JP2007016370A - Spun-bonded nonwoven fabric and method for producing the same - Google Patents

Spun-bonded nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP2007016370A
JP2007016370A JP2005202186A JP2005202186A JP2007016370A JP 2007016370 A JP2007016370 A JP 2007016370A JP 2005202186 A JP2005202186 A JP 2005202186A JP 2005202186 A JP2005202186 A JP 2005202186A JP 2007016370 A JP2007016370 A JP 2007016370A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
thermocompression bonding
spunbonded nonwoven
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005202186A
Other languages
Japanese (ja)
Inventor
Tatsu Takahashi
達 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2005202186A priority Critical patent/JP2007016370A/en
Publication of JP2007016370A publication Critical patent/JP2007016370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonwoven fabric which is a thin and scarcely deformed nonwoven fabric having high strength and coated with a resin while having smoothness. <P>SOLUTION: The spun-bonded nonwoven fabric is composed of circular cross-sectional filaments having ≤3.3 dtex filament fineness and obtained by mutually joining the filaments only according to thermocompression bonding. The nonwoven fabric has partially thin thermocompression bonded parts and the filaments are mutually heat-fused in the whole surface of a surface layer of the spun-bonded nonwoven fabric in parts other than the thin thermocompression bonded parts. The inner layer maintains the filament form and the apparent porosity of the spun-bonded nonwoven fabric is 66-76%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、適度な薄さと表面平滑性を併せもつスパンボンド不織布に関するものである。   The present invention relates to a spunbonded nonwoven fabric having both moderate thinness and surface smoothness.

一般に、電線押さえ巻きテープなどのテープ類やテープ基材としてポリエステルからなるスパンボンド不織布が使用されている。そして、このようなテープに使用されるスパンボンド不織布には、厚みが薄いこと、強力が高いこと、容易に伸びないこと等の性能が求められている。   In general, tapes such as electric wire holding tape and spunbond nonwoven fabric made of polyester are used as a tape base material. And the spunbonded nonwoven fabric used for such a tape is required to have such properties as being thin, having high strength, and not easily stretched.

厚みが薄く、厚み当たりの特定の強力を有するスパンボンド不織布として、特許文献1に、特定の還元粘度のポリエチレンテレフタレートからなり、断面形状が特定の扁平状である繊維を構成繊維として使用することが開示されている。特許文献1の技術では、構成繊維が扁平状であるため、繊維間の空隙が小さくなり、不織布表面の平滑性が非常に高く、不織布内部の空隙率が非常に小さい。したがって、このようなスパンボンド不織布に樹脂を塗布、コーティングしようとすると、樹脂が不織布内に入り込むことができず、アンカー効果が期待できないため、付与した樹脂が不織布表面に載っているだけの状態となり、不織布より樹脂が脱落しやすいという問題がある。
特許第3445539号
As a spunbonded nonwoven fabric having a small thickness and a specific strength per thickness, Patent Document 1 may use a fiber made of polyethylene terephthalate having a specific reduced viscosity and having a specific flat shape as a constituent fiber. It is disclosed. In the technique of Patent Document 1, since the constituent fibers are flat, the gaps between the fibers are small, the smoothness of the nonwoven fabric surface is very high, and the porosity inside the nonwoven fabric is very small. Therefore, if a resin is applied and coated on such a spunbonded nonwoven fabric, the resin cannot enter the nonwoven fabric and the anchor effect cannot be expected, so the applied resin is only on the nonwoven fabric surface. There is a problem that the resin is more easily dropped than the nonwoven fabric.
Japanese Patent No. 3445539

本発明は、厚みが薄く、高い強力を有し、かつ変形しにくい不織布であって、平滑性を有しながら樹脂コート可能な不織布を提供することを課題とする。   An object of the present invention is to provide a non-woven fabric that is thin, has high strength, is not easily deformed, and that can be coated with a resin while having smoothness.

本発明は、単糸繊度3.3デシテックス以下の円形断面形状の繊維から構成され、繊維同士は加熱圧着のみにより接合してなるスパンボンド不織布であり、
該不織布は、部分的に厚みが薄い熱圧着部分を有し、
厚みが薄い熱圧着部分以外の部分は、スパンボンド不織布の表面層の全面において繊維同士が熱融着しているとともに、かつ内層は繊維形態を維持しており、
スパンボンド不織布の見掛けの空隙率が66〜76%であることを特徴とするスパンボンド不織布を要旨とするものである。
The present invention is a spunbonded nonwoven fabric composed of fibers having a circular cross-sectional shape with a single yarn fineness of 3.3 dtex or less, and the fibers are joined only by thermocompression bonding,
The non-woven fabric has a thermocompression bonding portion that is partially thin,
The parts other than the thin thermocompression bonding part are heat-bonded to each other over the entire surface layer of the spunbond nonwoven fabric, and the inner layer maintains the fiber form.
The gist of the spunbonded nonwoven fabric is characterized in that the apparent porosity of the spunbonded nonwoven fabric is 66 to 76%.

また、本発明は、スパンボンド法により得られた単糸繊度3.3デシテックス以下の円形断面形状の繊維が堆積してなる不織ウェブを、熱エンボス装置に通して、部分的に厚みが薄い熱圧着部分を形成し、次いで、一対のフラットロールからなる熱カレンダー装置に通して、不織布の表面層の全面において繊維同士を熱融着させることを特徴とするスパンボンド不織布の製造方法を要旨とするものである。   In addition, the present invention passes a nonwoven web obtained by depositing fibers having a circular cross-sectional shape of a single yarn fineness of 3.3 dtex or less obtained by a spunbond method through a hot embossing device, and is partially thin. A gist of a method for producing a spunbonded nonwoven fabric is characterized in that a thermocompression bonding portion is formed and then passed through a thermal calender device comprising a pair of flat rolls, and the fibers are thermally fused on the entire surface layer of the nonwoven fabric. To do.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のスパンボンド不織布は、加熱圧着のみにより接合してなるものである。   The spunbonded nonwoven fabric of the present invention is bonded only by thermocompression bonding.

スパンボンド不織布を構成する繊維は、加熱圧着のみにより接合するためには、熱可塑性重合体からなるものであればよく、例えば、ポリエステル系重合体、ポリアミド系重合体、ポリプロピレンやポリエチレン等のポリオレフィン系重合体など、公知のものを使用することができる。スパンボンド不織布は、単一の重合体からなるものであってもよいし、また、融点が異なる等の2種類以上の異なる重合体からなるものでもよい。2種以上の異なる重合体からなるスパンボンド不織布としては、2種の異なる繊維が混繊された不織布や、2種の異なる重合体が芯鞘型、サイドバイサイド型、分割型等に複合した複合繊維を構成繊維とする不織布等が挙げられる。繊維を構成する重合体や繊維形態等は、スパンボンド不織布が用いられる製品に応じて適宜選択すればよいが、汎用性、強度、後工程における加工時の耐熱性等の観点から、ポリエチレンテレフタレートを用いることが最も好ましい。なお、繊維を構成する上記重合体は、必要に応じて、難燃剤や制電剤等の各種の改質剤が共重合されたものや、これらが添加されたものであってもよい。また、顔料、耐候剤、酸化防止剤等が添加されたものでもよい。   The fibers constituting the spunbonded nonwoven fabric may be made of a thermoplastic polymer so as to be joined only by thermocompression bonding, for example, polyester polymers, polyamide polymers, polyolefins such as polypropylene and polyethylene A well-known thing, such as a polymer, can be used. The spunbonded nonwoven fabric may be made of a single polymer, or may be made of two or more different polymers having different melting points. As the spunbond nonwoven fabric composed of two or more different polymers, a nonwoven fabric in which two different fibers are mixed, or a composite fiber in which two different polymers are combined into a core-sheath type, a side-by-side type, a split type, etc. Non-woven fabrics, etc. having a constituent fiber. The polymer and fiber form constituting the fiber may be appropriately selected according to the product in which the spunbond nonwoven fabric is used, but from the viewpoint of versatility, strength, heat resistance during processing in the subsequent process, etc., polyethylene terephthalate is used. Most preferably, it is used. In addition, the said polymer which comprises a fiber may be what copolymerized various modifiers, such as a flame retardant and an antistatic agent, and those to which these were added as needed. Further, pigments, weathering agents, antioxidants and the like may be added.

スパンボンド不織布の目付は、用途に応じて適宜選択すればよいが、例えば、10〜200g/m2程度のものがよい。また、薄さと軽量化を図るためには10〜70g/m2程度の目付が好ましい。 The basis weight of the spunbonded nonwoven fabric may be appropriately selected depending on the application, but for example, a fabric of about 10 to 200 g / m 2 is preferable. In order to reduce the thickness and weight, a basis weight of about 10 to 70 g / m 2 is preferable.

本発明のスパンボンド不織布は、部分的に厚みが薄い熱圧着部分を有している。また、熱圧着部分以外の部分は、スパンボンド不織布の表面層の全面において繊維同士が熱融着しているとともに、かつ内層は繊維形態を維持している。   The spunbonded nonwoven fabric of the present invention has a thermocompression bonding portion that is partially thin. Further, in the portion other than the thermocompression bonding portion, the fibers are thermally fused on the entire surface layer of the spunbond nonwoven fabric, and the inner layer maintains the fiber form.

スパンボンド不織布が有する熱圧着部分は、一対のエンボスロール、またはエンボスロールと平滑ロールとからなる熱エンボス装置を用いた熱エンボス加工によって形成させることができる。熱圧着部分は、不織布に散点状に多数形成されたものであっても、連続線として多数本形成されたものであってもよい。散点状に形成されたものの場合、個々の熱圧着部分の形態は、円形、楕円形、菱形、三角形等の多角形、T形、井形、長方形などの任意の形態を採用することができる。なお、個々の熱圧着部分が独立して存在しているものではなく、個々の熱圧着部分同士がつながっていてもよい。また、熱圧着部分が連続線として形成されたものの場合、線状の熱圧着部がストライプ状や格子状に付与されているものを採用することができる。   The thermocompression bonding portion of the spunbonded nonwoven fabric can be formed by hot embossing using a pair of embossing rolls or a hot embossing device composed of an embossing roll and a smooth roll. The thermocompression bonding portion may be formed in a large number of dots on the nonwoven fabric, or may be formed in a large number as a continuous line. In the case of those formed in the form of dots, any form such as a circle, an ellipse, a rhombus, a polygon such as a triangle, a T-shape, a well, or a rectangle can be adopted as the form of each thermocompression bonding portion. In addition, each thermocompression bonding part does not exist independently, but each thermocompression bonding part may be connected. In the case where the thermocompression bonding portion is formed as a continuous line, a linear thermocompression bonding portion provided in a stripe shape or a lattice shape can be employed.

不織布表面積に対する部分的に厚みが薄い熱圧着部分の面積の比率は、11%以上であることが好ましく、より好ましくは、11〜40%である。熱圧着部分の面積の比率を11%以上にすることにより、スパンボンド不織布は十分な強力を保持することができる。また、熱圧着部分の面積の比率を40%以下にすることにより、熱圧着部分以外の部分を十分に確保して、すなわち、不織布内層に繊維形態を保持してなる部分(空隙部分)を確保することにより、樹脂や液体の浸透性や保持性が良好となり、また、樹脂を塗布、コーティングした際の樹脂の付着性が良好に奏される。   It is preferable that the ratio of the area of the thermocompression bonding part where thickness is partially thin with respect to a nonwoven fabric surface area is 11% or more, More preferably, it is 11 to 40%. By setting the area ratio of the thermocompression bonding portion to 11% or more, the spunbonded nonwoven fabric can maintain sufficient strength. In addition, by setting the area ratio of the thermocompression bonding portion to 40% or less, a portion other than the thermocompression bonding portion is sufficiently secured, that is, a portion (gap portion) formed by holding the fiber form in the nonwoven fabric inner layer is secured. By doing so, the permeability and retention of the resin and liquid are improved, and the adhesion of the resin when the resin is applied and coated is excellent.

本発明のスパンボンド不織布は、厚みが薄い熱圧着部分以外の部分は、スパンボンド不織布の表面層の全面において繊維同士が熱融着しているとともに、かつ内層は繊維形態を維持している。これは、上記した熱エンボス装置を用いた熱エンボス加工を施した後、表面平滑な熱カレンダーロールに通すこと(熱カレンダー加工)により熱と圧力を加えて、不織布表面に存在する繊維に熱を与えて、表面に飛び出した繊維を抑え、繊維同士を熱融着させて、表面を平滑にし、スパンボンド不織布の厚みを適度の薄さに制御し、一方、不織布の内層の繊維は、熱の影響を受けず繊維形態を維持させ、繊維が堆積してなる状態とする。このように不織布表面の全面が熱融着していることにより、不織布の伸びや変形に対する応力が高くなり、すなわちモジュラス強力が高くなり、容易に変形し難く、伸び難い不織布を得ることができる。なお、熱カレンダー加工は、一対の熱カレンダーロール間に通布するか、不織布を熱カレンダーロールに沿わせて走行させることによって、熱および圧力を付与することに行う。   In the spunbonded nonwoven fabric of the present invention, in the portions other than the thin thermocompression bonding portion, the fibers are thermally fused on the entire surface layer of the spunbonded nonwoven fabric, and the inner layer maintains the fiber form. After heat embossing using the heat embossing device described above, heat and pressure are applied by passing through a heat calender roll with a smooth surface (heat calendering) to heat the fibers existing on the nonwoven fabric surface. To suppress the fibers protruding on the surface, heat-bond the fibers together, smooth the surface, and control the thickness of the spunbond nonwoven fabric to an appropriate thickness, while the fibers in the inner layer of the nonwoven fabric The fiber form is maintained without being affected, and the fiber is deposited. As described above, since the entire surface of the nonwoven fabric is heat-sealed, the stress for elongation and deformation of the nonwoven fabric is increased, that is, the modulus strength is increased, and a nonwoven fabric that is not easily deformed and hardly stretched can be obtained. The heat calendering is performed by applying heat and pressure by passing between a pair of heat calender rolls or by running a nonwoven fabric along the heat calender roll.

本発明において、熱カレンダー加工により、不織布表面に存在する繊維は、熱により繊維表面が軟化して繊維同士が融着するが、完全にフィルム化したものではなく、また繊維の断面形状が極端に変形するものではなく、円形断面の形状を保持している。したがって、樹脂をコーティングした際のコート性、アンカー効果を良好に奏することができる。   In the present invention, the fiber existing on the surface of the nonwoven fabric by heat calendering is softened by heat and the fibers are fused to each other. However, the fibers are not completely filmed, and the cross-sectional shape of the fiber is extremely large. It does not deform and retains a circular cross-sectional shape. Therefore, the coatability and anchor effect when the resin is coated can be satisfactorily achieved.

本発明のスパンボンド不織布は、単糸繊度3.3デシテックス以下の円形断面形状の繊維によって構成される。単糸繊度が3.3デシテックス以下にすることにより、熱による変形が少なく熱カレンダー加工による熱と圧力を効果的に与えることができ、所望の表面平滑なスパンボンド不織布であって、高い強力のスパンボンド不織布を得ることができる。また、円形断面形状とは、熱圧着部分以外の部分に存在する繊維の横断面形状が、熱の影響を受けていても、いわゆる偏平状に変形しているものではなく、一部変形があったとしても、断面形状における長軸と短軸との比(長軸/短軸)が、1.0〜1.2程度のものである。このように、スパンボンド不織布の表面において、熱カレンダー加工により、表面の全面において繊維同士が熱融着しているものの、繊維の変形度が小さく、円形状を保っているため、表面平滑であるものの、単繊維間には樹脂が入り込む隙間があり、樹脂を塗布、コートをした際に、アンカー効果によりコート性、付着性が良好となり、樹脂が脱落する恐れがない。なお、単糸繊度の下限は、スパンボンド不織布の強度や単繊維間の空隙を考慮して、1デシテックス程度が好ましい。   The spunbonded nonwoven fabric of the present invention is composed of fibers having a circular cross section having a single yarn fineness of 3.3 dtex or less. By setting the single yarn fineness to 3.3 dtex or less, it is possible to effectively apply heat and pressure by thermal calendering with less deformation due to heat, and a desired surface smooth spunbond nonwoven fabric with high strength. A spunbond nonwoven fabric can be obtained. In addition, the circular cross-sectional shape means that even if the cross-sectional shape of the fiber existing in the portion other than the thermocompression-bonded portion is affected by heat, it is not deformed into a so-called flat shape, and there is some deformation. Even so, the ratio of the major axis to the minor axis (major axis / minor axis) in the cross-sectional shape is about 1.0 to 1.2. In this way, on the surface of the spunbonded nonwoven fabric, the fibers are heat-sealed on the entire surface by thermal calendering, but the degree of deformation of the fibers is small and the circular shape is maintained, so that the surface is smooth. However, there is a gap for the resin to enter between the single fibers, and when the resin is applied and coated, the coatability and adhesion are improved by the anchor effect, and the resin does not fall off. The lower limit of the single yarn fineness is preferably about 1 dtex in consideration of the strength of the spunbonded nonwoven fabric and the gap between the single fibers.

本発明のスパンボンド不織布は、見掛けの空隙率が、66〜76%であることが好ましい。空隙率が66%以上とすることにより、樹脂や液体の浸透性、保持性を良好にすることができる。一方、76%以下にすることにより、薄くて強度の高いスパンボンド不織布とすることができる。見掛けの空隙率は、下式により算出する。
見掛けの空隙率=1−[目付(g/m2)/重合体の密度(g/cc)/不織布厚み(μm)]
The spunbonded nonwoven fabric of the present invention preferably has an apparent porosity of 66 to 76%. By setting the porosity to 66% or more, the permeability and retention of the resin and liquid can be improved. On the other hand, by setting it to 76% or less, a spunbonded nonwoven fabric that is thin and has high strength can be obtained. The apparent porosity is calculated by the following formula.
Apparent porosity = 1− [weight per unit area (g / m 2 ) / polymer density (g / cc) / non-woven fabric thickness (μm)]

本発明のスパンボンド不織布は、5%伸長時の応力が下記式を満たすことが好ましい。
5%伸長時の応力 ≧ 235×目付(g/m2)/100
上式を満足する5%伸長時の応力を有することにより、十分なモジュラス強度を有し、容易に変形しにくく、高強力と高いモジュラス強力が要求される電線押さえ巻きテープの基材、電線ケーブル用遮水材の基材、圧延したステンレス鋼板に挟みこんで使用する合紙等に好ましく用いることができる。
In the spunbonded nonwoven fabric of the present invention, the stress at 5% elongation preferably satisfies the following formula.
Stress at 5% elongation ≧ 235 × weight per unit area (g / m 2 ) / 100
By holding the stress at 5% elongation satisfying the above formula, it has sufficient modulus strength, is not easily deformed, and is required to have high strength and high modulus strength. It can preferably be used for a base material of a water shielding material, a slip sheet sandwiched between rolled stainless steel plates and the like.

次いで、本発明のスパンボンド不織布の好ましい製造方法について説明する。   Next, a preferred method for producing the spunbond nonwoven fabric of the present invention will be described.

まず、スパンボンド法により単糸繊度3.3デシテックス以下の円形断面形状の長繊維が堆積してなる不織ウェブを用意する。次いで、この不織ウェブを、熱エンボス装置に通して、部分的に厚みが薄い熱圧着部分を形成させる。熱エンボス加工の際の圧着条件としては、処理速度にもよるが、例えば、長繊維がポリエチレンテレフタレートからなる場合は、ロール設定温度230〜250℃、線圧100〜1000N/cmとするとよい。   First, a nonwoven web is prepared by depositing long fibers having a circular cross section with a single yarn fineness of 3.3 dtex or less by a spunbond method. The nonwoven web is then passed through a hot embossing device to form a thermocompression part that is partially thin. For example, when the long fiber is made of polyethylene terephthalate, the pressure bonding condition in the hot embossing may be set to a roll set temperature of 230 to 250 ° C. and a linear pressure of 100 to 1000 N / cm.

次いで、熱エンボス加工により得られた不織布を、表面平滑な熱カレンダーロールに通す、いわゆる熱カレンダー加工を行って、不織布の表面層の全面において繊維同士を熱融着させる。熱カレンダー加工の際の条件としては、処理速度や目付にもよるが、例えば、長繊維がポリエチレンテレフタレートからなる場合は、ロール設定温度130〜200℃、線圧1200〜2500N/cmとするとよい。   Next, the nonwoven fabric obtained by hot embossing is passed through a heat calender roll having a smooth surface, so-called thermal calendering is performed, and the fibers are thermally fused on the entire surface layer of the nonwoven fabric. As conditions for the heat calendering, although depending on the processing speed and basis weight, for example, when the long fiber is made of polyethylene terephthalate, the roll set temperature is 130 to 200 ° C. and the linear pressure is 1200 to 2500 N / cm.

本発明のスパンボンド不織布は、上記した構成であるため、厚みが適度に薄く、高い強力を有し、かつ変形しにくい不織布である。また、表面平滑性を有しながら樹脂コートが良好で、液体や樹脂の含浸が可能である。したがって、本発明のスパンボンド不織布は、樹脂コートを要する電線押さえ巻きテープのテープ基材や、電線ケーブル用遮水材の基材、その他テープ類に適している。また、厚みが適度に薄く、表面平滑で、容易に変形しにくいため、圧延したステンレス鋼板の損傷防止のため鋼板間に挟みこんで使用する合紙(ステンレス合紙)としても好適に用いることができる。   Since the spunbonded nonwoven fabric of the present invention has the above-described configuration, it is a nonwoven fabric that has a moderately thin thickness, high strength, and is difficult to deform. In addition, the resin coat is good while having surface smoothness, and liquid or resin impregnation is possible. Therefore, the spunbonded nonwoven fabric of the present invention is suitable for a tape base material of an electric wire holding tape requiring a resin coat, a base material of a water shielding material for electric cables, and other tapes. Moreover, since the thickness is moderately thin, the surface is smooth, and is not easily deformed, it is preferably used as a slip sheet (stainless slip sheet) that is sandwiched between steel sheets to prevent damage to the rolled stainless steel sheet. it can.

次に、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例によって何ら限定されるものではない。また、不織布の評価方法は以下のとおりである。
(1)厚み:JIS L 1906に準じて測定した。
(2)5%伸長時の応力(N/5cm幅):不織布より幅5cm、長さ20cmの試料を不織布のMD方向より10点採取し、この試料を定速伸長型引張試験機につかみ間隔10cmとして取付け、20cm/分の引張速度で試験片が5%伸長するまで荷重を加え、5%伸長時の荷重を読み取り、その平均値を求めて、5%伸長時の応力(N/5cm幅)とした。
(3)引張強力(N/3cm幅):不織布より幅5cm、長さ20cmの試料を不織布のMD方向より10点採取し、この試料を定速伸長型引張試験機につかみ間隔10cmとして取付け、20cm/分の引張速度で試験片が切断するまで荷重を加え、最大荷重時の強さの平均値を求めて引張強力(N/5cm幅)とした。
Next, the present invention will be described specifically by way of examples. In addition, this invention is not limited at all by these Examples. Moreover, the evaluation method of a nonwoven fabric is as follows.
(1) Thickness: Measured according to JIS L 1906.
(2) Stress at 5% elongation (N / 5 cm width): Ten samples having a width of 5 cm and a length of 20 cm were taken from the nonwoven fabric in the MD direction, and this sample was held by a constant-speed extension type tensile tester. Installed as 10 cm, applied a load until the specimen stretched 5% at a tensile speed of 20 cm / min, read the load at 5% elongation, found the average value, and determined the stress at 5% elongation (N / 5 cm width) ).
(3) Tensile strength (N / 3 cm width): Ten samples having a width of 5 cm and a length of 20 cm from the nonwoven fabric were taken from the MD direction of the nonwoven fabric, and this sample was attached to a constant-speed extension type tensile tester with a spacing of 10 cm. A load was applied at a tensile speed of 20 cm / min until the test piece was cut, and the average value of the strength at the maximum load was determined and used as the tensile strength (N / 5 cm width).

実施例
スパンボンド法によって、繊度2.2デシテックスの円形断面形状のポリエチレンテレフタレート長繊維を堆積させた不織ウェブを得、これをエンボスロールと平滑ロールからなる熱エンボス装置に通し、圧着条件としてロール表面温度240℃、線圧930N/cmに設定して、熱圧着処理を施し、熱圧着部分(熱圧着部の形状:六角形、熱圧着面積率:17%)を形成させ、次いで、この熱圧着部分を有する不織布(厚み170μm)を、一対の平滑ロールからなる熱カレンダー装置に通し、熱カレンダー条件としてロール表面温度240℃、線圧930N/cmに設定し、熱カレンダー加工を施し、目付30g/m2の本発明のスパンボンド不織布を得た。
Example A nonwoven web in which polyethylene terephthalate filaments having a circular cross-sectional shape of 2.2 decitex in fineness were deposited by a spunbond method was obtained, and this was passed through a hot embossing device composed of an embossing roll and a smooth roll, and a roll as a pressure bonding condition The surface temperature is set to 240 ° C., the linear pressure is set to 930 N / cm, and thermocompression treatment is performed to form a thermocompression bonding part (thermocompression bonding part shape: hexagon, thermocompression bonding area ratio: 17%). A non-woven fabric (thickness 170 μm) having a crimped portion is passed through a heat calender device composed of a pair of smooth rolls, and the heat calender conditions are set to a roll surface temperature of 240 ° C. and a linear pressure of 930 N / cm. / M 2 of the spunbonded nonwoven fabric of the present invention was obtained.

得られたスパンボンド不織布は、見かけの空隙率が71%であり、厚み75μm、5%伸長時の応力80N/5cm幅、引張強度115N/5cm幅であった。   The obtained spunbonded nonwoven fabric had an apparent porosity of 71%, a thickness of 75 μm, a stress at 5% elongation of 80 N / 5 cm width, and a tensile strength of 115 N / 5 cm width.

得られたスパンボンド不織布の表面状態および断面状態を目視および走査型電子顕微鏡写真にて確認したところ、熱圧着部分以外の部分は、スパンボンド不織布の表面層の全面において繊維同士が熱融着しており、一方、内層は繊維形態を維持して繊維間の空隙を保持していた。また、スパンボンド不織布を構成する繊維の断面形状を確認したところ、繊維の横断面における長軸と短軸との比(長軸/短軸)は、1.08であり円形断面を保持しているものであった。   When the surface state and cross-sectional state of the obtained spunbonded nonwoven fabric were confirmed visually and by scanning electron micrographs, the fibers other than the thermocompression bonded portions were heat-bonded to each other over the entire surface layer of the spunbonded nonwoven fabric. On the other hand, the inner layer maintained the fiber form and retained the voids between the fibers. Further, when the cross-sectional shape of the fibers constituting the spunbonded nonwoven fabric was confirmed, the ratio of the long axis to the short axis (long axis / short axis) in the cross section of the fiber was 1.08, and the circular cross section was maintained. It was a thing.

なお、繊維の断面形状の確認は以下の方法により行った。すなわち、不織布の任意の箇所の切断面を撮影した走査型電子顕微鏡写真より、繊維軸とほぼ直角に切断された任意の繊維10本について、繊維断面の長軸と短軸の長さを測定しその比を求め、10本の平均値を算出した。なお、任意の繊維10本については、表面層および内層より偏りなく選んだ。   In addition, confirmation of the cross-sectional shape of the fiber was performed by the following method. That is, the length of the major axis and the minor axis of the fiber cross section is measured for any ten fibers cut almost at right angles to the fiber axis from a scanning electron micrograph of a cut surface of an arbitrary part of the nonwoven fabric. The ratio was calculated and the average value of 10 was calculated. In addition, about 10 arbitrary fibers, it selected without bias from the surface layer and the inner layer.

比較例
実施例において、繊度2.2デシテックスの扁平断面形状のポリエチレンテレフタレート長繊維を堆積させた不織ウェブを得たこと、熱エンボス装置に通して厚み101μmの熱圧着部分を有する不織布を得たこと以外は、実施例と同様にして、目付30g/m2の扁平断面形状の長繊維からなるスパンボンド不織布を得た。
Comparative Example In Example, a non-woven web on which polyethylene terephthalate long fibers having a flat cross-sectional shape with a fineness of 2.2 dtex were deposited was obtained, and a non-woven fabric having a thermocompression bonding portion having a thickness of 101 μm was obtained through a heat embossing device. Except for this, a spunbonded nonwoven fabric made of long fibers having a flat cross-sectional shape with a basis weight of 30 g / m 2 was obtained in the same manner as in the Examples.

得られたスパンボンド不織布は、見かけの空隙率が54%であり、厚み47μm、5%伸長時の応力85N/5cm幅、引張強度118N/5cm幅であった。   The resulting spunbonded nonwoven fabric had an apparent porosity of 54%, a thickness of 47 μm, a 5% elongation stress of 85 N / 5 cm width, and a tensile strength of 118 N / 5 cm width.

得られたスパンボンド不織布を構成する繊維の断面形状を上記方法により確認したところ、繊維の横断面における長軸と短軸との比(長軸/短軸)は、3.2の扁平断面形状のものであった。   When the cross-sectional shape of the fiber constituting the obtained spunbonded nonwoven fabric was confirmed by the above method, the ratio of the major axis to the minor axis (major axis / minor axis) in the cross section of the fiber was a flat sectional shape of 3.2. It was a thing.

(電線ケーブル用遮水材)
上記実施例および比較例のスパンボンド不織布を基材とし、その片面に吸水性樹脂組成物を糊引き方法により均一に塗布・乾燥して、電線ケーブル用遮水材を作成した。吸水性樹脂組成物としては、ポリアクリル酸塩架橋体である吸水性樹脂ポリマーを300質量部、スチレンブタジエン系バインダーを100質量部、界面活性剤を8質量部を、トルエン500質量部に均一に分散・溶解したものを用いた。
(Water shielding material for electric cables)
Using the spunbonded nonwoven fabrics of the above Examples and Comparative Examples as a base material, a water-absorbing resin composition was uniformly applied to one side of the nonwoven fabric by a gluing method and dried to prepare an impermeable material for electric cables. The water-absorbent resin composition is uniformly 300 parts by mass of a water-absorbent resin polymer that is a crosslinked polyacrylate, 100 parts by mass of a styrene butadiene binder, 8 parts by mass of a surfactant, and 500 parts by mass of toluene. What was dispersed and dissolved was used.

なお、電線ケーブル用遮水材とは、基材に吸水性樹脂組成物が付与された物で、吸水性ポリマー粒子および有機バインダーを必須の成分とし、この吸水性ポリマー粒子が、水と接触した時に膨潤して基材より脱落し、水の堰き止めを作ることによって、電線ケーブル内を止水するものである。一般に、吸水性ポリマー粒子としては、ポリアクリル酸塩架橋体、澱粉−アクリル酸グラフト重合体の中和物、架橋ポリビニルアルコール変性物等が挙げられ、粒子形状にも真円形状、いびつ形状等種々のものが用いられている。従って、基材内部の適度な空隙率を有していると、基材中に、吸水性ポリマー粒子を多く含むことができるために、望ましい電線ケーブル用遮水材を提供できる。   In addition, the water-shielding material for electric cables is a material in which a water-absorbing resin composition is applied to a base material, water-absorbing polymer particles and an organic binder as essential components, and the water-absorbing polymer particles are in contact with water. Sometimes it swells and falls off from the base material, and the inside of the electric cable is stopped by making a water barrier. In general, the water-absorbing polymer particles include polyacrylate cross-linked products, neutralized starch-acrylic acid graft polymers, cross-linked polyvinyl alcohol modified products, etc. Is used. Therefore, when the substrate has an appropriate porosity, the substrate can contain a large amount of water-absorbing polymer particles, so that a desirable water shielding material for electric cables can be provided.

得られた実施例および比較例の電線ケーブル用遮水材の厚みは、それぞれ95μm(実施例)、67μm(比較例)であった。元々のスパンボンド不織布(基材)の厚みが異なっており、塗布した吸水性樹脂組成物により増加した厚さは両者とも20μmである。これに対して、得られた電線ケーブル用遮水材の目付を測定すると、吸水樹脂組成物の乾燥付着量は、それぞれ30.4g/m2(実施例)、16.3g/m2(比較例)であり、実施例のものは比較例のものに対して、ほぼ2倍の量の吸水樹脂組成物を付着させることができた。このことは、本発明のスパンボンド不織布(基材)は、空隙が多く、吸水ポリマー粒子が不織布内部まで入り込んでいることを表しているといえる。
The thicknesses of the obtained water shielding materials for electric cables in Examples and Comparative Examples were 95 μm (Example) and 67 μm (Comparative Example), respectively. The original spunbonded nonwoven fabric (base material) has a different thickness, and the thickness increased by the applied water-absorbing resin composition is both 20 μm. When this respect, measuring the basis weight of the resulting impermeable material for wire and cable, dry coverage of the water-absorbent resin composition, respectively 30.4 g / m 2 (Example), 16.3g / m 2 (comparative In the example, the water-absorbing resin composition was almost twice as much as that of the comparative example. This can be said that the spunbonded nonwoven fabric (base material) of the present invention has many voids and the water-absorbing polymer particles enter the nonwoven fabric.

Claims (3)

単糸繊度3.3デシテックス以下の円形断面形状の繊維から構成され、繊維同士は加熱圧着のみにより接合してなるスパンボンド不織布であり、該不織布は、部分的に厚みが薄い熱圧着部分を有し、厚みが薄い熱圧着部分以外の部分は、スパンボンド不織布の表面層の全面において繊維同士が熱融着しているとともに、かつ内層は繊維形態を維持しており、スパンボンド不織布の見掛けの空隙率が66〜76%であることを特徴とするスパンボンド不織布。 It is a spunbonded nonwoven fabric composed of fibers with a circular cross-section with a single yarn fineness of 3.3 dtex or less, and the fibers are joined together only by thermocompression bonding, and the nonwoven fabric has a thermocompression bonding portion that is partially thin. However, in the portions other than the thin thermocompression bonding portion, the fibers are heat-bonded to each other on the entire surface layer of the spunbond nonwoven fabric, and the inner layer maintains the fiber form. A spunbonded nonwoven fabric having a porosity of 66 to 76%. 不織布表面積に対する部分的に厚みが薄い熱圧着部分の面積の比率が11%以上であることを特徴とする請求項1記載のスパンボンド不織布。 2. The spunbonded nonwoven fabric according to claim 1, wherein the ratio of the area of the thermocompression bonding portion having a partially thin thickness to the nonwoven fabric surface area is 11% or more. スパンボンド法により得られた単糸繊度3.3デシテックス以下の円形断面形状の繊維が堆積してなる不織ウェブを、熱エンボス装置に通して、部分的に厚みが薄い熱圧着部分を形成し、次いで、表面平滑な熱カレンダーロールに通して、不織布の表面層の全面において繊維同士を熱融着させることを特徴とするスパンボンド不織布の製造方法。
A non-woven web obtained by depositing fibers having a circular cross-section having a single yarn fineness of 3.3 dtex or less obtained by the spunbond method is passed through a heat embossing device to form a thermocompression bonding portion having a partially thin thickness. Then, a method for producing a spunbonded nonwoven fabric, wherein the fibers are passed through a heat calender roll having a smooth surface and the fibers are thermally fused on the entire surface layer of the nonwoven fabric.
JP2005202186A 2005-07-11 2005-07-11 Spun-bonded nonwoven fabric and method for producing the same Pending JP2007016370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202186A JP2007016370A (en) 2005-07-11 2005-07-11 Spun-bonded nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202186A JP2007016370A (en) 2005-07-11 2005-07-11 Spun-bonded nonwoven fabric and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007016370A true JP2007016370A (en) 2007-01-25

Family

ID=37753772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202186A Pending JP2007016370A (en) 2005-07-11 2005-07-11 Spun-bonded nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007016370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013069784A1 (en) * 2011-11-10 2015-04-02 カモ井加工紙株式会社 Adhesive tape and masker
JP2017133133A (en) * 2016-01-29 2017-08-03 東レ株式会社 Nonwoven fabric for substrate, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013069784A1 (en) * 2011-11-10 2015-04-02 カモ井加工紙株式会社 Adhesive tape and masker
JP2017133133A (en) * 2016-01-29 2017-08-03 東レ株式会社 Nonwoven fabric for substrate, and method of producing the same

Similar Documents

Publication Publication Date Title
EP1866472B2 (en) Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
JP4866533B2 (en) Adhesive tape comprising a textile support for wrapping an elongated material, in particular a cable room
KR100278033B1 (en) Stitch bonded article and manufacturing method thereof
JP4933546B2 (en) Two-component sheet material with liquid barrier performance
RU2418820C2 (en) Microporous air-permeable structural materials containing coated woven and/or nonwoven materials, and method of producing said materials
US4133310A (en) Polymer fabric
KR100666255B1 (en) Nonwoven fabric for cotton fastener roofing material and manufacturing method thereof
EP0785302B1 (en) Mixed cotton-like material, nonwoven cloth obtained from the material and method of manufacturing these materials
JP2009137296A (en) Wear-resistant tape with high noise supression effect, especially tape for bandaging cable harness
NZ231584A (en) Needling process for spun bonded composites
TW201819705A (en) Spunbond nonwoven fabric and method for manufacturing same
JP2006520710A (en) Multilayer adhesive bonded nonwoven sheet and method for forming the same
JP2014040677A (en) Nonwoven fabric for house wrap material and method for producing the same
JP2007016370A (en) Spun-bonded nonwoven fabric and method for producing the same
US6797654B2 (en) Textile adhesive tape
KR101480071B1 (en) fleece tape and the manufacturing method thereof
US20180358151A1 (en) Protective member, protective member-attached wire, and protective member manufacturing method
JP2007092225A (en) Composite mesh and concrete structure repair or reinforcement using the mesh
JP3464844B2 (en) Composite waterproof sheet for coating film waterproofing and method of using the same
JP3611123B2 (en) Asphalt waterproofing fabric and method for producing the same
JPH03287850A (en) Base fabric for adhesive tape
JP7377644B2 (en) laminate
JP5808994B2 (en) Resin coated nonwoven fabric
JP5296454B2 (en) Sound-absorbing and water-insulating mat
JP2728802B2 (en) Adhesive sheet