can be formulated as shown in (Equation 20) below.

【0062】[0062]

【数15】 [Equation 15]

【0063】(10)輸送車の原料注ぎ口が左右のどち
らかしかない場合、当該注ぎ口位置により、搬送先工場
Bが限定されるという制約10は、下記の数16に示す
(式21)のように定式化できる。
(10) Constraint 10 that the delivery destination factory B is limited by the position of the pouring port when the raw material pouring port of the transport vehicle is either left or right is expressed by the following formula 16 (Equation 21). Can be formulated as

【0064】[0064]

【数16】 [Equation 16]

【0065】この例の場合、右側しか注ぎ口がない輸送
車は第一工場Bへは搬送不可、左側しか注ぎ口がない輸
送車は第二工場Bへは搬送不可である。
In the case of this example, a transport vehicle having only the right side spout cannot be transported to the first factory B, and a transport vehicle having only the left side spout cannot be transported to the second factory B.

【0066】(11)第一工場Aから第一工場B、及
び、第三工場Aから第二工場Bへの搬送を優先させるた
め、輸送車kの搬送元工場A番号と、搬送先工場番号に
より、実数変数の下限(輸送車運行コスト)が、下記の
表3になるように定義する。
(11) In order to prioritize the transfer from the first factory A to the first factory B and from the third factory A to the second factory B, the transfer source factory A number and the transfer destination factory number of the transport vehicle k Therefore, the lower limit of the real variable (transport vehicle operating cost) is defined as shown in Table 3 below.

【0067】[0067]

【表3】 [Table 3]

【0068】上記の表を数式で表すと、下記の数17に
示す(式22)、(式23)のようになる。
The above table can be expressed by equations as shown in (Expression 22) and (Expression 23) below.

【0069】[0069]

【数17】 [Equation 17]

【0070】目的関数は、下記の数18に示す(式2
4)のようになる。
The objective function is shown in the following Eq.
It becomes like 4).

【0071】[0071]

【数18】 [Equation 18]

【0072】ここで、上記(式24)の右辺第一項は各
反応容器の成分調整量の総和、右辺第二項は各輸送車の
成分調整量の総和、右辺第三項は輸送車運行コストに対
応している。この式は、下記の数19に示す(式2
5)、(式26)のように線形化される。
Here, the first term on the right side of the above (equation 24) is the sum of the component adjustment amounts of each reaction vessel, the second term on the right side is the sum of the component adjustment amounts of each transport vehicle, and the third term on the right side is the operation of the transport vehicle. It corresponds to the cost. This equation is shown in the following Equation 19 (Equation 2
5), linearized as shown in (Equation 26).

【0073】[0073]

【数19】 [Formula 19]

【0074】以上より、(式1)〜(式4)、(式9)
〜(式12)、(式16)〜(式23)、(式25)を
制約式とし、(式26)の目的関数を最小にする解を混
合整数計画法により求めれば、各輸送車の各反応容器へ
の注ぎ量、および、各輸送車の成分調整量Δyjλkj
得ることができる。
From the above, (Equation 1) to (Equation 4), (Equation 9)
~ (Equation 12), (Equation 16) ~ (Equation 23), (Equation 25) as a constraint equation, if the solution that minimizes the objective function of (Equation 26) is obtained by the mixed integer programming method, The amount poured into each reaction container and the component adjustment amount Δy j λ kj of each transport vehicle can be obtained.

【0075】さて、工場Bの原料混合工程によっては、
到着した輸送車の原料を無条件に反応容器に注ぐことが
できない工場も存在する。例えば、図7に示すように、
輸送車は原料混合工程に左から入り、左へ出なくてはな
らず、原料混合工程では輸送車同士の追い越しができな
い場合もある。この場合、左側の輸送車は右側の反応容
器に注ぐことができず、同様に、右側の輸送車は左側の
反応容器に注ぐことができないため、これらの原料混合
工程での入出車制約11も考慮した上で、輸送車が反応
容器に注ぐ量を決定する必要がある。
Now, depending on the raw material mixing process of the factory B,
There are also factories that cannot unconditionally pour the raw materials of arriving transport vehicles into reaction vessels. For example, as shown in FIG.
The transport vehicle must enter the raw material mixing process from the left and exit to the left, and in some cases, the transport vehicles cannot pass each other in the raw material mixing process. In this case, the transport vehicle on the left side cannot pour into the reaction vessel on the right side, and similarly, the transport vehicle on the right side cannot pour into the reaction vessel on the left side. With consideration, it is necessary to determine the amount that the transport vehicle pours into the reaction vessel.

【0076】例えば、・第二工場Bの原料混合工程は図
7の構造、第一工場Bの原料混合工程は図7の上下反対
の構造とする(搬送路10と反応容器6の配置が上下逆
さま)。・原料混合工程に2台の輸送車が入車している
ときには、左側の輸送車は右側の反応容器に注ぐことが
できず、同様に、右側の輸送車は左側の反応容器に注ぐ
ことができないとする。
For example, the raw material mixing process of the second factory B has a structure shown in FIG. 7, and the raw material mixing process of the first factory B has an upside-down structure of FIG. 7 (the transport path 10 and the reaction container 6 are arranged vertically. Upside down).・ When two transport vehicles are in the raw material mixing process, the transport vehicle on the left side cannot pour into the reaction vessel on the right side. Similarly, the transport vehicle on the right side can pour into the reaction vessel on the left side. Suppose you can't.

【0077】このような原料混合工程での入出車制約1
1を定式化する。そこで、先ず、輸送車kの原料混合工
程への入車時刻をdk、輸送車kの原料混合工程からの出
車時刻をekとすると、これらは、輸送車kが反応容器i
へ原料を注ぐときに11なり、注がないときに0なる0
1整数変数δik((式3)参照)を用いて、下記の数2
0に示す(式27)、(式28)のような制約式を満た
す必要がある。
Entry / exit restrictions 1 in such a raw material mixing process
Formulate 1. Therefore, first, when the entry time of the raw material mixing process of the transport vehicle k is d k and the departure time of the raw material mixing process of the transport vehicle k is e k ,
Is 11 when pouring raw material into, and 0 when not pouring 0
Using the integer variable δ ik (see (Equation 3)),
It is necessary to satisfy the constraint expressions such as (Expression 27) and (Expression 28) shown in 0.

【0078】[0078]

【数20】 [Equation 20]

【0079】例えば、輸送車kが反応容器iへ原料を注ぐ
ときには(δik=1)、(式27)と(式28)はそれ
ぞれ、下記の数21に示す(式29)、(式30)とな
るため、輸送車kの原料混合工程への入車時刻dkは、輸
送車kの原料混合工程の到着時刻ak以上で、かつ、反応
容器iの要求時刻ai^より入車時間と注ぎ時間αを引い
た時刻以下でなければならない。また、出車時刻e
kは、反応容器iの要求時刻ai^以上でなければならな
い。
For example, when the transport vehicle k pours the raw material into the reaction vessel i (δ ik = 1), (Equation 27) and (Equation 28) are respectively represented by the following Equation 21 (Equation 29) and (Equation 30). ), The entry time d k of the transport vehicle k into the raw material mixing step is equal to or greater than the arrival time a k of the raw material mixing step of the transport vehicle k and the entry time a i ^ of the reaction vessel i. It must be less than or equal to the time minus the pouring time α. Also, departure time e
k must be greater than or equal to the requested time a i ^ of the reaction container i.

【0080】[0080]

【数21】 [Equation 21]

【0081】(式27)、(式28)は、1台の輸送車
kの入出車時刻の制約を表しているだけであり、原料混
合工程内が図7の構造となっていることを完全には表し
ていない。そこで、次に、原料混合工程には一度に2台
の輸送車が入車できるため、輸送車kと輸送車hの2台の
輸送車k、hの入車時刻(dk、dh)と出車時刻(ek、e
h)の関係を定式化する。
(Equation 27) and (Equation 28) are one transport vehicle.
It only shows the restriction of the entry / exit time of k, and does not completely show that the inside of the raw material mixing process has the structure of FIG. 7. Therefore, next, since two transport vehicles can enter the raw material mixing process at one time, the entry time (d k , d h ) of the two transport vehicles k and h, that is, transport vehicle k and transport vehicle h. And departure time (e k , e
Formalize the relationship of h ).

【0082】原料混合工程が図7の構造のときには、輸
送車kと輸送車hの入出車時刻の関係は図8の(a)〜(d)の
いずれか1つのパターンになる。ここで、パターン(a)
は輸送車kが原料混合工程から出車した後に、輸送車hが
原料混合工程に入車するパターンを表しており、パター
ン(c)は輸送車kと輸送車hの2台が同時刻に原料混合工
程に入車しているパターンを表している。パターン
(b)、パターン(d)はそれぞれ、パターン(a)、パターン
(d)の輸送車kと輸送車hが入れ替わったパターンであ
る。これらのパターンが成り立つときに1となる01整
数変数ηkh、ηhk、βkh、βhkを新たに導入する。ηkh
はパターン(a)のとき1となる整数変数、ηhkはパター
ン(b)のとき1となる整数変数、βkhはパターン(c)のと
き1となる整数変数、βhkはパターン(d)のとき1とな
る整数変数である。
When the raw material mixing step has the structure shown in FIG. 7, the relationship between the entry and exit times of the transport vehicle k and the transport vehicle h is one of the patterns shown in FIGS. 8 (a) to 8 (d). Where pattern (a)
Shows the pattern in which the transport vehicle k leaves the raw material mixing process and then the transport vehicle h enters the raw material mixing process. Pattern (c) shows two vehicles, transport vehicle k and transport vehicle h, at the same time. This shows the pattern of entering the raw material mixing process. pattern
(b) and pattern (d) are pattern (a) and pattern, respectively.
This is a pattern in which the transport vehicle k and the transport vehicle h in (d) are interchanged. The 01 integer variables η kh , η hk , β kh , and β hk that become 1 when these patterns hold are newly introduced. η kh
Is an integer variable that becomes 1 when pattern (a), η hk is an integer variable that becomes 1 when pattern (b), β kh is an integer variable that becomes 1 when pattern (c), and β hk is a pattern (d) It is an integer variable that becomes 1 when.

【0083】これらの変数を使うと、輸送車kと輸送車h
の入出車時刻の制約は、下記の数22に示す(式32)
〜(式36)のように表すことができる。
Using these variables, transport vehicle k and transport vehicle h
The restrictions on the entry and departure times of the vehicle are shown in the following Equation 22 (Equation 32)
Can be expressed as (Equation 36).

【0084】[0084]

【数22】 [Equation 22]

【0085】ここで、(式32)に対応するηhkの式
と、(式33)と(式34)に対応するβhkの式が必要
であるが、添字のkとhが入れ替わるだけであるので、こ
こでは省略している。また、(式35)はパターン(a)
〜パターン(d)のいずれか1つのみ満たすということ、
すなわち、ηkh、ηhk、βkh、βhkのうち、いずれか1
つしか1とならない制約を表している(ηkh、ηhk、β
kh、βhkは01整数変数であるため、(式35)より2
つ以上は1には成り得ない)。
Here, the equation of η hk corresponding to (Equation 32) and the equation of β hk corresponding to (Equation 33) and (Equation 34) are required, but only the subscripts k and h are exchanged. Therefore, it is omitted here. Also, (Formula 35) is the pattern (a)
~ Meet only one of pattern (d),
That is, one of η kh , η hk , β kh , and β hk
Represents only one constraint (η kh , η hk , β
Since kh and β hk are 01 integer variables, 2 from (Equation 35)
One or more cannot be 1).

【0086】さらに、(式36)は原料混合工程には最
大2台までしか輸送車は入車できないことを表してい
る。なぜなら、輸送車1と輸送車2と輸送車3が図9の
関係で原料混合工程に入車すると、β12=1、β13
1、β21=0、β23=1、β31=1、β32=0、である
から、Σβk3=2となり、(式36)の制約を満たさな
くなってしまう。
Furthermore, (Equation 36) indicates that only a maximum of two transport vehicles can enter the raw material mixing step. This is because when the transport vehicle 1, the transport vehicle 2 and the transport vehicle 3 enter the raw material mixing process in the relationship of FIG. 9, β 12 = 1 and β 13 =
Since 1, β 21 = 0, β 23 = 1, β 31 = 1 and β 32 = 0, Σβ k3 = 2, and the constraint of (Expression 36) cannot be satisfied.

【0087】以上の(式27)〜(式28)、(式32)
〜(式36)により、原料混合工程に輸送車が入車する
時刻と出車する時刻の制約は完全に記述できた。しか
し、原料混合工程に2台の輸送車が入車しているときに
は、左側の輸送車は右側の反応容器に注ぐことができ
ず、同様に、右側の輸送車は左側の反応容器に注ぐこと
ができないという制約はまだ定式化していない。これに
は色々な定式化方法があるが、例えば、下記の数23に
示す(式37)、(式38)により定式化できる。
The above (formula 27) to (formula 28) and (formula 32)
From (Equation 36), the constraints on the time when the transport vehicle enters and the time when the transport vehicle leaves the raw material mixing process can be completely described. However, when two transport vehicles are in the raw material mixing process, the transport vehicle on the left side cannot pour into the reaction vessel on the right side. Similarly, the transport vehicle on the right side must pour into the reaction vessel on the left side. The constraint that it cannot be done has not been formulated yet. Although there are various formulation methods for this, for example, it can be formulated by (Equation 37) and (Equation 38) shown in Equation 23 below.

【0088】[0088]

【数23】 [Equation 23]

【0089】ここで、piは反応容器が原料混合工程の
左側のときに0、右側のときに1となる整数定数であ
る。例えば、輸送車kと輸送車hの2台がパターン(c)で
原料混合工程に入車するときには、βkh=1、βhk=0
であるため、これらを、(式37)と(式38)に代入
すると、下記の数24に示す(式39)、(式40)の
ようになる。
Here, p i is an integer constant which is 0 when the reaction vessel is on the left side of the raw material mixing step and 1 when it is on the right side. For example, when two vehicles, transportation vehicle k and transportation vehicle h, enter the raw material mixing process in pattern (c), β kh = 1 and β hk = 0
Therefore, by substituting these into (Expression 37) and (Expression 38), Expressions (39) and (Expression 40) shown in the following Expression 24 are obtained.

【0090】[0090]

【数24】 [Equation 24]

【0091】(式39)より、左側の反応容器(pi
0)に対しては、必ず、δik=0となり、(式3)よ
り、輸送車kが左側の反応容器へ注ぐ量は0となる(す
なわち注ぐことができない)。同様に、(式37)と
(式38)の添字kとhを入れ換えた式に、βkh=1、β
hk=0を代入すると、下記の数25に示す(式41)、
(式42)のようになる。
From (Equation 39), the left side reaction container (p i =
For 0), δ ik = 0 is always satisfied , and according to (Equation 3), the amount of the transportation vehicle k pouring into the left reaction container is 0 (that is, it cannot be poured). Similarly, β kh = 1 and β can be obtained by replacing the subscripts k and h in (Equation 37) and (Equation 38) with each other.
Substituting hk = 0, Equation 25 below (Equation 41),
It becomes like (Formula 42).

【0092】[0092]

【数25】 [Equation 25]

【0093】(式42)より、右側の反応容器(pi
1)に対しては、必ず、δik=0となり、(式3)よ
り、輸送車hが右側の反応容器へ注ぐ量は0となる。
From the equation (42), the reaction container on the right side (p i =
For 1), δ ik = 0 is always satisfied , and from (Equation 3), the amount of the transport vehicle h poured into the reaction container on the right side is 0.

【0094】以上より、(式1)〜(式4)、(式9)
〜(式12)、(式16)〜(式23)、(式25)、
(式27)〜(式28)、(式32)〜(式38)を制
約式とし、(式26)の目的関数を最小にする解を混合
整数計画法により求めれば、原料混合工程での入出車制
約11も考慮の上、各輸送車の各反応容器への注ぎ量w
ik、および、各輸送車の成分調整量Δyjλkjを得るこ
とができる。
From the above, (Equation 1) to (Equation 4), (Equation 9)
~ (Formula 12), (Formula 16) to (Formula 23), (Formula 25),
(Equation 27) to (Equation 28) and (Equation 32) to (Equation 38) are constraint expressions, and if a solution that minimizes the objective function of (Equation 26) is obtained by the mixed integer programming method, it is Taking into consideration the entry / exit vehicle constraint 11, the amount w poured into each reaction container of each transport vehicle
ik and the component adjustment amount Δy j λ kj of each transport vehicle can be obtained.

【0095】(他の実施の形態)上記実施の形態で説明
した演算処理は、コンピュータのCPU或いはMPU、
RAM、ROM等で構成されるものであり、その機能は
RAMやROM等に格納されたコンピュータプログラム
が動作することによって実現される。
(Other Embodiments) The arithmetic processing described in the above embodiments is executed by the CPU or MPU of the computer.
It is composed of a RAM, a ROM, etc., and its function is realized by the operation of a computer program stored in the RAM, the ROM, etc.

【0096】したがって、上記コンピュータプログラム
自体は、本発明の範疇に含まれる。上記コンピュータプ
ログラムの伝送媒体としては、プログラム情報を搬送波
として伝播させて供給するためのコンピュータネットワ
ーク(LAN、インターネット等のWAN、無線通信ネ
ットワーク等)システムにおける通信媒体(光ファイバ
等の有線回線や無線回線等)を用いることができる。
Therefore, the computer program itself is included in the category of the present invention. As a transmission medium of the computer program, a communication medium (a wired line such as an optical fiber or a wireless line) in a computer network (LAN, WAN such as the Internet, a wireless communication network, etc.) system for propagating and supplying program information as a carrier wave Etc.) can be used.

【0097】また、上記コンピュータプログラムをコン
ピュータに供給するための手段、例えばかかるコンピュ
ータプログラムを格納した記憶媒体は、本発明の範疇に
含まれる。記憶媒体としては、CD−ROM、フレキシ
ブルディスク、ハードディスク、磁気テープ、光磁気デ
ィスク、不揮発性メモリカード等を用いることができ
る。
Further, means for supplying the computer program to the computer, for example, a storage medium storing the computer program is included in the scope of the present invention. A CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a non-volatile memory card, or the like can be used as the storage medium.

【0098】[0098]

【発明の効果】以上説明したように本発明によれば、数
多い制約を満足する輸送車から反応容器への原料注ぎ量
を求めることができ、かつ、輸送車の成分調整量と工場
Bでの反応容器の成分調整量を最小にすることができる
ため、成分調整のために投入される成分調整剤量を削減
できるとともに、工場Bの時間当たりの処理能力を向上
させることが可能である。さらに、輸送車の運行コスト
も最小にすることができる。
As described above, according to the present invention, it is possible to determine the amount of raw material poured from a transport vehicle satisfying a number of restrictions into a reaction container, and the amount of component adjustment of the transport vehicle and the factory B Since the component adjustment amount of the reaction vessel can be minimized, the amount of the component adjusting agent input for component adjustment can be reduced and the processing capacity per hour of the factory B can be improved. Further, the operating cost of the transportation vehicle can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】原料最適混合のための演算を1台のコンピュー
タにて実現した場合の構成を示す図である。
FIG. 1 is a diagram showing a configuration in which an arithmetic operation for optimum mixing of raw materials is realized by one computer.

【図2】原料最適混合のための演算処理を示すフローチ
ャートである。
FIG. 2 is a flowchart showing a calculation process for optimal mixing of raw materials.

【図3】関係式で使用する変数や定数の記号を示す図で
ある。
FIG. 3 is a diagram showing symbols of variables and constants used in relational expressions.

【図4】関係式で使用する変数や定数の記号を示す図で
ある。
FIG. 4 is a diagram showing symbols of variables and constants used in relational expressions.

【図5】工場A、Bの関係について説明するための図で
ある。
FIG. 5 is a diagram for explaining the relationship between factories A and B.

【図6】輸送車内では成分調整を行わず、工場Bが1つ
の場合についての例を説明するための図である。
FIG. 6 is a diagram for explaining an example of a case where there is one factory B without component adjustment in the transportation vehicle.

【図7】原料混合工程での入出車制約を説明するための
図である。
FIG. 7 is a diagram for explaining entry and exit restrictions in the raw material mixing step.

【図8】輸送車kと輸送車hの入出車時刻の関係のパター
ンを説明するための図である。
FIG. 8 is a diagram for explaining a pattern of a relationship between entry and exit times of transport vehicles k and h.

【図9】輸送車1と輸送車2と輸送車3の原料混合工程
への入車関係を説明するための図である。
FIG. 9 is a diagram for explaining the entry relationship of the transport vehicle 1, the transport vehicle 2, and the transport vehicle 3 into the raw material mixing process.

【符号の説明】[Explanation of symbols]

1 入力装置 2 コンピュータ本体 3 出力装置 4 輸送車 5 成分調整前の反応容器 6 成分調整後の反応容器 7 工場A 8 工場B 9 原料混合工程 10 搬送路 1 input device 2 Computer body 3 output devices 4 transport vehicles Reaction container before adjustment of 5 components Reaction vessel after 6 components adjustment 7 Factory A 8 Factory B 9 Raw material mixing process 10 transport paths

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G06F 17/60 106 G06F 17/60 106 Fターム(参考) 3C100 AA01 AA47 BB03 BB04 BB05 BB22 BB24 BB25 EE11 4G036 AC70 4G037 BA01 BB30 BE02 BE05 5B056 BB72 BB91 HH00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G06F 17/60 106 G06F 17/60 106 F term (reference) 3C100 AA01 AA47 BB03 BB04 BB05 BB22 BB24 BB25 EE11 4G036 AC70 4G037 BA01 BB30 BE02 BE05 5B056 BB72 BB91 HH00

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 原料を製造する複数の工場Aと、当該原
料を用いる複数の工場Bとが存在し、各工場Aで製造さ
れた原料を複数の輸送車に積載し、各工場Bへ搬送後、
輸送車内の原料を複数の反応容器に注ぎ、反応容器にお
いて原料成分の調整を行うプロセスにおける原料の最適
混合演算方法であって、 各工場Bにおける成分調整前の各反応容器の要求原料量
・要求時刻・要求成分・要求温度の計画、及び、反応容
器毎の成分調整後の目標成分の計画、及び、各輸送車の
原料混合工程到着予測時刻・原料量・原料成分・原料温
度の実績値或いは予測値を入力とする処理と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約と、
各輸送車が各反応容器へ注ぐ原料量についての第3の上
下限制約と、各輸送車が各反応容器へ注ぎ終わる時刻
が、当該反応容器の要求時刻以下であるという第4の制
約と、各反応容器の各混合成分が当該反応容器の各要求
成分以下となる第5の制約と、各反応容器の混合原料温
度が、当該反応容器の要求温度以上となる第6の制約
と、各輸送車の搬送先は1個所のみであるという第7の
制約とを満足し、各反応容器の成分調整量の総和を最小
にする最適化計算を行い、各輸送車が各反応容器に注ぐ
量を決定する処理とを有することを特徴とする原料の最
適混合演算方法。
1. There are a plurality of factories A for manufacturing raw materials and a plurality of factories B using the raw materials, and the raw materials manufactured at the respective factories A are loaded on a plurality of transportation vehicles and conveyed to the respective factories B. rear,
A method for calculating the optimum mixing of raw materials in a process of pouring the raw materials in a transportation vehicle into a plurality of reaction vessels and adjusting the raw material components in the reaction vessels. Plan of time, required component, required temperature, target component after component adjustment for each reaction vessel, estimated arrival time of raw material mixing process of each transportation vehicle, raw material amount, raw material component, actual value of raw material temperature or Regarding the processing that uses the predicted value as input, the first upper and lower limit constraints on the total amount of raw material poured from each transport vehicle into one reaction container, and the total amount of raw material poured into each reaction container from one transport vehicle The second upper and lower bounds of
A third upper and lower limit constraint on the amount of raw material that each transport vehicle pours into each reaction container, and a fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, Fifth constraint that each mixed component of each reaction container is equal to or less than each required component of the reaction container, sixth constraint that the mixed raw material temperature of each reaction container is equal to or greater than the required temperature of the reaction container, and each transportation Satisfying the seventh constraint that there is only one destination for the car, and performing an optimization calculation that minimizes the sum of the component adjustment amounts of each reaction container, and determining the amount that each transport vehicle pours into each reaction container. And a process of determining the optimum raw material mixture calculation method.
【請求項2】 1つの反応容器へ注ぐ輸送車数について
の第8の上限制約を加えたことを特徴とする請求項1に
記載の原料の最適混合演算方法。
2. The optimum mixing calculation method for raw materials according to claim 1, wherein an eighth upper limit constraint on the number of vehicles to be poured into one reaction container is added.
【請求項3】 1つの輸送車が注ぐ反応容器数について
の第9の上限制約を加えたことを特徴とする請求項1又
は2に記載の原料の最適混合演算方法。
3. The optimum raw material mixture calculation method according to claim 1, wherein a ninth upper limit constraint on the number of reaction vessels poured by one transport vehicle is added.
【請求項4】 輸送車の原料注ぎ口が左右のどちらかし
かない場合、当該注ぎ口位置により、搬送先工場Bが限
定されるという第10の制約を加えたことを特徴とする
請求項1〜3のいずれか1項に記載の原料の最適混合演
算方法。
4. A tenth constraint that the destination factory B is limited by the position of the spout when the raw material spout of the transport vehicle is either left or right. 4. The optimum mixing calculation method for raw materials according to any one of 3 to 3.
【請求項5】 各反応容器の成分調整量の総和と、輸送
車の搬送元工場Aと搬送先工場Bとの関数により定義さ
れる輸送車運行コストの総和との重み付き和を最小にす
る最適化計算を行い、各輸送車が各反応容器に注ぐ量を
決定することを特徴とする、請求項1〜4のいずれか1
項に記載の原料の最適混合演算方法。
5. The weighted sum of the sum total of the component adjustment amounts of the respective reaction vessels and the sum total of the transportation vehicle operation costs defined by the function of the transportation source factory A and the transportation destination factory B of the transportation vehicle is minimized. An optimization calculation is performed to determine an amount to be poured into each reaction container by each transportation vehicle, according to any one of claims 1 to 4.
The optimum mixing calculation method of raw materials as described in the item.
【請求項6】 原料を製造する複数の工場Aと、当該原
料を用いる複数の工場Bとが存在し、各工場Aで製造さ
れた原料を複数の輸送車に積載し、輸送車内で成分調整
を行った後、各工場Bへ搬送し、輸送車内の原料を複数
の反応容器に注ぐプロセスにおける原料の最適混合演算
方法であって、 各工場Bにおける各反応容器の要求原料量・要求時刻・
要求成分・要求温度の計画、及び、各輸送車の混合工程
到着予測時刻・原料量・原料成分・原料温度の実績値或
いは予測値を入力する処理と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約2
と、各輸送車が各反応容器へ注ぐ原料量についての第3
の上下限制約と、各輸送車が各反応容器へ注ぎ終わる時
刻が、当該反応容器の要求時刻以下であるという第4の
制約と、各反応容器の各混合成分が、当該反応容器の各
要求成分以下となる第5の制約と、各反応容器の混合原
料温度が、当該反応容器の要求温度以上となる第6の制
約と、各輸送車の搬送先は1個所のみであるという第7
の制約7とを満足し、各輸送車の成分調整量の総和を最
小にする最適化計算を行い、各輸送車が各反応容器に注
ぐ量、及び、各輸送車の成分調整量を決定する処理を有
することを特徴とする原料の最適混合演算方法。
6. A plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials exist, and the raw materials manufactured at each factory A are loaded on a plurality of transport vehicles and the components are adjusted in the transport vehicles. After performing the above, the method is an optimal mixing calculation method of raw materials in a process of transporting the raw materials in a transportation vehicle to a plurality of reaction vessels in each factory B.
Planning of required components and required temperatures, input of estimated time of arrival of mixing process, raw material amount, raw material components and raw material temperature of each transport vehicle, and processing of inputting the predicted value, and one reaction container is injected from each transport vehicle. The first upper and lower limit constraint on the total amount of raw materials to be removed, and the second upper and lower limit constraint 2 on the total amount of raw materials poured by a single transport vehicle into each reaction container 2
And about the amount of raw material that each transport vehicle pours into each reaction vessel
And the fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, and each mixed component of each reaction container requires each request of the reaction container. The fifth constraint that the components are less than or equal to the sixth component, the sixth constraint that the mixed raw material temperature of each reaction container is equal to or higher than the required temperature of the reaction container, and the seventh constraint that each transport vehicle has only one destination.
Constraints 7 and 7 are satisfied, and optimization calculation that minimizes the sum of the component adjustment amounts of each transport vehicle is performed, and the amount that each transport vehicle pours into each reaction container and the component adjustment amount of each transport vehicle are determined. An optimum mixing operation method for raw materials, characterized by having processing.
【請求項7】 1つの反応容器へ注ぐ輸送車数について
の第8の上限制約を加えたことを特徴とする請求項6に
記載の原料の最適混合演算方法。
7. The optimum mixing calculation method for raw materials according to claim 6, wherein an eighth upper limit constraint on the number of vehicles to be poured into one reaction container is added.
【請求項8】 1つの輸送車が注ぐ反応容器数について
の第9の上限制約を加えたことを特徴とする請求項6又
は7に記載の原料の最適混合演算方法。
8. The optimum mixing calculation method for raw materials according to claim 6 or 7, wherein a ninth upper limit constraint on the number of reaction vessels poured by one transport vehicle is added.
【請求項9】 輸送車の原料注ぎ口が左右のどちらかし
かない場合、当該注ぎ口位置により、搬送先工場Bが限
定されるという第10の制約を加えたことを特徴とする
請求項6〜8のいずれか1項に記載の原料の最適混合演
算方法。
9. A tenth constraint that the destination factory B is limited depending on the position of the spout when the raw material spout of the transport vehicle is either left or right. 9. An optimum mixing operation method for raw materials according to any one of items 8 to 8.
【請求項10】各輸送車の成分調整量の総和と、輸送車
の搬送元工場Aと搬送先工場Bとの関数により定義され
る輸送車運行コストの総和との重み付き和を最小にする
最適化計算を行い、各輸送車が各反応容器に注ぐ量、及
び、各輸送車の成分調整量を決定することを特徴とする
請求項6〜9のいずれか1項に記載の原料の最適混合演
算方法。
10. The weighted sum of the sum of the component adjustment amounts of each transport vehicle and the sum of the transport vehicle operating costs defined by the function of the transport source factory A and the transport destination factory B of the transport vehicle is minimized. Optimizing the raw material according to any one of claims 6 to 9, characterized in that an optimization calculation is performed to determine an amount to be poured into each reaction vessel by each transport vehicle and a component adjustment amount for each transport vehicle. Mixed operation method.
【請求項11】 原料を製造する複数の工場Aと、当該
原料を用いる複数の工場Bが存在し、各工場Aで製造さ
れた原料を複数の輸送車に積載し、輸送車内で成分調整
を行った後、各工場Bへ搬送し、輸送車内の原料を複数
の反応容器に注ぎ、反応容器毎に原料成分の再調整を行
うプロセスにおける原料の最適混合演算方法であって、 各工場Bにおける各反応容器の要求原料量・要求時刻・
要求成分・要求温度の計画、及び、反応容器毎の成分調
整後の目標成分の計画、及び、各輸送車の混合工程到着
予測時刻・原料量・原料成分・原料温度の実績値或いは
予測値を入力する処理と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約と、
各輸送車が各反応容器へ注ぐ原料量についての第3の上
下限制約と、各輸送車が各反応容器へ注ぎ終わる時刻
が、当該反応容器の要求時刻以下であるという第4の制
約と、各反応容器の各混合成分が、当該反応容器の各要
求成分以下となる第5の制約と、各反応容器の混合原料
温度が、当該反応容器の要求温度以上となる第6の制約
と、各輸送車の搬送先は1個所のみであるという第7の
制約とを満足し、各輸送車の成分調整量の総和と、各反
応容器の成分調整量の総和との重み付き和を最小にする
最適化計算を行い、各輸送車が各反応容器に注ぐ量、及
び、各輸送車の成分調整量を決定する処理を有すること
を特徴とする原料の最適混合演算方法。
11. A plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials exist, and the raw materials manufactured at each factory A are loaded on a plurality of transport vehicles and the components are adjusted in the transport vehicles. After carrying out, it is an optimal mixing calculation method of raw materials in the process of transporting to each factory B, pouring the raw materials in the transportation vehicle into a plurality of reaction vessels, and re-adjusting the raw material components for each reaction vessel. Required raw material amount / required time of each reaction vessel
The required component / required temperature plan, the target component plan after the component adjustment for each reaction vessel, and the estimated time of arrival of the mixing process of each transport vehicle, raw material amount, raw material component, raw material temperature actual value or predicted value The upper and lower limits of the input process, the first upper and lower limit of the total amount of raw materials poured into each reaction container by one transportation container, and the second upper and lower limits on the total amount of raw materials poured by one transportation vehicle into each reaction container. Upper and lower bounds,
A third upper and lower limit constraint on the amount of raw material that each transport vehicle pours into each reaction container, and a fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, A fifth constraint that each mixed component of each reaction container is equal to or less than each required component of the reaction container, and a sixth constraint that the mixed raw material temperature of each reaction container is equal to or greater than the required temperature of the reaction container, Satisfies the seventh constraint that there is only one destination for transport vehicles, and minimizes the weighted sum of the sum of component adjustment amounts of each transport vehicle and the sum of component adjustment amounts of each reaction container. An optimal mixing calculation method of raw materials, which comprises a process of performing an optimization calculation and determining an amount to be poured into each reaction container by each transport vehicle and a component adjustment amount of each transport vehicle.
【請求項12】 1つの反応容器へ注ぐ輸送車数につい
ての第8の上限制約を加えたことを特徴とする請求項1
1に記載の原料の最適混合演算方法。
12. An eighth upper limit constraint on the number of vehicles to be poured into one reaction container is added.
1. The optimum mixing calculation method for raw materials according to 1.
【請求項13】 1つの輸送車が注ぐ反応容器数につい
ての第9の上限制約を加えたことを特徴とする請求項1
1又は12に記載の原料の最適混合演算方法。
13. A ninth upper limit constraint on the number of reaction vessels poured by one transport vehicle is added.
13. The optimum mixing calculation method for raw materials according to 1 or 12.
【請求項14】 輸送車の原料注ぎ口が左右のどちらか
しかない場合、当該注ぎ口位置により、搬送先工場Bが
限定されるという第10の制約を加えたことを特徴とす
る請求項11〜13のいずれか1項に記載の原料の最適
混合演算方法。
14. A tenth constraint that the destination factory B is limited depending on the position of the spout when the raw material spout of the transport vehicle is either left or right. 14. An optimum mixing operation method for raw materials according to any one of items 13 to 13.
【請求項15】 各輸送車の成分調整量の総和と、各反
応容器の成分調整量の総和と、輸送車の搬送元工場Aと
搬送先工場Bとの関数により定義される輸送車運行コス
トの総和との重み付き和を最小にする最適化計算を行
い、各輸送車が各反応容器に注ぐ量、及び、各輸送車の
成分調整量を決定することを特徴とする請求項11〜1
4のいずれか1項に記載の原料の最適混合演算方法。
15. A transportation vehicle operation cost defined by a sum of component adjustment amounts of each transport vehicle, a sum of component adjustment amounts of each reaction container, and a function of a transport source factory A and a transport destination factory B of the transport vehicle. 11. An optimization calculation that minimizes the weighted sum with the total sum of the above is determined to determine the amount poured into each reaction container by each transport vehicle and the component adjustment amount of each transport vehicle.
4. The optimum mixing calculation method for raw materials according to any one of 4 above.
【請求項16】 輸送車が反応容器へ原料を注ぐ処理を
行う原料混合工程での各輸送車の入出車についての第1
1の制約を加えたことを特徴とする請求項1〜15のい
ずれか1項に記載の原料の最適混合演算方法。
16. A first method for entering and leaving each transport vehicle in a raw material mixing step in which a transport vehicle pours raw materials into a reaction vessel.
The raw material optimum mixing calculation method according to any one of claims 1 to 15, wherein the constraint 1 is added.
【請求項17】 原料を製造する複数の工場Aと、当該
原料を用いる複数の工場Bとが存在し、各工場Aで製造
された原料を複数の輸送車に積載し、各工場Bへ搬送
後、輸送車内の原料を複数の反応容器に注ぎ、反応容器
において原料成分の調整を行うプロセスにおける原料の
最適混合演算装置であって、 各工場Bにおける成分調整前の各反応容器の要求原料量
・要求時刻・要求成分・要求温度の計画、及び、反応容
器毎の成分調整後の目標成分の計画、及び、各輸送車の
原料混合工程到着予測時刻・原料量・原料成分・原料温
度の実績値或いは予測値を入力とする入力手段と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約と、
各輸送車が各反応容器へ注ぐ原料量についての第3の上
下限制約と、各輸送車が各反応容器へ注ぎ終わる時刻
が、当該反応容器の要求時刻以下であるという第4の制
約と、各反応容器の各混合成分が当該反応容器の各要求
成分以下となる第5の制約と、各反応容器の混合原料温
度が、当該反応容器の要求温度以上となる第6の制約
と、各輸送車の搬送先は1個所のみであるという第7の
制約とを満足し、各反応容器の成分調整量の総和を最小
にする最適化計算を行い、各輸送車が各反応容器に注ぐ
量を決定する演算手段とを備えたことを特徴とする原料
の最適混合演算装置。
17. A plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials exist, and the raw materials manufactured at each factory A are loaded on a plurality of transportation vehicles and transported to each factory B. After that, it is an optimum mixing arithmetic unit of raw materials in the process of pouring the raw materials in the transportation vehicle into a plurality of reaction vessels and adjusting the raw material components in the reaction vessels, and the required raw material amount of each reaction vessel before the component adjustment in each factory B.・ Request time, required component, required temperature plan, and target component plan after component adjustment for each reaction vessel, estimated time of arrival of raw material mixing process of each transport vehicle, raw material amount, raw material component, raw material temperature results Input means that inputs the value or the predicted value, the first upper and lower limit constraints on the total amount of raw materials poured from each transport vehicle into one reaction container, and the raw material amount poured into each reaction container from one transport vehicle Second upper and lower bounds on the sum of ,
A third upper and lower limit constraint on the amount of raw material that each transport vehicle pours into each reaction container, and a fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the requested time of the reaction container, Fifth constraint that each mixed component of each reaction container is equal to or less than each required component of the reaction container, sixth constraint that the mixed raw material temperature of each reaction container is equal to or greater than the required temperature of the reaction container, and each transportation Satisfying the seventh constraint that there is only one destination for the car, and performing an optimization calculation that minimizes the sum of the component adjustment amounts of each reaction container, and determining the amount that each transport vehicle pours into each reaction container. An optimum mixing arithmetic unit for raw materials, comprising: an arithmetic unit for determining.
【請求項18】 原料を製造する複数の工場Aと、当該
原料を用いる複数の工場Bとが存在し、各工場Aで製造
された原料を複数の輸送車に積載し、輸送車内で成分調
整を行った後、各工場Bへ搬送し、輸送車内の原料を複
数の反応容器に注ぐプロセスにおける原料の最適混合演
算装置であって、 各工場Bにおける各反応容器の要求原料量・要求時刻・
要求成分・要求温度の計画、及び、各輸送車の混合工程
到着予測時刻・原料量・原料成分・原料温度の実績値或
いは予測値を入力する入力手段と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約2
と、各輸送車が各反応容器へ注ぐ原料量についての第3
の上下限制約と、各輸送車が各反応容器へ注ぎ終わる時
刻が、当該反応容器の要求時刻以下であるという第4の
制約と、各反応容器の各混合成分が、当該反応容器の各
要求成分以下となる第5の制約と、各反応容器の混合原
料温度が、当該反応容器の要求温度以上となる第6の制
約と、各輸送車の搬送先は1個所のみであるという第7
の制約7とを満足し、各輸送車の成分調整量の総和を最
小にする最適化計算を行い、各輸送車が各反応容器に注
ぐ量、及び、各輸送車の成分調整量を決定する演算手段
とを備えたことを特徴とする原料の最適混合演算装置。
18. A plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials exist, and the raw materials manufactured at each factory A are loaded on a plurality of transport vehicles and the components are adjusted in the transport vehicles. It is an optimum mixing arithmetic unit for raw materials in a process of carrying the raw materials in a transportation vehicle to a plurality of reaction vessels after carrying out the above, and the required raw material amount, required time of each reaction vessel in each factory B,
Input means for planning required components and required temperatures, and inputting actual or predicted values of estimated arrival times, raw material amounts, raw material components, and raw material temperatures for the mixing process of each transport vehicle, and one reaction container from each transport vehicle. The first upper and lower limit constraint on the total amount of raw materials poured, and the second upper and lower limit constraint 2 on the total amount of raw materials poured by a single transport vehicle into each reaction vessel 2
And about the amount of raw material that each transport vehicle pours into each reaction vessel
And the fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, and each mixed component of each reaction container requires each request of the reaction container. The fifth constraint that the components are less than or equal to the sixth component, the sixth constraint that the mixed raw material temperature of each reaction container is equal to or higher than the required temperature of the reaction container, and the seventh constraint that each transport vehicle has only one destination.
Constraints 7 and 7 are satisfied, and optimization calculation that minimizes the sum of the component adjustment amounts of each transport vehicle is performed, and the amount that each transport vehicle pours into each reaction container and the component adjustment amount of each transport vehicle are determined. An optimum mixing arithmetic apparatus for raw materials, comprising: arithmetic means.
【請求項19】 原料を製造する複数の工場Aと、当該
原料を用いる複数の工場Bが存在し、各工場Aで製造さ
れた原料を複数の輸送車に積載し、輸送車内で成分調整
を行った後、各工場Bへ搬送し、輸送車内の原料を複数
の反応容器に注ぎ、反応容器毎に原料成分の再調整を行
うプロセスにおける原料の最適混合演算装置であって、 各工場Bにおける各反応容器の要求原料量・要求時刻・
要求成分・要求温度の計画、及び、反応容器毎の成分調
整後の目標成分の計画、及び、各輸送車の混合工程到着
予測時刻・原料量・原料成分・原料温度の実績値或いは
予測値を入力する入力手段と、 一つの反応容器が各輸送車から注がれる原料量の総和に
ついての第1の上下限制約と、一つの輸送車が各反応容
器へ注ぐ原料量の総和についての第2の上下限制約と、
各輸送車が各反応容器へ注ぐ原料量についての第3の上
下限制約と、各輸送車が各反応容器へ注ぎ終わる時刻
が、当該反応容器の要求時刻以下であるという第4の制
約と、各反応容器の各混合成分が、当該反応容器の各要
求成分以下となる第5の制約と、各反応容器の混合原料
温度が、当該反応容器の要求温度以上となる第6の制約
と、各輸送車の搬送先は1個所のみであるという第7の
制約とを満足し、各輸送車の成分調整量の総和と、各反
応容器の成分調整量の総和との重み付き和を最小にする
最適化計算を行い、各輸送車が各反応容器に注ぐ量、及
び、各輸送車の成分調整量を決定する演算手段とを備え
たことを特徴とする原料の最適混合演算装置。
19. A plurality of factories A that manufacture raw materials and a plurality of factories B that use the raw materials exist, and the raw materials manufactured at each factory A are loaded on a plurality of transport vehicles and the components are adjusted in the transport vehicles. After carrying out, it is an optimum mixing arithmetic unit for raw materials in the process of transporting to each factory B, pouring the raw materials in the transportation vehicle into a plurality of reaction vessels, and re-adjusting the raw material components for each reaction vessel. Required raw material amount / required time of each reaction vessel
The required component / required temperature plan, the target component plan after the component adjustment for each reaction vessel, and the estimated time of arrival of the mixing process of each transport vehicle, raw material amount, raw material component, raw material temperature actual value or predicted value Input means for inputting, first upper and lower limit constraints on the total amount of raw material poured from each transport vehicle into one reaction container, and second limitation on the total amount of raw material poured into each reaction container from one transport vehicle. Upper and lower bounds of
A third upper and lower limit constraint on the amount of raw material that each transport vehicle pours into each reaction container, and a fourth constraint that the time when each transport vehicle finishes pouring into each reaction container is less than or equal to the required time of the reaction container, A fifth constraint that each mixed component of each reaction container is equal to or less than each required component of the reaction container, and a sixth constraint that the mixed raw material temperature of each reaction container is equal to or greater than the required temperature of the reaction container, Satisfies the seventh constraint that there is only one destination for transport vehicles, and minimizes the weighted sum of the sum of component adjustment amounts of each transport vehicle and the sum of component adjustment amounts of each reaction container. An optimum mixing arithmetic unit for raw materials, comprising: an arithmetic means for performing optimization calculation and determining an amount to be poured into each reaction container by each transport vehicle and a component adjustment amount of each transport vehicle.
【請求項20】 請求項1〜16に記載の各処理をコン
ピュータに実行させることを特徴とするコンピュータプ
ログラム。
20. A computer program that causes a computer to execute the processes according to claims 1 to 16.
【請求項21】 請求項17〜19に記載の各手段とし
てコンピュータを動作させることを特徴とするコンピュ
ータプログラム。
21. A computer program for operating a computer as each unit according to claim 17.
【請求項22】 請求項20又は21に記載のコンピュ
ータプログラムを格納したことを特徴とするコンピュー
タ読み取り可能な記憶媒体。
22. A computer-readable storage medium storing the computer program according to claim 20 or 21.
JP2002050315A 2001-04-03 2002-02-26 Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium Pending JP2003015728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050315A JP2003015728A (en) 2001-04-03 2002-02-26 Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-104514 2001-04-03
JP2001104514 2001-04-03
JP2002050315A JP2003015728A (en) 2001-04-03 2002-02-26 Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium

Publications (1)

Publication Number Publication Date
JP2003015728A true JP2003015728A (en) 2003-01-17

Family

ID=26613014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050315A Pending JP2003015728A (en) 2001-04-03 2002-02-26 Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium

Country Status (1)

Country Link
JP (1) JP2003015728A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018083A (en) * 2005-07-05 2007-01-25 Nippon Steel Corp Method for preparing operation plan of transport vehicle
JP2017503234A (en) * 2013-11-15 2017-01-26 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Technology Services GmbH Method for operating equipment designed to perform at least one chemical reaction
JP2022528657A (en) * 2019-03-29 2022-06-15 ▲華▼▲東▼理工大学 Online optimization method for multipurpose crude oil mixing
CN117970896A (en) * 2024-04-02 2024-05-03 安徽伟宏食品有限公司 Intelligent mixing method and device for milk tea powder, electronic equipment and medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018083A (en) * 2005-07-05 2007-01-25 Nippon Steel Corp Method for preparing operation plan of transport vehicle
JP2017503234A (en) * 2013-11-15 2017-01-26 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Technology Services GmbH Method for operating equipment designed to perform at least one chemical reaction
JP2022528657A (en) * 2019-03-29 2022-06-15 ▲華▼▲東▼理工大学 Online optimization method for multipurpose crude oil mixing
CN117970896A (en) * 2024-04-02 2024-05-03 安徽伟宏食品有限公司 Intelligent mixing method and device for milk tea powder, electronic equipment and medium

Similar Documents

Publication Publication Date Title
Lotero et al. An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem
Cheng et al. Dispatching automated guided vehicles in a container terminal
Sağlam et al. Integrated multiproduct batch production and truck shipment scheduling under different shipping policies
Jiang et al. Alternative mixed-integer linear programming models of a maritime inventory routing problem
Liu et al. A scheduling decision support model for minimizing the number of drones with dynamic package arrivals and personalized deadlines
Zegordi et al. A multi-population genetic algorithm for transportation scheduling
CN109821466B (en) Multi-channel liquid batching full-automatic scheduling system and method
JP5005194B2 (en) Transport vehicle operation plan creation method
JP2003015728A (en) Method and device for calculating optimal mixing of raw material, computer program and computer readable storage medium
KR102390562B1 (en) Method for introducing for international freight logistics and customs clearance conducted through bidding
dos Santos et al. Multi‐objective optimization of the maritime cargo routing and scheduling problem
Narayanan et al. Using Lagrangian relaxation to solve ready mixed concrete dispatching problems
Damiron et al. Discrete rate simulation using linear programming
Fioroni et al. Simulation of continuous behavior using discrete tools: Ore conveyor transport
Srichandum et al. Multiple plants multiple sites ready mixed concrete planning using improved ant colony optimization
Golias et al. Scheduling of inbound trucks at a cross-docking facility: Bi-objective vs bi-level modeling approaches
JP2000172745A (en) Products distribution planning device
Liberopoulos et al. Production scheduling of a multi-grade PET resin plant
CN115039900B (en) Material blending processing method and device, computer equipment and computer program product
CN116228061A (en) Logistics order automatic loading and scheduling method, device, equipment and storage medium
Mallah et al. Modeling the bulk port belt-conveyor routing problem considering interactions with storage spaces and loading operations
CN116075840A (en) Ship allocation plan making method, operation method based on method and ship allocation plan making device
Burinskiene The sustainability and reduction of waste in freight delivery using simulation study
Schenk et al. Intramarket optimization for express package carriers
CN112938326A (en) Coaling batching conveying control method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626