JP2007016112A - Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film - Google Patents

Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film Download PDF

Info

Publication number
JP2007016112A
JP2007016112A JP2005198241A JP2005198241A JP2007016112A JP 2007016112 A JP2007016112 A JP 2007016112A JP 2005198241 A JP2005198241 A JP 2005198241A JP 2005198241 A JP2005198241 A JP 2005198241A JP 2007016112 A JP2007016112 A JP 2007016112A
Authority
JP
Japan
Prior art keywords
resistant
heat
corrosion
aqueous composition
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198241A
Other languages
Japanese (ja)
Inventor
Etsuo Asami
悦男 浅見
Shuichi Kawachi
秀一 川地
Yoshikazu Kimura
義和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugimura Chemical Industrial Co Ltd
Original Assignee
Sugimura Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugimura Chemical Industrial Co Ltd filed Critical Sugimura Chemical Industrial Co Ltd
Priority to JP2005198241A priority Critical patent/JP2007016112A/en
Publication of JP2007016112A publication Critical patent/JP2007016112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for use in the formation of the coating film which is for the purpose of protecting a metal base material and has together the excellent heat-resistant and corrosion-resistant property. <P>SOLUTION: The aqueous composition for use in the formation of a heat-resistant/corrosion-resistant coating film contains as the effective components a combination of (A) a lowly water-soluble inorganic component, preferably potassium silicate, for contributing chiefly to the base material adhesion of a coating film and (B) a hardly water-soluble inorganic component, preferably fine titanium oxide, for contributing chiefly the denseness of the coating film. The heat-resistant/corrosion-resistent coating film comprises this composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱・耐食被膜形成用水性組成物、及び耐熱・耐食被膜に関する。更に詳しくは本発明は、耐熱性の無機質被膜であって、しかも素地密着性及び緻密性に優れるために耐食性も特段に高い耐熱・耐食被膜を形成するための水性組成物と、この組成物を用いて形成された耐熱・耐食被膜とに関する。   The present invention relates to an aqueous composition for forming a heat and corrosion resistant coating, and a heat and corrosion resistant coating. More specifically, the present invention relates to an aqueous composition for forming a heat-resistant inorganic coating having a high heat resistance / corrosion-resistant coating, which is excellent in substrate adhesion and denseness, and also has a particularly high corrosion resistance. The present invention relates to a heat-resistant / corrosion-resistant film formed using the same.

従来、高温に晒される各種の金属製構築物、金属製設備、金属製装置類等に対して、耐熱性の塗料組成物(被膜形成用組成物)を用いてなる被膜が形成されている。このような耐熱性の被膜形成用組成物としては、無機質主体の有効成分からなるものが多かった。   2. Description of the Related Art Conventionally, a coating film using a heat-resistant coating composition (a film forming composition) is formed on various metal structures, metal facilities, metal equipment, and the like that are exposed to high temperatures. As such a heat-resistant composition for forming a film, many of them are composed of an inorganic active ingredient.

特開平7−26166号公報 例えば上記の特許文献1に係る「水性耐熱塗料及び耐熱被覆層」の発明は、水ガラスに二酸化ケイ素粉末を混入して水で薄め、ケイ酸ナトリウムを7〜20重量%と、二酸化ケイ素粉末5〜30重量%とを含有する水性耐熱塗料と、この塗料を用いてなる耐熱被覆層とを開示している。JP, 7-26166, A For example, the invention of "water heat-resistant paint and heat-resistant coating layer" concerning the above-mentioned patent document 1 mixes silicon dioxide powder in water glass, thins it with water, and makes sodium silicate 7-20 weight. %, 5 to 30% by weight of a silicon dioxide powder, and a heat-resistant coating layer using this paint.

特開平11−279488号公報 又、上記の特許文献2に係る発明は、シリコーン樹脂20〜60重量%、ガラス粉末1〜25重量%、ガラス繊維0.3〜25重量%、防食顔料0.1〜10重量%、その他の顔料1〜30重量%及び溶剤20〜60重量%を含む耐熱塗料組成物を開示している。JP, 11-279488, A According to the above-mentioned patent document 2, the invention relates to a silicone resin of 20 to 60% by weight, glass powder of 1 to 25% by weight, glass fiber of 0.3 to 25% by weight, anticorrosive pigment of 0.1. Disclosed is a heat-resistant coating composition containing 10 to 10% by weight, 1 to 30% by weight of other pigments, and 20 to 60% by weight of a solvent.

しかし、上記の特許文献1に係る発明も含め、従来の無機質主体の耐熱被膜形成用組成物を用いて形成した被膜は、例えば600°Cの高温域でも耐え得るような耐熱性を確保できるとしても、金属素地に対して十分な耐食性をもたらさなかった。その事は、これらの耐熱性被膜が耐塩水噴霧試験等の耐食性試験に弱いと言う事実によっても明らかである。従って、これらの被膜形成用組成物を用いて、高温に晒されつつ水と接触する環境(又は高湿度下の環境)にある金属素地に被膜を形成した場合、耐熱性はともかく、防錆性が不十分であった。   However, the film formed using the conventional inorganic-based heat-resistant film-forming composition, including the invention according to Patent Document 1 above, can ensure heat resistance that can withstand even in a high temperature range of 600 ° C, for example. However, it did not provide sufficient corrosion resistance to the metal substrate. That is also evident by the fact that these heat resistant coatings are vulnerable to corrosion resistance tests such as salt spray tests. Therefore, when these coating-forming compositions are used to form a coating on a metal substrate that is exposed to high temperatures and in contact with water (or in an environment under high humidity), the heat resistance and rust prevention properties are achieved. Was insufficient.

一方、上記特許文献2に係る発明では、素地に対する被膜の密着性を考慮し、無機質成分に加えシリコーン樹脂を含有した被膜形成用組成物を提案している。しかしながら、例えば製鉄工場に設備される各種の金属製構築物/設備/装置類等は、600°Cと言う高温に晒されつつ、水と接触し又は高湿度環境下に置かれる。無機質成分ではないシリコーン樹脂は、樹脂としては高い耐熱性を示すが、結局は有機物であり、例えば600°Cと言う高温のレベルでは、劣化ないしは分解・焼損してしまい、耐熱性は期待できない。   On the other hand, the invention according to Patent Document 2 proposes a film-forming composition containing a silicone resin in addition to an inorganic component in consideration of the adhesion of the film to the substrate. However, for example, various metal structures / facilities / equipment and the like installed in a steel factory are exposed to a high temperature of 600 ° C. and are in contact with water or in a high humidity environment. A silicone resin that is not an inorganic component shows high heat resistance as a resin, but is eventually an organic substance, and at a high temperature level of, for example, 600 ° C., it deteriorates or decomposes and burns, and heat resistance cannot be expected.

そこで本発明は、600°Cと言う高温域において水と接触する環境(又は高湿度下の環境)においても、耐熱性と金属素地に対する防錆性とを十分に示す被膜を形成できる耐熱・耐食被膜形成用組成物と、この組成物を用いて形成された耐熱・耐食被膜とを提供することを、解決すべき技術的課題とする。   Therefore, the present invention provides heat and corrosion resistance that can form a film sufficiently exhibiting heat resistance and rust prevention against a metal substrate even in an environment (or an environment under high humidity) in contact with water in a high temperature range of 600 ° C. It is a technical problem to be solved to provide a film-forming composition and a heat- and corrosion-resistant film formed using this composition.

〔着眼点〕
従来の無機質耐熱被膜は、金属素地に対する密着性が弱く、微細なピンホールもでき易い。これらの点が、無機質耐熱被膜の不十分な防錆性(換言すれば耐食性試験に弱い)と言う欠点の原因となっている。
〔Viewpoints〕
Conventional inorganic heat-resistant coatings have poor adhesion to metal substrates, and can easily form fine pinholes. These points are the cause of the defect that the inorganic heat-resistant coating film has insufficient rust prevention (in other words, weak in the corrosion resistance test).

本願発明者は、上記技術的課題の解決手段を研究する過程で下記1)、2)の知見を得て、特定の無機質成分の選択のみによっても、耐熱性と防錆性に優れた被膜を構成できることを見出し、本願発明を完成するに到った。   The inventor of the present application has obtained the knowledge of the following 1) and 2) in the course of studying the means for solving the above technical problems, and only by selecting a specific inorganic component, a film excellent in heat resistance and rust prevention properties can be obtained. As a result, the present invention has been completed.

1)従来型の無機質耐熱被膜において汎用されているケイ酸ソーダは、水溶性が比較的高く、被膜の耐食性を確保する上で必ずしも好ましくない。ケイ酸ソーダと同等の耐熱性を持ち、かつ耐水性の無機質成分、例えばケイ酸カリウムを用いると、金属素材に対する無機質耐熱被膜の密着性を高めることができる。   1) Sodium silicate, which is widely used in conventional inorganic heat-resistant coatings, has a relatively high water solubility and is not necessarily preferable for ensuring the corrosion resistance of the coating. When an inorganic component having heat resistance equivalent to that of sodium silicate and water-resistant, for example, potassium silicate, is used, the adhesion of the inorganic heat-resistant film to the metal material can be enhanced.

2)無機質耐熱被膜に、高耐熱性・高耐水性の微細な無機質成分、例えば酸化チタンの微細な粉末を含有させると、被膜の緻密性が著しく向上し、微細なピンホールの発生を有効に防止することができる。   2) When the inorganic heat-resistant coating contains a fine inorganic component with high heat resistance and high water resistance, for example, fine powder of titanium oxide, the denseness of the coating is remarkably improved, and fine pinholes are effectively generated. Can be prevented.

(第1発明の構成)
上記課題を解決するための本願第1発明の構成は、有効成分としてケイ酸カリウムと微細な酸化チタンとを含有する、耐熱・耐食被膜形成用水性組成物である。
(Configuration of the first invention)
The configuration of the first invention of the present application for solving the above problems is an aqueous composition for forming a heat and corrosion resistant coating, which contains potassium silicate and fine titanium oxide as active ingredients.

(第2発明の構成)
上記課題を解決するための本願第2発明の構成は、前記第1発明に係るケイ酸カリウムが、二酸化ケイ素分と酸化カリウム分とのモル比( SiO/KO の重量比×1.568 )が2.0〜3.8の範囲内であるケイ酸カリウムの1種以上である、耐熱・耐食被膜形成用水性組成物である。
(Configuration of the second invention)
The configuration of the second invention of the present application for solving the above problem is that the potassium silicate according to the first invention is a molar ratio of silicon dioxide content to potassium oxide content (weight ratio of SiO 2 / K 2 O × 1.568). Is an aqueous composition for forming a heat- and corrosion-resistant coating film, which is at least one kind of potassium silicate having a value in the range of 2.0 to 3.8.

(第3発明の構成)
上記課題を解決するための本願第3発明の構成は、前記第2発明に係るケイ酸カリウムにおける二酸化ケイ素分と酸化カリウム分とのモル比が2.7〜3.7の範囲内である、耐熱・耐食被膜形成用水性組成物である。
(Configuration of the third invention)
The configuration of the third invention of the present application for solving the above problem is that the molar ratio of the silicon dioxide content and the potassium oxide content in the potassium silicate according to the second invention is in the range of 2.7 to 3.7. It is an aqueous composition for forming a heat and corrosion resistant film.

(第4発明の構成)
上記課題を解決するための本願第4発明の構成は、前記第1発明〜第3発明のいずれかに係る微細な酸化チタンが、平均粒子径が0.3μm以下のルチル型酸化チタンの1種以上である、耐熱・耐食被膜形成用水性組成物である。
(Configuration of the fourth invention)
The structure of the fourth invention of the present application for solving the above-mentioned problems is that the fine titanium oxide according to any one of the first to third inventions is a kind of rutile titanium oxide having an average particle diameter of 0.3 μm or less. This is the aqueous composition for forming a heat and corrosion resistant film.

(第5発明の構成)
上記課題を解決するための本願第5発明の構成は、前記第1発明〜第4発明のいずれかに係るケイ酸カリウム100重量部に対して、前記酸化チタン30〜60重量部、水10〜80重量部を含有する、耐熱・耐食被膜形成用水性組成物である。
(Structure of the fifth invention)
The structure of the fifth invention of the present application for solving the above-mentioned problems is that, with respect to 100 parts by weight of potassium silicate according to any of the first to fourth inventions, 30 to 60 parts by weight of titanium oxide, 10 to 10 parts of water. It is an aqueous composition for forming a heat- and corrosion-resistant coating film containing 80 parts by weight.

(第6発明の構成)
上記課題を解決するための本願第6発明の構成は、前記第1発明〜第5発明のいずれかに係る耐熱・耐食被膜形成用水性組成物が、更に、酸化アルミニウム、酸化マグネシウム、カオリン、マイカ、タルク、ゼオライト、セリサイト、クレー及びジルコニアからなる無機系充填剤群から選ばれる1種以上を含有する、耐熱・耐食被膜形成用水性組成物である。
(Structure of the sixth invention)
The structure of the sixth invention of the present application for solving the above-described problem is that the aqueous composition for forming a heat- and corrosion-resistant coating film according to any one of the first to fifth inventions further comprises aluminum oxide, magnesium oxide, kaolin, mica. , An aqueous composition for forming a heat and corrosion resistant film, which contains at least one selected from the group of inorganic fillers consisting of talc, zeolite, sericite, clay and zirconia.

(第7発明の構成)
上記課題を解決するための本願第7発明の構成は、前記第1発明〜第6発明のいずれかに係る耐熱・耐食被膜形成用水性組成物が、更に、レベリング剤、分散剤及びカップリング剤から選ばれる1種以上を含有する、耐熱・耐食被膜形成用水性組成物である。
(Structure of the seventh invention)
The structure of the seventh invention of the present application for solving the above problem is that the aqueous composition for forming a heat- and corrosion-resistant coating film according to any one of the first to sixth inventions is further provided with a leveling agent, a dispersant and a coupling agent. It is an aqueous composition for forming a heat and corrosion resistant film, containing at least one selected from the group consisting of:

(第8発明の構成)
上記課題を解決するための本願第8発明の構成は、前記第1発明〜第7発明のいずれかに係る耐熱・耐食被膜形成用水性組成物が、更に、着色用の顔料を含有する、耐熱・耐食被膜形成用水性組成物である。
(Configuration of the eighth invention)
The structure of the eighth invention of the present application for solving the above-mentioned problem is that the aqueous composition for forming a heat and corrosion resistant film according to any one of the first to seventh inventions further contains a coloring pigment. -An aqueous composition for forming a corrosion-resistant film.

(第9発明の構成)
上記課題を解決するための本願第9発明の構成は、第1発明〜第8発明のいずれかに係る耐熱・耐食被膜形成用水性組成物を用いて形成された、耐熱・耐食被膜である。
(Structure of the ninth invention)
The structure of the ninth invention of the present application for solving the above problems is a heat and corrosion resistant coating formed using the aqueous composition for forming a heat and corrosion resistant coating according to any one of the first to eighth inventions.

(第1発明の効果)
第1発明の耐熱・耐食被膜形成用水性組成物においては、有効成分としてケイ酸カリウムと微細な酸化チタンとを含有する。
(Effect of the first invention)
The aqueous composition for forming a heat and corrosion resistant film of the first invention contains potassium silicate and fine titanium oxide as active ingredients.

ケイ酸カリウムは、従来型の無機質耐熱被膜において汎用されているケイ酸ソーダと同等の耐熱性を持ち、反面、ケイ酸ソーダに比較して耐水性(低水溶性)であると言う特徴を備えている。そのため、主としてケイ酸カリウムによって、被膜の素地密着性が確保される。   Potassium silicate has the same heat resistance as sodium silicate, which is widely used in conventional inorganic heat-resistant coatings. On the other hand, it is characterized by water resistance (low water solubility) compared to sodium silicate. ing. Therefore, the substrate adhesion of the coating is ensured mainly by potassium silicate.

一方、酸化チタンは高耐熱性でかつ高耐水性(難水溶性)であって、その微細な粉末は被膜の緻密性を著しく向上させ、被膜における微細なピンホールの発生を有効に防止する。そのため、主として微細な酸化チタンによって被膜の緻密性が確保される。   On the other hand, titanium oxide has high heat resistance and high water resistance (slightly water-soluble), and its fine powder remarkably improves the denseness of the film, and effectively prevents the generation of fine pinholes in the film. Therefore, the fineness of the coating is ensured mainly by fine titanium oxide.

以上の点から、第1発明の耐熱・耐食被膜形成用水性組成物を用いると、従来の無機質耐熱被膜におけるような金属素地に対する密着性の不足と微細なピンホールの発生とが有効に防止される。その結果、第1発明の耐熱・耐食被膜形成用水性組成物を用いて形成した被膜は、耐塩水噴霧試験等の耐食性試験に強く、金属素地に対して十分な防錆性を示すことができる。同時に、有効成分たるケイ酸カリウム及び酸化チタンがいずれも耐熱性の無機質成分であるため、高度の耐熱性を示すことはもち論である。   In view of the above, the use of the aqueous composition for forming a heat and corrosion resistant coating of the first invention effectively prevents the lack of adhesion to a metal substrate and the generation of fine pinholes as in the conventional inorganic heat resistant coating. The As a result, the film formed using the aqueous composition for forming a heat- and corrosion-resistant film according to the first invention is strong in corrosion resistance tests such as a salt spray resistance test, and can exhibit sufficient rust resistance against metal substrates. . At the same time, since potassium silicate and titanium oxide, which are effective components, are both heat-resistant inorganic components, it is a matter of course that they exhibit high heat resistance.

又、水性組成物であるため、無機質成分のなじみの良さ、油性組成物に見られるような引火性や悪臭がないこと、スプレー塗布可能な濃度調整が容易であること、被膜の膜厚調整が容易であること、等の利点がある。   In addition, since it is an aqueous composition, the familiarity of inorganic components, the absence of flammability and offensive odor as seen in oily compositions, the easy adjustment of the concentration that can be applied by spraying, and the adjustment of the coating film thickness There are advantages such as being easy.

(第2発明の効果)
ケイ酸カリウムにおける二酸化ケイ素分と酸化カリウム分とのモル比( SiO/KO の重量比×1.568 )は必ずしも限定されないが、そのモル比が2.0〜3.8の範囲内であるケイ酸カリウムの1種以上を用いることが、特に好ましい。
(Effect of the second invention)
The molar ratio of silicon dioxide and potassium oxide in potassium silicate (weight ratio of SiO 2 / K 2 O × 1.568) is not necessarily limited, but the molar ratio is in the range of 2.0 to 3.8. It is particularly preferred to use one or more of potassium silicate.

上記のモル比が2.0未満であると、相対的に、ガラス膜形成が難しいと言う不満点がある。一方、上記のモル比が3.8を超えると、相対的に、耐水性が弱くなると言う不満点がある。   If the molar ratio is less than 2.0, there is a dissatisfaction that it is relatively difficult to form a glass film. On the other hand, when the above molar ratio exceeds 3.8, there is a dissatisfaction point that water resistance becomes relatively weak.

(第3発明の効果)
ケイ酸カリウムにおける二酸化ケイ素分と酸化カリウム分との上記のモル比が2.7〜3.7の範囲内である場合、耐熱・耐食被膜の密着性に対する寄与が特に大きい。
(Effect of the third invention)
When the above-mentioned molar ratio of the silicon dioxide content and the potassium oxide content in potassium silicate is in the range of 2.7 to 3.7, the contribution to the adhesion of the heat and corrosion resistant coating is particularly large.

(第4発明の効果)
微細な酸化チタンとしては、平均粒子径が0.3μm以下の、ルチル型の酸化チタンの1種以上が特に好ましい。酸化チタンの平均粒子径は細かければ細かいほど好ましいが、平均粒子径が0.3μm以下であれば、被膜の緻密性を十分に確保することができる。酸化チタンの平均粒子径0.3μmを超えると、相対的に、被膜の緻密性を十分に確保し難いと言う不満点がある。アナタース型の酸化チタンも使用できるが、ルチル型の酸化チタンと比較すると、相対的に、光分解能が発生すると言う不満点がある。
(Effect of the fourth invention)
As the fine titanium oxide, one or more of rutile type titanium oxide having an average particle diameter of 0.3 μm or less is particularly preferable. The finer the average particle diameter of titanium oxide, the better. However, if the average particle diameter is 0.3 μm or less, the denseness of the coating can be sufficiently secured. When the average particle diameter of titanium oxide exceeds 0.3 μm, there is a dissatisfaction point that it is relatively difficult to sufficiently secure the denseness of the film. Anatase-type titanium oxide can also be used, but it is relatively unsatisfactory that optical resolution is generated as compared with rutile-type titanium oxide.

(第5発明の効果)
耐熱・耐食被膜形成用水性組成物の有効成分であるケイ酸カリウムと微細な酸化チタンとは、その相対的な含有量及び媒体である水に対する含有量が一定の範囲内にあることが好ましい。即ち、第5発明のようにケイ酸カリウム100重量部に対して、酸化チタン30〜60重量部、水10〜80重量部を含有することが好ましい。
(Effect of the fifth invention)
It is preferable that the relative content of the potassium silicate and the fine titanium oxide, which are active ingredients of the heat-resistant / corrosion-resistant coating-forming aqueous composition, are within a certain range. That is, it is preferable to contain 30 to 60 parts by weight of titanium oxide and 10 to 80 parts by weight of water with respect to 100 parts by weight of potassium silicate as in the fifth invention.

ケイ酸カリウム又は酸化チタンの含有量が上記の範囲を逸脱して余りに過少であると(換言すれば、水の割合が上記の範囲を逸脱して余りに過大であると)、有効成分の不足から、均一な被膜を形成し難く、かつ、それらの成分を含有することによる所期の効果を確保し難い。又、ケイ酸カリウムの含有量が上記の範囲を逸脱して余りに過大であると成膜後の膜の保持性が悪くなると言う難点があり、酸化チタンの含有量が上記の範囲を逸脱して余りに過大であると均一なガラス被膜の形成が阻害され易いと言う難点がある。   If the content of potassium silicate or titanium oxide deviates from the above range and is too small (in other words, the proportion of water is too large out of the above range), the lack of active ingredients It is difficult to form a uniform film, and it is difficult to ensure the desired effect due to the inclusion of these components. In addition, if the content of potassium silicate deviates from the above range and is excessively large, there is a problem that the retention of the film after film formation deteriorates, and the content of titanium oxide deviates from the above range. If it is too large, there is a problem that formation of a uniform glass film is likely to be hindered.

又、水の割合が余りに過少である場合には、組成物が高粘度もしくは難流動性となって、例えばスプレー塗布等による被膜形成素地への適用が不便になり易いと言う難点がある。   Further, when the proportion of water is too small, the composition becomes highly viscous or difficult to flow, and there is a drawback that application to a film-forming substrate by, for example, spray coating tends to be inconvenient.

(第6発明の効果)
耐熱・耐食被膜形成用水性組成物は、媒体である水、ケイ酸カリウム及び微細な酸化チタンの他に、発明の効果を阻害しない限りにおいて、更に必要又は有益な任意の成分を任意の含有量において含むことができる。その例示として、酸化アルミニウム、酸化マグネシウム、カオリン、マイカ、タルク、ゼオライト、セリサイト、クレー及びジルコニアからなる無機系充填剤群から選ばれる1種以上を挙げることができる。
(Effect of the sixth invention)
The aqueous composition for forming a heat / corrosion-resistant coating film contains, in addition to the medium, water, potassium silicate, and fine titanium oxide, any necessary or useful optional component as long as the effects of the invention are not impaired. Can be included. Examples thereof include at least one selected from the group of inorganic fillers consisting of aluminum oxide, magnesium oxide, kaolin, mica, talc, zeolite, sericite, clay and zirconia.

(第7発明の効果)
耐熱・耐食被膜形成用水性組成物は、更に、レベリング剤、分散剤及びカップリング剤から選ばれる1種以上を含有することができる。これらの成分は、例えば市販品から任意に選択することができる。
(Effect of the seventh invention)
The aqueous composition for forming a heat-resistant / corrosion-resistant film can further contain one or more selected from a leveling agent, a dispersant, and a coupling agent. These components can be arbitrarily selected from, for example, commercially available products.

(第8発明の効果)
耐熱・耐食被膜形成用水性組成物は、更に着色用の顔料を含有することにより、着色塗料としても利用することができる。
(Effect of the eighth invention)
The aqueous composition for forming a heat and corrosion resistant film can be used as a colored paint by further containing a coloring pigment.

(第9発明の効果)
第1発明〜第18発明のいずれかに係る耐熱・耐食被膜形成用水性組成物を用いて被膜を構成すると、上記第1発明〜第8発明のいずれかの効果を伴う耐熱・耐食被膜となる。この耐熱・耐食被膜は、600°Cと言う高温域において水と接触する環境(又は高湿度下の環境)にある金属素地、例えば製鉄工場に設備される各種の金属製の構築物/設備/装置類等に対して成膜された場合にも優れた耐熱性能と耐食性能を発揮する。
(Effect of the ninth invention)
When a film is formed using the aqueous composition for forming a heat- and corrosion-resistant film according to any one of the first to eighteenth inventions, a heat- and corrosion-resistant film with the effects of any one of the first to eighth inventions is obtained. . This heat / corrosion resistant coating is a metal substrate in an environment (or an environment under high humidity) in contact with water in a high temperature range of 600 ° C., for example, various metal structures / equipment / equipment installed in a steel factory. Excellent heat resistance and corrosion resistance are exhibited even when a film is formed on a material.

次に、第1発明〜第9発明を実施するための形態を、その最良の形態を含めて説明する。以下において「本発明」と言うときは、本願の各発明を全体として指している。   Next, modes for carrying out the first invention to the ninth invention will be described including the best mode. In the following, the term “present invention” refers to each invention of the present application as a whole.

〔耐熱・耐食被膜形成用水性組成物〕
本発明に係る耐熱・耐食被膜形成用水性組成物は、(A)主として被膜の素地密着性に寄与する耐熱性・耐水性の無機質成分と、(B)主として被膜の緻密性に寄与する高耐熱性・高耐水性の微細な無機質成分とを有効成分として含有する点に特徴がある。
[Aqueous composition for forming heat and corrosion resistant film]
The aqueous composition for forming a heat and corrosion resistant coating according to the present invention comprises (A) a heat resistant and water resistant inorganic component that mainly contributes to the adhesion of the coating to the substrate, and (B) a high heat resistance that mainly contributes to the denseness of the coating. It is characterized in that it contains a fine inorganic component with high water resistance and high water resistance as an active ingredient.

耐熱・耐食被膜形成用水性組成物における(A)成分、(B)成分及び水の量比については、(A)成分100重量部に対して、(B)成分1〜100重量部、水1〜1000重量部であることが好ましく、とりわけ、(A)成分100重量部に対して、(B)成分30〜60重量部、水10〜80重量部であることが好ましい。   About the amount ratio of (A) component, (B) component, and water in the aqueous composition for heat-resistant and corrosion-resistant film formation, 1 to 100 parts by weight of (B) component, 1 water for 100 parts by weight of (A) component It is preferable that it is -1000 weight part, and it is especially preferable that they are 30-60 weight part of (B) component and 10-80 weight part of water with respect to 100 weight part of (A) component.

(A)成分、(B)成分の種類については限定されないが、(A)成分としてはケイ酸カリウムを、(B)成分としては微細な酸化チタンを、それぞれ好ましく例示できる。そして、耐熱・耐食被膜形成用水性組成物におけるケイ酸カリウム、微細な酸化チタン及び水の量比についても、ケイ酸カリウム100重量部に対して、酸化チタン1〜100重量部、水1〜1000重量部を含有することが好ましく、とりわけ、ケイ酸カリウム100重量部に対して、酸化チタン30〜60重量部、水10〜80重量部を含有することが好ましい。   Although it does not limit about the kind of (A) component and (B) component, a potassium silicate can be illustrated preferably as (A) component, and a fine titanium oxide can respectively be illustrated as (B) component. And also about the amount ratio of potassium silicate, fine titanium oxide, and water in the aqueous composition for forming a heat and corrosion resistant coating, 1 to 100 parts by weight of titanium oxide and 1 to 1000 parts of water with respect to 100 parts by weight of potassium silicate. It is preferable to contain a weight part, and it is especially preferable to contain 30-60 weight part of titanium oxide and 10-80 weight part of water with respect to 100 weight part of potassium silicate.

〔(A)成分〕
(A)成分として代表的に例示されるケイ酸カリウムについては、その二酸化ケイ素分と酸化カリウム分とのモル比を「 SiO/KO の重量比×1.568 」と規定したとき、好ましくは、このモル比が2.0〜3.8の範囲内、特に好ましくは、このモル比が2.7〜3.7の範囲内であるケイ酸カリウムの1種類を単独で用い、又は、そのようなケイ酸カリウムの2種類以上を組合わせて用いることができる。
[Component (A)]
Regarding the potassium silicate typically exemplified as the component (A), when the molar ratio of the silicon dioxide content and the potassium oxide content is defined as “weight ratio of SiO 2 / K 2 O × 1.568”, preferably , The molar ratio is in the range of 2.0 to 3.8, particularly preferably, one kind of potassium silicate having this molar ratio in the range of 2.7 to 3.7 is used alone, or Two or more kinds of such potassium silicates can be used in combination.

〔(B)成分〕
(B)成分として代表的に例示される微細な酸化チタンについては、平均粒子径が小さいものほど好ましく、特に0.3μm以下のものが好ましい。又、ルチル型の酸化チタンが好ましい。これらの好ましい範疇に属する酸化チタンの1種類を単独で用い、又は、そのような酸化チタンの2種類以上を組合わせて用いることができる。
[(B) component]
About the fine titanium oxide typically illustrated as (B) component, a thing with a small average particle diameter is preferable, and a 0.3 micrometer or less thing is especially preferable. Further, rutile type titanium oxide is preferable. One kind of titanium oxide belonging to these preferred categories can be used alone, or two or more kinds of such titanium oxides can be used in combination.

〔その他の成分〕
本発明に係る耐熱・耐食被膜形成用水性組成物は、媒体である水、及び上記の(A)成分、(B)成分の他に、本発明の効果を阻害しない限りにおいて、この種の被膜形成用組成物に含有されることがある各種の成分を任意に含有することができる。
[Other ingredients]
The aqueous composition for forming a heat / corrosion resistant coating according to the present invention is a coating of this type as long as the effect of the present invention is not impaired, in addition to the medium water and the components (A) and (B). Various components that may be contained in the forming composition can optionally be contained.

そのような成分として、酸化アルミニウム、酸化マグネシウム、カオリン、マイカ、タルク、ゼオライト、セリサイト、クレー及びジルコニアからなる無機系充填剤群から選ばれる1種以上を例示することができる。   Examples of such components include one or more selected from an inorganic filler group consisting of aluminum oxide, magnesium oxide, kaolin, mica, talc, zeolite, sericite, clay, and zirconia.

更に、レベリング剤、分散剤及びカップリング剤から選ばれる1種以上を含有することもできる。分散剤の種類は限定されないが、高分子分散剤等を例示することができる。カップリング剤の種類も限定されないが、シランカップリング剤等を例示することができる。   Furthermore, 1 or more types chosen from a leveling agent, a dispersing agent, and a coupling agent can also be contained. Although the kind of dispersing agent is not limited, a polymeric dispersing agent etc. can be illustrated. Although the kind of coupling agent is not limited, a silane coupling agent etc. can be illustrated.

更に、本発明に係る耐熱・耐食被膜形成用水性組成物は着色用の顔料を含有することもできる。顔料の種類は限定されないが、耐熱性を考慮すれば焼成顔料が好ましい。焼成顔料としては、例えばFeO(黒色)、FeTiO(褐色)、CoAl(紺色)等を挙げることができる。他種の顔料、例えばリン酸亜鉛、リン酸アルミニウム、リン酸カルシウム、モリブデン酸亜鉛、モリブデン酸カルシウム等の防食顔料や、マイカ、鱗片状酸化鉄等の鱗片状顔料や、カオリン、沈降性硫酸バリウム及び炭酸カルシウム等の体質顔料も使用することができる。 Furthermore, the heat-resistant / corrosion-resistant film-forming aqueous composition according to the present invention may contain a coloring pigment. Although the kind of pigment is not limited, a fired pigment is preferable in consideration of heat resistance. Examples of the calcined pigment include FeO (black), Fe 2 TiO 4 (brown), CoAl 2 O 4 (dark blue), and the like. Other types of pigments, such as anticorrosive pigments such as zinc phosphate, aluminum phosphate, calcium phosphate, zinc molybdate and calcium molybdate, scaly pigments such as mica and scaly iron oxide, kaolin, precipitated barium sulfate and carbonic acid Extender pigments such as calcium can also be used.

〔耐熱・耐食被膜の形成〕
上記した耐熱・耐食被膜形成用水性組成物のいずれかを用いて、任意の被膜形成用素地上に、本発明に係る耐熱・耐食被膜を形成することができる。
[Formation of heat and corrosion resistant coatings]
The heat-resistant / corrosion-resistant coating film according to the present invention can be formed on any film-forming substrate using any of the above-described aqueous compositions for forming a heat-resistant / corrosion-resistant coating film.

被膜形成用素地の種類は限定されないが、発明の効果が十分に発揮される金属素地が好ましく、とりわけ、高温に晒されつつ水と接触し又は高湿度環境下に置かれる金属素地、例えば、製鉄工場に設備される各種の金属製構築物や、金属製設備類や、金属製装置類等のように、水と接触し、又は高湿度環境下に置かれて600°Cの高温に晒される金属素地を、好ましく例示することができる。   The type of the film-forming substrate is not limited, but a metal substrate that exhibits the effects of the invention is preferable, and in particular, a metal substrate that is exposed to water or placed in a high-humidity environment while being exposed to high temperatures, for example, iron making Metals that come into contact with water or are exposed to high temperatures of 600 ° C, such as various metal structures installed in factories, metal facilities, metal equipment, etc. The substrate can be preferably exemplified.

耐熱・耐食被膜の形成方法、即ち、耐熱・耐食被膜形成用水性組成物を金属素地等の各種素地に成膜させる方法は限定されないが、好ましくはスプレー塗布することができる。この場合には、無機質成分全体の100重量部に対して、水を10〜30重量部程度の割合とすることが好適である。耐熱・耐食被膜の膜厚も限定されないが、例えば5〜20μm程度をすることが好適である。   A method for forming a heat-resistant / corrosion-resistant film, that is, a method for forming a film for forming a heat-resistant / corrosion-resistant film-forming aqueous composition on various substrates such as a metal substrate is not limited, but can preferably be applied by spraying. In this case, it is preferable to make water into a ratio of about 10 to 30 parts by weight with respect to 100 parts by weight of the whole inorganic component. The thickness of the heat / corrosion resistant coating is not limited, but is preferably about 5 to 20 μm, for example.

スプレー塗布の後に速やかな成膜を望む場合には、成膜後の加熱を行うことができる。例えば、500°Cで3分間程度の加温により成膜する。   When rapid film formation is desired after spray coating, heating after film formation can be performed. For example, the film is formed by heating at 500 ° C. for about 3 minutes.

その他の各種の被膜形成方法、例えば刷毛塗り、耐熱・耐食被膜形成用水性組成物に対する素地のディッピング等も採用可能であることは、もち論である。   It is a matter of course that other various film forming methods such as brush coating, dipping of the base material with respect to the aqueous composition for forming a heat and corrosion resistant film can be employed.

形成された耐熱・耐食被膜は、主として被膜の素地密着性に寄与する耐熱性・耐水性の無機質成分である(A)成分によって優れた耐熱性と素地に対する密着性を付与されると共に、主として被膜の緻密性に寄与する高耐熱性・高耐水性の微細な無機質成分である(B)成分によって優れた耐熱性と被膜の緻密性を付与される。その結果、高耐熱性であって、600°Cの高温域でも素地に対して良好に密着し、かつ微細なピンホールのない、素地の防錆性にも優れた無機質被膜が形成される。この良好な防錆性は、耐塩水噴霧試験等の耐食性試験に強いと言う事実によっても明らかである。   The formed heat / corrosion-resistant coating is provided with excellent heat resistance and adhesion to the substrate mainly by the component (A) which is a heat-resistant and water-resistant inorganic component that mainly contributes to the substrate adhesion of the coating. Excellent heat resistance and film denseness are imparted by the component (B) which is a fine inorganic component having high heat resistance and high water resistance that contributes to the denseness of the film. As a result, an inorganic coating film that is highly heat resistant, adheres well to the substrate even in a high temperature region of 600 ° C., and has no fine pinholes and is excellent in the rust prevention property of the substrate. This good antirust property is also evident by the fact that it is strong in corrosion resistance tests such as salt spray test.

〔実施例A:耐熱・耐食被膜形成用水性組成物の調製〕
この実施例Aに係る各実施例及び各比較例において、ケイ酸カリウムとしては、2Kケイ酸カリウム〔日本化学工業(株)の商品名:二酸化ケイ素分と酸化カリウム分とのモル比が3.4〜3.7の範囲内〕を用いた。酸化チタンとしては、 TITANIX JR-800 〔テイカ(株)の商品名:ルチル型の酸化チタン、平均粒子径0.27μm〕を用いた。分散剤としては、市販の高分子分散剤を用いた。カップリング剤としては、市販のシランカップリング剤を用いた。
[Example A: Preparation of aqueous composition for forming heat and corrosion resistant film]
In each example and each comparative example according to Example A, as potassium silicate, 2K potassium silicate [trade name of Nippon Chemical Industry Co., Ltd .: molar ratio of silicon dioxide content and potassium oxide content is 3. Within the range of 4 to 3.7] was used. As the titanium oxide, TITANIX JR-800 [trade name of Taca Co., Ltd .: rutile type titanium oxide, average particle size 0.27 μm] was used. A commercially available polymer dispersant was used as the dispersant. A commercially available silane coupling agent was used as the coupling agent.

実施例1においては、ケイ酸カリウム100重量部、酸化チタン50重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、分散機〔特殊機化工業(株)製の商品名ホモディスパー〕で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した。   In Example 1, 15 parts by weight of water was added to 100 parts by weight of potassium silicate, 50 parts by weight of titanium oxide, 4 parts by weight of a dispersant, and 1 part by weight of a coupling agent. The product was stirred and mixed for 30 minutes, and further 30 parts by weight of water was added to adjust the concentration to be suitable for spray coating.

実施例2においては、ケイ酸カリウム100重量部、酸化チタン30重量部、マイカ20重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、同上の分散機で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した。   In Example 2, 15 parts by weight of water was added to 100 parts by weight of potassium silicate, 30 parts by weight of titanium oxide, 20 parts by weight of mica, 4 parts by weight of a dispersant, and 1 part by weight of a coupling agent. The mixture was stirred and mixed for 30 minutes, and 30 parts by weight of water was further added to adjust the concentration to be suitable for spray coating.

実施例3においては、ケイ酸カリウム100重量部、酸化チタン30重量部、マイカ10重量部、タルク10重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、同上の分散機で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した。   In Example 3, 15 parts by weight of water was added to 100 parts by weight of potassium silicate, 30 parts by weight of titanium oxide, 10 parts by weight of mica, 10 parts by weight of talc, 4 parts by weight of a dispersant and 1 part by weight of a coupling agent. The mixture was stirred and mixed for 30 minutes in the same disperser, and 30 parts by weight of water was further added to adjust the concentration to be suitable for spray coating.

比較例4においては、ケイ酸カリウム100重量部、マイカ50重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、同上の分散機で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した。   In Comparative Example 4, 15 parts by weight of water was added to 100 parts by weight of potassium silicate, 50 parts by weight of mica, 4 parts by weight of a dispersant, and 1 part by weight of a coupling agent, and the mixture was stirred and mixed for 30 minutes using the same disperser. Further, 30 parts by weight of water was added to adjust the concentration to be suitable for spray coating.

比較例5においては、マイカ100重量部、酸化チタン50重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、同上の分散機で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した。   In Comparative Example 5, 15 parts by weight of water was added to 100 parts by weight of mica, 50 parts by weight of titanium oxide, 4 parts by weight of a dispersant, and 1 part by weight of a coupling agent, and the mixture was stirred and mixed for 30 minutes using the same disperser. Further, 30 parts by weight of water was added to adjust the concentration to be suitable for spray coating.

比較例6においては、ケイ酸ソーダ(水ガラス)100重量部、酸化チタン50重量部、分散剤4重量部及びカップリング剤1重量部に対して水を15重量部加え、分散機〔特殊機化工業(株)製の商品名ホモディスパー〕で30分間攪拌・混合し、更に水を30重量部加えてスプレー塗装に適した濃度に調整した
上記の各実施例、比較例に係る被膜形成用水性組成物の濃度調整後の組成を、下記の表1に示す。
In Comparative Example 6, 15 parts by weight of water was added to 100 parts by weight of sodium silicate (water glass), 50 parts by weight of titanium oxide, 4 parts by weight of a dispersant, and 1 part by weight of a coupling agent. For 30 minutes by mixing and adding 30 parts by weight of water and adjusting to a concentration suitable for spray coating. For film formation according to each of the above Examples and Comparative Examples The composition after the concentration adjustment of the aqueous composition is shown in Table 1 below.

Figure 2007016112
〔実施例B:評価用試料の作製〕
供試材としてφ45×150×1.5mmの鋼管材片(STKM材)を採用し、この供試材に対して、上記の各実施例、比較例に係る被膜形成用水性組成物をそれぞれスプレー塗布した。このスプレー塗布は、スプレー圧3Kgで、1流体アトマイザーにて、パイプ状供試材の内面に厚さ15μmの塗布膜を形成する設定で行った。
Figure 2007016112
[Example B: Preparation of sample for evaluation]
A φ45 × 150 × 1.5 mm steel pipe material piece (STKM material) was adopted as the test material, and the film-forming aqueous compositions according to the above Examples and Comparative Examples were respectively sprayed on the test material. Applied. This spray coating was performed with a spray pressure of 3 kg and a setting of forming a coating film having a thickness of 15 μm on the inner surface of the pipe-shaped specimen with a single fluid atomizer.

〔実施例C:試料の評価試験〕
上記の実施例Bによって塗布膜を形成した各実施例、比較例に係る評価用試料を、それぞれ600°Cに保った電気炉に5分間入れた後に電気炉より取り出し、その冷却後に、軸方向沿いに半割りにして塗装面を剥き出しにした。そして、それぞれの半割りにした試料の切断エッジ部分を防錆塗料でシールした後、次の塩水噴霧試験に供した。
[Example C: Sample evaluation test]
Samples for evaluation according to Examples and Comparative Examples in which a coating film was formed according to Example B above were taken out from the electric furnace after being placed in an electric furnace maintained at 600 ° C. for 5 minutes, and after cooling, the axial direction The paint surface was exposed in half along the side. Then, the cut edge portion of each halved sample was sealed with a rust preventive paint, and then subjected to the next salt spray test.

塩水噴霧試験は、スガ試験機(株)製の塩水噴霧試験機(形式 ISO型)を用いて行った。試験条件は、温度35±1°C、塩水濃度5±1%、塩水噴霧量1.0〜2.0mL/hr./80cmであった。 The salt spray test was carried out using a salt spray tester (type ISO type) manufactured by Suga Test Instruments Co., Ltd. The test conditions were as follows: temperature 35 ± 1 ° C., salt water concentration 5 ± 1%, salt spray amount 1.0-2.0 mL / hr. / 80cm was 2.

評価項目としては、第1に塗布膜の防錆性を評価した。即ち、塩水噴霧試験の開始からそれそれ6時間、12時間、24時間、36時間及び48時間経過時点での、試料における塗膜面部分でのサビの発生の有無をチェックした。評価結果は、表2における各実施例、比較例についての「塩水噴霧試験」の欄に、最初にサビの発生を認めたチェック時点を記載することによって表記した。その欄に、例えば「24Hr」と表記した場合、「塩水噴霧試験の開始から24時間経過時点でのチェックでサビの発生を認めた」ことを意味する。従って、時間数が大きい程、塗膜の防錆性が高いことになる。   As evaluation items, first, the rust prevention property of the coating film was evaluated. That is, the presence or absence of rust on the surface of the coating film on the sample was checked after 6 hours, 12 hours, 24 hours, 36 hours, and 48 hours from the start of the salt spray test. The evaluation results were expressed by describing the check point at which rust was first observed in the column of “salt spray test” for each example and comparative example in Table 2. For example, when “24Hr” is written in the column, it means that “the occurrence of rust was recognized in the check after 24 hours from the start of the salt spray test”. Therefore, the longer the number of hours, the higher the rust prevention property of the coating film.

第2の評価項目は、碁盤目テープ法による塗膜の密着性評価である。即ち、上記の48時間の塩水噴霧試験を経過させた各実施例、比較例に係る評価用試料について、塩水を良くぬぐい取った後、カッターガイドで塗膜に切れ目を付け、これらの切れ目によって縦横1mm幅のマス目を100個形成した。そして、これらのマス目全体を覆うようにセロハンテープを密着させた後、このセロハンテープを剥がして、その際に塗膜が剥がれなかったマス目の数を数えた。評価結果は、表2における各実施例、比較例についての「碁盤目テープ法」の欄に、数字で表記した。この数字は、上記の塗膜が剥がれなかったマス目の数について、ヒト桁の位を切り捨てたものである。その欄に例えば「50」と表記した場合、「上記の塗膜が剥がれなかったマス目の数が、50〜59の範囲内であった」ことを意味する。従って、数字が大きい程、塗膜の密着性が高いことになる。   The second evaluation item is an evaluation of the adhesion of the coating film by a cross-cut tape method. That is, for each of the evaluation samples according to each of the Examples and Comparative Examples after the 48-hour salt spray test, after the salt water was well wiped off, the coating film was cut with a cutter guide, and the cuts were made vertically and horizontally. 100 squares having a width of 1 mm were formed. And after making a cellophane tape contact | adhere so that these whole grids might be covered, this cellophane tape was peeled off and the number of the grids in which the coating film was not peeled in that case was counted. The evaluation results are indicated by numbers in the “cross-cut tape method” column for each example and comparative example in Table 2. This number is the number of squares in which the above-mentioned coating film has not been peeled off, with the number of human digits discarded. For example, when “50” is written in the column, it means that “the number of cells in which the above-mentioned coating film has not been peeled is within the range of 50 to 59”. Therefore, the larger the number, the higher the adhesion of the coating film.

表2における「総合評価」の欄は、塗膜の防錆性と密着性とを併せ評価したものであり、「塩水噴霧試験」の欄が「36Hr」以上で「碁盤目テープ法」の欄が「10」であるものを、「◎」と評価し、「塩水噴霧試験」の欄が「24Hr」で「碁盤目テープ法」の欄が「10」であるものを、「○」と評価した。一方、「塩水噴霧試験」の欄が「24Hr」未満であると言う低評価条件と、「碁盤目テープ法」の欄が「10」未満であると言う低評価条件との、いずれか一方に該当するものを「△」と評価し、双方に該当するものを「×」と評価した。   The column of “Comprehensive evaluation” in Table 2 is an evaluation of the rust prevention and adhesion of the coating film. The column of “Salt spray test” is “36 Hr” or more, and the column of “cross-cut tape method” Is evaluated as “◎”, “salt spray test” is “24Hr”, and “cross-cut tape method” is “10”. did. On the other hand, either the low evaluation condition that the “salt spray test” column is less than “24Hr” or the low evaluation condition that the “cross-cut tape method” column is less than “10” Applicable products were evaluated as “△”, and those applicable to both were evaluated as “X”.

Figure 2007016112
〔試料の評価結果〕
表2に示す評価結果より、以下の点が認められる。まず、被膜形成用組成物がケイ酸カリウムを含有するか否かに関して、各実施例及び比較例4と、比較例5との対比から、ケイ酸カリウムの含有による塗膜密着性の改善が明瞭である。更に、実施例1と比較例6との対比から、塗膜の密着性(ひいては塗膜の防錆性)に関して、従来型の無機質耐熱被膜において汎用されているケイ酸ソーダに対する、ケイ酸カリウムの優位性が明瞭である。
Figure 2007016112
[Sample evaluation results]
From the evaluation results shown in Table 2, the following points are recognized. First, as to whether or not the film-forming composition contains potassium silicate, the improvement in coating film adhesion due to the inclusion of potassium silicate is clear from the comparison between each Example and Comparative Example 4 and Comparative Example 5. It is. Further, from the comparison between Example 1 and Comparative Example 6, regarding the adhesion of the coating film (and consequently the rust prevention property of the coating film), potassium silicate with respect to sodium silicate widely used in conventional inorganic heat-resistant coating films The superiority is clear.

次に、被膜形成用組成物が酸化チタンを含有するか否かに関して、酸化チタンを含有しない比較例4は、塗膜の密着性が優れるにも関わらず、塩水噴霧試験の結果が悪く、金属素地に対する防錆性が悪い。このことは、酸化チタンの含有が塗膜の微細なピンホールの発生防止に有効であることを示唆している。一方で、酸化チタンを含有するがケイ酸カリウムを含有しない比較例5は、塗膜の密着性が悪く、かつ塩水噴霧試験の結果(金属素地に対する防錆性)も悪い。これらの比較例を実施例1〜3の評価結果と対比すると、比較例4においては塗膜の微細なピンホールの発生のために防錆性が悪く、比較例5においては塗膜の密着性が悪いために防錆性が悪い、と考えられる。   Next, regarding whether or not the film-forming composition contains titanium oxide, Comparative Example 4 not containing titanium oxide has poor adhesion results of the coating film, but the result of the salt spray test is poor. The rustproofing property to the substrate is bad. This suggests that the inclusion of titanium oxide is effective in preventing the occurrence of fine pinholes in the coating film. On the other hand, Comparative Example 5, which contains titanium oxide but does not contain potassium silicate, has poor adhesion of the coating film, and also has a poor salt spray test result (rust prevention against a metal substrate). When these comparative examples are compared with the evaluation results of Examples 1 to 3, in Comparative Example 4, the antirust property is poor due to the occurrence of fine pinholes in the coating film, and in Comparative Example 5, the adhesion of the coating film. It is considered that the rust prevention property is poor due to the poor quality.

なお、実施例1〜3の相互の対比において、酸化チタンを50重量部含有する実施例1に比較して、酸化チタンを30重量部含有すると共にマイカを20重量部含有する実施例2の方が、塩水噴霧試験の結果が良好で、酸化チタンを30重量部含有すると共にマイカを10重量部、タルクを10重量部含有する実施例3は、塩水噴霧試験の結果が更に良好である。   In contrast to Examples 1 to 3, compared to Example 1 containing 50 parts by weight of titanium oxide, Example 2 containing 30 parts by weight of titanium oxide and 20 parts by weight of mica. However, the result of the salt spray test is good. In Example 3, which contains 30 parts by weight of titanium oxide, 10 parts by weight of mica, and 10 parts by weight of talc, the result of the salt spray test is even better.

この点に関しては、評価の終了後に各実施例に係る試料の塗膜厚を再検査したところ、前記の実施例Bにおいて、アトマイザーによって一律に15μmと言う塗膜厚の設定を行ったにも関わらず、実際の塗膜厚が、実施例2では18μm、実施例3では20μmと、設定の塗膜厚よりも厚くなっていた。本願発明者は、上記した実施例1と、実施例2、3との塩水噴霧試験の結果の差異は、この塗膜厚の差異に起因すると考えている。   Regarding this point, when the coating thickness of the sample according to each example was re-examined after the evaluation was completed, in Example B, the coating thickness of 15 μm was uniformly set by the atomizer. The actual coating thickness was 18 μm in Example 2 and 20 μm in Example 3, which was thicker than the set coating thickness. The inventor of the present application believes that the difference in the results of the salt spray test between Example 1 and Examples 2 and 3 is due to the difference in the coating thickness.

本発明により、金属素地上に好ましく形成される被膜であって、専ら無機質の有効成分からなるために高い耐熱性を備えると共に、従来の無機質耐熱被膜には見られない緻密性と素地に対する密着性とを示し、従って防錆性にも優れた耐熱・耐食被膜形成用組成物と、これを用いた耐熱・耐食被膜とが提供される。


According to the present invention, it is a coating preferably formed on a metal substrate, and has high heat resistance because it is composed exclusively of an inorganic active ingredient, and has a denseness and adhesion to a substrate that are not found in conventional inorganic heat-resistant coatings. Therefore, a composition for forming a heat / corrosion-resistant film excellent in rust resistance and a heat / corrosion-resistant film using the same are provided.


Claims (9)

有効成分としてケイ酸カリウムと微細な酸化チタンとを含有することを特徴とする耐熱・耐食被膜形成用水性組成物。 An aqueous composition for forming a heat- and corrosion-resistant film, comprising potassium silicate and fine titanium oxide as active ingredients. 前記ケイ酸カリウムが、二酸化ケイ素分と酸化カリウム分とのモル比( SiO/KO の重量比×1.568 )が2.0〜3.8の範囲内であるケイ酸カリウムの1種以上であることを特徴とする請求項1に記載の耐熱・耐食被膜形成用水性組成物。 The potassium silicate is one or more types of potassium silicate having a molar ratio of silicon dioxide content to potassium oxide content (weight ratio of SiO 2 / K 2 O × 1.568) within a range of 2.0 to 3.8. The aqueous composition for forming a heat- and corrosion-resistant coating film according to claim 1, wherein 前記ケイ酸カリウムにおける二酸化ケイ素分と酸化カリウム分とのモル比が2.7〜3.7の範囲内であることを特徴とする請求項2に記載の耐熱・耐食被膜形成用水性組成物。 The aqueous composition for forming a heat- and corrosion-resistant coating film according to claim 2, wherein the molar ratio of the silicon dioxide content and the potassium oxide content in the potassium silicate is in the range of 2.7 to 3.7. 前記微細な酸化チタンが、平均粒子径が0.3μm以下のルチル型酸化チタンの1種以上であることを特徴とする請求項1〜請求項3のいずれかに記載の耐熱・耐食被膜形成用水性組成物。 The heat-resistant / corrosion-resistant coating film according to any one of claims 1 to 3, wherein the fine titanium oxide is one or more of rutile-type titanium oxide having an average particle size of 0.3 µm or less. Aqueous composition. 前記ケイ酸カリウム100重量部に対して、前記酸化チタン30〜60重量部、水10〜80重量部を含有することを特徴とする請求項1〜請求項4のいずれかに記載の耐熱・耐食被膜形成用水性組成物。 5. The heat and corrosion resistance according to claim 1, comprising 30 to 60 parts by weight of the titanium oxide and 10 to 80 parts by weight of water with respect to 100 parts by weight of the potassium silicate. An aqueous composition for film formation. 前記耐熱・耐食被膜形成用水性組成物が、更に、酸化アルミニウム、酸化マグネシウム、カオリン、マイカ、タルク、ゼオライト、セリサイト、クレー及びジルコニアからなる無機系充填剤群から選ばれる1種以上を含有することを特徴とする請求項1〜請求項5のいずれかに記載の耐熱・耐食被膜形成用水性組成物。 The heat-resistant / corrosion-resistant coating-forming aqueous composition further contains one or more selected from the group of inorganic fillers consisting of aluminum oxide, magnesium oxide, kaolin, mica, talc, zeolite, sericite, clay, and zirconia. The aqueous composition for forming a heat and corrosion resistant film according to any one of claims 1 to 5. 前記耐熱・耐食被膜形成用水性組成物が、更に、レベリング剤、分散剤及びカップリング剤から選ばれる1種以上を含有することを特徴とする請求項1〜請求項6のいずれかに記載の耐熱・耐食被膜形成用水性組成物。 The said heat-resistant / corrosion-resistant film-forming aqueous composition further contains at least one selected from a leveling agent, a dispersant, and a coupling agent. An aqueous composition for forming heat and corrosion resistant films. 前記耐熱・耐食被膜形成用水性組成物が、更に、着色用の顔料を含有することを特徴とする請求項1〜請求項7のいずれかに記載の耐熱・耐食被膜形成用水性組成物。 The aqueous composition for forming a heat and corrosion resistant coating according to any one of claims 1 to 7, wherein the aqueous composition for forming a heat and corrosion resistant coating further contains a pigment for coloring. 請求項1〜請求項8のいずれかに記載の耐熱・耐食被膜形成用水性組成物を用いて形成されたことを特徴とする耐熱・耐食被膜。

A heat-resistant / corrosion-resistant film formed using the aqueous composition for forming a heat-resistant / corrosion-resistant film according to any one of claims 1 to 8.

JP2005198241A 2005-07-07 2005-07-07 Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film Pending JP2007016112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198241A JP2007016112A (en) 2005-07-07 2005-07-07 Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198241A JP2007016112A (en) 2005-07-07 2005-07-07 Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film

Publications (1)

Publication Number Publication Date
JP2007016112A true JP2007016112A (en) 2007-01-25

Family

ID=37753557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198241A Pending JP2007016112A (en) 2005-07-07 2005-07-07 Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film

Country Status (1)

Country Link
JP (1) JP2007016112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017822A (en) * 2015-08-19 2015-11-04 合肥科德电力表面技术有限公司 Water-soluble, high-temperature-resistant and anti-corrosive inorganic silicate paint and preparation method thereof
CN105694554A (en) * 2014-11-29 2016-06-22 上海门普来新材料股份有限公司 Industrial waterborne inorganic polyphosphoester anticorrosive coating and preparation method thereof
CN105689221A (en) * 2016-02-18 2016-06-22 浙江巨科实业股份有限公司 Manufacturing method of aluminum alloy hub surface coating
CN115216164A (en) * 2022-07-19 2022-10-21 哈尔滨市雪鹰工程材料有限公司 Fire-resistant, corrosion-resistant and aging-resistant industrial paint for oil stations
CN115785707A (en) * 2022-11-30 2023-03-14 江苏集萃道路工程技术与装备研究所有限公司 Environment-friendly anticorrosive paint for highway steel guardrail and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694554A (en) * 2014-11-29 2016-06-22 上海门普来新材料股份有限公司 Industrial waterborne inorganic polyphosphoester anticorrosive coating and preparation method thereof
CN105017822A (en) * 2015-08-19 2015-11-04 合肥科德电力表面技术有限公司 Water-soluble, high-temperature-resistant and anti-corrosive inorganic silicate paint and preparation method thereof
CN105689221A (en) * 2016-02-18 2016-06-22 浙江巨科实业股份有限公司 Manufacturing method of aluminum alloy hub surface coating
CN115216164A (en) * 2022-07-19 2022-10-21 哈尔滨市雪鹰工程材料有限公司 Fire-resistant, corrosion-resistant and aging-resistant industrial paint for oil stations
CN115785707A (en) * 2022-11-30 2023-03-14 江苏集萃道路工程技术与装备研究所有限公司 Environment-friendly anticorrosive paint for highway steel guardrail and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101711273B1 (en) Primary rust preventive coating composition and use thereof
JP6967079B2 (en) Anti-corrosion paint composition and its uses
JP5467431B2 (en) Water-based inorganic zinc-rich coating composition
EP3199604B1 (en) Rust-inhibiting paint composition and application for same
KR20050016237A (en) Chromium-free metal surface treatment agent
EP1590501A2 (en) A coating composition
JPWO2020045487A1 (en) Anti-corrosive paint composition and its uses
US9752046B2 (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
JP2009078450A (en) Non-chromate surface treated resin-coated metal sheet having excellent corrosion resistance at end face
JP2007016112A (en) Aqueous composition for use in formation of heat-resistant/corrosion-resistant coating film, and heat-resistant/corrosion-resistant coating film
US20120289642A1 (en) Powder coating composition
KR20190000802A (en) Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film and producing method thereof
JP2007284600A (en) Coating composition containing high corrosion-proof zinc powder
JP4128969B2 (en) Non-chromium surface treatment agent for galvanized products
JPS6317976A (en) Zinc-rich paint composition
JPH07133442A (en) Zinc-rich paint
KR20200048689A (en) Water-based acrylic anti-corrosion paint composition with reduced toxicity
JP2001049147A (en) Coating composition
EP2652051B1 (en) Anti-corrosive compositions
JP2000104012A (en) Heavy duty protective coating
JP2010188526A (en) Chromium-free coated steel sheet and housing made of the steel sheet
JP6936706B2 (en) Method for manufacturing water-based resin composition for rust-preventive coating, water-based resin composition for rust-preventive coating, rust-preventive treatment method and rust-preventive metal material
JP2017128693A (en) Primary rustproof coating composition and application therefor
JPH0941168A (en) Zinc-inorganic based surface treated steel sheet excellent in flaw resistance and corrosion resistance
JP6767150B2 (en) Manufacturing method of steel sheet with rust preventive coating