JP2007017402A - Failure detection system of direct current motor - Google Patents

Failure detection system of direct current motor Download PDF

Info

Publication number
JP2007017402A
JP2007017402A JP2005201976A JP2005201976A JP2007017402A JP 2007017402 A JP2007017402 A JP 2007017402A JP 2005201976 A JP2005201976 A JP 2005201976A JP 2005201976 A JP2005201976 A JP 2005201976A JP 2007017402 A JP2007017402 A JP 2007017402A
Authority
JP
Japan
Prior art keywords
motor
disconnection
power supply
minute current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201976A
Other languages
Japanese (ja)
Other versions
JP4225988B2 (en
Inventor
Hiroshi Arita
寛史 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005201976A priority Critical patent/JP4225988B2/en
Publication of JP2007017402A publication Critical patent/JP2007017402A/en
Application granted granted Critical
Publication of JP4225988B2 publication Critical patent/JP4225988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure detection system of a DC motor for detecting the existence of disconnection failure without rotating the DC motor. <P>SOLUTION: The DC motor 5 is driven by an H-bridge circuit composed of switching elements 1-4. The H-bridge circuit receives direct current power from a high potential power source Vh and a low potential power source Vl. Internal resistors of a minute current detection circuits 6 and 7 have high values of several kΩs and are connected between both the power source terminals of the DC motor and the low potential power source Vl. If disconnection exists between both the power source terminals of the DC motor, the switching element 1 is turned on, minute current is made to flow at voltage (Vh-Vl) in the circuit 6 by turning off the other switching elements, and a signal 105 is at an LO level. Since the current does not flow in the circuit 7, the disconnection of the DC motor is detected with a detection circuit 8 since a signal 106 is at an HI level. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、DCモータにおける断線故障の検出に関し、特に自動車等の自走車の電動操舵システムにおいて、操舵補助動力源として機能するDCモータの断線の有無を診断するのに好適なDCモータの故障検出方式に関する。   The present invention relates to detection of a disconnection failure in a DC motor, and in particular, in an electric steering system for a self-propelled vehicle such as an automobile, the failure of the DC motor suitable for diagnosing the presence or absence of disconnection of the DC motor that functions as a steering assist power source It relates to the detection method.

一般に自動車等の自走車の運転に用いられる電動操舵システムにおいては、人力による操舵力を補助する補助動力手段としてDCモータが使用されている。図10は、界磁巻線と電機子巻線との接続形式により分類した各種DCモータの回路図を示す図である。図10において、電機子27は巻線(電機子巻線)および磁気回路でなる。図10に示すように、実用されているDCモータ5は、界磁巻線と電機子巻線との接続形式により、分巻モータ(図10(a))、直巻モータ(図10(b))、内分巻の複巻モータ(図10(c))及び外分巻の複巻モータ(図10(d))に分けられる。これらのDCモータにおいては、界磁巻線および電機子巻線の断線ならびに整流子の欠落等を含む断線障害が生じると、回転駆動電流の流入が停止するので、そのDCモータを動力源とする電動操舵システムは機能を失う。   In an electric steering system generally used for driving a self-propelled vehicle such as an automobile, a DC motor is used as auxiliary power means for assisting a steering force by human power. FIG. 10 is a diagram showing circuit diagrams of various DC motors classified according to the connection type between the field winding and the armature winding. In FIG. 10, the armature 27 is composed of a winding (armature winding) and a magnetic circuit. As shown in FIG. 10, the DC motor 5 in practical use has a split motor (FIG. 10A) and a series motor (FIG. 10B) depending on the connection form between the field winding and the armature winding. )), An internally divided compound winding motor (FIG. 10C) and an outer divided compound motor (FIG. 10D). In these DC motors, if a disconnection failure including disconnection of field windings and armature windings and missing commutators occurs, the flow of rotational drive current stops, so that DC motor is used as a power source. The electric steering system loses its function.

例えば、直巻界磁巻線29と電機子巻線とが直列に接続されている図10(b)のDCモータにおいては、直巻界磁巻線29の断線または整流子30の欠損により、電源端子31と32との間の電流回路が失われ、電源端子31と32から見て、DCモータは断線故障となる。図10(C)のDCモータでも、直巻界磁巻線29の断線は、電源端子31と32から見て、DCモータの断線故障となる。また、図10(a)のDCモータでは、分巻界磁巻線28と整流子30との接続点と電源端子31又は32との間の断線は、電源端子31と32から見て、DCモータの断線故障となる。同様に、図10(d)のDCモータでは、分巻界磁巻線28と直巻界磁巻線29との接続点と電源端子31の間の断線又は分巻界磁巻線28と整流子30との接続点と電源端子32との間の断線は、電源端子31と32から見て、DCモータの断線故障となる。電動操舵システムにおけるDCモータにこのような断線故障が生じると、電動操舵システムの機能が失われる。そこで、自走車走行開始前のDCモータの回転停止状態においては、DCモータの断線障害の有無を検出することは、自動車等の自走車の走行時における安全性確保のために必要不可欠である。   For example, in the DC motor shown in FIG. 10B in which the series winding field winding 29 and the armature winding are connected in series, the series winding field winding 29 is disconnected or the commutator 30 is missing. The current circuit between the power terminals 31 and 32 is lost, and the DC motor is broken as viewed from the power terminals 31 and 32. Even in the DC motor of FIG. 10C, the disconnection of the series winding field winding 29 is a disconnection failure of the DC motor as viewed from the power supply terminals 31 and 32. Further, in the DC motor of FIG. 10A, the disconnection between the connection point between the shunt field winding 28 and the commutator 30 and the power supply terminal 31 or 32 is DC power when viewed from the power supply terminals 31 and 32. The motor breaks. Similarly, in the DC motor of FIG. 10D, a disconnection between the connection point between the divided field winding 28 and the series wound field winding 29 and the power supply terminal 31 or the divided field winding 28 and rectification. The disconnection between the connection point with the child 30 and the power supply terminal 32 becomes a disconnection failure of the DC motor as seen from the power supply terminals 31 and 32. When such a disconnection failure occurs in the DC motor in the electric steering system, the function of the electric steering system is lost. Therefore, in the state where the rotation of the DC motor is stopped before starting the traveling of the self-propelled vehicle, it is indispensable to ensure the safety of the traveling of the self-propelled vehicle such as an automobile in order to detect the disconnection failure of the DC motor. is there.

従来、かかる断線による故障の有無を診断する際には、該DCモータの電源端子1,2間に電圧を印加し、所要の駆動電流を供給し、回転子を回転させ、電流センサおよび回転センサにより流入電流と回転角とを検出して、それぞれに期待通りのモータの流入電流および回転角が得られているか否かを確認することにより行われている。   Conventionally, when diagnosing the presence or absence of a failure due to such disconnection, a voltage is applied between the power terminals 1 and 2 of the DC motor, a required drive current is supplied, a rotor is rotated, and a current sensor and a rotation sensor Thus, the inflow current and the rotation angle are detected, and it is confirmed whether or not the inflow current and the rotation angle of the motor are obtained as expected.

他方、特許文献1(実開平5−20976号公報)には、DCモータにおける地絡故障の検出を可能にする「電動パワーステアリング装置」が開示されている。図9は、特許文献1に示されたモータ駆動回路を示す回路図である。図9のモータ駆動回路は、H−ブリッジ回路を備え、H−ブリッジ回路におけるNPNトランジスタでなる4つのスイッチング素子をパルス幅制御によりON又はOFFにし、DCモータ5の回転方向を制御するとともに、ONとOFFの時間幅の比率(デューティー比)により、回転力を制御している。   On the other hand, Patent Document 1 (Japanese Utility Model Laid-Open No. 5-20976) discloses an “electric power steering device” that enables detection of a ground fault in a DC motor. FIG. 9 is a circuit diagram showing a motor drive circuit disclosed in Patent Document 1. As shown in FIG. The motor drive circuit of FIG. 9 includes an H-bridge circuit, and four switching elements formed by NPN transistors in the H-bridge circuit are turned on or off by pulse width control to control the rotation direction of the DC motor 5 and to be turned on. The rotational force is controlled by the ratio of the time width and the OFF time width (duty ratio).

そのH−ブリッジ回路は、スイッチング素子として作用する電力用のNPNトランジスタ19,20,21及び22と、電流検出用抵抗23および24と、これら両電流検出用抵抗にそれぞれ対応する電流検出回路25および26とを備えて構成されており、電流供給電源としては、高電位電源Vhと低電位電源Vlが与えられている。この電動パワーステアリング装置においては、自動車の走行時に、所要の操舵制御作用に対応して、該装置に含まれる制御部(図9では図示されていない)から、操舵方向に対応するON-OFF制御信号105,106,107又は108が選択出力され。ON-OFF制御信号105,106,107又は108は、PWM信号であり、対応する電力用のNPNトランジスタ19,20,21又は22のベースにそれぞれ入力される。DCモータ5に流入するモータ駆動電流は、電流検出用抵抗23および24の電圧降下に比例するので、電流検出回路25及び26は電圧降下を計測し、電流検出信号109及び110として出力する。電流検出信号109及び110は、DCモータ5の駆動電流を表している。   The H-bridge circuit includes power NPN transistors 19, 20, 21, and 22 that act as switching elements, current detection resistors 23 and 24, and current detection circuits 25 and 25 that correspond to these current detection resistors, respectively. 26, and a high-potential power supply Vh and a low-potential power supply Vl are provided as current supply power supplies. In this electric power steering device, an ON-OFF control corresponding to a steering direction is performed from a control unit (not shown in FIG. 9) included in the device in response to a required steering control action when the vehicle is running. The signal 105, 106, 107 or 108 is selected and output. The ON-OFF control signal 105, 106, 107 or 108 is a PWM signal, and is input to the base of the corresponding NPN transistor 19, 20, 21 or 22 for power. Since the motor drive current flowing into the DC motor 5 is proportional to the voltage drop of the current detection resistors 23 and 24, the current detection circuits 25 and 26 measure the voltage drop and output it as current detection signals 109 and 110. The current detection signals 109 and 110 represent the drive current of the DC motor 5.

例えば、ON-OFF制御信号105および108をONレベルとし、またON-OFF制御信号106および107をOFFレベルとすることにより、NPNトランジスタ19および22がONとなり、NPNトランジスタ20および21がOFFとなって、DCモータ5が正方向に回転している際に、DCモータ5に流入する電流と、DCモータ5から流出する電流との間に差異がある場合には、前記制御部は、電流検出信号109および110の入力を受けて、上記の電流差異に基づきDCモータ5の地絡故障を検出する。このことは、DCモータ5が負方向に回転している場合の地絡故障についても同様であり、回転方向に関係なく、DCモータ5における地絡故障が制御部において検出される、即ち、特許文献1に記載の装置の例においては、DCモータ5の地絡故障の検出は、DCモータ5に所定の動作電流が供給され、DCモータ5の回転子が回転している電動操舵システムの稼動時において行われており、DCモータ5の回転停止時においては行われていない。
実開平5−20976号公報
For example, when the ON-OFF control signals 105 and 108 are turned ON and the ON-OFF control signals 106 and 107 are turned OFF, the NPN transistors 19 and 22 are turned ON and the NPN transistors 20 and 21 are turned OFF. When the DC motor 5 is rotating in the positive direction, if there is a difference between the current flowing into the DC motor 5 and the current flowing out from the DC motor 5, the control unit detects the current. In response to the input of the signals 109 and 110, a ground fault in the DC motor 5 is detected based on the current difference. This is the same for the ground fault when the DC motor 5 is rotating in the negative direction, and the ground fault in the DC motor 5 is detected by the control unit regardless of the rotational direction. In the example of the apparatus described in Document 1, detection of a ground fault in the DC motor 5 is performed by operating an electric steering system in which a predetermined operating current is supplied to the DC motor 5 and the rotor of the DC motor 5 is rotating. It is performed at the time, and is not performed when the rotation of the DC motor 5 is stopped.
Japanese Utility Model Publication No. 5-20976

上記特許文献1に示された従来のDCモータの故障検出方式においては、DCモータを回転状態に置いて故障検出を行っている。然しながら、自動車等の自走車においては、その走行前において、DCモータに関し、その都度、断線故障の有無を事前に診断しておくことが、爾後の走行時における安全確保のために必要である。自走車は、エンジンが起動されことにより走行可能となる。そして、自走車の電動操舵システムでは、自走車のエンジン起動時にDCモータに駆動電源が供給されるのが一般である。そこで、電動操舵システムのDCモータの故障は、自走車が走行可能なるエンジンの起動前、即ちDCモータに駆動電源が供給される前に検出できることが安全性の面で望ましい。   In the conventional DC motor failure detection method disclosed in Patent Document 1, failure detection is performed by placing the DC motor in a rotating state. However, in self-propelled vehicles such as automobiles, it is necessary for the DC motor to make a pre-diagnosis of the disconnection failure in advance each time before traveling to ensure safety during the subsequent driving. . The self-propelled vehicle can run when the engine is started. In an electric steering system for a self-propelled vehicle, drive power is generally supplied to a DC motor when the engine of the self-propelled vehicle is activated. Therefore, it is desirable from the viewpoint of safety that the failure of the DC motor of the electric steering system can be detected before the start of the engine in which the self-propelled vehicle can run, that is, before the drive power is supplied to the DC motor.

この要件を満たすためには、DCモータの停止状態においてDCモータの断線故障の有無の診断を行える故障検出方式が求められる。しかしながら、従来のDCモータの故障検出方式においては、DCモータの駆動電流路に直列に挿入した抵抗(例えば、図9の抵抗23,24)における電圧降下を測定し、駆動電流が正常値か否かを測定していたから、回転動作が停止した状態での断線故障の検出は不可能であった。このことは、従来のDCモータの故障検出方式では、自走車が走行可能になる前にDCモータの断線故障の有無の診断を行うことはできなかった。また、特許文献1記載の電動パワーステアリング装置では、回転停止時のDCモータの故障検出を実施することができないだけではなく、DCモータの断線故障の検出はできなかった。   In order to satisfy this requirement, a failure detection method capable of diagnosing the presence or absence of a disconnection failure of the DC motor when the DC motor is stopped is required. However, in the conventional DC motor failure detection method, a voltage drop in a resistor (for example, resistors 23 and 24 in FIG. 9) inserted in series in the DC motor drive current path is measured to determine whether the drive current is a normal value. Therefore, it was impossible to detect a disconnection failure when the rotational operation was stopped. This is because the conventional DC motor failure detection method cannot diagnose the presence or absence of a DC motor disconnection failure before the self-propelled vehicle can travel. In addition, the electric power steering device described in Patent Document 1 cannot detect a DC motor failure when rotation stops, and cannot detect a DC motor disconnection failure.

本発明の目的は、DCモータを回転状態とすることなく、断線故障の有無の検出を可能とするDCモータの故障検出方式を提供することにある。   An object of the present invention is to provide a failure detection method for a DC motor that can detect the presence or absence of a disconnection failure without turning the DC motor into a rotating state.

前述の課題を解決するために本発明は次の手段を提供する。   In order to solve the above-mentioned problems, the present invention provides the following means.

(1)高電位電源と低電位電源との間に第1及び第2のスイッチング素子を直列に接続するとともに、前記高電位電源と低電位電源との間に第3及び第4のスイッチング素子を直列に接続してなり、前記第1及び第2のスイッチング素子の接続点と前記第3及び第4のスイッチング素子の接続点との間に駆動対象のDCモータを接続するH−ブリッジ回路と、前記DCモータの片方の電源端子と前記高電位電源または低電位電源の内の一方の電源との間に接続された第1の微小電流検出回路と、前記DCモータの他方の電源端子と前記一方の電源との間に接続された第2の微小電流検出回路と、前記第1及び第2の微小電流検出回路の出力に基づき前記DCモータにおける前記両電源端子間の断線を検出する断線検出回路とを備え、
前記断線検出回路は、前記高電位電源または低電位電源の内の他方の電源に接続された2つのスイッチング素子の内の一方だけがONであり、他の3個のスイッチング素子がOFFである断線検出モードとしたときにおける前記出力に基づき、前記断線を検出する
ことを特徴とするDCモータの故障検出方式。
(1) First and second switching elements are connected in series between a high potential power supply and a low potential power supply, and third and fourth switching elements are connected between the high potential power supply and the low potential power supply. An H-bridge circuit connected in series and connecting a DC motor to be driven between a connection point of the first and second switching elements and a connection point of the third and fourth switching elements; A first minute current detection circuit connected between one power supply terminal of the DC motor and one of the high potential power supply and the low potential power supply; the other power supply terminal of the DC motor and the one And a disconnection detection circuit for detecting disconnection between the two power supply terminals in the DC motor based on outputs of the first and second minute current detection circuits. And
In the disconnection detection circuit, only one of two switching elements connected to the other power source of the high potential power source or the low potential power source is ON, and the other three switching elements are OFF. A failure detection method for a DC motor, wherein the disconnection is detected based on the output in the detection mode.

(2)前記断線検出モードにおいて、ONである前記スイッチング素子及び前記DCモータ並びに前記第1および第2の微小電流検出回路の内の一方が直列に接続された直列回路に流れる電流は、前記DCモータを回転させる最低電流より小さいことを特徴とする前記(1)に記載のDCモータの故障検出方式。   (2) In the disconnection detection mode, a current flowing through a series circuit in which one of the switching element, the DC motor, and the first and second minute current detection circuits that are ON is connected in series is the DC The failure detection method for a DC motor according to (1), wherein the current is smaller than a minimum current for rotating the motor.

(3)前記第1および第2の微小電流検出回路は、それぞれ高抵抗値の抵抗とフォトカプラとの直列回路を含んでなることを特徴とする前記(1)または(2)に記載のDCモータの故障検出方式。   (3) The DC according to (1) or (2), wherein each of the first and second minute current detection circuits includes a series circuit of a resistor having a high resistance value and a photocoupler. Motor failure detection method.

本発明では、高電位電源と低電位電源との差の電圧を受けて駆動されるDCモータの駆動電流路には何らの電流検出用素子を挿入することなく、DCモータの断線を検出する。駆動電流路に電流検出用素子を挿入する代わりに、本発明では、高電位電源または低電位電源の内の他方の電源に接続された2つのスイッチング素子の内の一方だけがONであり、他の3個のスイッチング素子がOFFである断線検出モードにおいて、第1及び第2の微小電流検出回路のうちの一方にDCモータを流れた電流がそのまま流れ込むように回路を構成することにより、DCモータに断線の有無がその電流の有無に1対1に対応するようにした。この構成の採用により、断線検出回路はDCモータの断線を確実に検出できる。   In the present invention, the disconnection of the DC motor is detected without inserting any current detection element into the drive current path of the DC motor driven by receiving the voltage difference between the high potential power source and the low potential power source. Instead of inserting a current detection element in the drive current path, in the present invention, only one of the two switching elements connected to the other power source of the high potential power source or the low potential power source is ON. In the disconnection detection mode in which the three switching elements are OFF, the circuit is configured such that the current that has flowed through the DC motor flows directly into one of the first and second minute current detection circuits. The presence or absence of disconnection corresponds to the presence or absence of the current on a one-to-one basis. By adopting this configuration, the disconnection detection circuit can reliably detect disconnection of the DC motor.

回転軸を回転させるDCモータの通常の作動時には、H−ブリッジ回路における2つのスイッチング素子がONになり、DCモータの駆動電流はその2つのONのスイッチング素子を流れる。駆動電流は、大電流(例えば、60アンペア)である。第1及び第2の微小電流検出回路は、そのONのスイッチング素子の一方又はこのスイッチング素子とDCモータとの直列回路に並列に接続される[後に実施の形態として挙げる図1の回路では、第1の微小電流検出回路(6)はスイッチング素子(4)とDCモータ(5)との直列回路に並列に接続され、第2の微小電流検出回路(7)はスイッチング素子(4)に並列に接続される。]。この回路構成の採用により、DCモータの通常の作動時および断線故障の検出時のいずれにおいても、第1及び第2の微小電流検出回路には大電流の駆動電流を流す必要がないので、第1及び第2の微小電流検出回路の内部抵抗を大きくし、第1及び第2の微小電流検出回路に流す電流を微小な値に制限しても差し支えない。DCモータの断線故障の検出時における第1及び第2の微小電流検出回路に流す電流の下限値は、DCモータの断線の有無を判断できる値であり、DCモータが回転可能な下限の駆動電流の1/1000程度、例えば数ミリアンペアである。DCモータの断線を検出するにはDCモータに電流を流す必要はあるが、本発明の方式による断線検出の際には、DCモータに流す電流は、DCモータの回転に必要な下限の駆動電流の1/1000程度で足りる。そこで、本発明によれば、DCモータを回転状態とすることなく、断線故障の有無の検出を可能とするDCモータの故障検出方式が提供できる。   During normal operation of the DC motor that rotates the rotating shaft, the two switching elements in the H-bridge circuit are turned on, and the driving current of the DC motor flows through the two ON switching elements. The drive current is a large current (for example, 60 amperes). The first and second minute current detection circuits are connected in parallel to one of the ON switching elements or a series circuit of this switching element and a DC motor [In the circuit of FIG. One minute current detection circuit (6) is connected in parallel to the series circuit of the switching element (4) and the DC motor (5), and the second minute current detection circuit (7) is parallel to the switching element (4). Connected. ]. By adopting this circuit configuration, it is not necessary to pass a large drive current through the first and second minute current detection circuits both during normal operation of the DC motor and when a disconnection failure is detected. It is possible to increase the internal resistance of the first and second minute current detection circuits and limit the current flowing through the first and second minute current detection circuits to a minute value. The lower limit value of the current flowing through the first and second minute current detection circuits at the time of detecting the disconnection failure of the DC motor is a value by which the presence or absence of the disconnection of the DC motor can be determined, and the lower limit drive current at which the DC motor can rotate 1 / 1,000, for example, several milliamperes. In order to detect the disconnection of the DC motor, it is necessary to pass a current to the DC motor. However, when the disconnection is detected by the method of the present invention, the current flowing to the DC motor is the lower limit drive current necessary for the rotation of the DC motor. About 1/1000 of that is enough. Therefore, according to the present invention, it is possible to provide a failure detection method for a DC motor that can detect the presence or absence of a disconnection failure without turning the DC motor into a rotating state.

次に、本発明の実施の形態について説明する。本発明であるDCモータの故障検出方式の理解を容易にするために、以下の説明は図面を参照して行う。以下に説明するDCモータの故障検出方式は、自動車等の自走車に搭載される電動操舵システムに操舵補助動力源として装備されたものである。本発明の実施の形態では、DCモータ5を回転させず、停止させたままDCモータ5の故障を検出する。   Next, an embodiment of the present invention will be described. In order to facilitate understanding of the DC motor failure detection method according to the present invention, the following description will be given with reference to the drawings. The DC motor failure detection method described below is provided as a steering assist power source in an electric steering system mounted on a self-propelled vehicle such as an automobile. In the embodiment of the present invention, a failure of the DC motor 5 is detected while the DC motor 5 is stopped without being rotated.

図1は、本発明の第1の実施形態を示すブロック図である。図1に示すDCモータの故障検出方式は、H−ブリッジ回路を形成するスイッチング素子1,2,3及び4と、DCモータ5の一方の電源端子と低電位電源Vlとの間に接続された微小電流検出回路6と、DCモータ5の他方の電源端子と低電位電源Vlとの間に接続された微小電流検出回路7と、微小電流検出回路6および7の出力に基づきDCモータ5の断線故障を検出する断線検出回路8とを備えて構成される。図5の表1及び表2は、図1のDCモータの故障検出方式の故障診断表である。図1並びに図5の表1および表2を参照し、本発明の第1の実施形態によりDCモータ5の断線故障を検出する方法を説明する。   FIG. 1 is a block diagram showing a first embodiment of the present invention. The DC motor failure detection method shown in FIG. 1 is connected between the switching elements 1, 2, 3 and 4 forming the H-bridge circuit, and one power supply terminal of the DC motor 5 and the low potential power supply Vl. Disconnection of the DC motor 5 based on the outputs of the minute current detection circuit 6, the minute current detection circuit 7 connected between the other power supply terminal of the DC motor 5 and the low potential power supply Vl, and the minute current detection circuits 6 and 7. And a disconnection detection circuit 8 for detecting a failure. Tables 1 and 2 in FIG. 5 are failure diagnosis tables of the failure detection method of the DC motor in FIG. A method for detecting a disconnection failure of the DC motor 5 according to the first embodiment of the present invention will be described with reference to FIGS.

スイッチング素子1,2,3及び4の抵抗値は、OFFのとき極めて大きく、ONのときはほぼゼロとなる。微小電流検出回路6及び7の内部抵抗は高い値に選択してある。微小電流検出回路6は、その高い内部抵抗に流れる微小電流が所定値以上のときは、微小電流検出信号105を低レベルの電圧信号LOとし、その高い内部抵抗に流れる微小電流が所定値以下のときは微小電流検出信号105を高レベルの電圧信号HIとする。同様に、微小電流検出回路7は、その高い内部抵抗に流れる微小電流が所定値以上のときは、微小電流検出信号106を低レベルの電圧信号LOとし、その高い内部抵抗に流れる微小電流が所定値以下のときは微小電流検出信号106を高レベルの電圧信号HIとする。   The resistance values of the switching elements 1, 2, 3 and 4 are extremely large when OFF, and are almost zero when ON. The internal resistances of the minute current detection circuits 6 and 7 are selected to be high values. The minute current detection circuit 6 uses the minute current detection signal 105 as a low-level voltage signal LO when the minute current flowing through the high internal resistance is equal to or greater than a predetermined value, and the minute current flowing through the high internal resistance is equal to or smaller than the predetermined value. In some cases, the minute current detection signal 105 is set to a high level voltage signal HI. Similarly, when the minute current flowing through the high internal resistance is equal to or greater than a predetermined value, the minute current detection circuit 7 sets the minute current detection signal 106 to the low level voltage signal LO, and the minute current flowing through the high internal resistance is predetermined. When the value is less than or equal to the value, the minute current detection signal 106 is set to a high level voltage signal HI.

ON-OFF制御信号101,102,103及び104は、電動操舵システムにおける補助動力制御回路(図示せず)から供給される。本発明の第1の実施の形態により回転停止時にDCモータ5の断線故障の有無を検出する方法には、ON-OFF制御信号101,102,103及び104をONレベルとするか、又はOFFレベルとするかに応じ、第1の断線検出方法(図5の表1の場合)と第2の断線検出方法(図5の表2の場合)とがある。第1の断線検出方法では、スイッチング素子1のON-OFF制御信号101だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号102,103および104は全てOFFレベルとした第1の断線検出モードとする。第2の断線検出方法では、スイッチング素子3のON-OFF制御信号103だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号101,102および104は全てOFFレベルとした第2の断線検出モードとする。   The ON-OFF control signals 101, 102, 103, and 104 are supplied from an auxiliary power control circuit (not shown) in the electric steering system. According to the first embodiment of the present invention, the method for detecting the presence or absence of a disconnection failure of the DC motor 5 at the time of rotation stop is performed by setting the ON-OFF control signals 101, 102, 103 and 104 to the ON level or the OFF level. There are a first disconnection detection method (in the case of Table 1 in FIG. 5) and a second disconnection detection method (in the case of Table 2 in FIG. 5). In the first disconnection detection method, only the ON-OFF control signal 101 of the switching element 1 is set to the ON level, and the ON-OFF control signals 102, 103, and 104 input to the other switching elements are all set to the OFF level. The disconnection detection mode is set. In the second disconnection detection method, the second ON / OFF control signal 103 of the switching element 3 is set to the ON level, and the ON / OFF control signals 101, 102 and 104 input to the other switching elements are all set to the OFF level. The disconnection detection mode is set.

まず、その第1の断線検出方法について説明する。   First, the first disconnection detection method will be described.

第1の断線検出方法では、スイッチング素子1に対してONレベルのON-OFF制御信号101が入力され、その他のスイッチング素子2,3及び4に対しては、OFFレベルのON-OFF制御信号102,103及び104がそれぞれ入力される。そこで、第1の断線検出方法の実行時には、スイッチング素子1はONとなり、他のスイッチング素子は全てOFFという第1の断線検出モードなる(図5の表1)。H−ブリッジ回路には、高電位電源Vhと低電位電源Vlとの差の電圧(Vh−Vl)が印加される。電圧(Vh−Vl)により流れる電流の経路としては第1電流経路及び第2の電流経路がある。第1の電流経路はスイッチング素子1および微小電流検出回路6を経由し、第2の電流経路はスイッチング素子1、DCモータ5および微小電流検出回路7を経由する。   In the first disconnection detection method, an ON level ON-OFF control signal 101 is input to the switching element 1, and an OFF level ON-OFF control signal 102 is input to the other switching elements 2, 3, and 4. , 103 and 104 are respectively input. Therefore, when the first disconnection detection method is executed, the switching element 1 is turned on and the other switching elements are all in the first disconnection detection mode (Table 1 in FIG. 5). The difference voltage (Vh−Vl) between the high potential power source Vh and the low potential power source Vl is applied to the H-bridge circuit. There are a first current path and a second current path as paths of current flowing by the voltage (Vh−Vl). The first current path passes through the switching element 1 and the minute current detection circuit 6, and the second current path passes through the switching element 1, the DC motor 5, and the minute current detection circuit 7.

DCモータ5に断線がないとき、DCモータ5の内部抵抗は微小電流検出回路6及び7の内部抵抗に比べて十分に小さく、無視できる。いま、スイッチング素子1はONであり、その内部抵抗は極小さい。そこで、微小電流検出回路6には前記の第1の電流経路により(Vh−Vl)の電圧が印加される。また、微小電流検出回路7には前記の第2の電流経路により、やはり(Vh−Vl)の電圧が印加される。微小電流検出回路6及び7の内部抵抗は高い値に設定してあり、電圧(Vh−Vl)が印加されたとき、微小電流検出回路6又は7に流れる電流は、例えば数ミリアンペア程度という微小な値である。   When the DC motor 5 is not disconnected, the internal resistance of the DC motor 5 is sufficiently smaller than the internal resistance of the minute current detection circuits 6 and 7 and can be ignored. Now, the switching element 1 is ON and its internal resistance is extremely small. Therefore, a voltage of (Vh−Vl) is applied to the minute current detection circuit 6 through the first current path. The minute current detection circuit 7 is also applied with a voltage of (Vh−Vl) through the second current path. The internal resistance of the minute current detection circuits 6 and 7 is set to a high value, and when a voltage (Vh−Vl) is applied, the current flowing through the minute current detection circuit 6 or 7 is as small as, for example, several milliamperes. Value.

DCモータ5に断線がない場合には、第1の電流経路には、微小電流検出回路6の抵抗値により規定された前記の微小電流が流れる。微小電流検出回路6の出力の微小電流検出信号105は、電圧信号であり、該微小電流に対応するLOレベルの電圧値である。いま、DCモータ5に断線障害が無いので、前記第2の電流経路には、微小電流検出回路7の抵抗値により規定された、DCモータ5を回転させることのない微小電流が流れる。微小電流検出回路7は、該微小電流に対応するLOレベル(電圧)の微小電流検出信号106を出力する。   When the DC motor 5 is not disconnected, the minute current defined by the resistance value of the minute current detection circuit 6 flows through the first current path. The minute current detection signal 105 output from the minute current detection circuit 6 is a voltage signal, and is a LO level voltage value corresponding to the minute current. Since there is no disconnection failure in the DC motor 5 now, a minute current that does not rotate the DC motor 5 defined by the resistance value of the minute current detection circuit 7 flows through the second current path. The minute current detection circuit 7 outputs a minute current detection signal 106 having an LO level (voltage) corresponding to the minute current.

断線検出回路8は、これらのLOレベルの微小電流検出信号105及び106の入力を受けて、図5の表1の故障診断表を参照し、DCモータ5には断線が存在せず正常であるものと診断する。表1の故障診断表は、予め断線検出回路8のROMに記録されている。また、断線検出回路8は、表1の故障診断表を参照し、スイッチング素子1自体も断線がなく正常であるとの診断を、DCモータ5の診断と同時に行う(表1参照)。   The disconnection detection circuit 8 receives these LO level minute current detection signals 105 and 106 and refers to the failure diagnosis table of Table 1 in FIG. 5, and the DC motor 5 is normal with no disconnection. Diagnose things. The failure diagnosis table of Table 1 is recorded in advance in the ROM of the disconnection detection circuit 8. Further, the disconnection detection circuit 8 refers to the failure diagnosis table of Table 1 and performs a diagnosis that the switching element 1 itself is normal without disconnection simultaneously with the diagnosis of the DC motor 5 (see Table 1).

次に、DCモータ5に断線障害が存在する場合について説明する。このとき、DCモータ5が断線しているので、電圧(Vh−Vl)により流れる電流の経路としは、スイッチング素子1および微小電流検出回路6を経由する第1の電流経路だけである。従って、当該電流経路には、微小電流検出回路6の抵抗値により規定される微小電流が流れ、微小電流検出回路6は、該微小電流に対応するLOレベルの検出信号105を出力する。他方、第2の電流経路の微小電流検出回路7には電流が流れないので、微小電流検出回路7は流入電流ゼロに対応するHIレベルの微小電流検出信号106を出力する。断線検出回路8は、これらのLOレベルの微小電流検出信号105とHIレベルの微小電流検出信号106の入力を受けて、図5の表1の故障診断表を参照し、DCモータ5には断線故障があると診断する。   Next, a case where a disconnection failure exists in the DC motor 5 will be described. At this time, since the DC motor 5 is disconnected, the current path that flows by the voltage (Vh−Vl) is only the first current path that passes through the switching element 1 and the minute current detection circuit 6. Therefore, a minute current defined by the resistance value of the minute current detection circuit 6 flows through the current path, and the minute current detection circuit 6 outputs a detection signal 105 of LO level corresponding to the minute current. On the other hand, since no current flows through the minute current detection circuit 7 in the second current path, the minute current detection circuit 7 outputs a HI level minute current detection signal 106 corresponding to zero inflow current. The disconnection detection circuit 8 receives the LO level minute current detection signal 105 and the HI level minute current detection signal 106 and refers to the failure diagnosis table of Table 1 in FIG. Diagnose a failure.

もし、断線検出回路8にHIレベルの微小電流検出信号105及びHIレベルの微小電流検出信号106が入力されたときは、断線検出回路8はスイッチング素子1に断線障害ありと診断する(表1参照)。   If the HI level minute current detection signal 105 and the HI level minute current detection signal 106 are input to the disconnection detection circuit 8, the disconnection detection circuit 8 diagnoses that the switching element 1 has a disconnection failure (see Table 1). ).

次に、第2の断線検出方法について説明する。第2の断線検出方法では、前述のとおり、スイッチング素子3のON-OFF制御信号103だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号101,102および104は全てOFFレベルとする。   Next, a second disconnection detection method will be described. In the second disconnection detection method, as described above, only the ON-OFF control signal 103 of the switching element 3 is set to the ON level, and the ON-OFF control signals 101, 102, and 104 input to the other switching elements are all set to the OFF level. To do.

第2の断線検出方法では、スイッチング素子3に対してONレベルのON-OFF制御信号103が入力され、その他のスイッチング素子1,2,及び4に対しては、OFFレベルのON-OFF制御信号101,102及び104がそれぞれ入力される。そこで、第2の断線検出方法の実行時には、スイッチング素子3はONとなり、他のスイッチング素子は全てOFFという第2の断線検出モードとなる(図5の表2)。高電位電源Vhと低電位電源Vlとの差の電圧(Vh−Vl)がH−ブリッジ回路に印加され、この電圧(Vh−Vl)により流れる電流の経路としは第1電流経路及び第2の電流経路がある。第1の電流経路はスイッチング素子3および微小電流検出回路7を経由し、第2の電流経路はスイッチング素子3、DCモータ5および微小電流検出回路6を経由する。   In the second disconnection detection method, an ON level ON-OFF control signal 103 is input to the switching element 3, and an OFF level ON-OFF control signal is input to the other switching elements 1, 2, and 4. 101, 102, and 104 are input, respectively. Therefore, when the second disconnection detection method is executed, the switching element 3 is turned on and the other switching elements are all in the second disconnection detection mode (Table 2 in FIG. 5). A difference voltage (Vh−Vl) between the high potential power supply Vh and the low potential power supply Vl is applied to the H-bridge circuit, and the current paths that flow by this voltage (Vh−Vl) are the first current path and the second current path. There is a current path. The first current path passes through the switching element 3 and the minute current detection circuit 7, and the second current path passes through the switching element 3, the DC motor 5, and the minute current detection circuit 6.

第2の断線検出方法における以下の作動は、ONのスイッチング素子が符号3の素子であり、OFFのスイッチング素子が符号1,2及び4の素子である点が前述の第1の断線検出方法と相違するだけであり、その他は同様であるから、詳細な説明は省略する。断線検出回路8は、図5の表2に示す故障診断表に則って、DCモータ5の断線及びスイッチング素子3の断線の有無を診断する。   The following operation in the second disconnection detection method is the same as the first disconnection detection method described above in that the ON switching element is the element denoted by reference numeral 3 and the OFF switching elements are the elements denoted by reference numerals 1, 2, and 4. Since only the difference is the same and the others are the same, detailed description will be omitted. The disconnection detection circuit 8 diagnoses the presence or absence of disconnection of the DC motor 5 and disconnection of the switching element 3 in accordance with the failure diagnosis table shown in Table 2 of FIG.

次に、図2並びに図の表3および表4を参照して、本発明の第2の実施形態を説明する。図2は、本発明の第2の実施形態を示すブロック図である。図2に示すDCモータの故障検出方式は、微小電流検出回路6がDCモータ5の一方の電源端子と高電位電源Vhとの間に接続され、微小電流検出回路7がDCモータ5の他方の電源端子と高電位電源Vhとの間に接続されている点で図1の第1の実施の形態と相違し、その他の点では図1の第1の実施の形態と同様の構成であり、類似に作動する。図6の表1及び表2は、図1のDCモータの故障検出方式の故障診断表である。図2並びに図6の表3および表4を参照し、本発明の第2の実施形態によりDCモータ5の断線故障を検出する方法を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. 2 and Tables 3 and 4 in the figure. FIG. 2 is a block diagram showing a second embodiment of the present invention. In the DC motor failure detection method shown in FIG. 2, the minute current detection circuit 6 is connected between one power supply terminal of the DC motor 5 and the high potential power supply Vh, and the minute current detection circuit 7 is connected to the other of the DC motor 5. 1 is different from the first embodiment in FIG. 1 in that it is connected between the power supply terminal and the high-potential power supply Vh, and in other respects, it has the same configuration as that of the first embodiment in FIG. Works similarly. Tables 1 and 2 in FIG. 6 are failure diagnosis tables of the failure detection method of the DC motor in FIG. A method for detecting a disconnection failure of the DC motor 5 according to the second embodiment of the present invention will be described with reference to FIGS.

図2の第2の実施形態により回転停止時にDCモータ5の断線故障の有無を検出する方法には、ON-制御信号101,102,103及び104をONレベルとするか、又はOFFレベルとするかに応じ、第1の断線検出方法(図6の表3の場合)と第2の断線検出方法(図6の表4の場合)とがある。第1の断線検出方法では、スイッチング素子1のON-OFF制御信号102だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号1014103および104は全てOFFレベルとする。第2の断線検出方法では、スイッチング素子3のON-OFF制御信号104だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号101,102及び103は全てOFFレベルとする。   According to the second embodiment of FIG. 2, the ON-control signals 101, 102, 103, and 104 are set to the ON level or the OFF level in order to detect the presence or absence of the disconnection failure of the DC motor 5 when the rotation is stopped. Accordingly, there is a first disconnection detection method (in the case of Table 3 in FIG. 6) and a second disconnection detection method (in the case of Table 4 in FIG. 6). In the first disconnection detection method, only the ON-OFF control signal 102 of the switching element 1 is set to the ON level, and all the ON-OFF control signals 1014103 and 104 input to the other switching elements are set to the OFF level. In the second disconnection detection method, only the ON-OFF control signal 104 of the switching element 3 is set to the ON level, and all of the ON-OFF control signals 101, 102, and 103 input to the other switching elements are set to the OFF level.

まず、その第1の断線検出方法について説明する。   First, the first disconnection detection method will be described.

第1の断線検出方法では、スイッチング素子2に対してONレベルのON-OFF制御信号102が入力され、その他のスイッチング素子1,3及び4に対しては、OFFレベルのON-OFF制御信号101,103及び104がそれぞれ入力される。そこで、第1の断線検出方法の実行時には、スイッチング素子2はONとなり、他のスイッチング素子は全てOFFとなる(図6の表3)。H−ブリッジ回路には、高電位電源Vhと低電位電源Vlとの差の電圧(Vh−Vl)が印加される。電圧(Vh−Vl)により流れる電流の経路としは第1電流経路及び第2の電流経路がある。第1の電流経路は微小電流検出回路6およびスイッチング素子2を経由し、第2の電流経路は、微小電流検出回路7、DCモータ5及びスイッチング素子2を経由する。   In the first disconnection detection method, the ON level ON-OFF control signal 102 is input to the switching element 2, and the OFF level ON-OFF control signal 101 is input to the other switching elements 1, 3, and 4. , 103 and 104 are respectively input. Therefore, when the first disconnection detection method is executed, the switching element 2 is turned on and all other switching elements are turned off (Table 3 in FIG. 6). The difference voltage (Vh−Vl) between the high potential power source Vh and the low potential power source Vl is applied to the H-bridge circuit. There are a first current path and a second current path as a path of a current flowing by the voltage (Vh−Vl). The first current path passes through the minute current detection circuit 6 and the switching element 2, and the second current path passes through the minute current detection circuit 7, the DC motor 5, and the switching element 2.

DCモータ5に断線がないときは次のように作動する。いま、スイッチング素子2はONである。そこで、微小電流検出回路6には前記の第1の電流経路により(Vh−Vl)の電圧が印加される。また、微小電流検出回路7には前記の第2の電流経路により、やはり(Vh−Vl)の電圧が印加される。第1の電流経路には、微小電流検出回路6の抵抗値により規定された前記の微小電流が流れる。微小電流検出回路6の出力の微小電流検出信号105は、該微小電流に対応するLOレベルの電圧値である。いま、DCモータ5に断線障害が無いので、前記第2の電流経路には、微小電流検出回路7の抵抗値により規定された、DCモータ5を回転させることのない微小電流が流れる。微小電流検出回路7は、該微小電流に対応するLOレベル(電圧)の微小電流検出信号106を出力する。   When the DC motor 5 is not disconnected, the operation is as follows. Now, the switching element 2 is ON. Therefore, a voltage of (Vh−Vl) is applied to the minute current detection circuit 6 through the first current path. The minute current detection circuit 7 is also applied with a voltage of (Vh−Vl) through the second current path. The minute current defined by the resistance value of the minute current detection circuit 6 flows through the first current path. The minute current detection signal 105 output from the minute current detection circuit 6 is a LO level voltage value corresponding to the minute current. Since there is no disconnection failure in the DC motor 5 now, a minute current that does not rotate the DC motor 5 defined by the resistance value of the minute current detection circuit 7 flows through the second current path. The minute current detection circuit 7 outputs a minute current detection signal 106 having an LO level (voltage) corresponding to the minute current.

断線検出回路8は、これらのLOレベルの微小電流検出信号105及び106の入力を受けて、図6の表3の故障診断表を参照し、DCモータ5には断線が存在せず正常であるものと診断する。表3の故障診断表は、予め断線検出回路8のROMに記録されている。また、断線検出回路8は、表3の故障診断表を参照し、スイッチング素子2自体も断線がなく正常であるとの診断を、DCモータ5の診断と同時に行う(表3参照)。   The disconnection detection circuit 8 receives these LO level minute current detection signals 105 and 106 and refers to the failure diagnosis table of Table 3 in FIG. 6, and the DC motor 5 is normal with no disconnection. Diagnose things. The failure diagnosis table of Table 3 is recorded in advance in the ROM of the disconnection detection circuit 8. In addition, the disconnection detection circuit 8 refers to the failure diagnosis table in Table 3 and performs a diagnosis that the switching element 2 itself is normal without disconnection simultaneously with the diagnosis of the DC motor 5 (see Table 3).

次に、DCモータ5に断線障害が存在する場合について説明する。このとき、DCモータ5が断線しているので、電圧(Vh−Vl)により流れる電流の経路としは、微小電流検出回路6およびスイッチング素子2を経由する第1の電流経路だけである。従って、当該電流経路には、微小電流検出回路6の抵抗値により規定される微小電流が流れ、微小電流検出回路6は、該微小電流に対応するLOレベルの検出信号105を出力する。他方、第2の電流経路の微小電流検出回路7には電流が流れないので、微小電流検出回路7は流入電流ゼロに対応するHIレベルの微小電流検出信号106を出力する。断線検出回路8は、これらのLOレベルの微小電流検出信号105とHIレベルの微小電流検出信号106の入力を受けて、図6の表3の故障診断表を参照し、DCモータ5には断線故障があると診断する。   Next, a case where a disconnection failure exists in the DC motor 5 will be described. At this time, since the DC motor 5 is disconnected, the current path that flows by the voltage (Vh−Vl) is only the first current path that passes through the minute current detection circuit 6 and the switching element 2. Therefore, a minute current defined by the resistance value of the minute current detection circuit 6 flows through the current path, and the minute current detection circuit 6 outputs a detection signal 105 of LO level corresponding to the minute current. On the other hand, since no current flows through the minute current detection circuit 7 in the second current path, the minute current detection circuit 7 outputs a HI level minute current detection signal 106 corresponding to zero inflow current. The disconnection detection circuit 8 receives the LO level minute current detection signal 105 and the HI level minute current detection signal 106 and refers to the failure diagnosis table of Table 3 in FIG. Diagnose a failure.

もし、断線検出回路8にHIレベルの微小電流検出信号105及びHIレベルの微小電流検出信号106が入力されたときは、断線検出回路8はスイッチング素子2に断線障害ありと診断する(表3参照)。   If the HI level minute current detection signal 105 and the HI level minute current detection signal 106 are input to the disconnection detection circuit 8, the disconnection detection circuit 8 diagnoses that the switching element 2 has a disconnection failure (see Table 3). ).

次に、第2の断線検出方法について説明する。第2の断線検出方法では、前述のとおり、スイッチング素子4のON-OFF制御信号104だけをONレベルとし、他のスイッチング素子に入力するON-OFF制御信号101,102及び103は全てOFFレベルとする。   Next, a second disconnection detection method will be described. In the second disconnection detection method, as described above, only the ON-OFF control signal 104 of the switching element 4 is set to the ON level, and the ON-OFF control signals 101, 102, and 103 input to the other switching elements are all set to the OFF level. To do.

第2の断線検出方法では、スイッチング素子4に対してONレベルのON-OFF制御信号104が入力され、その他のスイッチング素子1,2,及び3に対しては、OFFレベルのON-OFF制御信号101,102及び103がそれぞれ入力される。そこで、第2の断線検出方法の実行時には、スイッチング素子4はONとなり、他のスイッチング素子は全てOFFとなる(図6の表4)。高電位電源Vhと低電位電源Vlとの差の電圧(Vh−Vl)がH−ブリッジ回路に印加され、この電圧(Vh−Vl)により流れる電流の経路としは第1の電流経路及び第2の電流経路がある。第1の電流経路は微小電流検出回路7およびスイッチング素子4を経由し、第2の電流経路は、微小電流検出回路6、DCモータ5及びスイッチング素子4を経由する。   In the second disconnection detection method, an ON-ON control signal 104 of ON level is input to the switching element 4, and an OFF-level ON-OFF control signal is input to the other switching elements 1, 2, and 3. 101, 102, and 103 are input, respectively. Therefore, when the second disconnection detection method is executed, the switching element 4 is turned on and all other switching elements are turned off (Table 4 in FIG. 6). A difference voltage (Vh−Vl) between the high potential power supply Vh and the low potential power supply Vl is applied to the H-bridge circuit, and the current paths that flow by this voltage (Vh−Vl) are the first current path and the second current path. There are current paths. The first current path passes through the minute current detection circuit 7 and the switching element 4, and the second current path passes through the minute current detection circuit 6, the DC motor 5, and the switching element 4.

第2の断線検出方法における以下の作動は、ONのスイッチング素子が符号4の素子であり、OFFのスイッチング素子が符号1,2及び3の素子である点が前述の第1の断線検出方法と相違するだけであり、その他は同様でるから、詳細な説明は省略する。断線検出回路8は、図6の表4に示す故障診断表に則って、DCモータ5の断線及びスイッチング素子4の断線の有無を診断する。   The following operation in the second disconnection detection method is the same as the first disconnection detection method described above in that the ON switching element is the element 4 and the OFF switching element is the elements 1, 2 and 3. Since only the differences are the same and the others are the same, detailed description will be omitted. The disconnection detection circuit 8 diagnoses the disconnection of the DC motor 5 and the disconnection of the switching element 4 according to the failure diagnosis table shown in Table 4 of FIG.

なお、本発明の第1の実施の形態である図1のDCモータの故障検出方式において、DCモータ5を回転させる場合には、ON-OFF制御信号101,102,103及び104によりスイッチング素子1,2,3及び4を次のように制御する。DCモータ5を正方向に回転制御するときは、図1において、スイッチング素子1及び4にONレベルのON-OFF制御信号101及び104をそれぞれ入力し、スイッチング素子2及び3にOFFレベルのON-OFF制御信号102及び103をそれぞれ入力する。また、DCモータ5を負方向に回転制御するときは、スイッチング素子2及び3に対してONレベルのON-OFF制御信号102及び103をそれぞれ入力し、スイッチング素子1及び4にOFFレベルのON-OFF制御信号101及び104をそれぞれ入力する。また、DCモータ5のトルクは、PWM信号であるON-OFF制御信号101,102,103及び104のデューティー比で制御する。本発明の第2の実施の形態である図2のDCモータの故障検出方式においても、DCモータ5の回転制御は図1のDCモータの故障検出方式におけると回転制御と同様に行われる。   In the DC motor failure detection system of FIG. 1 according to the first embodiment of the present invention, when the DC motor 5 is rotated, the switching element 1 is turned on by the ON-OFF control signals 101, 102, 103, and 104. , 2, 3 and 4 are controlled as follows. To control the rotation of the DC motor 5 in the forward direction, in FIG. 1, ON-OFF control signals 101 and 104 of ON level are input to the switching elements 1 and 4, respectively, and ON-level of OFF level is input to the switching elements 2 and 3. OFF control signals 102 and 103 are input, respectively. When the DC motor 5 is controlled to rotate in the negative direction, ON-OFF control signals 102 and 103 of ON level are input to the switching elements 2 and 3, respectively, and the ON-level of OFF level is applied to the switching elements 1 and 4, respectively. OFF control signals 101 and 104 are input, respectively. Further, the torque of the DC motor 5 is controlled by the duty ratio of ON-OFF control signals 101, 102, 103 and 104 which are PWM signals. Also in the DC motor failure detection method of FIG. 2 which is the second embodiment of the present invention, the rotation control of the DC motor 5 is performed in the same manner as the rotation control in the DC motor failure detection method of FIG.

図3は、本発明の第1の実施の形態(図1)を一層具体化した本発明の第1の実施例を示す回路図である。図7の表5及び6は、図3の実施例に適用する故障診断表であり、図5の表1及び2にそれぞれ対応するものである。   FIG. 3 is a circuit diagram showing a first example of the present invention which further embodies the first embodiment (FIG. 1) of the present invention. Tables 5 and 6 in FIG. 7 are failure diagnosis tables applied to the embodiment in FIG. 3 and correspond to Tables 1 and 2 in FIG. 5, respectively.

図3の実施例では、図1のスイッチング素子1,2,3及び4はNMOSトランジスタ11,12,13及び14でそれぞれ実現され、微小電流検出回路6はフォトカプラ15及び抵抗16並びに抵抗37で構成し、微小電流検出回路17はフォトカプラ17及び抵抗18並びに抵抗38で構成している。フォトカプラは、発光ダイオード(LED)とフォトトランジスタとでなる。発光ダイオードは、電流に応じた光を出力し、フォトトランジスタはその光を受け、光の強さに応じた導電性を示す。発光ダイオードとフォトトランジスタとは互いに電気的に絶縁されている。フォトカプラ15における発光ダイオードは抵抗16に直列に接続されている。フォトカプラ15におけるフォトトランジスタの片端子は抵抗37を介して電源Vhiに接続され、そのフォトトランジスタの他端子は電源Vloに接続されている。また、フォトカプラ17における発光ダイオードは抵抗18に直列に接続されている。フォトカプラ17におけるフォトトランジスタの片端子は抵抗38を介して電源Vhiに接続され、そのフォトトランジスタの他端子は電源Vloに接続されている。   In the embodiment of FIG. 3, the switching elements 1, 2, 3, and 4 of FIG. 1 are realized by NMOS transistors 11, 12, 13, and 14, respectively, and the minute current detection circuit 6 is composed of a photocoupler 15, a resistor 16, and a resistor 37. The minute current detection circuit 17 includes a photocoupler 17, a resistor 18, and a resistor 38. The photocoupler includes a light emitting diode (LED) and a phototransistor. The light emitting diode outputs light corresponding to the current, and the phototransistor receives the light and exhibits conductivity according to the intensity of the light. The light emitting diode and the phototransistor are electrically insulated from each other. The light emitting diode in the photocoupler 15 is connected to the resistor 16 in series. One terminal of the phototransistor in the photocoupler 15 is connected to the power supply Vhi through the resistor 37, and the other terminal of the phototransistor is connected to the power supply Vlo. The light emitting diode in the photocoupler 17 is connected in series with the resistor 18. One terminal of the phototransistor in the photocoupler 17 is connected to the power supply Vhi through the resistor 38, and the other terminal of the phototransistor is connected to the power supply Vlo.

図3において、電位Vhは12ボルトであり、電位Vlは接地電位であり、電圧(Vh−Vl)は12ボルトである。抵抗16及び18は、それぞれ微小電流検出回路6及び7の内部抵抗であり、ここでは4キロオームである。Vh−Vl=12ボルトの電圧が印加されたときに抵抗16及び18に流れる電流は、ここでは3ミリアンペアという低い値である。このような微小電流をDCモータ5に流しても、DCモータ5は回転しないから、本実施例では、DCモータ5の回転子を回転させることなく、DCモータ5の断線故障を検出できる。   In FIG. 3, the potential Vh is 12 volts, the potential Vl is the ground potential, and the voltage (Vh−Vl) is 12 volts. The resistors 16 and 18 are internal resistances of the minute current detection circuits 6 and 7, respectively, and are 4 kilohms here. The current flowing through the resistors 16 and 18 when a voltage of Vh−Vl = 12 volts is applied is a low value of 3 milliamps here. Even if such a small current is supplied to the DC motor 5, the DC motor 5 does not rotate. Therefore, in this embodiment, it is possible to detect a disconnection failure of the DC motor 5 without rotating the rotor of the DC motor 5.

図3の実施例では、抵抗16,18に流れる電流をフォトカプラ15,17で検出している。NMOSトランジスタ11,12,13及び14並びにDCモータ5でなる回路は、大電流(例えば60アンペア)が流れる、いわゆるパワー部である。DCモータ5には整流子があるから、パワー部による電磁雑音が不可避である。他方、断線検出回路8は、微小電流検出信号105,106がLOレベル又はHIレベルの内のどちらであるかを判断し、即ち信号105,106を論理値信号として扱い、図7の故障診断表を真理値表として論理判断をする論理回路であり、半導体集積回路でなる。そこで、断線検出回路8は、電磁ノイズによる雑音に敏感であり、雑音により論理演算の誤りを起こし易い。しかしながら、この図3の実施例では、フォトカプラ15,17が電磁ノイズによる雑音を遮断するから、断線検出回路8における誤診断が防止できる。   In the embodiment of FIG. 3, currents flowing through the resistors 16 and 18 are detected by the photocouplers 15 and 17. The circuit composed of the NMOS transistors 11, 12, 13 and 14 and the DC motor 5 is a so-called power section through which a large current (for example, 60 amperes) flows. Since the DC motor 5 has a commutator, electromagnetic noise due to the power unit is inevitable. On the other hand, the disconnection detection circuit 8 determines whether the minute current detection signals 105 and 106 are either the LO level or the HI level, that is, treats the signals 105 and 106 as logic value signals, and the failure diagnosis table of FIG. Is a logic circuit that makes a logical decision using a truth table, and is made of a semiconductor integrated circuit. Therefore, the disconnection detection circuit 8 is sensitive to noise caused by electromagnetic noise, and is liable to cause a logical operation error due to the noise. However, in the embodiment of FIG. 3, since the photocouplers 15 and 17 block noise due to electromagnetic noise, erroneous diagnosis in the disconnection detection circuit 8 can be prevented.

図4は、本発明の第2の実施の形態(図2)を一層具体化した本発明の第2の実施例を示す回路図である。図8の表7及び8は、図4の実施例に適用する故障診断表であり、図6の表3及び4にそれぞれ対応するものである。   FIG. 4 is a circuit diagram showing a second example of the present invention which further embodies the second embodiment (FIG. 2) of the present invention. Tables 7 and 8 in FIG. 8 are failure diagnosis tables applied to the embodiment in FIG. 4 and correspond to Tables 3 and 4 in FIG. 6, respectively.

図4の実施例では、図2のスイッチング素子1,2,3及び4はNMOSトランジスタ11,12,13及び14でそれぞれ実現され、微小電流検出回路6はフォトカプラ15及び抵抗16並びに抵抗37で構成し、微小電流検出回路17はフォトカプラ17及び抵抗18並びに抵抗38で構成し、フォトカプラ15の片端を抵抗37を介して電源Vhiに接続し、フォトカプラ15の他端を電源Vloに接続し、また、フォトカプラ17の片端を抵抗38を介して電源Vhiに接続し、フォトカプラ17の他端を電源Vloに接続している。図3の本発明の第1の実施例が図1の本発明の第1の実施の形態に対応するのと全く同様に、図4の本発明の第2の実施例は図2の本発明の第2の実施の形態に対応するので、図4の実施例の詳しい作動説明は省略する。   In the embodiment of FIG. 4, the switching elements 1, 2, 3 and 4 of FIG. 2 are realized by NMOS transistors 11, 12, 13 and 14, respectively, and the minute current detection circuit 6 is by a photocoupler 15, a resistor 16 and a resistor 37. The minute current detection circuit 17 is composed of a photocoupler 17, a resistor 18, and a resistor 38, one end of the photocoupler 15 is connected to the power source Vhi through the resistor 37, and the other end of the photocoupler 15 is connected to the power source Vlo. In addition, one end of the photocoupler 17 is connected to the power source Vhi through the resistor 38, and the other end of the photocoupler 17 is connected to the power source Vlo. Just as the first embodiment of the present invention in FIG. 3 corresponds to the first embodiment of the present invention in FIG. 1, the second embodiment of the present invention in FIG. Therefore, the detailed operation description of the example of FIG. 4 is omitted.

また、図4の実施例でも、フォトカプラ15,17が電磁ノイズによる雑音を遮断するから、断線検出回路8における誤診断が防止できることは、図3の実施例について述べたところと同じである。   Also in the embodiment of FIG. 4, since the photocouplers 15 and 17 block noise due to electromagnetic noise, the erroneous diagnosis in the disconnection detection circuit 8 can be prevented as in the case of the embodiment of FIG.

なお、以上に実施の形態および実施例を挙げ、本発明を詳しく具体的に説明したが、本発明がこれらの例に限定されるものではないことは勿論である。例えば、図3及び図4に示した本発明の実施例では、スイッチング素子としてNMOSトランジスタを例示したが、本発明において使用するスイッチング素子はNMOSトランジスタに限られず、例えばバイポーラトランジスタでも差し支えない。   Although the present invention has been described in detail with reference to the embodiments and examples, it is needless to say that the present invention is not limited to these examples. For example, in the embodiments of the present invention shown in FIGS. 3 and 4, an NMOS transistor is exemplified as the switching element. However, the switching element used in the present invention is not limited to the NMOS transistor, and may be a bipolar transistor, for example.

本発明の第1の実施形態を示すブロック図である。It is a block diagram which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示すブロック図である。It is a block diagram which shows the 2nd Embodiment of this invention. 図1の本発明の第1の実施形態を一層具体化した本発明の第1の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a first example of the present invention, which further embodies the first embodiment of the present invention of FIG. 1. 図2の本発明の第2の実施形態を一層具体化した本発明の第2の実施例を示す回路図である。FIG. 3 is a circuit diagram showing a second example of the present invention, which further embodies the second embodiment of the present invention of FIG. 2. 図1の本発明の第1の実施形態に適用する故障診断表を示す図である。It is a figure which shows the failure diagnosis table applied to the 1st Embodiment of this invention of FIG. 図2の本発明の第2の実施形態に適用する故障診断表を示す図である。It is a figure which shows the failure-diagnosis table | surface applied to the 2nd Embodiment of this invention of FIG. 図3の本発明の第1の実施例に適用する故障診断表を示す図である。It is a figure which shows the failure diagnosis table | surface applied to the 1st Example of this invention of FIG. 図4の本発明の第2の実施例に適用する故障診断表を示す図である。It is a figure which shows the failure diagnosis table | surface applied to the 2nd Example of this invention of FIG. 特許文献1に記載された従来のDCモータの故障検出方式を示す回路図である。It is a circuit diagram which shows the failure detection system of the conventional DC motor described in patent document 1. FIG. 界磁巻線と電機子巻線との接続形式により分類した各種DCモータの回路図を示す図である。It is a figure which shows the circuit diagram of the various DC motor classified according to the connection type of a field winding and an armature winding.

符号の説明Explanation of symbols

1〜4 スイッチング素子
5 DCモータ
6,7 微小電流検出回路
8 断線検出回路
11〜14 NMOSトランジスタ
15,17 フォトカプラ
16,18,37,38 抵抗
19〜22 NPNトランジスタ
23,24 電流検出用抵抗
25,26 電流検出回路
27 電機子
28 分巻界磁巻線
29 直巻界磁巻線
30 整流子
31,32 DCモータの電源端子
101〜104 ON-OFF制御信号
105,106 微小電流検出信号
Vh H−ブリッジの電源端子に与えられる高電位電源
Vl H−ブリッジの電源端子に与えられる低電位電源
Vhi 微小電流検出回路の高電位電源
Vlo 微小電流検出回路の低電位電源
1 to 4 Switching element 5 DC motor 6, 7 Minute current detection circuit 8 Disconnection detection circuit 11 to 14 NMOS transistor 15, 17 Photocoupler 16, 18, 37, 38 Resistance 19 to 22 NPN transistor 23, 24 Current detection resistance 25 , 26 Current detection circuit 27 Armature 28 Dividing field winding 29 Series winding field winding 30 Commutator 31, 32 DC motor power supply terminal 101-104 ON-OFF control signal 105, 106 Minute current detection signal Vh H -High potential power supply applied to the power supply terminal of the bridge Vl Low potential power supply applied to the power supply terminal of the bridge Vhi High potential power supply of the microcurrent detection circuit Vlo Low potential power supply of the microcurrent detection circuit

Claims (3)

高電位電源と低電位電源との間に第1及び第2のスイッチング素子を直列に接続するとともに、前記高電位電源と低電位電源との間に第3及び第4のスイッチング素子を直列に接続してなり、前記第1及び第2のスイッチング素子の接続点と前記第3及び第4のスイッチング素子の接続点との間に駆動対象のDCモータを接続するH−ブリッジ回路と、前記DCモータの片方の電源端子と前記高電位電源または低電位電源の内の一方の電源との間に接続された第1の微小電流検出回路と、前記DCモータの他方の電源端子と前記一方の電源との間に接続された第2の微小電流検出回路と、前記第1及び第2の微小電流検出回路の出力に基づき前記DCモータにおける前記両電源端子間の断線を検出する断線検出回路とを備え、
前記断線検出回路は、前記高電位電源または低電位電源の内の他方の電源に接続された2つのスイッチング素子の内の一方だけがONであり、他の3個のスイッチング素子がOFFである断線検出モードとしたときにおける前記出力に基づき、前記断線を検出する
ことを特徴とするDCモータの故障検出方式。
The first and second switching elements are connected in series between the high potential power supply and the low potential power supply, and the third and fourth switching elements are connected in series between the high potential power supply and the low potential power supply. An H-bridge circuit for connecting a DC motor to be driven between a connection point of the first and second switching elements and a connection point of the third and fourth switching elements, and the DC motor A first minute current detection circuit connected between one of the power supply terminals and one of the high potential power supply and the low potential power supply, the other power supply terminal of the DC motor, and the one power supply And a disconnection detection circuit for detecting disconnection between the power supply terminals of the DC motor based on outputs of the first and second minute current detection circuits. ,
In the disconnection detection circuit, only one of two switching elements connected to the other power source of the high potential power source or the low potential power source is ON, and the other three switching elements are OFF. A failure detection method for a DC motor, wherein the disconnection is detected based on the output in the detection mode.
前記断線検出モードにおいて、ONである前記スイッチング素子及び前記DCモータ並びに前記第1および第2の微小電流検出回路の内の一方が直列に接続された直列回路に流れる電流は、前記DCモータを回転させる最低電流より小さいことを特徴とする請求項1に記載のDCモータの故障検出方式。   In the disconnection detection mode, the current flowing through the series circuit in which one of the switching element, the DC motor, and the first and second minute current detection circuits that are ON is connected in series rotates the DC motor. The DC motor failure detection method according to claim 1, wherein the current is smaller than a minimum current to be generated. 前記第1および第2の微小電流検出回路は、それぞれ高抵抗値の抵抗とフォトカプラとの直列回路を含んでなることを特徴とする請求項1または2に記載のDCモータの故障検出方式。   3. The DC motor failure detection system according to claim 1, wherein each of the first and second minute current detection circuits includes a series circuit of a resistor having a high resistance value and a photocoupler.
JP2005201976A 2005-07-11 2005-07-11 DC motor failure detection method Active JP4225988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201976A JP4225988B2 (en) 2005-07-11 2005-07-11 DC motor failure detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201976A JP4225988B2 (en) 2005-07-11 2005-07-11 DC motor failure detection method

Publications (2)

Publication Number Publication Date
JP2007017402A true JP2007017402A (en) 2007-01-25
JP4225988B2 JP4225988B2 (en) 2009-02-18

Family

ID=37754677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201976A Active JP4225988B2 (en) 2005-07-11 2005-07-11 DC motor failure detection method

Country Status (1)

Country Link
JP (1) JP4225988B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053175A (en) * 2009-09-04 2011-03-17 Toyota Motor Corp Disconnection detector
JP2012005519A (en) * 2010-06-22 2012-01-12 Toshiba Corp Washing machine
JP2014240817A (en) * 2013-06-12 2014-12-25 株式会社日立製作所 Encoder abnormality detecting device, and elevator device using encoder abnormality detecting device
KR101696561B1 (en) * 2015-12-23 2017-01-24 현대다이모스(주) System and method for detecting an operation error of actuator
KR101957514B1 (en) * 2017-12-05 2019-03-12 현대오트론 주식회사 Switched reluctance motor control circuit and fault diagnostic method using the same
US20220169307A1 (en) * 2020-11-30 2022-06-02 Steering Solutions Ip Holding Corporation Input power health diagnostic for electric power steering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046583B1 (en) 2019-03-27 2019-11-19 콘티넨탈 오토모티브 시스템 주식회사 Apparatus and method for detecting open circuit of motor drive circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053175A (en) * 2009-09-04 2011-03-17 Toyota Motor Corp Disconnection detector
JP2012005519A (en) * 2010-06-22 2012-01-12 Toshiba Corp Washing machine
JP2014240817A (en) * 2013-06-12 2014-12-25 株式会社日立製作所 Encoder abnormality detecting device, and elevator device using encoder abnormality detecting device
KR101696561B1 (en) * 2015-12-23 2017-01-24 현대다이모스(주) System and method for detecting an operation error of actuator
KR101957514B1 (en) * 2017-12-05 2019-03-12 현대오트론 주식회사 Switched reluctance motor control circuit and fault diagnostic method using the same
US20220169307A1 (en) * 2020-11-30 2022-06-02 Steering Solutions Ip Holding Corporation Input power health diagnostic for electric power steering

Also Published As

Publication number Publication date
JP4225988B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4225988B2 (en) DC motor failure detection method
JP4333751B2 (en) Brushless motor drive device
US20160028336A1 (en) Control apparatus for electric motor and control method for electric motor
US11183963B2 (en) Abnormality detection device
JP6197737B2 (en) Failure diagnosis device and failure diagnosis method for brushless motor drive device
JP5454493B2 (en) Load drive device
JP2009077542A (en) Load drive circuit
JP2011188271A (en) Gate drive circuit
JP2009118649A (en) Failure detection apparatus for alternator
JP2006311633A (en) Controller for electric motor, and failure diagnosing method for same
CA2355019C (en) Electrically-driven power steering system having failure detection function
JP5099041B2 (en) Fuel pump control device
JP4065181B2 (en) Electrical component drive circuit
JP4263193B2 (en) Field winding type rotating electrical machine
JP4388573B2 (en) Rotating electrical machine for vehicle
JP4332172B2 (en) Control device for vehicle alternator
JP2013121294A (en) Fault diagnostic device for motor for electric power steering
JP2009159697A (en) Motor control device
JP2000125586A (en) Method and device for diagnosing failures
JP4352253B2 (en) Vehicle transmission ratio variable steering device
JP2001005521A (en) Load driving system and its failure detecting method
CN113044106A (en) Circuit board
JP2010107341A (en) Power supply circuit
JP7331723B2 (en) motor drive
JP3188806B2 (en) DC motor rotation failure detection device and DC motor drive device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4225988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250