JP2007017248A - Squid sensor device - Google Patents

Squid sensor device Download PDF

Info

Publication number
JP2007017248A
JP2007017248A JP2005198278A JP2005198278A JP2007017248A JP 2007017248 A JP2007017248 A JP 2007017248A JP 2005198278 A JP2005198278 A JP 2005198278A JP 2005198278 A JP2005198278 A JP 2005198278A JP 2007017248 A JP2007017248 A JP 2007017248A
Authority
JP
Japan
Prior art keywords
liquid level
squid sensor
refrigerant
bias current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198278A
Other languages
Japanese (ja)
Other versions
JP4543327B2 (en
Inventor
Shigeru Fukumori
茂 福森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005198278A priority Critical patent/JP4543327B2/en
Publication of JP2007017248A publication Critical patent/JP2007017248A/en
Application granted granted Critical
Publication of JP4543327B2 publication Critical patent/JP4543327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SQUID sensor device allowing an SQUID sensor to always operate in an optimum state regardless of the liquid level of a refrigerant in a dewar. <P>SOLUTION: The SQUID sensor device comprises the SQUID sensor disposed in the dewar filled with the refrigerant, a liquid level gauge for measuring the liquid level of the refrigerant, an analysis controller for receiving a signal from this liquid level gauge, and a driving circuit for supplying bias current to the SQUID sensor based on a signal from the analysis controller. The SQUID sensor device further comprises a memory circuit storing a bias current value set optimally every predetermined level range of the liquid level, and an analysis controller for supplying a corresponding bias current of the memory circuit from the driving circuit to the SQUID sensor based on the liquid level signal of the liquid level gauge. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、SQUIDセンサ装置に関するものである。
更に詳述すれば、SQUIDセンサを冷媒の液面レベルに関わらず、センサ感度を最適な状態に保持するSQUIDセンサ装置に関するものである。
The present invention relates to a SQUID sensor device.
More specifically, the present invention relates to a SQUID sensor device that maintains the SQUID sensor in an optimum state regardless of the liquid level of the refrigerant.

SQUIDセンサ装置に関連する先行技術文献としては次のようなものがある。   Prior art documents related to the SQUID sensor device include the following.

特開2003−275189号公報 図5は、従来より一般に使用されている従来例の要部構成説明図である。FIG. 5 is an explanatory diagram of a main configuration of a conventional example that is generally used conventionally.

図5は、外来磁場変動の影響を遮蔽、低減させる磁気シールドルーム1内にガントリー3で保持されたデュワ2に内蔵された超伝導センサ(SQUID)を用いて、ベッド4に横たわった被験者9の生体磁気を計測するSQUIDセンサ装置である。
SQUIDセンサは駆動回路5によって動作され、フィルタ部6により信号処理され、解析部7により、生体磁気データを取り込み、解析を行う。
FIG. 5 shows the state of a subject 9 lying on a bed 4 using a superconducting sensor (SQUID) built in a dewar 2 held by a gantry 3 in a magnetic shield room 1 that shields and reduces the influence of external magnetic field fluctuations. It is a SQUID sensor device that measures biomagnetism.
The SQUID sensor is operated by the drive circuit 5, is subjected to signal processing by the filter unit 6, takes in biomagnetic data by the analysis unit 7, and performs analysis.

脳波、心電等の外部参照信号は回路8により取り込まれ、解析部7で生体磁気と同時に解析に用いられる。
SQUIDセンサを超伝導状態に保つための冷媒はデュワ2内に満たされ、その液面は液面計10により随時計測され、あるレベル以下になると、警報および計測を出来なくする。
External reference signals such as electroencephalograms and electrocardiograms are taken in by the circuit 8 and used for analysis at the same time as biomagnetism in the analysis unit 7.
The refrigerant for keeping the SQUID sensor in a superconducting state is filled in the dewar 2 and its liquid level is measured at any time by the liquid level gauge 10, and when it becomes below a certain level, alarm and measurement are disabled.

しかしながら、このようなSQUIDセンサ装置においては、SQUIDセンサ装置において重要な役割を果たすSQUIDセンサは冷媒により超伝導状態に保たれているが、冷媒の液面レベルの低下により、SQUIDセンサが冷媒に浸されていた時と冷媒液面上にある時とで、温度分布が異なるためにSQUIDセンサの臨界電流に変化を生じるという問題点がある。   However, in such a SQUID sensor device, the SQUID sensor, which plays an important role in the SQUID sensor device, is kept in a superconducting state by the refrigerant. There is a problem that the critical current of the SQUID sensor changes because the temperature distribution is different between when it is on the refrigerant liquid level.

図5従来例では、液面低下によりSQUIDセンサの動作が不安定になる恐れがあるレベルに達した場合、警告を発し、また計測を行えなくするものである。
しかし、SQUIDセンサが安定して動作する範囲の冷媒レベルにおいて、センサが常に最適な状態で動作することを保証はしていない。
In the conventional example shown in FIG. 5, when the liquid level lowers to a level where the operation of the SQUID sensor may become unstable, a warning is issued and measurement cannot be performed.
However, there is no guarantee that the sensor always operates in an optimum state at a refrigerant level in a range where the SQUID sensor operates stably.

つまり、図5従来例においては、最適ではないものの、冷媒の消費による液面レベルの変化してもSQUIDセンサが安定して動作するよう、マージンをみたバイアス電流値を設定している。
また、図5従来例では、冷媒液面が0%付近まで下がると、SQUIDセンサの動作が不安定になり、計測が困難になる。
That is, in the conventional example of FIG. 5, although not optimal, the bias current value with a margin is set so that the SQUID sensor operates stably even when the liquid level changes due to refrigerant consumption.
Further, in the conventional example of FIG. 5, when the refrigerant liquid level falls to near 0%, the operation of the SQUID sensor becomes unstable and measurement becomes difficult.

本発明の目的は、上記の課題を解決するもので、デュワ内の冷媒の液面レベルによらず、常にSQUIDセンサが最適な状態で動作できるようにするSQUIDセンサ装置を提供することにある。   An object of the present invention is to solve the above-described problems, and to provide a SQUID sensor device that allows a SQUID sensor to always operate in an optimum state regardless of the liquid level of the refrigerant in the dewar.

このような課題を達成するために、本発明では、請求項1のSQUIDセンサ装置においては、
冷媒に浸されたSQUIDセンサと、前記冷媒の液面レベルを計測する液面計と、この液面計の信号を受ける解析制御装置と、この解析制御装置からの信号に基づき前記SQUIDセンサにバイアス電流を供給する駆動回路とを具備するSQUIDセンサ装置において、
前記液面レベルの所定レベル範囲ごとに最適に設定されたバイアス電流値がメモリーされたメモリー回路と、前記液面計の液面レベル信号に基づき前記メモリー回路の該当するバイアス電流値を前記駆動回路よりSQUIDセンサに供給するように指示する解析制御装置とを具備したことを特徴とする。
In order to achieve such a problem, in the present invention, in the SQUID sensor device of claim 1,
A SQUID sensor immersed in a refrigerant, a liquid level meter for measuring the liquid level of the refrigerant, an analysis control device for receiving a signal of the liquid level meter, and biasing the SQUID sensor based on a signal from the analysis control device In a SQUID sensor device comprising a drive circuit for supplying current,
A memory circuit in which a bias current value optimally set for each predetermined level range of the liquid level is stored, and a corresponding bias current value of the memory circuit based on a liquid level signal of the liquid level gauge And an analysis control device for instructing supply to the SQUID sensor.

本発明の請求項2のSQUIDセンサ装置において、
冷媒に浸されたSQUIDセンサと、前記冷媒の液面レベルを計測する液面計と、この液面計の信号を受ける解析制御装置と、この解析制御装置からの信号に基づき前記SQUIDセンサにバイアス電流を供給する駆動回路とを具備するSQUIDセンサ装置において、
前記液面レベルの所定レベル範囲ごとに最適に設定されたバイアス電流値がメモリーされたメモリー回路と、冷媒の消費トレンドより現時刻での液面レベルを推定する推定回路と、この推定回路の液面レベル推定信号に基づき前記メモリー回路の該当するバイアス電流値を前記駆動回路よりSQUIDセンサに供給するように指示する解析制御装置とを具備したことを特徴とする。
In the SQUID sensor device according to claim 2 of the present invention,
A SQUID sensor immersed in a refrigerant, a liquid level meter for measuring the liquid level of the refrigerant, an analysis control device for receiving a signal of the liquid level meter, and biasing the SQUID sensor based on a signal from the analysis control device In a SQUID sensor device comprising a drive circuit for supplying current,
A memory circuit in which a bias current value optimally set for each predetermined level range of the liquid level is stored, an estimation circuit for estimating a liquid level at the current time from a refrigerant consumption trend, and a liquid of the estimation circuit And an analysis control device for instructing to supply a corresponding bias current value of the memory circuit to the SQUID sensor from the drive circuit based on the surface level estimation signal.

本発明の請求項1によれば、次のような効果がある。
デュワ内の冷媒の液面レベルに関わらず、常にSQUIDセンサを最適な状態で動作させることができるSQUIDセンサ装置が得られる。
従来技術では、冷媒レベルが0%付近まで下がると、SQUIDセンサの動作が不安定になり、計測が実質不可能になるが、たとえ冷媒レベルが0%であってもデュワ内の温度がSQUIDセンサの常伝導遷移温度以下に保たれていれば、SQUIDセンサを安定して動作させることができるSQUIDセンサ装置が得られる。
冷媒の消費に伴う補給頻度を少なく出来、冷媒の補給スケジュールを延ばすことが可能になり、冷媒の補給に伴うコストの削減ができるSQUIDセンサ装置が得られる。
According to claim 1 of the present invention, there are the following effects.
A SQUID sensor device that can always operate the SQUID sensor in an optimum state regardless of the liquid level of the refrigerant in the dewar can be obtained.
In the prior art, when the refrigerant level drops to near 0%, the operation of the SQUID sensor becomes unstable and measurement becomes impossible, but even if the refrigerant level is 0%, the temperature inside the dewar is the SQUID sensor. If it is kept below the normal conduction transition temperature, a SQUID sensor device capable of operating the SQUID sensor stably can be obtained.
It is possible to reduce the replenishment frequency associated with the consumption of the refrigerant, extend the refrigerant replenishment schedule, and obtain a SQUID sensor device capable of reducing the cost associated with the refrigerant replenishment.

本発明の請求項2によれば、次のような効果がある。
液面計の値を直接読み込むのでなく、冷媒消費トレンドより推定した液面レベルからでも最適動作を可能にすることにより、液面計の計測インターバルを長くでき、液面計の作動による冷媒消費量を抑えることができるSQUIDセンサ装置が得られる。
According to claim 2 of the present invention, there are the following effects.
Rather than reading the level gauge value directly, by enabling optimal operation even from the liquid level estimated from the refrigerant consumption trend, the measurement interval of the liquid level gauge can be extended, and the refrigerant consumption due to the operation of the liquid level gauge A SQUID sensor device can be obtained.

従来のデュワ内の液面を直接計測するタイプ以外の装置や、外部出力を持たない液面計にも対応可能なSQUIDセンサ装置が得られる。
外部入力を持たない、または入力に余裕がない解析制御装置にも対応可能なSQUIDセンサ装置が得られる。
It is possible to obtain a SQUID sensor device that can be applied to a device other than the type that directly measures the liquid level in the conventional dewar or a liquid level gauge that does not have an external output.
A SQUID sensor device that can be applied to an analysis control device that does not have an external input or that has no margin for input can be obtained.

生体から発生する磁場には代表的なものとして心臓・脳等からの生体磁場があり、これらの計測により例えば心磁図(MCG)、脳磁図(MEG)として表示することで生体診断に非常に有益な情報を得ることができる。   A representative magnetic field generated from a living body is a biomagnetic field from the heart, brain, or the like. By displaying these as, for example, a magnetocardiogram (MCG) or a magnetoencephalogram (MEG), it is very useful for biodiagnosis. Information can be obtained.

以下本発明を詳細に説明する。
図1は本発明の一実施例の要部構成説明図で、脳磁計に使用された例について説明する。
図2は図1の要部構成説明図である。
図において、図5と同一記号の構成は同一機能を表す。
以下、図5との相違部分のみ説明する。
The present invention will be described in detail below.
FIG. 1 is an explanatory diagram of the main part configuration of one embodiment of the present invention, and an example used in a magnetoencephalograph will be described.
FIG. 2 is an explanatory diagram of a main part configuration of FIG.
In the figure, configurations with the same symbols as in FIG. 5 represent the same functions.
Only the differences from FIG. 5 will be described below.

脳から発生する磁場を計測するものとしてデュワ2内に超伝導量子干渉素子(SQUID)11と呼ばれる超高感度な磁場センサが複数個組み込まれている。
デュワ2内にはSQUIDセンサ11を極低温に冷却し、超伝導状態にするための冷媒が満たされている。
A plurality of ultrasensitive magnetic field sensors called superconducting quantum interference elements (SQUIDs) 11 are incorporated in the dewar 2 for measuring the magnetic field generated from the brain.
The dewar 2 is filled with a refrigerant for cooling the SQUID sensor 11 to a cryogenic temperature and bringing it into a superconducting state.

液面計12はデュワ2内に挿入された液面センサにより冷媒の液面(残量)を計測し、解析制御装置13に出力する。
駆動回路14は非変調(DOIT)方式のSQUIDセンサの駆動回路および信号処理回路であり、SQUIDセンサで計測した磁場を負帰還して磁束−電圧変換効率の高い箇所を選びその動作点で動作させる方法をとるもので、信号処理回路においてSQUIDセンサ11からの微小信号を増幅し、所望の出力を得る。
The liquid level gauge 12 measures the liquid level (remaining amount) of the refrigerant by a liquid level sensor inserted in the dewar 2 and outputs the measured liquid level to the analysis control device 13.
The drive circuit 14 is a non-modulation (DOIT) type SQUID sensor drive circuit and signal processing circuit. The magnetic field measured by the SQUID sensor is negatively fed back to select a location with high magnetic flux-voltage conversion efficiency and operate at that operating point. The signal processing circuit amplifies a minute signal from the SQUID sensor 11 to obtain a desired output.

また、フィルタなどを介して、必要な信号だけを得ることもできる。
また、駆動回路14は、解析制御装置13からの信号に基づき、SQUIDセンサ11にバイアス電流を供給する。
Further, only necessary signals can be obtained through a filter or the like.
The drive circuit 14 supplies a bias current to the SQUID sensor 11 based on a signal from the analysis control device 13.

メモリー回路15は、図2に示す如く、液面レベルの所定レベル範囲ごとに最適に設定されたバイアス電流値がメモリーされている。
この場合は、バイアス電流値はある範囲ごとの液面レベルに応じて最適に調整されたものである。
As shown in FIG. 2, the memory circuit 15 stores a bias current value optimally set for each predetermined level range of the liquid level.
In this case, the bias current value is optimally adjusted according to the liquid level for each certain range.

たとえば、図2に示す如く、100〜70%ではバイアス電流値Aを用い、69〜55%ではバイアス電流値Bを用いてSQUIDセンサを動作させる。
バイアス電流データは液面レベルに応じて更に細かく分けても、大雑把に分けても良い。たとえば10%刻み、30%刻みでの設定にしても良い。
For example, as shown in FIG. 2, the SQUID sensor is operated using the bias current value A for 100 to 70% and the bias current value B for 69 to 55%.
The bias current data may be further finely divided or roughly divided according to the liquid level. For example, the setting may be made in units of 10% or 30%.

データ収録装置16は、駆動回路14からの入力信号をA/D変換後、脳磁場をモニタ上にリアルタイムで表示し、表示させるSUQIDセンサ信号や信号の単位の選択、またデータ計測時には脳磁場データを収録、格納する。   The data recording device 16 performs A / D conversion on the input signal from the drive circuit 14 and then displays the brain magnetic field on the monitor in real time, selects the SUQID sensor signal and signal unit to be displayed, and selects the brain magnetic field data for data measurement. Is recorded and stored.

解析制御装置13は駆動回路14およびデータ収録装置16等の操作を行い脳磁場を計測、解析するもので、計測終了後にデータ収録装置16りデータが転送され、全チャネル分のデータを1つのファイルとして結合、保存する。
こうして得られたデータに基づいて磁場源の解析、マッピング表示等を行う。
The analysis control device 13 operates the drive circuit 14 and the data recording device 16 to measure and analyze the cerebral magnetic field. After the measurement is completed, the data is transferred from the data recording device 16 and the data for all the channels is stored in one file. Combine and save as.
Based on the data thus obtained, analysis of the magnetic field source, mapping display, and the like are performed.

以上の構成において、液面計12により計測されたデュワ内の冷媒レベルを解析制御装置13に送信する。
液面レベルを受信した解析制御装置13は、メモリ回路15から、該当する液面レベルに適したSQUIDセンサのバイアス電流データを検索し、センサ駆動回路14に送信する。
In the above configuration, the refrigerant level in the dewar measured by the liquid level meter 12 is transmitted to the analysis control device 13.
The analysis control device 13 that has received the liquid level retrieves the bias current data of the SQUID sensor suitable for the corresponding liquid level from the memory circuit 15 and transmits it to the sensor drive circuit 14.

オフセット電圧の自動調整を行う。
オフセット電圧はバイアス電流値に関わらず、毎回起動時に調整が必要であるものである。
センサ駆動回路14に送信されたバイアス電流値および調整されたオフセット電圧でSQUIDセンサを駆動し、生体磁気計測を行う。
Automatically adjust the offset voltage.
The offset voltage needs to be adjusted at each startup regardless of the bias current value.
The SQUID sensor is driven with the bias current value and the adjusted offset voltage transmitted to the sensor drive circuit 14 to perform biomagnetism measurement.

この結果、
デュワ2内の冷媒の液面レベルに関わらず、常にSQUIDセンサを最適な状態で動作させることができるSQUIDセンサ装置が得られる。
As a result,
A SQUID sensor device that can always operate the SQUID sensor in an optimum state regardless of the liquid level of the refrigerant in the dewar 2 is obtained.

従来技術では、冷媒レベルが0%付近まで下がると、SQUIDセンサの動作が不安定になり、計測が実質不可能になるが、たとえ冷媒レベルが0%であってもデュワ2内の温度がSQUIDセンサの常伝導遷移温度以下に保たれていれば、SQUIDセンサを安定して動作させることができるSQUIDセンサ装置が得られる。
冷媒の消費に伴う補給頻度を少なく出来、冷媒の補給スケジュールを延ばすことが可能になり、冷媒の補給に伴うコストの削減ができるSQUIDセンサ装置が得られる。
In the prior art, when the refrigerant level drops to near 0%, the operation of the SQUID sensor becomes unstable and measurement becomes practically impossible. However, even if the refrigerant level is 0%, the temperature in the dewar 2 is SQUID. If it is kept below the normal conduction transition temperature of the sensor, a SQUID sensor device capable of stably operating the SQUID sensor is obtained.
It is possible to reduce the replenishment frequency associated with the consumption of the refrigerant, extend the refrigerant replenishment schedule, and obtain a SQUID sensor device capable of reducing the cost associated with the refrigerant replenishment.

図3は、本発明の他の実施例の要部構成説明図である。
本実施例において、推定回路21は、冷媒の消費トレンドより現時刻での液面レベルを推定する。
解析制御装置22は、この推定回路21の液面レベル推定信号に基づき、メモリー回路15の該当するバイアス電流値を、駆動回路14よりSQUIDセンサ11に供給するように指示する。
FIG. 3 is an explanatory view of the main part configuration of another embodiment of the present invention.
In this embodiment, the estimation circuit 21 estimates the liquid level at the current time from the refrigerant consumption trend.
Based on the liquid level estimation signal of the estimation circuit 21, the analysis control device 22 instructs the corresponding bias current value of the memory circuit 15 to be supplied from the drive circuit 14 to the SQUID sensor 11.

以上の構成において、解析制御装置22よりの指令(トリガ)により、解析制御装置22が現在の液面レベルを取得し、トリガをスタートとしたタイマー221と、既知の冷媒消費トレンドにより、数日後(数時間後)の液面レベルを推定回路21により推定し、推定された液面レベルに応じたバイアス電流値をメモリー回路15により設定し、駆動回路14よりSQUIDセンサ11に供給する。   In the above configuration, the analysis control device 22 acquires the current liquid level according to a command (trigger) from the analysis control device 22, and the timer 221 that starts the trigger and the known refrigerant consumption trend several days later ( The liquid level after several hours) is estimated by the estimation circuit 21, a bias current value corresponding to the estimated liquid level is set by the memory circuit 15, and supplied to the SQUID sensor 11 from the drive circuit 14.

この結果、冷媒消費トレンドより推定した液面レベルからでも最適動作を可能にすることにより、従来のデュワ内の液面を直接計測するタイプ以外の装置や、外部出力を持たない液面計にも対応可能なSQUIDセンサ装置が得られる。
冷媒消費トレンドより推定した液面レベルからでも最適動作を可能にすることにより、外部入力を持たない、または入力に余裕がない解析制御装置にも対応可能なSQUIDセンサ装置が得られる。
As a result, by enabling optimal operation even from the liquid level estimated from the refrigerant consumption trend, it can be applied to devices other than the type that directly measures the liquid level in the conventional dewar or a liquid level gauge that does not have an external output. A compatible SQUID sensor device can be obtained.
By enabling the optimum operation even from the liquid level estimated from the refrigerant consumption trend, a SQUID sensor device that can be applied to an analysis control device that does not have an external input or has no margin for input can be obtained.

図4は、本発明の他の実施例の要部構成説明図である。
本実施例においては、外部出力を有しない液面計31の場合の例について示す。
任意のタイミングで液面計31の指示値を読み、解析制御装置32にそのときの指示値を入力、タイマのスタートボタンにより、解析制御装置32でスタート時の液面レベル、経過時間、既知の冷媒消費トレンドにより、数日後(数時間後)の液面レベルを推定回路21により推定し、推定された液面レベルに応じたバイアス電流値をメモリー回路15により設定し、駆動回路14よりSQUIDセンサ11に供給する。
FIG. 4 is an explanatory view of the main part configuration of another embodiment of the present invention.
In the present embodiment, an example in the case of the liquid level gauge 31 having no external output will be described.
Read the indicated value of the liquid level gauge 31 at an arbitrary timing, and input the indicated value at that time to the analysis control device 32. By the start button of the timer, the liquid level at the start, the elapsed time, and the known Based on the refrigerant consumption trend, the liquid level after several days (several hours) is estimated by the estimation circuit 21, and a bias current value corresponding to the estimated liquid level is set by the memory circuit 15. 11 is supplied.

なお、本発明はSQUIDセンサ装置のみならず、SQUIDセンサを用いた非破壊検査機器、SQUID顕微鏡、抗原抗体反応検出装置といった機器にも有用である。
要するに、SQUIDセンサを用いた装置に適用することができる。
The present invention is useful not only for SQUID sensor devices but also for devices such as non-destructive inspection devices, SQUID microscopes, and antigen-antibody reaction detection devices using SQUID sensors.
In short, the present invention can be applied to an apparatus using a SQUID sensor.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の一実施例の要部構成説明図である。It is principal part structure explanatory drawing of one Example of this invention. 図1の要部構成説明図である。It is principal part structure explanatory drawing of FIG. 本発明の他の実施例の要部構成説明図である。It is principal part structure explanatory drawing of the other Example of this invention. 本発明の他の実施例の要部構成説明図である。It is principal part structure explanatory drawing of the other Example of this invention. 従来より一般に使用されている従来例の構成説明図である。It is structure explanatory drawing of the prior art example generally used conventionally.

符号の説明Explanation of symbols

1 磁気シールドルーム
2 デュワ
3 ガントリー
4 ベッド
5 駆動回路
6 フィルタ部
7 解析部
8 回路
9 被験者
10 液面計
11 SQUIDセンサ
12 液面計
13 解析制御装置
14 駆動回路
15 メモリー回路
16 データ収録装置
21 推定回路
22 SQUIDセンサ
221 タイマー
31 液面計
32 解析制御装置

DESCRIPTION OF SYMBOLS 1 Magnetic shield room 2 Dewar 3 Gantry 4 Bed 5 Drive circuit 6 Filter part 7 Analysis part 8 Circuit 9 Test subject 10 Liquid level gauge 11 SQUID sensor 12 Liquid level gauge 13 Analysis control apparatus 14 Drive circuit 15 Memory circuit 16 Data recording apparatus 21 Estimation Circuit 22 SQUID sensor 221 Timer 31 Liquid level gauge 32 Analysis control device

Claims (2)

冷媒に浸されたSQUIDセンサと、
前記冷媒の液面レベルを計測する液面計と、
この液面計の信号を受ける解析制御装置と、
この解析制御装置からの信号に基づき前記SQUIDセンサにバイアス電流を供給する駆動回路と
を具備するSQUIDセンサ装置において、
前記液面レベルの所定レベル範囲ごとに最適に設定されたバイアス電流値がメモリーされたメモリー回路と、
前記液面計の液面レベル信号に基づき前記メモリー回路の該当するバイアス電流値を前記駆動回路よりSQUIDセンサに供給するように指示する解析制御装置と
を具備したことを特徴とするSQUIDセンサ装置。
A SQUID sensor immersed in a refrigerant;
A liquid level gauge for measuring the liquid level of the refrigerant;
An analysis control device that receives the signal of the level gauge,
A SQUID sensor device comprising: a drive circuit that supplies a bias current to the SQUID sensor based on a signal from the analysis control device;
A memory circuit in which a bias current value optimally set for each predetermined level range of the liquid level is stored;
An SQUID sensor device comprising: an analysis control device that instructs to supply a corresponding bias current value of the memory circuit to the SQUID sensor from the drive circuit based on a liquid level signal of the liquid level gauge.
冷媒に浸されたSQUIDセンサと、
前記冷媒の液面レベルを計測する液面計と、
この液面計の信号を受ける解析制御装置と、
この解析制御装置からの信号に基づき前記SQUIDセンサにバイアス電流を供給する駆動回路と
を具備するSQUIDセンサ装置において、
前記液面レベルの所定レベル範囲ごとに最適に設定されたバイアス電流値がメモリーされたメモリー回路と、
冷媒の消費トレンドより現時刻での液面レベルを推定する推定回路と、
この推定回路の液面レベル推定信号に基づき前記メモリー回路の該当するバイアス電流値を前記駆動回路よりSQUIDセンサに供給するように指示する解析制御装置と
を具備したことを特徴とするSQUIDセンサ装置。

A SQUID sensor immersed in a refrigerant;
A liquid level gauge for measuring the liquid level of the refrigerant;
An analysis control device that receives the signal of the level gauge,
A SQUID sensor device comprising: a drive circuit that supplies a bias current to the SQUID sensor based on a signal from the analysis control device;
A memory circuit in which a bias current value optimally set for each predetermined level range of the liquid level is stored;
An estimation circuit for estimating the liquid level at the current time from the refrigerant consumption trend;
An SQUID sensor device comprising: an analysis control device that instructs the SQUID sensor to supply a corresponding bias current value of the memory circuit to the SQUID sensor based on a liquid level estimation signal of the estimation circuit.

JP2005198278A 2005-07-07 2005-07-07 SQUID sensor device Expired - Fee Related JP4543327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198278A JP4543327B2 (en) 2005-07-07 2005-07-07 SQUID sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198278A JP4543327B2 (en) 2005-07-07 2005-07-07 SQUID sensor device

Publications (2)

Publication Number Publication Date
JP2007017248A true JP2007017248A (en) 2007-01-25
JP4543327B2 JP4543327B2 (en) 2010-09-15

Family

ID=37754540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198278A Expired - Fee Related JP4543327B2 (en) 2005-07-07 2005-07-07 SQUID sensor device

Country Status (1)

Country Link
JP (1) JP4543327B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032962A1 (en) 2010-09-10 2012-03-15 コニカミノルタオプト株式会社 Biomagnetism measuring device, biomagnetism measuring system, and biomagnetism measuring method
US8933696B2 (en) 2011-05-20 2015-01-13 Konica Minolta, Inc. Magnetic sensor and biomagnetism measurement system
US11864905B2 (en) 2017-12-28 2024-01-09 Ricoh Company, Ltd. Biological function measurement and analysis system, biological function measurement and analysis method, and recording medium storing program code

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143132A (en) * 1988-11-25 1990-06-01 Daishinku Co Manometer
JPH05312929A (en) * 1992-05-15 1993-11-26 Fujitsu Ltd Magnetic-flux measuring apparatus using digital superconducting quantum interferrometer
JPH09257893A (en) * 1996-03-19 1997-10-03 Mitsubishi Electric Corp Superconducting quantum interference device
JPH11281723A (en) * 1998-03-31 1999-10-15 Hitachi Ltd Method for monitoring refrigerant for superconducting quantum interference device sensor in biomagnetism measurement system
JP2003275189A (en) * 2002-03-22 2003-09-30 Hitachi High-Technologies Corp Biomagnetism measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143132A (en) * 1988-11-25 1990-06-01 Daishinku Co Manometer
JPH05312929A (en) * 1992-05-15 1993-11-26 Fujitsu Ltd Magnetic-flux measuring apparatus using digital superconducting quantum interferrometer
JPH09257893A (en) * 1996-03-19 1997-10-03 Mitsubishi Electric Corp Superconducting quantum interference device
JPH11281723A (en) * 1998-03-31 1999-10-15 Hitachi Ltd Method for monitoring refrigerant for superconducting quantum interference device sensor in biomagnetism measurement system
JP2003275189A (en) * 2002-03-22 2003-09-30 Hitachi High-Technologies Corp Biomagnetism measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032962A1 (en) 2010-09-10 2012-03-15 コニカミノルタオプト株式会社 Biomagnetism measuring device, biomagnetism measuring system, and biomagnetism measuring method
US10058258B2 (en) 2010-09-10 2018-08-28 Konica Minolta Advanced Layers, Inc. Biomagnetism measuring device, biomagnetism measuring system, and biomagnetism measuring method
US8933696B2 (en) 2011-05-20 2015-01-13 Konica Minolta, Inc. Magnetic sensor and biomagnetism measurement system
US11864905B2 (en) 2017-12-28 2024-01-09 Ricoh Company, Ltd. Biological function measurement and analysis system, biological function measurement and analysis method, and recording medium storing program code

Also Published As

Publication number Publication date
JP4543327B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP3586047B2 (en) Magnetic resonance diagnostic equipment
JP5004805B2 (en) MRI apparatus using superconducting magnet and its maintenance method
US20070188495A1 (en) Virtual display
US4601587A (en) Device and method for determining freezing points
US10383523B2 (en) Basal body temperature measuring system and basal body temperature measuring device
US20150168566A1 (en) Portable Radiographic Imaging Apparatus And Radiographic Imaging System
JP4543327B2 (en) SQUID sensor device
JP3106701B2 (en) Biomagnetic field measurement device
CN112585561A (en) Monitoring system
JP6295820B2 (en) Biological information analyzer
JPS596040A (en) Apparatus for detecting ovulation
JP2010150219A (en) Refrigeration storage system and refrigerated storage method of biological specimen
US5213107A (en) Portable electrocardiograph
JP2007209678A (en) Measuring device, and controlling method and controlling program of measuring device,
JP3944406B2 (en) Biomagnetic measurement device
SE465550B (en) DEVICE FOR DIAGNOSTICS IN CONNECTION WITH PARODONTIT
JP4012897B2 (en) Biomagnetic measurement device
JP2004327874A (en) Cooling system and biomagnetism measuring apparatus equipped with coolant consumption amount monitoring function
RU24553U1 (en) MEASURING SIGNAL RECORDER AND THEIR CHARACTERISTICS
JP3650482B2 (en) Waveform recorder
Gumbrell et al. Development of a pH based tissue ischemia monitor: hardware realization
JPS6150020A (en) Electronic thermometer
JPH02268741A (en) Apparatus for processing data of living body
JP2004041739A (en) Method for displaying and printing biomagnetic field measurement data
JPH04250378A (en) Multichannel squid fluxmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees