JP4263193B2 - Field winding type rotating electrical machine - Google Patents

Field winding type rotating electrical machine Download PDF

Info

Publication number
JP4263193B2
JP4263193B2 JP2006000775A JP2006000775A JP4263193B2 JP 4263193 B2 JP4263193 B2 JP 4263193B2 JP 2006000775 A JP2006000775 A JP 2006000775A JP 2006000775 A JP2006000775 A JP 2006000775A JP 4263193 B2 JP4263193 B2 JP 4263193B2
Authority
JP
Japan
Prior art keywords
field
switching element
circuit
current
failure diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006000775A
Other languages
Japanese (ja)
Other versions
JP2007185027A (en
Inventor
勝也 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006000775A priority Critical patent/JP4263193B2/en
Publication of JP2007185027A publication Critical patent/JP2007185027A/en
Application granted granted Critical
Publication of JP4263193B2 publication Critical patent/JP4263193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Direct Current Motors (AREA)

Description

この発明は、車載用等に用いられる界磁巻線方式回転電機の故障診断を行えるようにした界磁巻線方式回転電機装置に関する。   The present invention relates to a field winding type rotating electrical machine apparatus capable of performing failure diagnosis of a field winding type rotating electrical machine used for in-vehicle use or the like.

特許文献1には、界磁巻線方式回転電機の界磁電流制御回路における界磁電流異常検出を行うために、界磁コイルに流れる界磁電流を検出するための界磁電流検出器とを有し、界磁コイルと同一抵抗値を有する擬似コイル抵抗に流れる電流に基づく界磁電流基準値を発生し、この界磁電流基準値に対して界磁電流検出器により検出された実電流検出値が所定の幅から外れていることを検出するための界磁電流異常検出手段を備えた構成が示されている。   Patent Document 1 discloses a field current detector for detecting a field current flowing in a field coil in order to detect a field current abnormality in a field current control circuit of a field winding type rotating electrical machine. A field current reference value based on a current flowing in a pseudo coil resistance having the same resistance value as the field coil is generated, and an actual current detection detected by the field current detector with respect to the field current reference value A configuration including field current abnormality detection means for detecting that a value deviates from a predetermined width is shown.

すなわち、この界磁電流異常検出回路によれば、界磁コイルに流れる電流量を界磁電流検出器にて取得し、その時のPWMスイッチング・デューティ比による界磁電流制御値から得られる電流量との差より、界磁電流の異常、つまり界磁回路の故障を検出するものである。   That is, according to this field current abnormality detection circuit, the amount of current flowing in the field coil is obtained by the field current detector, and the current amount obtained from the field current control value by the PWM switching duty ratio at that time From this difference, an abnormality in the field current, that is, a failure in the field circuit is detected.

特開2002−300797JP2002-300797

しかしながら特許文献1の技術では、故障検出用に電流センサーを使用しているため、大電流が流れるような車載用界磁巻線方式の界磁回路に適応する際は、多少高価とならざるを得ないという問題があった。   However, since the technology of Patent Document 1 uses a current sensor for detecting a failure, it must be somewhat expensive when applied to a field circuit of an in-vehicle field winding system in which a large current flows. There was a problem of not getting.

また、故障判定要素として界磁電流制御を行っているPWMスイッチング素子のデューティ信号、乃至はデューティ値を使用しているため、界磁電流の変更に伴うデューティ比が変化する制御タイミングに対して実際に電流センサーで検出する界磁電流の変化は、界磁巻線のインダクタンス成分により遅れるため、故障検出精度が悪く、検出時間も遅くなるという問題があった。   In addition, since the duty signal or duty value of the PWM switching element performing field current control is used as a failure determination factor, the duty ratio actually varies with the change of the field current. In addition, since the change in the field current detected by the current sensor is delayed by the inductance component of the field winding, the failure detection accuracy is poor and the detection time is also delayed.

さらに、界磁電流を通電している際の様々な故障を検出することができるが、通電していない状態で地絡故障や断線故障などの故障検出ができないという問題があった。   Furthermore, although various failures can be detected when the field current is applied, there is a problem that failure detection such as a ground fault or a disconnection failure cannot be performed in a state where the field current is not supplied.

この発明は上記問題点に鑑みてなされたものであり、高信頼性を求められる界磁巻線方式回転電機において、界磁電流通電・非通電に関係なく界磁回路の故障を確実に検出できることを目的とする。   The present invention has been made in view of the above problems, and in a field winding type rotating electrical machine that requires high reliability, it is possible to reliably detect a failure of a field circuit regardless of whether a field current is energized or not. With the goal.

この発明の界磁巻線方式回転電機装置は、直流電源に接続された電力変換器を介して電機子に交流電力を供給されると共に、上記電力変換器内に設けられた界磁駆動回路により界磁巻線に界磁電流を供給される界磁巻線方式回転電機において、上記界磁駆動回路は、PWMスイッチング素子により上記直流電力をPWM制御し、その出力端となる界磁正極
と界磁負極との間に上記界磁巻線を接続された界磁駆動部と、上記界磁駆動部及び上記界磁巻線を含む界磁回路の故障診断を行う故障診断部とを備え、上記故障診断部は、上記界磁駆動部と上記界磁巻線との間に接続され、上記界磁回路の故障診断時に上記界磁駆動部と上記界磁巻線との間を電気的にオフする故障診断用スイッチング素子と、上記界磁正極,界磁負極を上記直流電源の正極,負極にそれぞれ接続するバイアス抵抗と、上記界磁正極と界磁負極の一方または双方の電圧値を測定する電圧センサーを有し、上記故障診断用スイッチング素子のオン/オフ状態と上記電圧センサーの測定値との関係により、上記界磁回路の故障診断を行うものである。
The field winding type rotating electrical machine apparatus according to the present invention is supplied with AC power to the armature via a power converter connected to a DC power source, and is also provided with a field drive circuit provided in the power converter. In a field winding type rotating electrical machine in which a field current is supplied to a field winding, the field drive circuit performs PWM control of the DC power by a PWM switching element, and a field positive electrode serving as an output terminal thereof
A field drive unit in which the field winding is connected between the field negative electrode and a field negative electrode, and a fault diagnosis unit that performs fault diagnosis of the field circuit including the field drive unit and the field winding. The failure diagnosis unit is connected between the field drive unit and the field winding, and electrically connects the field drive unit and the field winding during failure diagnosis of the field circuit. A switching element for fault diagnosis that is turned off, a bias resistor that connects the field positive electrode and the field negative electrode to the positive electrode and negative electrode of the DC power source, and the voltage value of one or both of the field positive electrode and the field negative electrode, respectively. A voltage sensor to be measured is provided, and the field circuit failure diagnosis is performed based on the relationship between the on / off state of the failure diagnosis switching element and the measured value of the voltage sensor .

この発明によれば、故障診断機能を付加する上で安価に構成できる電圧センサーを追加し、さらに必要に応じて多少の回路を追加することで、界磁電流通電中の故障診断はもとより、界磁電流非通電状態であっても故障診断(PWMスイッチング素子、界磁回路の天絡故障、地絡故障、断線故障)を行うことができる。   According to the present invention, a voltage sensor that can be configured at a low cost for adding a fault diagnosis function is added, and a few circuits are added as necessary, so that the field diagnosis can be performed in addition to fault diagnosis during field current conduction. Even in a magnetic current non-energized state, failure diagnosis (PWM switching element, field circuit power supply fault, ground fault, disconnection fault) can be performed.

実施の形態1.
図1は実施の形態1を示す回路構成図である。
図1において、ジェネレータ装置やオルタネータ装置のように電力変換器1と界磁巻線方式回転電機2で構成された車載用界磁巻線方式回転電機装置は、直流電源3に接続された電力変換器1を介して電機子22に交流電力を供給されると共に、電力変換器1内に設けられた界磁駆動回路11により界磁巻線21に界磁電流を供給される。
界磁駆動回路11は、PWMスイッチング素子131により直流電力をPWM制御する界磁駆動部13と、界磁駆動部13及び界磁巻線21を含む界磁回路の故障診断を行う故障診断部14とを備えている。
故障診断部14は、界磁駆動部13と界磁巻線21との結線部分に接続された電圧センサー141を有し、PWMスイッチング素子131のオン/オフ状態と電圧センサー141の計測値との関係により、界磁駆動部11及び界磁巻線21を含む界磁回路の故障診断を行う。
図1において、回転電機2内の界磁巻線21の一方は界磁駆動回路11内の界磁駆動部13の界磁正極15と接続され、他方は接地されている。
また、界磁駆動部13の接地側は還流素子132を介して接地されており、電圧センサ141は界磁正極15に接続されている。
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram showing the first embodiment.
In FIG. 1, an in-vehicle field winding type rotating electrical machine device composed of a power converter 1 and a field winding type rotating electrical machine 2, such as a generator device and an alternator device, is connected to a DC power source 3. AC power is supplied to the armature 22 through the device 1, and a field current is supplied to the field winding 21 by the field drive circuit 11 provided in the power converter 1.
The field drive circuit 11 includes a field drive unit 13 that performs PWM control of DC power by the PWM switching element 131, and a failure diagnosis unit 14 that performs failure diagnosis of the field circuit including the field drive unit 13 and the field winding 21. And.
The failure diagnosis unit 14 has a voltage sensor 141 connected to a connection portion between the field drive unit 13 and the field winding 21, and the on / off state of the PWM switching element 131 and the measured value of the voltage sensor 141 are detected. According to the relationship, the failure diagnosis of the field circuit including the field drive unit 11 and the field winding 21 is performed.
In FIG. 1, one of the field windings 21 in the rotating electrical machine 2 is connected to the field positive electrode 15 of the field drive unit 13 in the field drive circuit 11, and the other is grounded.
In addition, the ground side of the field drive unit 13 is grounded via the return element 132, and the voltage sensor 141 is connected to the field positive electrode 15.

この実施の形態1において、界磁駆動部13から界磁巻線21の間に故障がない場合、電圧センサー141の測定値V(V)は、PWMスイッチング素子131がオフ状態(界磁電流通電前や界磁通電中のPWM制御におけるオフ状態)時、接地電圧(ここでは簡単化のためゼロ(V)とする)以下を示し、PWMスイッチング素子131がオン状態(界磁通電中)時、直流電源3の電源電圧E(V)を示す。   In the first embodiment, when there is no failure between the field drive unit 13 and the field winding 21, the measured value V (V) of the voltage sensor 141 indicates that the PWM switching element 131 is in the off state (field current conduction). When the PWM switching element 131 is on (when the field is energized), the ground voltage (here, zero (V) for simplification) is shown. The power supply voltage E (V) of the DC power supply 3 is shown.

しかし界磁回路にPWMスイッチング素子131が短絡故障、乃至は界磁正極15から界磁巻線21間の結線が天絡故障しているような場合等、電圧センサー141の測定値は、ほぼ電源電圧E(V)を示す。   However, when the PWM switching element 131 is short-circuited in the field circuit or when the connection between the field positive electrode 15 and the field winding 21 is a power fault, the measured value of the voltage sensor 141 is almost equal to the power supply. Voltage E (V) is shown.

また、PWMスイッチング素子131がオン状態(界磁電流通電中)に電圧センサー141の測定値は、故障がない場合には電源電圧を示すが、スイッチング素子131のオープン故障があった場合などには測定値が接地電圧ゼロ(V)を示す。   In addition, the measured value of the voltage sensor 141 when the PWM switching element 131 is in the on state (while the field current is energized) indicates the power supply voltage when there is no failure, but when the open failure of the switching element 131 occurs. The measured value indicates zero ground voltage (V).

このように、PWMスイッチング素子131のオン/オフ状態と電圧センサー141の測定値の関係より界磁回路の故障を診断することができる。   Thus, the failure of the field circuit can be diagnosed from the relationship between the on / off state of the PWM switching element 131 and the measured value of the voltage sensor 141.

図2は図1の変形例を示すもので、図1ではスイッチング素子131が電源側に配置されているのに対し、図2においてはスイッチング素子131が接地側に配置され、回転電機2内の界磁巻線21の一方は界磁駆動回路11の界磁負極(界磁入力)16と接続され、他方はプラス電源に接続されており、故障検出するための電圧センサー141は、界磁負極16に接続されている。
この場合の故障検出方法は図1と同様であり、PWMスイッチング素子131のオン/オフ制御信号と電圧センサー141の測定値の関係より界磁回路の故障を診断するため、詳細な説明は省略する。
FIG. 2 shows a modification of FIG. 1. In FIG. 1, the switching element 131 is arranged on the power supply side, whereas in FIG. One of the field windings 21 is connected to a field negative electrode (field input) 16 of the field drive circuit 11, and the other is connected to a positive power source. The voltage sensor 141 for detecting a failure is a field negative electrode. 16 is connected.
The failure detection method in this case is the same as that in FIG. 1, and a detailed description of the failure of the field circuit is omitted because the failure of the field circuit is diagnosed based on the relationship between the on / off control signal of the PWM switching element 131 and the measured value of the voltage sensor 141. .

以上のようにこの実施の形態1によれば、界磁巻線方式回転電機の界磁駆動部13と界磁巻線21との結線部分に電圧センサー141を接続し、PWMスイッチング素子131のオン/オフ状態と電圧センサー141の測定値との関係により、界磁回路の故障診断を行うようにしたものであるため、PWMスイッチング素子131のオン/オフ状態と電圧センサー141の値との関係より、界磁電流通電中に界磁駆動部13と界磁巻線21間に発生した故障診断を確実に行うことができる。   As described above, according to the first embodiment, the voltage sensor 141 is connected to the connection portion between the field drive unit 13 and the field winding 21 of the field winding type rotating electrical machine, and the PWM switching element 131 is turned on. Since the field circuit failure diagnosis is performed based on the relationship between the / off state and the measured value of the voltage sensor 141, the relationship between the on / off state of the PWM switching element 131 and the value of the voltage sensor 141 is used. Therefore, it is possible to reliably perform a failure diagnosis that occurs between the field drive unit 13 and the field winding 21 while the field current is energized.

実施の形態2.
図3は実施の形態2を示す回路構成図である。
図3において、界磁巻線方式回転電機2は、直流電源3に接続された電力変換器1を介して電機子22に交流電力を供給されると共に、電力変換器1内に設けられた界磁駆動回路11により界磁巻線21に界磁電流を供給される。
界磁駆動回路11は、PWMスイッチング素子131により直流電力をPWM制御し、その出力端となる界磁正極15と界磁負極16との間に界磁巻線21を接続された界磁駆動部13と、界磁駆動部13及び界磁巻線21を含む界磁回路の故障診断を行う故障診断部14とを備えている。
故障診断部14は、界磁駆動部13と界磁巻線21との間に接続され、界磁回路の故障診断時に界磁駆動部13と界磁巻線21との間を電気的にオフする故障診断用スイッチング素子142と、界磁正極15,界磁負極16を直流電源3の正極,負極にそれぞれ接続するバイアス抵抗143,144と、界磁正極15と界磁負極16の一方または双方の電圧値を測定する電圧センサー141を有し、故障診断用スイッチング素子142のオン/オフ状態と電圧センサー141の測定値との関係により、界磁回路の故障診断を行う。
Embodiment 2. FIG.
FIG. 3 is a circuit configuration diagram showing the second embodiment.
In FIG. 3, a field winding type rotating electrical machine 2 is supplied with AC power to an armature 22 via a power converter 1 connected to a DC power source 3 and a field provided in the power converter 1. A field current is supplied to the field winding 21 by the magnetic drive circuit 11.
The field drive circuit 11 performs PWM control of DC power by the PWM switching element 131, and a field drive unit in which a field winding 21 is connected between a field positive electrode 15 and a field negative electrode 16 serving as an output end thereof. 13 and a failure diagnosis unit 14 for performing failure diagnosis of a field circuit including the field drive unit 13 and the field winding 21.
The failure diagnosis unit 14 is connected between the field drive unit 13 and the field winding 21, and electrically turns off the field drive unit 13 and the field winding 21 when diagnosing a field circuit failure. A switching element 142 for failure diagnosis, bias resistors 143 and 144 for connecting the field positive electrode 15 and the field negative electrode 16 to the positive electrode and the negative electrode of the DC power source 3, and one or both of the field positive electrode 15 and the field negative electrode 16, respectively. A voltage sensor 141 for measuring the voltage value of the field circuit is provided, and the field circuit failure diagnosis is performed based on the relationship between the on / off state of the failure diagnosis switching element 142 and the measured value of the voltage sensor 141.

なお、図3において、特に故障診断用スイッチング素子142は、界磁駆動回路11の界磁正極15と界磁負極16間に界磁巻線21が接続され、界磁電流通電していないとき(つまりPWMスイッチング素子131がオフ状態)の故障診断時に界磁駆動部13から界磁巻線21が電気的に切断できるように実装されている。   In FIG. 3, in particular, the failure diagnosis switching element 142 is connected when the field winding 21 is connected between the field positive electrode 15 and the field negative electrode 16 of the field drive circuit 11 and the field current is not supplied ( That is, the field winding 21 is mounted so that the field winding 21 can be electrically disconnected from the field drive unit 13 at the time of failure diagnosis when the PWM switching element 131 is in the off state.

さらに、故障診断のために抵抗値R3(Ω)のバイアス抵抗143を界磁正極15側に、抵抗値R4(Ω)のバイアス抵抗144を界磁入力16側に実装し、界磁正極15の電圧と界磁負極16の電圧のいずれか一方、乃至は双方の電圧を測定する(図3では、界磁正極15位置に電圧センサー141を配している)。   Further, for failure diagnosis, a bias resistor 143 having a resistance value R3 (Ω) is mounted on the field positive electrode 15 side, and a bias resistor 144 having a resistance value R4 (Ω) is mounted on the field input 16 side. One or both of the voltage and the voltage of the field negative electrode 16 are measured (in FIG. 3, the voltage sensor 141 is disposed at the position of the field positive electrode 15).

この実施の形態2においては、界磁電流を通電していないときに、故障診断用スイッチング素子をオフ状態にして故障診断を実施する。
界磁回路に故障がない場合、電圧センサー141の測定値V1(V)は式(1)のようになる。

Figure 0004263193
In the second embodiment, when the field current is not applied, the failure diagnosis switching element is turned off to perform the failure diagnosis.
When there is no failure in the field circuit, the measured value V1 (V) of the voltage sensor 141 is as shown in Equation (1).
Figure 0004263193

しかし界磁回路において、PWMスイッチング素子131が短絡故障、乃至は界磁正極15から界磁巻線21を通り界磁負極16に至る経路にて天絡故障若しくは断線故障がある場合、電圧センサー141の測定値V2(V)は式(2)に示すように電源電圧E(V)となる。

Figure 0004263193
However, in the field circuit, when the PWM switching element 131 is short-circuited or there is a power fault or disconnection failure in the path from the field positive electrode 15 through the field winding 21 to the field negative electrode 16, the voltage sensor 141. The measured value V2 (V) is the power supply voltage E (V) as shown in the equation (2).
Figure 0004263193

また界磁回路において、還流素子132若しくは故障診断用スイッチング素子142が短絡故障、界磁正極15から界磁巻線21を通り界磁負極16に至る経路にて地絡故障、界磁巻線21の両端が短絡故障となるような場合、電圧センサー141の測定値V3(V)は式(3)に示すように接地電圧ゼロ(V)となる。

Figure 0004263193
このように、界磁回路に発生した故障の有無を界磁電流を流さない状態で確認することができる。 In the field circuit, the return element 132 or the failure diagnosis switching element 142 is short-circuited, and a ground fault occurs in the path from the field positive electrode 15 through the field winding 21 to the field negative electrode 16. When both ends of the circuit become a short circuit failure, the measured value V3 (V) of the voltage sensor 141 becomes the ground voltage zero (V) as shown in the equation (3).
Figure 0004263193
In this way, the presence or absence of a failure occurring in the field circuit can be confirmed in a state where no field current is passed.

またさらに、故障診断のために故障診断用スイッチング素子142をオフ状態としているときに、故障診断用スイッチング素子142のみオン状態とした際の電圧センサー141の測定値は、故障診断用スイッチング素子142が正常時は接地電圧ゼロ(V)となるが、故障時はV1(V)となる。   Furthermore, when the failure diagnosis switching element 142 is turned off for failure diagnosis, the measured value of the voltage sensor 141 when only the failure diagnosis switching element 142 is turned on is obtained by the failure diagnosis switching element 142. The ground voltage is zero (V) when normal, but is V1 (V) when a failure occurs.

次に、故障診断のために故障診断用スイッチング素子142をオフ状態としているときに、PWMスイッチング素子131のみオン状態とした際の電圧センサー141の測定値は、PWMスイッチング素子131が正常時は電源電圧E(V)となるが、故障時はV1(V)となる。   Next, when the failure diagnosis switching element 142 is turned off for failure diagnosis, the measured value of the voltage sensor 141 when only the PWM switching element 131 is turned on is the power supply when the PWM switching element 131 is normal. The voltage E (V) is V1 (V) at the time of failure.

もし、同期整流実施のために還流素子132にスイッチング素子を使用しているときに、還流素子132のみオン状態とした際の電圧センサー141の測定値は、還流素子132が正常時は0(V)となるが、故障時はV1(V)となる。
このように、界磁駆動回路を構成するスイッチング素子のオフ故障も確認することができる。
If a switching element is used as the return element 132 for synchronous rectification, the measured value of the voltage sensor 141 when only the return element 132 is turned on is 0 (V) when the return element 132 is normal. However, it becomes V1 (V) at the time of failure.
In this way, it is possible to confirm an OFF failure of the switching elements constituting the field drive circuit.

なお、この実施の形態2において、故障時の電圧センサー141の測定値と正常時の測定値とは、変化幅が大きくいため判別も容易であるので、厳密な判定数値を明確にすることを絶対必要条件としない。   In the second embodiment, the measured value of the voltage sensor 141 at the time of the failure and the measured value at the normal time are easy to discriminate because of the large change width. Not a requirement.

以上は、界磁電流を流していない状態であったが、図3の回路でも実施の形態1と同様に通電中の故障検出を、PWMスイッチング素子131のオン/オフ状態と電圧センサー141の測定値との関係より界磁回路の故障診断できる。   The above is a state in which no field current is flowing. However, in the circuit of FIG. 3 as well, the failure detection during energization is detected by the on / off state of the PWM switching element 131 and the measurement of the voltage sensor 141 as in the first embodiment. The failure diagnosis of the field circuit can be performed from the relationship with the value.

以上のように、この実施の形態2によれば、界磁駆動部13と界磁巻線21との間に接続され、界磁回路の故障診断時に界磁駆動部13と界磁巻線21との間を電気的にオフする故障診断用スイッチング素子142と、界磁正極15、界磁負極16を直流電源3の正極,負極にそれぞれ接続するバイアス抵抗143,144と、界磁正極15と界磁負極16の一方または双方の電圧値を測定する電圧センサー141を有し、故障診断用スイッチング素子142のオン/オフ状態と電圧センサー141の測定値との関係により、界磁回路の故障診断を行うものであるため、界磁電流非通電中にPWMスイッチング素子131のショート故障、界磁回路の天絡、地絡、断線故障の有無を確実検出することができるようになり、故障のある界磁回路に対する不要な通電を防止できるようになる。   As described above, according to the second embodiment, the field drive unit 13 and the field winding 21 are connected between the field drive unit 13 and the field winding 21 and are diagnosed in the failure of the field circuit. Diagnostic switching element 142 for electrically turning off between them, field positive electrode 15, bias resistors 143 and 144 for connecting field negative electrode 16 to the positive electrode and negative electrode of DC power supply 3, and field positive electrode 15, A voltage sensor 141 that measures the voltage value of one or both of the field negative electrodes 16 is provided, and the failure diagnosis of the field circuit is performed according to the relationship between the on / off state of the failure diagnosis switching element 142 and the measured value of the voltage sensor 141. Therefore, it is possible to reliably detect the presence or absence of a short-circuit failure of the PWM switching element 131, a ground fault, a ground fault, or a disconnection fault of the PWM circuit while the field current is not energized. Field circuit It becomes possible to prevent unnecessary power against.

また、この実施の形態2によれば、界磁回路の故障診断中にPWMスイッチング素子131及び故障診断用スイッチング素子142をそれぞれ個別にオン状態とし、その際の電圧センサー141の測定値により、PWMスイッチング素子131の故障診断を行うものであるので、界磁電流非通電中にPWMスイッチング素子131のオープン故障も検出できる。   Further, according to the second embodiment, the PWM switching element 131 and the failure diagnosis switching element 142 are individually turned on during the failure diagnosis of the field circuit, and the PWM sensor 131 and the failure diagnosis switching element 142 are turned on by the measured value of the voltage sensor 141 at that time. Since the failure diagnosis of the switching element 131 is performed, an open failure of the PWM switching element 131 can be detected while the field current is not energized.

実施の形態3.
図4は実施の形態3を示す回路構成図である。
図4において、故障診断部14は、界磁駆動部13の接地点と界磁負極16との間に接続された第1の電流センサー145を有し、この第1の電流センサー145により界磁回路に流し得る最大界磁電流値よりも大きな過電流が流れたことを検出して界磁回路の故障診断を行う。
なお、第1の電流センサー145は、PWMスイッチング素子131が接続されていない界磁巻線21側に配されている。
Embodiment 3 FIG.
FIG. 4 is a circuit configuration diagram showing the third embodiment.
In FIG. 4, the failure diagnosis unit 14 has a first current sensor 145 connected between the ground point of the field drive unit 13 and the field negative electrode 16, and the first current sensor 145 causes the field magnet to be connected. A fault diagnosis of the field circuit is performed by detecting that an overcurrent larger than the maximum field current value that can be passed through the circuit flows.
The first current sensor 145 is arranged on the field winding 21 side to which the PWM switching element 131 is not connected.

この実施の形態3において、界磁回路に故障が無い場合、電流センサー145の測定値は、直流電源3の電圧Eと界磁回路の直流抵抗成分(製造上や温度、経年変化等によるばらつきを考慮)より求められる最大界磁電流Imaxよりも小さくなる。   In the third embodiment, when there is no failure in the field circuit, the measured value of the current sensor 145 varies depending on the voltage E of the DC power supply 3 and the DC resistance component of the field circuit (manufacturing, temperature, aging, etc.). Is smaller than the maximum field current Imax obtained from the above.

界磁回路において、界磁巻線21が短絡、乃至図4における界磁巻線21と界磁負極16との間の結線にて天絡故障が発生した場合、電流センサー145に流れる電流は前記Imaxよりも遥かに大きくなるため、Imaxよりも大きな整定値とした過電流判定により高速に故障を検出することができる。   In the field circuit, when the field winding 21 is short-circuited or a power fault has occurred due to the connection between the field winding 21 and the field negative electrode 16 in FIG. Since it is much larger than Imax, a failure can be detected at high speed by overcurrent determination with a settling value larger than Imax.

なお、図4の界磁駆動回路13によれば、電流センサ−145を配する箇所は基準となる電位が常に接地電位であるため、例えば電流センサ−145としてシャント抵抗を用いることにより、安価で高精度な電流計測が可能となる。   According to the field drive circuit 13 of FIG. 4, since the reference potential is always the ground potential at the location where the current sensor-145 is arranged, for example, by using a shunt resistor as the current sensor-145, it is inexpensive. High-precision current measurement is possible.

さらに、界磁巻線21が短絡故障、乃至界磁巻線21と界磁負極16間の結線にて天絡故障が発生した場合、過電流判定により高速に故障を検出することができる。   Further, when the field winding 21 has a short circuit failure or a power fault has occurred due to the connection between the field winding 21 and the field negative electrode 16, the failure can be detected at high speed by overcurrent determination.

実施の形態4.
図5は実施の形態4を示す回路構成図である。
図5において、故障診断部14は、界磁駆動部13の接地点と界磁負極16との間に接続された第1の電流センサー145と、PWMスイッチング素子131と界磁正極15との間に接続された第2の電流センサー146を有し、第1及び第2の電流センサー145,146により界磁巻線21への流入電流と界磁巻線21からの流出電流の差分を検出して界磁回路の故障診断を行う。
Embodiment 4 FIG.
FIG. 5 is a circuit configuration diagram showing the fourth embodiment.
In FIG. 5, the failure diagnosis unit 14 includes a first current sensor 145 connected between the ground point of the field drive unit 13 and the field negative electrode 16, and between the PWM switching element 131 and the field positive electrode 15. The first and second current sensors 145 and 146 detect the difference between the inflow current to the field winding 21 and the outflow current from the field winding 21 by the first and second current sensors 145 and 146. Diagnose field circuit faults.

図5において、界磁回路が正常な場合は、それぞれの電流センサー145,146の測定値より界磁巻線21の電流流入量(電流センサー146の計測値)Iinと電流流出量(電流センサー145の計測値)Ioutより式(4)が成立する。

Figure 0004263193
In FIG. 5, when the field circuit is normal, the current inflow amount (measured value of the current sensor 146) Iin and the current outflow amount (current sensor 145) of the field winding 21 based on the measured values of the current sensors 145 and 146, respectively. Equation (4) is established from the measured value Iout.
Figure 0004263193

つまり、界磁回路に天絡故障、地絡故障があれば式(4)の右辺がゼロとならないため、高精度且つ高速に故障検出が可能となる。   In other words, if there is a power fault or ground fault in the field circuit, the right side of Equation (4) does not become zero, so that the fault can be detected with high accuracy and high speed.

以上のように、この実施の形態4によれば、界磁駆動部13の接地点と界磁負極16との間に接続された第1の電流センサー145と、PWMスイッチング素子131と界磁正極15との間に接続された第2の電流センサー146により、第2の電流センサー146により計測された電流測定値(流出電流量)と、第1の電流センサー145で計測した電流測定値(流入電流量)との差動分より界磁経路の天絡故障、地絡故障が高速高精度に検出できる(キルヒホッフの第一法則の適用)。   As described above, according to the fourth embodiment, the first current sensor 145 connected between the ground point of the field drive unit 13 and the field negative electrode 16, the PWM switching element 131, and the field positive electrode. 15, the current measurement value (outflow current amount) measured by the second current sensor 146 and the current measurement value (inflow) measured by the first current sensor 145 by the second current sensor 146 connected between The fault of the magnetic field path and the ground fault can be detected with high speed and high accuracy from the difference of the current amount (application of Kirchhoff's first law).

また、、界磁巻線21が短絡故障、乃至界磁巻線21と界磁負極16間の結線にて天絡故障が発生した場合、過電流判定により高速に故障を検出することができる。   Further, when the field winding 21 has a short circuit failure or a power fault has occurred due to the connection between the field winding 21 and the field negative electrode 16, the failure can be detected at high speed by overcurrent determination.

実施の形態5.
図6は実施の形態5を示す回路構成図である。
図6において、故障診断部14は、界磁駆動部13と界磁巻線21との間に接続され、界磁回路の故障診断時に界磁駆動部13と界磁巻線21との間を電気的にオフする故障診断用スイッチング素子142と、界磁正極15、界磁負極16を直流電源3の正極,負極にそれぞれ接続するバイアス抵抗143,144と、界磁正極15と界磁負極16の一方または双方の電圧値を測定する電圧センサー141を有し、故障診断用スイッチング素子142のオン/オフ状態と電圧センサーの測定値との関係により、界磁回路の故障診断を行うと共に、界磁駆動部13の接地点と界磁負極16との間に接続された第1の電流センサー145を有し、この第1の電流センサー145により界磁回路に流し得る最大界磁電流値よりも大きな過電流が流れたことを検出して界磁回路の故障診断を行う。
Embodiment 5 FIG.
FIG. 6 is a circuit configuration diagram showing the fifth embodiment.
In FIG. 6, the failure diagnosis unit 14 is connected between the field drive unit 13 and the field winding 21, and between the field drive unit 13 and the field winding 21 during failure diagnosis of the field circuit. Fault switching element 142 that is electrically turned off, field positive electrode 15, bias resistors 143 and 144 that connect field negative electrode 16 to the positive electrode and negative electrode of DC power supply 3, field positive electrode 15, and field negative electrode 16, respectively. A voltage sensor 141 that measures the voltage value of one or both of them, and performs field circuit fault diagnosis based on the relationship between the on / off state of the fault diagnosis switching element 142 and the measured value of the voltage sensor. The first current sensor 145 is connected between the grounding point of the magnetic driving unit 13 and the field negative electrode 16, and the first current sensor 145 has a value greater than the maximum field current value that can be passed through the field circuit. A large overcurrent flowed The failure diagnosis of the field circuit to detect the door.

なお、図6においては簡単化のために第1の電流センサー145を用いているが、故障診断用スイッチング素子142として界磁電流通電中の電流量によって両端電位差が変化するようなもの(例えばパワーMOSFETのドレイン−ソース電圧等)を電流センサーの代用とすることも可能である。   In FIG. 6, the first current sensor 145 is used for simplification. However, the failure diagnosis switching element 142 is such that the potential difference between both ends changes depending on the amount of current during field current conduction (for example, power MOSFET drain-source voltage etc.) can be substituted for the current sensor.

以上のように、この実施の形態5によれば、界磁電流が流れていない場合には電圧センサー141により故障検出を行い、界磁電流が流れているような場合には電流センサー145の値と、PWMスイッチング素子131がオフのときの電圧センサー142の値の双方より、界磁回路の故障を検出することが可能となり、故障検出性能が格段によくなる。   As described above, according to the fifth embodiment, when the field current is not flowing, the failure is detected by the voltage sensor 141, and when the field current is flowing, the value of the current sensor 145 is detected. And the value of the voltage sensor 142 when the PWM switching element 131 is OFF, it becomes possible to detect the failure of the field circuit, and the failure detection performance is remarkably improved.

実施の形態6.
図7は実施の形態6を示す回路構成図である。
図7において、界磁駆動部13において、界磁巻線21に対する還流素子としてスイッチング素子132を使用し、PWMスイッチング素子131のオン/オフ状態と、電圧センサー141、電流センサー145の測定値より界磁巻線21に還流電流が流れている状態時にのみ還流用スイッチング素子132をオン制御することにより、同期整流を行う。
そして、PWMスイッチング素子131がオン状態では直流電源3の正極から、界磁巻線21を介して直流電源3の負極への閉回路を形成し(電圧センサー141の測定値は、電源電圧E(V))、PWMスイッチング素子131がオフ状態に変化すると、界磁巻線21から界磁負極16、還流用スイッチング素子132、界磁正極15を還流する閉回路を形成する(電圧センサー141の測定値は、接地電圧ゼロ(V)以下)。
Embodiment 6 FIG.
FIG. 7 is a circuit configuration diagram showing the sixth embodiment.
In FIG. 7, in the field drive unit 13, the switching element 132 is used as a return element for the field winding 21, and the field is determined based on the on / off state of the PWM switching element 131 and the measured values of the voltage sensor 141 and the current sensor 145. Synchronous rectification is performed by turning on the return switching element 132 only when the return current flows through the magnetic winding 21.
When the PWM switching element 131 is on, a closed circuit is formed from the positive electrode of the DC power supply 3 to the negative electrode of the DC power supply 3 via the field winding 21 (the measured value of the voltage sensor 141 is the power supply voltage E ( V)), when the PWM switching element 131 changes to the OFF state, a closed circuit is formed to return the field negative electrode 16, the return switching element 132, and the field positive electrode 15 from the field winding 21 (measurement of the voltage sensor 141). Value is ground voltage zero (V) or less).

この構成において、界磁回路に故障がなければ、単純にPWMスイッチング素子131のオン/オフ制御信号を反転した信号で還流用スイッチング素子132のオン/オフ制御すればよいが、例えば界磁正極15側に天絡故障がある場合、誤って還流用スイッチング素子132をオンすると短絡となり、還流用スイッチング素子132を破壊することもあるため、還流用スイッチング素子132のスイッチング・オン条件を、PWMスイッチング制御信号がオフ、且つ電圧センサー141の計測値が接地電圧ゼロ以下、且つ電流センサー145の計測値がゼロ以上とする。   In this configuration, if there is no failure in the field circuit, the on / off control of the return switching element 132 may be performed simply by inverting the on / off control signal of the PWM switching element 131. For example, the field positive electrode 15 In the case where there is a power fault on the side, if the reflux switching element 132 is erroneously turned on, a short circuit occurs and the reflux switching element 132 may be destroyed. Therefore, the switching on condition of the reflux switching element 132 is determined by PWM switching control. Assume that the signal is off, the measured value of the voltage sensor 141 is equal to or less than the ground voltage, and the measured value of the current sensor 145 is equal to or greater than zero.

上記の条件とすることで、界磁正極15側に天絡故障がある場合には、PWMスイッチング制御信号がオフであっても、電圧センサー141の計測値が電源電圧E(V)となっているために、誤って還流用スイッチング素子132をオンすることを防止できる。   With the above conditions, if there is a power fault on the field positive electrode 15 side, the measured value of the voltage sensor 141 becomes the power supply voltage E (V) even if the PWM switching control signal is off. Therefore, it is possible to prevent the reflux switching element 132 from being turned on by mistake.

以上のように、この実施の形態6によれば、PWMスイッチング素子131がオフ状態時に故障診断用の電圧センサー141と電流センサー145の出力の関係より還流電流の有無を判断することができ、還流電流が流れているような場合に還流用スイッチング素子132をオンすることで、還流素子としてダイオードで構成している場合よりも電圧降下を小さくするでき、損失を低減することが可能となる。   As described above, according to the sixth embodiment, when the PWM switching element 131 is in the OFF state, the presence or absence of the return current can be determined from the relationship between the output of the voltage sensor 141 and the current sensor 145 for failure diagnosis. By turning on the return switching element 132 when a current is flowing, the voltage drop can be made smaller than when the return element is configured by a diode, and the loss can be reduced.

実施の形態7.
図8,図9により実施の形態7について説明する。
この実施の形態7は、図8に示すように、電力変換器1と界磁巻線方式回転電機2とを一体構造としたものである。
図9のような電力変換器1と界磁巻線方式回転電機2が別体となっている界磁巻線回転電機装置では、界磁駆動回路11の界磁正極端子151,界磁負極端子161と界磁巻線21の界磁巻線端子211,212との間を外部界磁配線43,44にて接続するため、配線材のインピーダンス成分、端子部分の接触や逆接の可能性など構造的に解決すべき課題があるが、図8のような電力変換装置一体型回転機装置においては、界磁駆動回路11と界磁巻線21間の接続が配線長の短い内部界磁配線41,42となるため、高信頼性で且つ配線インピーダンスの小さな界磁回路が比較的容易に実現できる。
Embodiment 7 FIG.
The seventh embodiment will be described with reference to FIGS.
In the seventh embodiment, as shown in FIG. 8, the power converter 1 and the field winding type rotating electrical machine 2 are integrated.
In the field winding rotating electrical machine apparatus in which the power converter 1 and the field winding type rotating electrical machine 2 are separated as shown in FIG. 9, the field positive terminal 151, the field negative terminal of the field drive circuit 11. 161 and the field winding terminals 211 and 212 of the field winding 21 are connected by the external field wirings 43 and 44, so that the impedance component of the wiring material, the possibility of contact and reverse connection of the terminal portion, etc. However, in the power converter-integrated rotating machine as shown in FIG. 8, the connection between the field drive circuit 11 and the field winding 21 is an internal field wiring 41 having a short wiring length. , 42, a field circuit with high reliability and low wiring impedance can be realized relatively easily.

内部界磁配線41、42の配線インピーダンスが小さいため、界磁電流の効率が高くなるが、その反面万一の故障時の電流は大きくなってしまうので、実施の形態1乃至6のような界磁電流通電前に故障を検出したり、界磁電流通電中に発生した故障を高速に故障診断することの必要性がより高くなる。   Since the field impedance of the internal field wirings 41 and 42 is small, the efficiency of the field current is increased, but on the other hand, the current at the time of failure is increased, so the fields as in the first to sixth embodiments are increased. The necessity of detecting a failure before energizing a magnetic current or diagnosing a failure occurring during energization of a field current at a higher speed becomes higher.

この発明の実施の形態1を示す回路構成図である。It is a circuit block diagram which shows Embodiment 1 of this invention. この発明の実施の形態1の他の例を示す回路構成図である。It is a circuit block diagram which shows the other example of Embodiment 1 of this invention. この発明の実施の形態2を示す回路構成図である。It is a circuit block diagram which shows Embodiment 2 of this invention. この発明の実施の形態3を示す回路構成図である。It is a circuit block diagram which shows Embodiment 3 of this invention. この発明の実施の形態4を示す回路構成図である。It is a circuit block diagram which shows Embodiment 4 of this invention. この発明の実施の形態5を示す回路構成図である。It is a circuit block diagram which shows Embodiment 5 of this invention. この発明の実施の形態6を示す回路構成図である。It is a circuit block diagram which shows Embodiment 6 of this invention. この発明の実施の形態7を示す回路構成図である。It is a circuit block diagram which shows Embodiment 7 of this invention. 別体方式界磁巻線方式回転電機装置の例示す回路構成図である。It is a circuit block diagram which shows the example of a separate system field winding system rotary electric machine apparatus.

符号の説明Explanation of symbols

1 電力変換器
11 界磁駆動回路
12 電機子電力変換回路
13 界磁駆動部
131 PWMスイッチング素子
132 還流用スイッチング素子
14 故障診断部
141 電圧センサー
142 故障診断用スイッチング素子
143、144 バイアス抵抗
145、146 電流センサー
15 界磁正極
151 界磁正極端子
16 界磁負極
161 界磁負極端子
2 界磁巻線方式回転電機
21 界磁巻線
211、212 界磁巻線端子
22 電機子巻線
3 直流電源
41、42 内部界磁配線
43,44 外部界磁配線
5 電力変換器一体型回転電機装置
DESCRIPTION OF SYMBOLS 1 Power converter 11 Field drive circuit 12 Armature power conversion circuit 13 Field drive part 131 PWM switching element 132 Return switching element 14 Fault diagnosis part 141 Voltage sensor 142 Fault diagnosis switching element 143, 144 Bias resistance 145, 146 Current sensor 15 Field positive electrode 151 Field positive electrode terminal 16 Field negative electrode 161 Field negative electrode terminal 2 Field winding type rotating electrical machine 21 Field winding 211, 212 Field winding terminal 22 Armature winding 3 DC power supply 41 , 42 Internal field wiring 43, 44 External field wiring 5 Power converter integrated rotary electric machine device

Claims (2)

直流電源に接続された電力変換器を介して電機子に交流電力を供給されると共に、上記電力変換器内に設けられた界磁駆動回路により界磁巻線に界磁電流を供給される界磁巻線方式回転電機において、
上記界磁駆動回路は、PWMスイッチング素子により上記直流電力をPWM制御し、その出力端となる界磁正極と界磁負極との間に上記界磁巻線を接続された界磁駆動部と、上記界磁駆動部及び上記界磁巻線を含む界磁回路の故障診断を行う故障診断部とを備え、
上記故障診断部は、上記界磁駆動部と上記界磁巻線との間に接続され、上記界磁回路の故障診断時に上記界磁駆動部と上記界磁巻線との間を電気的にオフする故障診断用スイッチング素子と、上記界磁正極,界磁負極を上記直流電源の正極,負極にそれぞれ接続するバイアス抵抗と、上記界磁正極と界磁負極の一方または双方の電圧値を測定する電圧センサーを有し、上記故障診断用スイッチング素子のオン/オフ状態と上記電圧センサーの測定値との関係により、上記界磁回路の故障診断を行う
ことを特徴とする界磁巻線方式回転電機装置。
A field in which AC power is supplied to the armature via a power converter connected to a DC power source and field current is supplied to the field winding by a field drive circuit provided in the power converter. In the magnetic winding type rotating electrical machine,
The field drive circuit performs PWM control of the DC power by a PWM switching element, and a field drive unit in which the field winding is connected between a field positive electrode and a field negative electrode serving as an output end thereof, A failure diagnosis unit for performing a failure diagnosis of a field circuit including the field drive unit and the field winding,
The failure diagnosis unit is connected between the field drive unit and the field winding, and electrically connects between the field drive unit and the field winding during failure diagnosis of the field circuit. Measures switching element for fault diagnosis to be turned off, bias resistor for connecting the field positive electrode and field negative electrode to the positive electrode and negative electrode of the DC power source, and the voltage value of one or both of the field positive electrode and the field negative electrode, respectively. A field winding type rotation characterized by performing a fault diagnosis of the field circuit according to a relationship between an on / off state of the fault diagnosis switching element and a measured value of the voltage sensor. Electric equipment.
上記界磁回路の故障診断中に上記PWMスイッチング素子及び故障診断用スイッチング素子をそれぞれ個別にオン状態とし、その際の上記電圧センサーの測定値により、上記PWMスイッチング素子の故障診断を行うことを特徴とする請求項1記載の界磁巻線方式回転電機装置。The PWM switching element and the failure diagnosis switching element are individually turned on during failure diagnosis of the field circuit, and the failure diagnosis of the PWM switching element is performed based on the measured value of the voltage sensor at that time. The field winding type rotating electrical machine apparatus according to claim 1.
JP2006000775A 2006-01-05 2006-01-05 Field winding type rotating electrical machine Active JP4263193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000775A JP4263193B2 (en) 2006-01-05 2006-01-05 Field winding type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000775A JP4263193B2 (en) 2006-01-05 2006-01-05 Field winding type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2007185027A JP2007185027A (en) 2007-07-19
JP4263193B2 true JP4263193B2 (en) 2009-05-13

Family

ID=38340651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000775A Active JP4263193B2 (en) 2006-01-05 2006-01-05 Field winding type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4263193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011798A1 (en) 2013-07-24 2015-01-29 三菱電機株式会社 Field winding type rotating electric machine diagnostic device and field winding type rotating electric machine diagnostic method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816614B2 (en) 2011-09-29 2014-08-26 Infineon Technologies Ag Diagnosis of over-current conditions in bipolar motor controllers
JP6139794B2 (en) 2014-06-30 2017-05-31 三菱電機株式会社 Power converter
JP6398890B2 (en) 2014-10-21 2018-10-03 株式会社デンソー Control device for rotating electrical machine
JP6686963B2 (en) * 2017-04-27 2020-04-22 株式会社デンソー Rotating electric machine control device and control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011798A1 (en) 2013-07-24 2015-01-29 三菱電機株式会社 Field winding type rotating electric machine diagnostic device and field winding type rotating electric machine diagnostic method
US9709631B2 (en) 2013-07-24 2017-07-18 Mitsubishi Electric Corporation Diagnosis apparatus for field winding type rotating electric machine and diagnosis method for field winding type rotating electric machine

Also Published As

Publication number Publication date
JP2007185027A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4248410B2 (en) Circuit apparatus and method for inspecting a current circuit
US20070046274A1 (en) Failure detecting device for a load driving system
JP6410805B2 (en) Magnetic flow meter with drive signal diagnostic device
US20010026134A1 (en) Current-carrying control device and electric power steering apparatus
US20180141506A1 (en) Drive device
JP4263193B2 (en) Field winding type rotating electrical machine
JP6197737B2 (en) Failure diagnosis device and failure diagnosis method for brushless motor drive device
KR20070021573A (en) Motor controler, control method thereof and inverter defect detecting apparatus
JP2019154006A (en) Inductive load control unit
JP2009118649A (en) Failure detection apparatus for alternator
JP4225988B2 (en) DC motor failure detection method
KR101665890B1 (en) Apparatus for sensing disorder of 3-phase motor
JP4065181B2 (en) Electrical component drive circuit
US10162009B2 (en) Method for determining a fault in an electronically commutated electric motor
US9118269B2 (en) Electronically commutated electric motor with defect shutdown
JP2009232261A (en) Hall ic
US7116110B1 (en) Sensorless protection for electronic device
JP2010522531A (en) Error detection in the control unit
KR20230035789A (en) Apparatus for detecting motor failure
US11002768B2 (en) Method and apparatus for detecting current using operational amplifier
KR101684190B1 (en) Apparatus for sensing disorder of 3-phase motor
EP3599716B1 (en) Fault isolation for pulse width modulated three phase motor systems
JP2007151300A (en) Control unit and method for drive circuit
KR102599288B1 (en) Control apparatus for vehicle
JP7419754B2 (en) Abnormality detection device and motor drive device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4263193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350